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Traffic delay, caused by temporary all-lines-busy conditions, 1s analyzed
for three mathematical switching models. They are classified as “address
camp-on,” “retrial,’ and ‘‘message storage” models. The models are de-
signed to permil a study of basic traffic theoretical problems encountered in
the rapidly growing field of data communications, but they are nol identical
with any of the existing data swilching systems. Kach model assumes that
a message s swilched only through one switching center which must es-
tablish connections via line groups to one or more addressed receiving sla-
tions, i.e., each model contains only a single swilching center. Numerical
results for the average delay on all messages are obtained on the IBM 7080
compuler.

I. INTRODUCTION

Switching centers can be used to link together communication lines
for the transmission of data between a variety of business machines and
computers. Due to randomness in the required interconnections a switch-
ing center may occasionally not find an idle line to a particular receiving
station, so that a delay can oceur. More than one method can be followed
when a switching center finds all lines to a receiving station busy. Some
switching models appear to obtain lines to the addressed receiving sta-
tions in a shorter time than other switching models. This means that
with one switching model a given delay requirement can be met with
fewer lines than with another switching model. This is not to say that
the model which would render a given grade of service with the least
number of lines also is the most desirable from an economie point of
view, because delay is only one factor which enters into the choice be-
tween data switching systems. Components of a switching system, such
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as lines, memory, etc. do not bear the same price tag, and minimizing the
number of components of one kind does not ensure economical efficiency.

Interest in the particular traffic engineering problems of data switch-
ing has been present for at least 15 years. Yet, traffic engineering work
was mainly concentrated on classical telephone trunking problems, and
a variety of such fundamental problems have been worked out. Some
of the data switching systems which are being studied or are now in use
cannot be analyzed by standard mathematical approaches of traffic
theory because the operating conditions differ from those of the mathe-
matical models used in the analysis of classical telephone problems. The
understanding of the fundamental traffic theoretical problems encoun-
tered in data switching is a prerequisite for an exact mathematical analy-
sis of message delay in data systems. The fundamental problems need
to be studied on simplified models which lend themselves best to mathe-
matical treatment and, therefore, will not be identical with any of the
present data systems in use. We have constructed for study three hypo-
thetical models which we call “address camp-on,” “retrial,” and ‘“‘mes-
sage storage”’ models, and have analyzed message delay for each of them.

Message delay is defined as the delay between initial request by the
switching center for a line, and the moment the message is released
from the switching center for transmission. The switching center handles
messages in a manner described by one of the three switching models.
The delay is caused by temporary all-lines-busy conditions in the line
groups which connect the switching center with the addressed receiving
stations. This type of traffic delay must not be confused with the total
delay from the time a message is ready at the data source and the time
the message is actually received at a destination. No account is taken
of messages which are switched through more than one switching center
in tandem.

This study, then, shall not be looked upon as an attempt to make a
choice between switching systems, since such a choice cannot be based
solely on the delay performance of mathematical models. A true com-
parison between switching systems must include other factors, as for
instance the cost of memory and logie, loading of transmitters, and load-
ing of incoming lines, all of which are neglected here.

II. DESCRIPTION OF MATHEMATICAL SWITCHING MODELS

The following describes each of the three switching models. The de-
scription is preceded by an outline of features which are common to
each model. The mathematical derivations given in the appendices and
the delay curves are based on these models.
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2.1 Common Fealures

Think of a data source feeding messages into a switching center that
has a large number of line groups radiating from it (see Fig. 1).

Each line group connects one, and only one, receiving station with the
switching eenter. A receiving station is capable of receiving from all
lines in its group simultaneously. There might be one or more lines per
group, but each group contains the same number of lines ¢. Full access
is given to each line in a group. A message is said to have A addresses
when a copy of the message must be transmitted over A different line
groups to A different receiving stations. The number of addresses per
message remains constant for all messages. The switching center is
responsible for transmitting a copy of the message to each of the ad-
dressed receiving stations. The addresses of a message are chosen at
random from a large number of possible receiving stations. This permits
us to assume that all line groups are independent of each other. /les-
sages are originated and addressed insucha way that a; , the information
load offered to a group, is the same for every group. The information
load is defined as the number of first, i.e., unrepeated, message attempts
which are expected to be generated during an interval equal to one aver-
age message length. First attempts are made Poisson distributed in
time, meaning that the probability that exactly k& first attempts are
generated during an interval of length ¢ is given by

DATA SOURCE

DATA PROCESSOR OR
INCOMING LINES FROM
SWITCHING CENTERS

ORIGINATING

INTERMEDIATE
SWITCHING CENTER

OUTGOING
LINE GROUPS

RECEIVING
STATIONS

Fig. 1 — Switching model.
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in which ¢ is in units of the average message length. The length of all
messages is exponentially distributed with mean 1. In the mathematical
derivations the average message length is taken as the unit of time. An
exponential message length distribution is chosen, since it is believed
that it will serve as a good approximation in a larger number of practical
cases than a constant length. The instant a new or repeated message is
originated, the switching mechanism begins to hunt for an idle line to
each of the addressed receiving stations. No delay is imposed by the
switching mechanism itself. Each new message is eventually delivered to
the respective receiving stations, i.e., no messages are lost. The system is
in statistical equilibrium, which is to say that the system is in the steady
state such that the average number of messages in the system during
any long interval of time remains constant.

