Dynamics Analysis of a Two-Body
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The rigid body motion of a two-body salellite under the action of gravita-
tional torques s analyzed. The satellite consists of two rigid bodies eonnected
by a universal joint where damping is provided in the two journals. The
motion of the satellite relative to the mass center thus has five degrees of
freedom, two of which are provided with energy dissipation. It appears that
the rigid body motion of such a composile satellite will automatically con-
verge upon a motion in which a given axis of the satellile is earth-pointing.

The equations of motion are derived dirvectly from those of Euler. Neces-
sary stability criteria are established. Numerical solutions for a practical
scheme are presented.

I. INTRODUCTION

This paper deals with the analysis of the rotational motion of a satel-
lite consisting of two rigid bodies connected by a hinge mechanism of
universal joint type. The rotational motion of the satellite thus has five
degrees of freedom; the two degrees of freedom that involve the relative
motion between the two bodies are provided with energy dissipation.
It is found that any motion of the satellite with respect to the local
vertical always involves relative motion between the two bodies. There-
fore, the damping at the hinge joint dissipates not only the relative
motion of the two bodies but also the motion of the satellite with respect
to the local vertical. The satellite will then converge upon a stable mo-
tion in which a specified axis of the satellite will remain close to the local
vertical.

The equations of motion are derived directly from those of Newton
and FEuler. This approach naturally suggests several additional de-
pendent variables and results in numerically workable equations. This
is not the case in the Lagrangian formulation.

There are several practical problems involved in this scheme of pas-
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sive gravitational orientation. One problem is to make the gravitational
torque dominate over all other disturbing torques. A novel solution to
this problem, which employs extensible rods, has been given by Kamm.!
Another problem is the development of the hinge dissipative mechanism.
A viscous mechanism is deseribed by Kamm,! whereas a hysteresis
mechanism is suggested in this paper. These practical matters are not
the substance of this paper; they are used as illustrations for the nu-
merical treatment of a practical design.

II. GENERAL EQUATIONS OF MOTION

Consider a satellite which is constructed of two rigid bodies, with
masses my; and ms , hinged at a point H. The centers of mass of the two
hodies are denoted S; and S, , and the center of mass of the composite
satellite is denoted S;. Let the earth’s center be O and let P, and P,
he arbitrary points of body 1 and 2. Also, denote OFP, = R, 08, =
91,0SU = Q,OSQ = 92,0P2 = Rg,.Slpl =TI, SEP2 = 1'2,1181 = £],
HS, = £, (see T'ig. 1). (Note: £; and £, represent vectors, while £, and
{» which appear later represent their respective magnitudes. See Ap-
pendix for list of symbols.)

Let us introduce the following notations:

wr, oy = angular velocity of body 1, 2,
Ty = reactive torque transmitted through the joint on body 1,
F, = reactive force transmitted through the joint on body 1,
T, , Ty = resultant torque on body 1, 2 exclusive of Ty,
F,, F; = resultant force on body 1, 2 exclusive of Fy
my , Mo = mass of body 1, 2,
m o= myme/(my + m.) = reduced mass of the system,
m = my + ms = total mass of the system,
@, , &, = moment of inertia dyadie of body 1, 2.

Newton’s and Euler’s equations can now be written as

Fi+ Fn = mlfu (1a)
F-_l - FH = '?T?-'_l.ég (1]))
‘D]'(.-)1+(.)[X‘D1'w1=T1+TH—£1 X Fy (1e)

‘l’ﬂ'l;)n + o X ®r-og = Ts — Ty 4+ £ X Fy (1d)
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where the dots indicate time derivatives with respect to an inertial
frame. Because of the constraint imposed by the hinge, the following
relations are satisfied

n
o=o4 (8 — )2 (2a)
m
or
my
5 = Lo — L) —. 21
p: = o + (L Do (2h)

Addition of (1a) and (1b) yields the following vector equation which
governs the motion of the mass center Sy :

F, + F. = mp. (3)
Using (1a), (2a), and (3) we may solve for Fy

Fy=""F — "2 F + (& — &) (4)
m m
Inserting (4) in (1e) and (1d) and using the fact that
£ = oy X £ and L= o X & + or X (o X &),

ete., equations (1e) and (1d) become

‘Dl"t:ll + wr X ‘bl"wl =T, + Tu
+ £, X {%' F, — %l F. + #ilwg X (egp X£:) + op X Sg]} (5a)

'l’g"(;)n + o X fpz"(ﬂn =T, — Ty

mea
m

+ £ X {% Fo — "2 F, + dilor X (o X £) + o X 31]} (5b)

where @ = @, + m({T — £:2,),7 = 1, 2, and I is the unit dyadic.

