Flexural Vibrations of a Propped

Cantilever

By R. L. PEEK, JR.
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The equations for the flexural vibrations of a propped caniilever beam
have been used to compute a number of the vibration characteristics of such
beams for the first five modes over the range of prop locations from 50 to 100
per cent of the length. Plots of these characteristics are included in the paper.
This material has been prepared primarily for use in studies of contact
spring vibration, and such application is briefly discussed. The mathe-
matical treatment wused to obtain the relations given is owllined in an
Appendiz.

I. INTRODUCTION

In relays and other switching apparatus, contaect chatter and certain
types of wear are associated with vibrations of the contact springs. As
an aid in the study of these vibrations, the general theory of beam
vibration has been used to develop an analytical treatment applicable
to the important class of contact springs which can be considered as
propped cantilever beams of uniform cross-section.

In almost all common types of switching apparatus, the contact
springs are cantilever beams, clamped at the terminal end, which carry
the contact at the free end. When the contact is open, the spring is
usually propped or supported by a card or stud, and is therefore a
propped cantilever. In some devices, the spring is supported at both
the stud and contact when the latter is closed, and is then a doubly
propped cantilever. In others, the spring is supported only at the contact
when the latter is closed, and is therefore a singly propped cantilever in
both operate and release, although the prop location differs for the two
cases. Sometimes the mating contact is mounted on another spring,
which constitutes a flexible prop, as contrasted with the (relatively) fixed
and rigid prop provided by a card or stud.

The relations given here apply only to a uniform ecantilever with a
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single rigid prop. Some contact springs rigorously conform to these
limitations, and the treatment is approximately applicable to a much
larger number of cases. A more general treatment of relay spring vibra-
tion is given in Chapter 7 of Ref. 1. This includes an outline of approxi-
mate methods of analysis applicable to nonuniform springs and to those
which are doubly propped, or supported by a compliant prop, such as a
spring-mounted mating contact. The treatment given here may be used
in applying these more general methods, but the present discussion is
confined to the cases where it is directly applicable.

1.1 Application to Chatter Studies

The contact chatter of primary interest is that occurring with closed
contacts, usually immediately following closure. With a fixed mating
contact, the moving spring is a cantilever propped at the contact.
Vibration results in modulation of the contact force and therefore of
the contact resistance. If the amplitude of the force modulation exceeds
the static contact force, a transient open oceurs. The timing and dura-
tion of these opens can therefore be related to the force modulation and
to the amplitudes and frequencies of the spring vibrations. The latter
may be directly observed, or predicted from an analysis of the excitation
of this vibration involved in operation.

1.2 Application to Wear Studies

The wear associated with vibration may occur at the contact or at a
supporting or actuating eard or stud which serves as the prop to a
contact spring. Relative motion in the direction of the spring length
results in wear. Severe wear occurs when such longitudinal motion is
imposed in actuation. When this is avoided by providing purely perpen-
dicular motion in actuation, wear may still be produced by the longi-
tudinal component of the vibratory motion. The relations given here
include those between the longitudinal amplitudes and the (normal)
displacement amplitudes, or the corresponding energy content. Thus the
longitudinal amplitude can be evaluated from the observed displace-
ment amplitude, or from the estimated energy content of the spring
vibration.

1l. THEORETICAL FOUNDATION

The equations giving the spring vibration characteristics are derived
in the Appendix to this paper. The treatment follows the usual approxi-
mate theory of beam vibration, based on the simple theory of bending,
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and formally applicable only for displacements which are small com-
pared with the spring dimensions. These formal limitations are of little
consequence for the present purpose, although impact causes some
deformation other than simple bending.

Tor springs of uniform section, flexural vibrations conform to a
general differential equation (3),* having a solution of the form of (4).
This represents a harmonic motion in which all points in the spring
move in phase. The relative motion at different points is determined
by the dynamic deflection curve X, a function of z only, where z is
measured along the length of the spring. Each such deflection eurve
corresponds to a particular mode of vibration, having a corresponding
characteristic frequency. The deflection curves for the first three modes
of a propped spring (prop at 85 per cent of the length) are shown in
Fig. 1. As there indicated, several modes may be present together,
resulting in a configuration which is at any instant the sum of the
different modes present.

The deflection curves for the several modes, and the corresponding
frequencies, depend upon boundary conditions determined by the way
in which the spring is supported. For a propped cantilever, the boundary
conditions, and hence the deflection curves and frequencies, vary with
the prop location (defined by the ratio L'/L of Fig. 1). The special
cases in which L//L is zero and unity correspond respectively to a free
cantilever and an end-propped cantilever. All the relations given in the
figures are shown in the form of curves in which the quantity given is
plotted against L’/L over the range from 0.5 to 1.0, which covers the
prop locations applying to most contact springs.