When all lines in a group to one or more of the receiving stations are
busy we must find a way of delaying delivery. The camp-on and storage
models assume that blocked requests form queues at the switching cen-
ter. The retrial model assumes that blocked requests are withdrawn from
the switching eenter and reoffered at a later time.

The reader has doubtlessly observed the very simplified and idealized
set, of common features on which the switching models are based to per-
mit mathematical analysis. The same applies to the features which are
unique to each of the three models.

2.2 Address Camp-On Model

When a line group to an addressed receiving station is blocked, the
request for service in this group will camp-on and wait in the order of
arrival until a line is assigned by the mechanism which scans continu-
ously for idle lines. The assignment of available lines to waiting requests
is done on a “first come, first served” basis. When a line is assigned it is
immediately made busy. The message, however, is not released from the
data source until lines to all addressed receiving stations are secured.
When the last line is obtained, the message content is released and trans-
mitted simultaneously to each of the addressed receiving stations, after
which the lines are released. The holding time of a line in the camp-on
model is made up of the sum of two random variables: namely, the ex-
ponentially distributed message length and the time spent waiting until
lines are secured to all addressed receiving stations.
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2.3 Retrial Model

In the retrial model, a message is released from the data source only
when lines are found at the switching center to all addressed receiving
stations. If even one line group is blocked, the message is not transmitted
to any of the addressed receiving stations and is temporarily cleared from
the switching mechanism without making any lines busy. A blocked
message is reoffered any number of times from the data source after a
constant time interval 7, until an idle line is found simultaneously to
each addressed receiving station. At a retrial of a blocked message, an
attempt to seize an idle line is made in the same groups as at the previous
attempt. The message delay is determined by the number of attempts
made and by the length of the constant retrial interval r. The holding
time of a line in the retrial model is equal to the exponentially distributed
message length.

Another way of making retrials is to let the delay in the delivery of
the message content to any one addressed station be independent of the
delay to the other addresses of a multiaddress message. In this case, a
message having A addresses would be considered to consist of 4 one-
address messages and the delay would be that given for the one-address
case of the retrial model.

2.4 Message Storage M odel

Message storage is analysed on a model in which requests for lines in
a busy group form queues in the order of arrival. In the multiaddress
case, some addresses of the message may find their line groups busy
while other addresses may obtain lines to the addressed stations with
no delay. The model assumes that the message is released with no delay
to stations which are not blocked, and that the delivery to a blocked
station is delayed only until the instant a line is found by the switching
mechanism which seans continuously for idle lines. As in the retrial
model, the line holding time is equal to the exponentially distributed
message length.

IIT. METHOD OF ANALYSIS

The delay performance is analysed as messages are switched through
one switching center which employs one of the three described switching
models. It should be pointed out that the results obtained here apply
only to the mathematical models used. All approximations mentioned
in the analysis are approximations of the model to which they refer.
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The mathematical analysis of the delay performance of the address
camp-on model is given in Appendix A. The problem is to find the total
occupancy of the outgoing line groups. In the multiaddress case, out-
going lines can be held busy in excess of the message length. This excess
holding time increases the load carried from the useful information load
ar to a total load ar. The excess holding time is the average length of
time between line seizure and the time lines are found for all addresses
of the message. Erlang delay probability is used by the introduction of
an approximation which assumes that the total holding time of an out-
going line is exponentially distributed. No explicit expression is derived
for the total load ar . Solutions for ar are found by solving (7) and (10)
of Appendix A in an iterative computer program. The average delay
follows from (11).

In Appendix B the mathematical analysis is given for the retrial
model. The retrial method has been under consideration for application
in both military and commercial data systems, and this method is also
used in voice telephone communications. The mathematical analysis of
delay in systems in which blocked attempts are reoffered is one of the
fundamental traffic problems for which an exact solution is not available.
The prospect of using the retrial method in data systems emphasizes the
need to treat such systems analytically. The analysis given here is
not exact because a number of approximations had to be introduced
to obtain numerical results. Since the retrial method is a basically
unsolved problem it must first be studied in its simplest form, which
exists for the case of one address per message. Considerable effort, there-
fore, is spent in Appendix B on the discussion of the one-address case.
Our approach to the retrial problem is to find approximations for the
unconditional state probability of finding ¢ lines in a group of ¢ lines
busy, 0 £ ¢ = c¢. Then, approximations are found for the conditional
probabilities of finding 7 lines busy at & + 7, when the state of the group
is known at &, fo — 7, to — 27, ete. The delay for the one-address case
follows from (23) of Appendix B. For the three-address case the delay
is computed from (31) in a Markov process which is in itself an approxi-
mation of the retrial problem since it accounts only for a first-order
dependency.

The basic problem in the retrial model is to find approximations of the
conditional probabilities mentioned above. These are obtained by in-
tegrating a set of differential equations (16), using a line request rate
w(t) which by itself is conditioned on previous states of the line group
and, therefore, is dependent on time. The line request rate w(f) appears
as a coefficient in (16). Since w(f) can be expressed only as a function of
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solutions to (16), we cannot find «(f) explicitly, but must compute it in a
long process of progressive iterations. It will become apparent from Ap-
pendix B that not all approximations made can be clearly justified, but
the results obtained are sufficiently accurate for comparison with other
switching models. Some of the approximations appear critical for short
retrial intervals 7, particularly when ¢ is small. The amount of effort
and computer time spent on solving the retrial problem analytically is
not necessarily less than the amount of effort and time spent by simula-
tion. The problem is by no means solved, but it is hoped that by this
analytical approach the way is paved toward a more complete analysis
of retrial systems.