III. GRAVITATIONAL FORCE

The earth’s gravitational field is taken to be radially symmetric. The
gravitational force, dG,, acting on an infinitesimal mass dm; at P; is
then

udm;

rlG,- = R,’.‘

R: (6)

where ¢ = gR; with g being the gravitational acceleration at the earth’s
surface and R, being the earth’s radius. From Iig. 1
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X

Fig. 1 — Vector displacement diagram of a two-body satellite.
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where the last quantity represents terms of order I’/p;" and higher and
[ is the maximum linear dimension of the satellite. These higher-order
terms are neglected in the analysis. Since S; is the center of mass of
body 7

f I; dm‘- = 0.

ml

Hence G, , the gravitational force on body 1, is

2
ozt [iro(f)]
1 (gl
or, by (2a)

G, = [_"ms“' + ﬁ"? (L2 — £0)-(I — 3pp) :I[l + 0 (E) ] (8a)
p o P
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Similarly,

— 2
G. = [—ﬂ:@ — (e — ) (I — 355)][1 +0 (i)] (8b)
P P p*
where the symbol “~”” denotes a unit vector. Using (7), the gravita-
tional torque acting on body 7 about the center of mass is given by

Tr_h:‘[raX(IG{Z';":ﬁX(bI'ﬁI:l—}_O(%)]: 1::112‘ (9)
p P

Let F; = F/ + G;, T, = T/ + Tasi, 1 = 1, 2. Substituting in (5a,b)
with the gravitational torques in (9) and the gravitational forces in (8)
with terms of O(1/p) and O(F*/p’) neglected, the general equations of
rotational motion of two hinged-connected rigid bodies become

. 3u .
d%m+mxwm=§pxwm

+ T (g X £ — 300 X pp-82) + T + Ty
p (10a)

m m:
— e XF + 2o XF
m m
+ o £281 X o — wg € X L2 + L1 Lo — L2841+ 0m1),

. 3u roa
@) o + o X ®og = -E-'l:P X @y - p

+HM (g X &1 — 32 X pp-&1) + Ty — Ta
P ( 10}3)

m m
— e X F 4+ e XF
m m

- ?ﬁ(wl'ﬂﬁluﬁz X oy — m12£2 X £ + Lo Lioy — £1L85-01).

Note that T, and T’ are the resultant torques imposed on body 1 and 2
by some external sources other than gravity. They do not include
torques arising from the reaction of one body upon the other. Simi-
larly, Fy and Fy’ are the resultant forces on body 1 and 2 due to ex-
ternal sources other than gravity. They do not include the reaction of
one body upon the other. Thus both these torques and forces are worked
out as though the bodies were not connected. Various environmental
disturbances, like solar radiation pressure or interaction of a magnetic
moment in the =atellite with the geomagnetic field, may be taken into
account by assigning appropriate values to T, T), F/, and F,". This
subject is not treated here to conserve space.
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From (8a) and (8b) it is seen that
m
G+ G, = -2, (11a)

If the gravitational forces are the only ones in F; and F,, then (3)
becomes

g = — £, (11b)

The solution of this veetor equation is an elliptieal orbit of S, inde-
pendent of the rotations of the satellite, because of the fact that terms
of O(I'/p*) have now been neglected. As the earth’s gravitational field
is assumed to be radially symmetrie, the orbital plane is fixed in the
inertial space.

IV. COORDINATE SYSTEMS

Tour reference frames are used to deseribe the motions of the satellite.

The first frame has its origin at the geocenter O with the Z-axis
through the perigee of the orbit and with the ¥Y-axis in the direction of
the orbital angular momentum. The X-axis is chosen to form a right-
handed set of axes (see Iig. 2). This coordinate system is taken to be
inertial.

The second is an earth-pointing frame. It has its origin at the satel-
lite’s center of mass, Sy, with the z-axis along 0.8, making an angle ¢
with the Z-axis. The y-axis is parallel to the Y-axis, and the x-axis is
chosen to form a right-handed system. The relationship between the unit
vectors of the coordinate systems O-XYZ and S¢-ayz is

£ Yy 0 —Sy ):(
={o0 1 0 Y (12)
3 Sy 0 oy \Z

@,

where S and C are abbreviations of sine and cosine.