For message storage, the average delay can be determined by the well-
established methods of traffic theory developed by A. K. Erlang. These
are outlined in Appendix C. The average delay for the storage model is
computed from (32) of Appendix C, and no approximations need to bhe
made.

IV. RESULTS AND CONCLUSIONS

For a fixed amount of information load, each switching model pro-
duces different delays. This means that some switching models must be
operated at lower occupancy than others to ensure that delays encoun-
tered will not exceed the desired maximum. The delays shown below
for each switching model do not necessarily keep their relationships in
respect to each other when messages are switched through several switch-
ing centers in tandem.

The results of computations for one address per message are shown in
Figs. 2 and 3 for one and ten lines per group, respectively. I7igs. 4 and 5
show similar results for three addresses per message and one and ten
lines per group, respectively. The “information occupancy’ in these
figures is numerically equal to the information load offered to the line
group divided by the number of lines per group, i.e., a,;/e. The term
“occupancy” refers to the percentage of time a line is occupied on the
average. The fraction of time a line is actually utilized for the transmis-
sion of information, then, is equal to a,/¢, so that we may also call “in-
formation occupancy” the “line utilization.”

Tirst let us discuss the address eamp-on model. This method offers
the advantage that error correction ean be performed on multilink con-
nections on an end-to-end basis because the message content remains in
storage at the data source until a connection is set up to all addressed
receiving stations. The camp-on model also is of interest because storage
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Fig. 2 — Average delay on all messages vs information occupancy; 1 line per
group, 1 address per message.

at an intermediate switching center need be provided only for the ad-
dress portion of a blocked message and this might have some economic
advantages over other switching models. For one address per message
there is, in theory, no difference in the traffic delay performance of the
address camp-on and message storage models when the message is
switched only once. It should be remembered that in the camp-on model
an intermediate switching center keeps the incoming lines busy in excess
of the message length for the duration of a delay which, for a given
information load @, increases the actual load carried. Because we con-
sider only single-switched messages, no account is taken here of this
type of line loading,.

As was mentioned before, the total holding time of an outgoing line
in the address camp-on model is made up by the excess holding time,
which is the time spent waiting for other addresses to find lines, and by
the actual message length. In Fig. 6 we show the total occupaney ar/c
versus the actual information oceupaney or line utilization a,/c for three
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addresses per message. We see that the total occupancy approaches 100
per eent at a surprisingly low information load. This is due to the fact
that the excess holding time increases the load on the outgoing line
groups, which in turn increases delays and thus brings about longer
excess holding times. This makes the camp-on model unusable beyond
certain intolerably low levels of line utilization. For instance, in the
three-address case, line utilization must be limited to about 14 per cent
or 60 per cent for line group sizes of ¢ = 1 or ¢ = 10, respectively. It
can be seen in Fig. 6 that beyond this point the total occupaney blows
up and with it the delay imposed on a message. A similar result was
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Fig. 3 — Average delay on all messages vs information occupancy; 10 lines
per group, 1 address per message.
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Tig. 4 — Average delay on all messages vs information occupancy; 1 line per
group, 3 addresses per message.

obtained by Weber! in a different approach. A simulation made by
Weber! for ¢ = 1 shows close agreement with the results derived here.
For example, the simulation shows a maximum utilization of about 14
per cent for ¢ = 1 and three addresses per message, which is the same
as derived here analytically. This indicates that considerable confidence
may be placed in the approach presented in Appendix A.

F'rom the delay performance of the address camp-on model it is con-
cluded that any switching method in which delays become a substantial
part of the line holding time will require a relatively large number of
lines to provide adequate service. By the same token we may conclude
that even more lines will be required when the message is switched more
than once, i.e., through more than one switching center.

Next we turn our attention to the retrial model. The performance of
the retrial model as a function of the retrial interval, r, is of interest.
We observe in Figs. 2-5 that when one doubles  the delay is less than
doubled. On the one hand, we expect longer retrial intervals to cause
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longer delays. On the other hand, it can be shown that the probability
that the message succeeds on a retrial increases with increasing length
of 7. Shorter retrial intervals result in smaller chance for success than
longer retrial intervals, but the fact that in any given time there are
more attempts made with short retrials than with long retrials makes
the average delay a monotone increasing function of 7. For large values
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Fig. 5 — Average delay on all messages vs information occupancy; 10 lines
per group, 3 addresses per message.
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of 7, say at least twice the message length, the rate of increase of the
delay will be almost proportional to the rate of increase in 7. This is
0 because the rate of change of the probability of being blocked again
becomes smaller with increasing values of r. With = approaching 0, the
average delay with the retrial model should approach the delay for the
message storage model in the case of one address per message.

The delay in the retrial model increases with the number of addresses
per message. A comparison between Iigs. 2 and 4 shows that this in-
crease is quite significant when the number of lines per group is small.
This increase can, of course, be avoided when a multiaddress message is
broken up into several one-address messages, as suggested earlier in Sec-
tion 2.3. Stations not blocked would then receive the message content
independent of the availability of lines to the other stations. If this mode
of operation is used for retrials, the retrial curves given in Figs. 4 and 5
are to be replaced by those for the one-address case shown in Figs. 2 and
3, respectively. Such a change of the retrial model would bring the av-
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erage delay for very short retrial intervals close to that of the message
storage model, independent of the number of addresses.

The retrial model has the advantage that no storage has to be pro-
vided in a switching center except at the data source. However, provision
must be made to instruet the data source to reoffer the message when an
all-lines-busy condition is encountered at a switching center. The retrial
method is particularly well suited for error correction by retransmission
from the data source on request from a terminating station which de-
tected an error.

Since the analysis of the retrial model is based on approximations, we
do not expeet absolute accuracy of the eurves derived. The retrial model
has been simulated by others for some special cases and it is interesting
to compare the results. This is done in Table I, in which time is expressed
in units of the average message length. We observe some disagreement
between analysis and simulation for large retrial intervals.

Finally, let us look at the message storage model. This method pro-
vides an efficient use of lines, even if the line groups are small, and delay
is independent of the number of addresses per message. It requires, how-
ever, that considerable storage be provided because each switching
center must be arranged to permit full message storage to allow for de-
lays exceeding a message length. Provision must also be made for trans-
mission of a copy of the message to each addressed station independent
of the transmission to any other station.

According to the model of the message storage method, a message is
delayed only until the very instant a line is found. From a practical
point of view this means that the line-hunting mechanism should he
activated as soon as the address is decoded. On the other hand, message
storage may be operated so that the message is stored completely at the

TABLE I — COMPARISON: ANALYSIS VERSUS SIMULATION,
ONE ADDRESS PER MESSAGE

Average Delay on All Messages
Retrial Interval No. of Lines Occupancy ar/e
Analysis | Simulation 1| Simulation 2
0.5 1 0.7 3.25 * 3.65
0.5 10 0.7 0.11 * 0.14
1.0 1 0.5 1.94 1.84 1.76
1.0 10 0.9 3.12 2.61 1.92
2.0 1 0.7 12.65 * 8.45
2.0 10 | 0.7 0.36 | * | 0.26
| 1

* Not available.
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switching center before the line hunting starts. In this case, the amount
of time needed for full message storage must be added to the delay. The
latter mode of operation adversely affects the delay performance of the
storage model, particularly when the message is long in comparison with
the delay that can be tolerated.

The delay performance for the storage model will become consider-
ably worse than shown when the line back to the originating station
cannot be released as soon as the message has been transmitted over it.
For multiswitched messages the release of lines between switching cen-
ters would ensure that the line holding time is not increased by the de-
lay.

The curves given for the storage model can be considered accurate
because the validity of Erlang delay formulas has long been observed.
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APPENDIX A
Mathematical Analysis of Address Camp-On Model

Let the excess holding time %, be the average time between seizure
of a line and the time lines are found for A addresses of a given message.
Turther, let Zx 4 be defined as the average time between initial request
for lines and the time K out of A addresses have seized lines. At the time
A addresses have seized lines, the message is ready to be transmitted.
The average delay on all messages, d. , is defined as the average time
between initial request and the time lines have been seized by all A
addresses, as illustrated in Fig. 7.

The average is a linear operator, and one obtains for the expected
excess holding time

> Wra-

1
Ba=7 &

And since
WK,A =d4 — ZK,A
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it follows that

1 A
Ey =d, — ZKZ—I ZK.A- (1)

1 < . . .
The term 1 2 Zg,a is recognized as the average time between re-
K=1

quest for and seizure of a line for any given single address.

We define Q(t) as the probability that the delay is less than or equal
to t between the time of a request for a line by a given single address
and the time of line seizure, and obtain

1 < ®

A IRT0)
A E=1 t=0

The average excess holding time for the A-address case follows from

(1) as

Bo= [ caeunt ~ [ raq. (2)
t=0 t=0

The only approximation in the analysis of the address camp-on model
is the assumption that the holding time of a line is exponentially dis-
tributed, so that

Q(t) = 1 —se *", (3)

The holding time is made up of two random variables, namely the mes-
sage length and the excess holding time. The approximation made in
(3) implies that the sum of these two random variables is exponentially
distributed. That this, indeed, is a reasonable assumption is confirmed

Fig. 7 — Line seizure sequence.
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by the close agreement of the delay derived here with the delay derived
by simulation.!
Substitution of (3) in (2) gives

E, = Abe [ Pl — e P Al — b [ te¢" di.
=0 Je=0
The above reduces with the binomial expansion for (1 — 8¢ ') 1 to
AE /4 -1\ (=) 8
B A5 () - 4)
o 4\ K JK+1)} o

For the case of exponential line holding time with mean # and service
of requests for lines in the order of arrival as is the case here, we must
substitute in (4) according to Erlang’