The third frame has its origin at S; with axes S;-zy:2; along the
principal axes of inertia of body 1. Euler parameters® are employed to
deseribe the motion of Si;-ry12 relative to Se-ryz. The transformation
is given by

#
!71 = (aij)
&

(13a)

e s B
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Fig. 2 — Coordinates of the rotating and nonrotating frames.

where
g2 —g -+ 20+ ) 2(& — 7x)
(i) = | 2080 — ix) —E2 42—+ 2+ (13b)
280 + nx) 2(—&x + f) -2 -+ 2+
i, 7 = 1, 2, 3 representing rows and columns respectively, and
E4+r++x =1 (13¢)

The fourth frame has an origin at S. with axes Sywayz. along the
principal axes of inertia of body 2. If a universal joint is used, the relative
rotation of the second body can be completely specified with only two
angles, namely a, the rotation of the journal in body 1, and 8, the rota-
tion of the journal of body 2. When these two journals are directed re-
spectively along & and g, then the transformation from S;-232 to
Sa-223220 18 given by

.’i:g 1£1
g ) = (bij) | i (14a)
.‘;'2 él

where
(o} Sa S8 —Ca SB
(bij) =1 0O Ca Sa | (14b)
S8 —Sa Cp Ca OB
The constraint equation #-i» = 0 is automatically satisfied by the in-

troduction of the two coordinate parameters a and 8. The angular
velocities of the two bodies are

o1 = ¥ + Md + M + Mk (15a)
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where
Mo=2(xE 4+ — af — &) (15b)
Ne = 2( =k + xn + E — n%) (15¢)
M= 200k — &1+ xE — %) (15d)
and
on = o + aty + B . (15e)

V. SPECIALIZED EQUATIONS OF MOTION

Let us specialize our satellite so that £; = 0 and £, = —£63 . We
assume gravity to be the only external foree, i.e., Ty, T2/, Fi’ and F, in
(10) are taken to be zero. Then equations (10) are equivalent to those
derived from two bodies connected at their centers of mass except that
the inertia dyadic @, is replaced by ®," defined in (5) (@, = ®, as
{s = 0). The two bodies are connected by a universal joint, which is
characterized by an interposed weightless body, having two perpen-
dicular journals as previously deseribed. The torque Ty, transmitted
through the universal joint, consists of the constraint torque T,, the
elastic restoring torque T,, and the dissipative torque T,;. The com-
ponents of the latter two along the journals a; and ¥, are specified by
subseripts 1 and 2 respectively. Hence T, can be written as

Ty =Tty X g0+ (T + Ta)dy + (T + Tadf.  (16)

Let
I =o'4 (17a)
Iy = @/ (17b)
Iy = @/ 4 (17e)
Iy = @, (17d)
Iy = @, (17e)
Iy = @,-% (17f)
wi(i = 1,2 3) = components of wr along &, , 4 (17g)

wi(1 = 4,5, 6) = components of e along &2, %2,2. (17h)
I'rom the orbit equation (11b), the following relations can be derived

. Q 12
Y = m (1 + GC‘P) (18)
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G =" = _‘3_9-_3 (1 + Cy)* (19)
Pt (1 —é)

where
¢ = eccentricity of the orbit
Q@ = 2 divided by the orbital period.

Euler’s equations of motion (10), simplified for the specialized satellite,
are written out as

Fey = (Is — T) (wwwy — Gang) + T + T (20a)

Law = (I — 1)) (0 — Gngm) + (The + Taz)Ca — TeSa - (20h)

Iy = (1) = I) (@@ — Gmna) + (T + Ta)Sa + Tla  (20e)

Loy = (Is — I) (wsws — Gngng) — (T + Ta)CB + ToSB (20d)

Isas = (Is — Is) (wgws — Gneng) — Tho — T (20e)

Tois = (Is — I;) (wiws — Gnang) — (T + Ta) S — T8 (20f)
where

n; = i (see 13b) 1=1,2,3 (20g)

Niys = kz;' baars  (see 14b) 4 = 1,2, 3. (20h)

Because of the constraint #-§ = 0, a relation must exist among the

six w’s. Such a relation, i.e., (o — o) (& X ) = 0, can be ob-
tained from (15e). This yields the following relationship:

wiSa — wiC'a — w1SB + we('B = 0. (21)

If (21) is differentiated and equations (20) are substituted, the un-
known 7' is found to be

T o= (S’*a "a S8 Cﬂa)—‘

AR A R

{*SE (I; — 1) (wws — Gnns) + (Tr2 + Taz) Cal

— % [([1 - Iz)(wmz - Gnmz) + (Tr2 + Td2) ’SO‘]

_ S]_[j [(Iy — I¢) (wsws — Gngng) — (T + Tar) Cpl



2248 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963
CB .
+ T [(I'I - [B)(w-twﬁ — Gngns) — (grl + Tu) Sﬂ]
6

+ a(wla + wiSa) — ,é(wgcﬁ + wﬁSB)}. (22)

Equations (20) could be considered as a system of six second-order
equationsinsix unknownsé, 1, {, x, «, 8, while ¢ is determined from (18)
and the wys from (15). For computation purposes it is convenient to
also leave the w,’s as dependent variables. Iiquations (15) give

E= 1300 — O+ ) (23a)
B = 3N+ xhe — E\) (23b)
E= 30— + B+ xhs) (23c)
X = 2(—E — e — ) (23d)
@ = —au + (B + S8 (23e)
B = —wla— wSa + ws (23f)
Ni=w —awp, 1=1,23. (23g)

There are now 12 first-order equations, (20 a-f) and (23a-f), in the un-
knowns £ 7, §, x, &, B8, w1, we, ws, s, ws, and we. If Kuler angles had
been used instead of Fuler parameters, there would be certain positions
of the body for which the derivatives of the angles have a singularity.
However, no singularities occur when Euler parameters are used, as can
be seen from (23). It should also be noticed from (13b) that the matrix
fixing the body position is not changed if the coordinates (g, 7, {, x) are
veplaced by (—&, —n, =, —x).

VI. DISSIPATIVE AND ELASTIC TORQUES IN THE UNIVERSAL JOINT

To ecompletely define the problem it is necessary to specify the elastic
and dissipative torques T, and T, .
6.1 Damping Torques

Two types of damping torques are considered here. The first is viscous
damping of the linear velocity type; the torque on body 1 has two com-
ponents

le = Cldi'l (24&)
Ta = ('23% (24h)

where ('} and ('; are viscous damping coefficients.
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The second is of magnetic hysteresis type. The damping is furnished by
hysteresis losses produced by the relative motion of a permanent mag-
net and a permeable material. The torque in the x;-direction might be
approximately expressed by the following process. If & > 0, the torque
would be represented in region I in I'ig. 3 by

a — «

Ta = Tffl.* + le (25)

as long as | s | < Ta where &, T4 are constants and o, T'a* are the
values of «, T's; when & last clmnged sign. After | T'ai | reaches Ta then
T4 remains at T4 as long as & does not change sign. This is represented
as 1eg10n IT in Iig. 3. If & changes sign, then (25) applies and the proe-
ess is repeated. This is represented by region ITI of Fig. 3. Ta» is defined
by replacing a by 8 and subseript 1 by 2 in (25). According to this
idealized hysteresis, no energy is dissipated in region III. In an actual
device, energy would also be dissipated in this region because of minor
hysteresis loops. The chief advantage of magnetic hysteresis damping
is that it is amplitude dependent instead of velocity dependent, since
the librational frequency, which is of the order of the orbital frequency,
is too low to make the velocity damping effective. Other merits of the
magnetic hysteresis damper will be stated in the descriptions of a prac-
tical design for a numerical computation.

Td1
- I
Tar|———
I |
ot |
o* I | o |
| | | ,,,
|
|
|
— |
=Tay
P

Tig. 3 — Magnetic hysteresis damping torque produced by a magnetic device
on the x,-journal.
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6.2 Flastic Torques

It is assumed that each journal is furnished with a linearly elastic re-
storing torque produced, for example, by the torsion of a wire. The torque
acting on body 1 is given by

T,] = kla'iﬁl (26&)
T2 = ks . (26h)

where k; and k» are spring constants.

VII. MISCELLANEOUS TORQUES

Many other torques such as those due to interaction of the satellite’s
magnetic moments with the geomagnetic field, solar radiation, self-
gravitation between two bodies, and plasma effects will act as forcing
terms in the equations of motion. By proper design, these torques can
be made small compared to the gravitational torque. However, since the
gravitational torque varies inversely as the cube of the geocentric dis-
tance, it may not necessarily dominate in the orientation of satellites in
very high orbits. Also, in very low orbits, aerodynamic drag may be big
enough to upset the orientation. If long rods are used with weights on
the ends, the gravitational torque can be made to dominate for a certain
range in altitude.