5=1—Q(0) (5)
C—(Ir_c—ﬂr 3
T m/a’ )

in which ¢ is the number of lines per group, ar the average number of
requests per line holding time or the total load offered per line group,
and a; the average number of requests per message length or the informa-
tion load. Q(0), the probability of no delay, is given by Frlang® as

aT

e —
agp € [

Q0) =1 — ¢t ¢= ar : (7)

o ¢ —ar

i —aq
ar e arp e c
1-2> T+

i—e ! c! ¢ — ar

The unit of time being the average message length renders for 1, the
average line holding time,

so that
EA = a—T — 1. (9)

ar

Substitution of (5), (6) and (9) into (4) brings

e 1-00) _ _ar ?A_a

a c—a a ¢ — a

1 I T T . T o (10)
5> (‘4 - 1) [Q(0) — 1]
=\ K (K + 1)

With ¢, a; and A given, we can now compute ar , the total load, itera-
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tively from (7) and (10) above. Then, with ar known, we find the
average delay on all messages from (1) and (9) as

d_{_‘i!'._1+1___Q(92a_T, (11)

- ar c — ar ar
which we recognize as the left-hand member of (10).

It is interesting to take note of the fact that there are generally two
values of a, which fulfill (10). Thus, one could conclude that the system
can operate in two modes, one implying a shorter delay than the other.
More than one steady state of operation has been observed by others!:5
in similar traffic studies. However, it appears questionable that the
heavy delay mode is stable since the larger of the two ar which fulfill
(10) decreases with increasing a; , which is physically unreasonable.

APPENDIX B

Mathematical Analysis of Retrial Model

When a newly offered message makes its first trial to seize one of ¢
lines in a group, let S;, 0 = 7 = ¢, be the unconditional probability that
the group is in state 7. A line group is said to be in state ¢ when 7 out of
all ¢ lines in the group are busy. The message is reoffered until a line is
available to each of A addressed receiving stations; therefore, no mes-
sages are lost. The load carried on each group equals a; , the information
load offered. For the special case of ¢ = 1, we obtain

So =1- ar (12)
and
Sl = (ar. (13)

For ¢ > 1, i.e, for more than one line per group, S; depends not only
on a;, but also on the procedure by which lines are made busy. By
procedure is meant the type of distribution of the length of the intervals
between line requests, and whether unsuccessful attempts form queues
or are withdrawn. For Poisson input at the rate of a; and withdrawal of
blocked attempts, Erlang loss probability’ gives

il
Si = M (14)
Z (Inr/:l:f
r=0
in which
ap = —21 . (15)
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In the switching model considered here, the total input to each line
group, i.e., the total load offered, is not Poisson distributed and its mag-
nitude differs from ao . This is so because repeated attempts are blocked
with a probability which is larger than S. and because for A > 1 blocking
to any one of the A addressed receiving stations will cause a retrial. In
order to compute S;, it is assumed that for a sufficiently large retrial
interval r, the total input will at least resemble a, in distribution and
magnitude. This approximation may be justified for light line occu-
pancies but it becomes increasingly unrealistic with inecreasing line oc-
cupancies. The approximation for ao , therefore, is used here only to com-
pute values for S; when ¢ = 2. For ¢ = 1 the values for S; are exactly
determined by (12) and (13) above. For ¢ > 1 we solve (14) and (15)
iteratively with 7 = ¢ to obtain @, and then solve (14) to obtain approxi-
mations for S; when ¢ = 2. The approximations for S; so obtained are
used for the unconditional state probability both in the one and three-
address cases.

Next, we will consider conditional probabilities which take into ae-
count past known states of a line group. Let it be known that at a given
time #, there are j lines busy in a group, 0 £ j = ¢; what then is the
probability that at f{, + ¢ there are 7 lines busy? This conditional prob-
ability is called X; ;(¢). For Poisson input and exponential line holding
time, X ;(t) is given by a well-known set of first-order differential equa-
tions.* Here, now, we must take into account that the superposition of
first and repeated attempts results in an input which is not Poisson.
We let w(f), to < t < to + 7, be the instantaneous line request rate or
the density of requests. As was said above, X, ;(/) is conditioned on
state 7 of the group at £, . Consequently w(f) depends also on the state
of the group at f;, and this important point should be kept in mind,
particularly since the notation does not always remind the reader of
this condition.

Assume for the time being w(f) is known for every value of ¢ in the
interval (o, fo + 7). The differential equations defining X0, to =

it <t + 7,are

Xo,i/(8) = —w(l)-Xo,;(t) + X1i(8)

X7/ () = w(t) Xivi(1) — [+ o(0]-Xi5(t) + (16)
(@ + 1) X, (1)

for0<i<ec

X/ () = w(t) -Xe,i(t) — ¢ X 5(1).



DELAY ANALYSIS 727

The condition that j lines are busy at time {; is taken into account by

(1fori=j
X, (ty) = . ) (17)
|0 for 7 = j,

and, as said before, by w(f). For the special case t = 1, + 7, the argu-
ment is dropped and X, ;({q + 7) is abbreviated to X, ;. The system
(16) can be solved with Laplace transforms for ¢ £ 2, and by numerical
integration for ¢ = 3.

Two cases are considered in the following: one in which each message
has one address, i.e., the case 4 = 1; the other in which each message
has three addresses, i.e., the case A = 3.