VIII. EQUILIBRIUM AND STABILITY

Let us consider only the equilibrium position
(Esﬂ)f)XlaJB) = (0?03011)070)

in which the @, , 1 , 2 axes are lined up with the x,y,z axes. I'or viscous
damping, the stability criteria for the position (0,0,0,1,0,0) can be found
by linearizing the equations of motion about this position. The same sta-
bility eriteria are obtained for equilibrium positions found by rotations
of 180° around the 2, y, and 2z aves, i.e., (1,0,0,0,0,0), (0,1,0,0,0,0),
(0,0,1,0,0,0). For hysteresis damping, there will be an infinite number of
stable equilibrium positions. All of these can, however, be made suffi-
ciently close together to either one of the above four equilibrium posi-
tions, thus maintaining an axis in the satellite nearly in line with the
local vertical.

From the definition of Euler parameters, the infinitesimal angles of
rotation about the x;, i, , and z; aves are § = 2, 5 = 29, [ = 2(, de-
fined as the roll, piteh and yaw angles. If &, 7o, {» are the infinitesimal
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angles that the principal axes of body 2 make with respect to the rotat-
ing coordinate system Sp-ryz, and « and 8 are small, then

LE=a + & (27&)
m=B8+m (27b)
o= {1 (27¢)

In the linearization process, we take the eccentricity of the orbit, &
to be small in order to insure the realization of the infinitesimal angles’
This is necessary in view of the well known result of the satellite pitch
motion that the angular excursion produced by the eccentricity is of the
same order of magnitude as the eccentricity itself. From (18) y becomes,
with zero phase angle,

¥ = Q + 2650 + 0(). (28)

To linearize the general equations of motion given by (10), let us assume
viscous damping as expressed in (24) and linear restoring torques as
given in (26). The perturbing torques and forces, T and F/’ (i = 1, 2),
are neglected. Also, let € = —0iz and £, = {2 . Then, equations (10)
are linearized to the following:

i oA Dnfie + C (i — ) + dim — ki'me = 260°(1 4 LS (29a)
‘;i“d + -L',!ﬁl + (’12’(1}2 —_ 171} + d;g?]'-_g - ]1"_1,1]1 = 2692(1 + Lz)SQt (29b)

b4 N+ (B — B) + 06 4 wd — Tk =0 (29¢)
By 4 Nofy 4 O (B — &) + @0 + wk — kb = 0 (29d)
(L= i = f)2% — Qb — b = 0 (20e)
where
Lo = iillo/ls,  Ta = mbls/I5
O = Co/Is, ¢y = Co/Is
k= kI, ke = ho/Is

dy = 3041, — I;)/I. + 39°Ly + k'
dy = 39 (Iy — I)/Ts + 3Q°Ls + k'
Ni = mibls/I;,  N. = mble/Is
oy = Cy/I, = /14
o= (L+1I— 1)/
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= (Is + Iy — I}) /1,

w = 49°(1 — q + 3N/4) + b/

s = 4Q(1 — q2 + 3N2/4) + ky/14

ky = ky/I — @°Ny ky = ky/I, — @°N,

fi= L+ I3 — 1) /(s + 1), fo= s+ Iy — I;)/(Is + o).

It should be noticed that the pitch equations (29a,b) do not depend
on & , &, ¢ and are decoupled from the roll and yaw equations (29¢,d,e).
The eccentricity enters as the amplitude of a forcing term in pitch but
not in roll and yaw. The transient part of the piteh libration can be solved
from (29a,b), excluding the forcing terms, by substituting with

= B, 1=12
The resulting characteristic equation in s is then
(1 = Lnln)s' 4+ (CY + €Y + CYLy + CYLy)s’
+ (dy + dy + k' Lo + ko'Ly)s"
+ (O + OV — Ok — CYk)s + (didy — K'l’) = 0. (30)

The pitch motion is damped about (0,0,0,1,0,0) if and only if the Routh-
Hurwitz conditions® are satisfied. This insures that the real parts of the
roots of (30), representing the damping constants for the two prineipal
modes, are negative. These give

I.> 1, (31a)
ko> — s L= LA MEE) (1 gy (amm)
II - Is + ﬁﬂrﬂ I4 - Iﬁ + ﬁflfz (31(3)

I, + mbl: Is + mbl:

where
I. =1 + Iy + 2w,
I, =1+ Is + 2m!(,
I. =1 + Is.