B.1 One Address per Message

In order to compute delay for the case A = 1, we must know the
probability of finding the line group in state ¢ at {, + r, given a state ¢
at to, ty — 7, t — 2, ete. In other words, we must know the probability
that a message is blocked twice, three times, four times, ete. To simplify
the notations for the case A = 1, we write C, for the conditional prob-
ability that all ¢ lines of a group are busy at ¢, + =, given a state ¢ at f,,
fy — 7, -+, tp — ir. C;, therefore, denotes the probability that a one-
address message is blocked ¢ + 2 times in a row. C, is identical with
X,.c and can be computed by (16) provided w(¢) is known. It will help
to keep matters clear if, for the case 4 = 1, w(t) is subseripted so that
wi(t) refers to the condition that at &y, f{, — =, -+, t, — 77 all ¢ lines of
the group are known to be busy. For instance, the line request rate used
in (16) to compute C} is called wy(t). Values for C';, 7 = 1, are computed
from (16) in the same manner as X, ., except that w;(t) is conditioned
as indicated later. Hence, the numerical values for X, . obtained from
(16) with w:(¢), 7 = 0, are equal to C;.

Let us now discuss the procedure by which w,(f) is obtained for the
case A = 1. We will find functions L; which are conditioned on a state
cat ty,to — 7, -+, lp — ir, such that

wi(t) = Li(Co, Cy, Coy -o o)1) (18)

This means that we cannot obtain an explicit expression for w;(#)
since w;(t) is needed to compute C'; from (16). But with (18) we come
into a position which allows us to assume values for C';, compute w,(#)
from (18) and then use the so-computed w;(¢) to obtain C; from (16).
Through successive iterations stable solutions are obtained for C'; such
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that (19) is satisfied
Se < Co<Cy <Oy < -o <1 (19)

The above approach, of course, is extremely tedious when C'; must be
computed for large numbers of 7. The problem is simplified when one
assumes for large enough 7 that C; = (41 . Computations have shown
that for retrial intervals = = 0.5 we may reasonably approximate C'; =
(':s» when 7 = 4. This approximation, consequently, is used in the
one-address case. It is mainly for this approximation that the analysis
for the case A = 1 is limited to retrial intervals + = 0.5.

Before we define the function L; in (18), we will give the method by
which the successive iterations are performed by a computer program to
compute C; . We start by iterating for a stable value of o with ¢; =
for 7 = 1. Next, we iterate for a stable value of (', with (', fixed and
C; = O, for i = 2. Now we go back and iterate for a new value of Cy
with €, fixed and C'; = C; for 4 = 2. This process is continued until no
further changes in €'y and ', are detected. Continuing one step further,
we iterate for a stable value of C's with 'y and (| fixed and C; = C; for
i = 3. Again, we back up and search for a new value of Co with €1 and
(', fixed, then search for a new value of €'y with C'g and (', fixed and finally
search for a new value of €', with Co and € fixed, all with C; = C, for
i = 3. We proceed in steps in the manner described above until finally
no changes are detected in Co, 1, Co, (3, Oy with C; = C,for7 = 5.

With the approximation '; = Cy for ¢ = 5, we can write for (18)

wi(t) = L,‘(Co 3 Crl r C2 ’ C3 ) C4 ) t)' (20)

Line requests are made by first and repeated attempts. First attempts
arrive independent of time with a density ». Repeated attempts arrive
with a density u.(f), in which 7 refers to the condition that all lines are
busy at time fo, % — 7, ---, to — tr and ! is some time such that

to = | < 1ty + . With these definitions we substitute for Li(Co, C1, s,
O3, Cy, 1) in (20)

wi{(t) = v + wi(l). (21)

The density of first attempts, according to definition, is numerically
equal to the information load offered or

v = dar.

The density of repeated attempts in the interval (&, 2o + 7) is derived
from first attempts which are made before f, and are blocked. For in-
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stance a kth attempt, kt = 2, occursat ¢, f, = ¢t < t, + r, if the attempt
occurs first at ¢ — (k — 1)7 and all lines are busy at t — (k — 1)7,
t—(k—2)r, -+, t—r. As an abbreviation we write Pr (¢, |t,t, 5, ---)
for the probability that all lines are busy at {., conditioned on all lines
busy at t; and & and #; - - - . As before, let ¢ be an instant in time such
that ¢, = ¢ = &, + =. With the condition that all lines are busy at f,,
to — 7, -+, ty — i1, we obtain for the density of repeated attempts at ¢

wi(f) = a;Pr (t — v |bo,to — 7, -+, fo — 1)
S Pr(l—2r |ty to— 7, ty — i)
Pr(b—r|to,to—1 -, to— ir, b — 27)
+Pr{t—37|to,to— 7, -+, bt — ir)
Pr(t — 2r|ty, lo— 7, -+, by —ir, t — 37)
Pr(t— 7|ty bo— 7, ", lo—ir,t —37,t — 27) + ---].

(22)

We are left with the problem of expressing Pr (4 | &, &2, t, ---) in
the above as functions of "y, €y, C:, C3 and Cy . Assume that symmetry
exists such that for any positive length of time {

Pr(tz+l|t,,ﬁx—'r,---,t,—k'r)
=Pr(t, —l|te,te+ 7, , bz + k7).