I.,1I,,I.represent the moments of inertia of the composite body about
So . Condition (31a) is the same as that of a single rigid body. Condition
(31b) states that ks must be larger than a certain critical value if one
body is unstable (e.g., Iy — I3 + m{{- < 0). This value is zero if both
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bodies are stable by themselves. It can be shown that there cannot exist
a cocked equilibrium position in pitch if the parameters are such as to
make the position (0,0,0,1,0,0) stable. Condition (31¢) implies that
there exists an undamped motion if the equality sign holds. This rigid
body motion has a frequency ., given by

mz _ 3Q'z (It — I3 + 771—[1{2)
" i Is + mbl

(32)

The roll and yaw equations (29¢,d,e) are all coupled. This justifies
the use of a damper only for roll. Up to first-order terms, there are no
forcing terms due to eccentricity. The characteristic equation is

bes® + bes” + bus' + bas® + bos” + bis + by = 0 (33)

where

by = (1 — fy — f2) (wue — k)

b= Q1 = fi — f2) (CYw + Oz — BaCy” — kCy”)

by = Q41 — fi — f2) (w + we + Niks + Noky) + we — ks

+ Q(figefs + fogis + figue + fogun)
(1 — fi — f2) (CY + O + CNy + CN»)

+ O (uy + @hge + Cfoge — k)

+ O (u + L + Lhg — &)
by = (1 — fi — f2) (1 = NiNa) + w + us + Noke + Nok

+ @ (fip + fog2 — f1:N1 — fruN»)

by = C\"(1 + N2) + C2"(1 + Ny)
bg =1 — NiN:.

by

The Routh-Hurwitz stability criteria are

by b
by > 0, h > 0, by by > 0,
by by O by bp 0 0
by b by | >0, by by by by| >0,
ba b.; 1)3 ba b.; bg bg

0 b 6 b5 I).Q
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by by 0 0 0O
hg bg bl bu O
by by by by b| >0, bg > 0.
0 by bs by by
0 0 0 b bs

If these are satisfied, there will be three more modes of damped libra-
tions. Due to the coupling between the roll and yaw librations, the yaw
libration can be damped out by the roll damping, as can be observed
from (29¢,d,e), although no yaw damping mechanism is provided in the
present scheme. Hence, all modes can be damped out and the satellite
will oscillate with some steady-state amplitude about an equilibrium

Fig. 4 — Gravitationally oriented two-body satellite with extensible rods.
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position. Some of these conditions are too complicated to give any physi-
cal insight. However, some are quite simple and are given below.

Since the parts of bg, bs and bs which involve ky are (ki/C1)bs,
(ky/C)bs, (ky/C1)bs respectively, multiplying the odd columns of the
Hurwitz determinants by k,/C, and adding to adjacent columns will
eliminate the k; terms. Hence the only condition on &, is by > 0, i.e.,

[4(I, — I, + 3 mble) (Iy — Is + 3 mbl) — } mb’6]
I, — 1,

k> @ (34)

As k, and ks, approach infinity, the satellite becomes one rigid body. Since
the stability conditions are not changed by an increase of & (and k),

) T T

0.6

04

oz

cosé
(=]

-0.2

-0.4

-0.8

0 1.25 2.50 375 5.00 6.25 7.50 B.75 10.00
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Fig. 5 — Angular variation between the zi-axis of the satellite and the local
vertical for a hysteresis damper, cos 4.
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it appears that the single rigid body criteria for roll and yaw stability
are necessary. These are

PP. >0 (35a)
1 4+ 3P, + PP, > 4N/P.,P, (35b)
where
_III_IZ _Iu_'Im
P = I, P. = I.

and 7., 7,, and 7. are given in (31). Condition (35a) can be verified
from the inequality b; > 0. Other necessary conditions in the case of
£, = 0 are found from the third-order Hurwitz determinant to be
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(I,—1,)(,—4%I.) >0 (35e)
and

f,:,—[s 12—13
h—# I,

IX. BISTABILITY

The satellite is in a stable equilibrium position if the z;-axis is in line
with the local vertical (i.e., the z-axis) pointing in either direction. If a
directional device such as an antenna or a camera is used along the
negative zi-axis, it may point at or away from the earth. The equi-
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librium positions (0,0,0,1,0,0) and (0,0,1,0,0,0) correspond to the device
pointing toward the earth, whereas (1,0,0,0,0,0) and (0,1,0,0,0,0) cor-
respond to the device pointing away from the earth, In the latter case
an inertia wheel in the satellite can be activated with a predetermined
number of turns, and the satellite can be rotated 180 degrees so that the
device will be earth-pointing. The equations governing this turning are
given by (10), where the applied torque on body 1 is approximately

' d 0 177
T = — 2 [/n(Coi + S87)] . (36)

where J, is the angular momentum of the inertia wheel and § is the angle
between the x;-axis and the axis of the inertia wheel. Another scheme
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Fig. 8 — Component of angular velocity of the satellite along the y,-axis for
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would be to use two devices, one on each side of the satellite, directed
along the positive and the negative direction of the z-axis respectively.
Only the one that is earth-pointing would be activated.