In the above it is assumed that traffic congestion builds up to an all-
lines-busy condition at ¢, , t, + 7, - -+, - + k7 in the same manner as it
subsides after {, 4+ k7. This assumption may not be exact for the retrial
system but this concept is used here since it is expected to give a good
enough approximation for the following reason.

If a group is busy, say, at f, , then it must be expected that part of the
traffic which contributes to the congestion at {; is reoffered traffic. The
fact that congestion occurs at f, implies that all lines were busy at
ly — 7, ty — 27, ete., with a larger probability than indicated by the un-
conditional state probability S,. As an approximation to the function
by which traffic is expected to build up we construct linear functions
in time. I'or example, we assume that the probability of blocking at
some time #, < /, builds up to an all-lines-busy condition at ¢, — 7 and
fy as shown in I'ig. 8. Also, we assume independence of events that are
not really independent. For instance, we assume that blocking between
ly — 7 and /, oceurs with a probability W, ,(¢) as defined below. Similarly,
independence is assumed between events occurring with probability
N(1), M (1) or W, ;(f) and the event which causes a repeated attempt
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Fig. 8 — Sample of build-up function.

at some time prior to £, . The approximations made in the expressions
below may account for some of the differences which are observed be-

tween theory and simulation.
A first attempt, made at some time ¢ — jr, o £ { £ Lo+ 7,5 = 1,18

blocked in the nomenclature of (22) with a probability
Pr(t —jrlto,to— 7, -, lo — i)

for which we approximate

N.(t)

}[t+c.-(f—m forj—i+1,i=0

IV
=]

Mi(t)

}[C.-c LS =] forj=i42i

S, forjzi4+3:=20

Il

and with N*(1) (1/DHC; — 1) + 7|
Wii(t) =1 = [1 — Nia()][L — Nij*(t)]

forl =3

1%

i,7 = 1.

lIA

bl

A ith repeated attempt made at some time t — jr,to =1 =t + 7,
j = 1, is blocked in the nomenclature of (22) with a probability

Pr[t_jflto,lu—'r,"',tn—'i‘l',
t_(j'l"l)?,t_ (j+2)1',"',f—(j+k)1']
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for which we approximate
1 — (1= Cia) 1 — Nui(t)) forj =44+ 1,720

1 — (1 =) [l = MJt)]  forj=7¢4+2,:=0

Cra forj=z74+3,1=0
and finally
1 — (1 —Cia) [ = Wy ;(0)] forlzjzid7=1.

We make use of the above expressions as shown in (22) to obtain
w.(#). The subscript 7 of w:(f) corresponds with the value of ¢ in the
above approximations and refers to the condition that all lines are busy
at fo, to — 7, -+, o — ir. For every such 7, 7 = 1, 2, 3 and 4, we have,
according to (21), a L(Cy, Cy, Cs, Cy, Cy, t) and an «;(¢), and can per-
form the iterations outlined before to compute Cy, C;, €2, C3, and C; .

Continuing in the analysis of the one-address case, we will now
evaluate the delay. The probability that a one-address message is de-
layed exactly it is given by D,(7) which is

Di0) =1—- 8,
Di(1) = S.(1 — C

i—2
Dy(i) = S(1 = Ciy) TIC;, 2= 2
i=0

H,(7), the probability that the delay is greater than ir for the one-
address case, is

Hii) =1 — L'anuc), iz 0
=0

which reduces to

Hl(O) = Sc

Hy(7)

1—1
S, T1C5, izl
i=0

The average delay is obtained as the summation of all possible delay
values multiplied by their respective probability of occurrence and is
given by

dy = 7 2, iDy(1)

t=1
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which reduces to

dy= 801+ 2 T1C). (23)
i=0 j=0
The above formula is used to compute the average delay on all messages
for the case A = 1. The unconditional probability of finding all lines
busy, represented by S., and the conditional blocking probabilities C';
are approximated by the methods outlined before.

B.2 Three Addresses per Message

The delay for the case A = 3 is computed in a Markov process. This
means that we are considering only a first-order dependency, since we
make the assumption that the conditional probability X ; of finding ¢
lines of a group busy at &, +  depends only on state j of that group at
{, . This and the following approximations appear justifiable in the multi-
address case when considering the multitude of factors which determine
the line request rate between f, and & + 7. The principal assumption
for the case 4 = 3 is that o, the sum of the densities of line requests
of first and repeated attempts during 7, and fy 4 7, is nearly Poisson dis-
tributed and therefore independent of any states at or before f, . Recall
that for A = 1 we have been concerned only with the conditional prob-
ability of state ¢ at f, + 7 given also a state ¢ at f, or at # and 4, — T,
ete. For the case A 3, however, we are concerned with an X ; for all
values of and j, 0 £ 7 < ¢, 0 £ j = ¢, as will become apparent later.
For a known w, we obtain X, ; from (16). The condition that j trunks
are busy, now, is accounted for only by the initial condition as given in
(17). The density of line requests w is obtained similarly to (21) as the
sum of the densities of first attempts a;, and of repeated attempts u
which, according to our assumptions for A = 3, are time independent.
It is obvious that in the case of A addresses per message, A > 1, a line
request in a given group is made only when the condition is fulfilled
that the remaining A — 1 groups are not busy. Since independence is
assumed we can set (1 — S,)° for this condition in the three-address
case and obtain

w = (a; + u)(1 — Se) (24)

for the density of line requests in the interval (t,, & + 7) in any given
line group. The expression given in (24) above, of course, is an approxi-
mation since in reality u is dependent on the state of the group at &
and since independence is assumed between the event causing a repeated
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attempt during (f, fp + 7) and the event causing all lines to be busy
in the other two addressed line groups. But, as said before, these de-
pendencies are believed to be noncritical for the multiaddress case, so
that w is considered to be independent of time.

As in the one-address case, we are left with the problem of defining u,
the density of repeated attempts, which is expressed below as a function
of X. .. We obtain u by the following approach. Let (7 be the probability
that a first attempt is blocked at some time prior to ¢; . This probability
is approximated by

(= 38,(1 — 8)" + 3831 — 8,) + 8.2 (25)

The above is an approximation because it assumes independence be-
tween the event which causes a group to be in state j, 0 < 7 < ¢, at f
and the event causing all lines of a group to be busy at some time prior
to ly . For the probability that a &th attempt, &k = 2, is blocked prior to
to we approximate

R=X,.1—8)+25(1—-X..)(1—-28)
o ., (26)
+ 24"1'.(:‘\‘1.(_]- - 1\":) + ‘N‘u"{_l - A\'c‘(:) + A‘rc,cb‘a-

for which it is assumed that at the & — 1st attempt one line group was
in state ¢, i.e., busy, but without having made any assumptions about
the state of the remaining two groups. The expression given for R in
(206) is an approximation since, as before, the known state of a group at
ty is ignored and since only a first-order dependency is considered, as
mentioned earlier. The density of repeated attempts is obtained simi-
larly to the one-address case by considering all attempts which were
blocked prior to /; so that

w = a, + a,GR + a;,GR* + ---

or
= a,i ! (27)
I R
Substitution of (27) in (24) gives
e
@ = a,(1 +1= R)m — S~ (28)

R in (28) above is a funection of X, . . This means that we cannot find w
explicitly since w is needed to compute X, , as outlined in (16). To find
w we again must iterate by assuming a value for X, . in (26), recompute
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X, from (16) and then use the recomputed X, . in (26). After having
found a stable value for » we can, from (16), readily compute X ; for all
0<isc¢0=j=c

In order to compute the delay for the three-address case we con-
sider P;;u(k), which is defined as the probability of finding the
three groups in state 7, j and h respectively at the k + 1st attempt
E=0.Piinlk)is obta,med recursively by finding all possible ways in
which the states of the three groups have changed to states 1, j and h at
the &k + Lst attempt when at least one group wasbusy at the kth attempt.
Using the approximation of a first-order dependency, as mentioned
before, we get for &b = 1

t;l?l(]c) = Z ZPcrs(k - 1) X1e XJr X.’tl

=0 §=0

+ Z Zqua(’G 1)'Xi.q'Xi.c'Xh,a (29)

g=0 =0

c—1 ¢—1

S Porell — 1) Xig X Xe -

q=0 r=0
At the first attempt,
P,'.j,}.(O) = S;‘SjSﬁ .

A three-address message succeeds at the kth attempt, & = 0, when at
the kth attempt all three groups are in states other than c. The prob-
ability of a delay of exactly kr, then, is given for the three-address case
by

c—1 e=1 e—1

Dy(k) = 2 2 2 Pasn(k). (30)

1=0 j=0 h=0

Hy(k), the probability that the delay is greater than kr for the three-
address case, is

k
Hyk) =1 — _201)3(1'), k= 0.

As in the one-address case, we find the average delay on all messages for
the three-address case by summing over all possible delay values multi-
plied by their respective probability of occurrence

ds =7 i k-Dy(k)

k=1
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or with (30)
dy = Z Z c-P,-,,-,,.(k). (31)

Recall that P; ; »(k) is obtained recursive]y as shown in (29). The un-
conditional state probability S; and the conditional probability X ;
which are both needed in (29) are approximated as described earlier.

APPENDIX C

Mathematical Analysis of Message Storage Model

The delay for the message storage model is computed by well-known
methods of traffic theory and is given here only for reasons of com-
pleteness. The delay in the delivery of a copy of the message to a given
station is — according to the switching model — independent of the
delay in the delivery to any other station. Delayed messages form queues
in the order of arrival. An analysis for queued service and exponential
line holding time was made by A. K. Erlang.

According to Erlang? we find for the average delay on all messages to
any given receiving station

1

c — ar

d = F(0)- (32)
with
a‘e ™’ ¢
1 —
F(O) = 0 "(i:][ 8 Cajﬂ] e
ap e ay e
1 _ Z I - + T

i—e 2! ¢! ¢ — as

The delay distribution, expressed as the probability that the delay is
greater than ¢, is computed from

F(t) = F(0)-¢ 0,

The curves for the message storage model are calculated from (32). One
should, however, bear in mind that in certain specialized applications of
data communication a copy of the message must sometimes have been
delivered to all addressed receiving stations before the message is of use
to any one station. One would then be interested in the average delay
until a line is found to the receiving station with the longest delay of all
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stations addressed by the message. For A addresses per message this
delay is given by

t= “an = POy,

which for A = 3 reduces to

7 . ; 2
= L0 {3 ~ 3 4+ ) }

c — ar
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