X. NUMERICAL RESULTS OF A PRACTICAL SCHEME

A practical scheme, as shown in Ilig. 4, is suggested here for a com-
munications satellite. The particular construction, employing extensible
rods and tip masses, is to effect large moments of inertia so that the
gravitational torque will dominate over all disturbing torques. Body 1
of the satellite, which consists of the satellite’s main structure (with
directional antennas) and a mast rod, is to be earth-pointing. Body 2,
being an auxiliary body for attitude-control purpose only, is constructed
of two rods and is in an unstable position with respect to thelocal vertical.
These rods are extended, upon ejection from the launching vehicle’s
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Fig. 9 — Angular variation between the z;-axis of the satellite and the local
vertical for a viscous damper, cos 6.
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final stage, by unrolling from sheet metal drums. The universal joint
employs torsion wires to produce elastic restoring torques and provides
hysteresis damping by relative displacement between magnets and a
permeable material. (See Iig. 5 of companion paper.?)

The advantages of magnetic hysteresis damping are that it is ampli-
tude dependent, insensitive to temperature variation, involves no sliding
parts and requires little weight. Coulomb friction damping, while also
amplitude dependent, is less desirable because of possible cold welding of
sliding parts in the high vacuum of space. Velocity-dependent damping
by employing viscous fluids is believed to provide lower damping for a
given weight, and the viscous fluids involve questions of temperature
sensitivity.

All the parameters are chosen based on the adjusted moment of inertia,
I, , of body 1 subject to stability criteria and other necessary considera-
tions. The stability criteria (31b) and (34) specifying the critical values
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Fig. 10 — Relative angle about the z,-journal for a viscous damper, «.
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of ks and ky , respectively, which are derived from viscous damping, are
found to apply approximately also in the case of hysteresis damping,.
These parameters arve: I,/f; = 1.00, 0.003, 0.159, 0.381, 0.540
(i = 2, -+, 6); k/1,2 = 1.131, 2.238 (z = 1,2); for a hysteresis
damper: T/, = 0.159, 0.216 (0 = 1,2), & = B = 2°; for a viscous
damper: C;/[,2 = 0.870, 1.281 (i = 1,2). With the above value of
the viscous constant €., the amplitude of the lower mode of pitch
libration can be reduced according to (30) by a factor of ¢ in 0.22 orbit,
which is close to the optimum. The optimum in the case of pitch mo-
tion was found by Zajac® to be 0.137 orbit. Equations of motion (20)t
depend only on the above dimensionless parameters and are independent
of I, and Q as long as ¢ is measured in fractions of an orbital period. Some
initial conditions which might simulate a micrometeoroid impact or the

t Equations (20) were programmed on an IBM 7090 by Mrs. W. L. Mammel.
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motion after the erection of therodsareat{ =0:¢ =9 ={=a=p=10,
x=1w =8 w =50 ws = &, wy = wy = ws = 0. Figs. 5-8 represent
the computer solution of equations (20) using a magnetic hysteresis
damper. In Ifig. 5, 8 is the angle hetween the z;-axis and the local vertical.
The satellite stops tumbling after four orbits and settles to within 10° of
the local vertieal after six orbits. The satellite librates about a cocked
equilibrium position indefinitely due to the foreing torque of orbital ee-
centricity (e = 0.01). The pitch angular speed of body 1, w. , approaches
one revolution per orbit, which is the proper speed for an earth-pointing
satellite. Figs. 9-12 show similar results of a viscous damper. In this
case the satellite ended up in an inverted position.

Effects of the environmental disturbing torques, such as those due to
solar radiation and the interaction of the magnetic moment in the satel-
lite with the geomagnetic field, have been investigated, although the
results are not included here. Cases with various other initial conditions
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have also been computed. All these results indicate that gravitational
orientation of a two-body satellite is feasible.

APPENDIX
Nomenclature

A.1 Latin Symbols

a;; = direction cosines of Sy-zyiz frame with respect to So-
ayz frame (7,7 = 1,2,3)
b;; = direction cosines of Sy-asys20 frame with respect to Si-
mipz frame (4,7 = 1,2,3)
b; = coefficients of characteristic equation of & ,&,¢ (v =
0,1, -,6)
B; = complex constant of ; (¢ = 1,2)
C' = cosine operator
'; = viseous damping constants of ,8 (7 = 1,2)
¢/, C” = adjusted damping constants of «,8 defined in equations
(29) ( = 1,2)
d; = coefficients defined in equations (29) (7 = 1,2)
fi = moment of inertia coefficients defined in equations (29)
(i =12)
F, = force on body 1 due to reaction of hinge
F; = resultant force on body 7 exclusive of Fy (¢ = 1,2)
F,/ = resultant force on body i exclusive of gravity and Fy
g = acceleration of gravity on the earth’s surface
(¢ = quantity defined in equation (19)
G; = gravitational force on body 7 (¢ = 1,2)
H = hinge point
I = unit dyadic
I, = adjusted moments of inertia (i = 1, ---, G)
I.,1,,I. = moments of inertia of composite body about the common
center of mass
J.» = angular momentum of inertia wheel
k; = spring constants producing torques in x, . directions

(¢ =1,2)
k! k; = adjusted spring constants defined in equations (29)
(t=12)

! = maximum linear dimension of the satellite
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position vector of center of mass of body ¢ from hinge
(t =1,2)

magnitude of £; (7 = 1,2)

coefficients defined in equations (29) (7
mass of body 7 (¢ = 1,2)

total mass of satellite

reduced mass

direction cosines of z-axis on S;-v,7,2; and Se-2a702, frames
(i=1,---,6)

coefficients defined in equations (29) (¢ = 1,2)
center of the earth

arbitrary point in body z (7 = 1,2)

ratio of moments of inertia in equations (35)
coefficients defined in equations (29) (7 = 1,2)
position vector of P; from center of mass of body 7 (4
1,2)

position vector of P; from O (7
mean radius of the earth

sine operator

variable in characteristic equations

center of mass of satellite

center of mass of body 7 (¢ = 1,2)

time variable

reaction torque transmitted through the joint on body 1
resultant torque on body ¢ exclusive of Ty (7 = 1,2)
resultant torque on body 7 exclusive of Ty and gravita-
tional torque (i = 1,2)

gravitational torque on body 7 (7 = 1,2)

constraint torque of joint on body 1

dissipative torque of joint on body 1

magnitude of saturated hysteresis torque of magnet ¢
(z=1,2)

value of T; when & (7 = 1) and 8 (¢
sign

elastic restoring torque of joint on body 1
coefficients defined in equations (29) (7 = 1,2)
fixed frame coordinates

rotating frame coordinates

body 1 coordinates

body 2 coordinates.

1,2)

2) last changed
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¥ R R

R

. =
T e 3T v m o0 s

e B

W1, WII
W), W, Wy
Wy, Ws, We

Wy

A.3 Noles

~

. e . . . d
. = time derivative in an inertial frame (= —
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Symbols

relative angle of rotation of body 2 about x;-axis
constant of magnet 1

values of « when & last changed sign

relative angle of rotation of body 2 about y,-axis
constant of magnet 2

values of 8 when g last changed sign

angle between 2,-axis and the inertia wheel axis
eccentricity of the orbit

Fuler parameter

infinitesimal angle about z.-axis (7 = 1,2)

Fuler parameter

infinitesimal angle about y-axis (i = 1,2)

angle between z-axis and the local vertical or z-axis

= components of the relative angular velocity of body 1 with

respect to rotating frame (z = 1,2,3)

a gravitational constant of the earth

Euler parameter

infinitesimal angle about x;-axis (¢ = 1,2)
position vector of S from O

position vector of S; from O (i = 1,2)

moment of inertia dyadic of body ¢ (¢ = 1,2)
quasi moment of inertia dyadic of body 7 (i = 1,2)
Fuler parameter

true anomaly of ellipse

mean orbital angular speed of satellite

angular velocity of body 1,2

components of wr along a1, 1, 21 axes
components of ey along w2, 12, 22 axes

natural frequency of an undamped roll libration.

unit veetor

dt

boldface characters indicate tensors and veectors (it is assumed that
dropping the boldface means the magnitude of the vector; ie., p =

lel).
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