The frequency equation for any particular prop location is tran-
scendental in form (8). The successive roots of this equation determine
the frequencies and deflection curves of the several modes. These roots
do not form a simple series, and the successive frequencies are not simple
multiples of the fundamental. In the higher modes, however, the deflec-
tion curves approach sine curves in form (except for the end sections),
and the intervals between successive frequencies are approximately
equal.

From the frequency constant for a particular mode and prop location
there may be determined all the constants of the corresponding deflection
curve except for an undetermined multiplier (4, in the equations of the
Appendix), which measures the amplitude or energy content 7 of the
mode in question. As this constant determines both the energy content
and the maximum deflection (or amplitude) at any point on the beam,

* Equations are cited by the numbers identifying them in the Appendix.
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Fig. 1 — Flexural vibrations of a propped cantilever.

it may be eliminated from the equations to express the amplitude at
specified points on the beam in terms of the energy content. Similarly,
this amplitude constant may be eliminated from expressions for the
foree acting on the prop and for the longitudinal displacement there to

give expressions for these quantities in terms of the energy content.

111, FREQUENCY RATIOS

The frequencies of the first five propped modes are shown in Fig. 2.
These frequencies are given as multiples of fo, the frequency of the same
beam as a free cantilever, and are shown plotted against the prop

location as measured by L'/L.
The reference frequency fy is given by equation (12):

fo = 0.323 V/(s/m),
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where s is the static stiffness of the beam and m is its actual mass.
Equivalent expressions are the following:

. . 0.1416d E
For a circular section: fo = Iz 2
For a rectangular section: fy = Qg—t /‘/ E,
2 p

where d is the diameter of the circular section, ¢ the thickness of the
rectangular section, L is the length, and v/E/p is the velocity of sound
in the material.

The frequencies given by these relations apply to springs of uniform
cross-section. The added mass of the contact in relay springs reduces
the frequency (except when propped at the contact). An approximate
correction for the effect of the contact may be made by determining
the effective mass m’ of the spring for the mode in question by the pro-
cedure given in Section V. Then if m” is the mass of the contact, the
corrected frequency is the product of v/m’/(m’ + m”) and the frequency
read from TIig. 2.

IV. LOCATIONS OF NODES AND LOODS

A node is a point of zero displacement (other than the prop location),
while a loop is a point of maximum displacement. As illustrated in Fig.
1, the number of loops is the same as the order of the mode, while the
number of nodes is one less than the order of the mode. Expressions
for determining the locations of the nodes and loops are given in the
Appendix,

I'ig. 3 gives the locations of the nodes of the second and third modes,

V. RELATIONS OF AMPLITUDES TO ENERGY CONTENT

For any particular mode, the amplitude at any specified point on the
spring is determined by the energy content 7. Thus an estimate of 7'
may be used to estimate the amplitude at some specified point, or the
observed amplitude may be used to determine the energy content.

Fig. 4 gives the relation between the energy content 7' and the ampli-
tude X, of the free end of the spring, expressed as values of the ratio
me’X,*/T, where w/(2r) is the frequency and m is the total mass of
the spring. Even when a correction is made for contact mass in deter-
mining the frequency, mw” should be taken as the product of the mass
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of the spring alone and the uncorrected frequency, without allowance
for contact mass.

The effective mass m’ of the spring, in terms of end motion, is the
kinetic energy T divided by half the square of the end velocity wX, .
Thus the ratio m’/m is twice the reciprocal of mw’X;’/T, given in Tig.
4, and values read from this figure may be used to evaluate m’,

These curves may be used to determine the energy content from
observations of the end amplitude. When the prop is close to the free
end, the end amplitude is smaller than that at or near the loops. When
two or more modes are present, it is convenient to measure the amplitude
at the node of one of the modes present. Values have been determined,
therefore, of the ratios mw,’X1a/ T, mew, X 13/ T, mws Xas/ T, and mes" X/ T,
which are given in Fig. 5. As shown in Fig. 1, X}, and X3, are the ampli-
tudes of the first and third modes respectively at the node (x,") of the
second mode, while X3 and Xy, are the amplitudes of the first and second
modes respectively at the rear node (x3') of the third mode. The loca-
tions of these nodes (x;" and ") are given in Fig. 3.

When two or more modes are present and it is desired to determine
the energy contents of the separate modes, the separate amplitudes must
first be determined. This requires measuring the displacements at succes-
sive time intervals and using these successive displacements in a set of
equations which can be solved for the amplitudes. If it can be assumed,
for example, that only the first three modes are present, then the dis-
placement X at a node (such as xy") of the third mode is the sum of the
first two modes, and is given by:

X = X13 Sil’l (wlt + @1) + X-_t:; sin (_wzi —f— @2),

where ¢, and ¢. are the (unknown) phase angles of the two modes with
respect to an arbitrary choice of the time origin. Let X; be the observed
value of X at this selected time origin, and let X, X; and X, be the ob-
served values of X at the times at which w,f is equal to #/2, , and 37/2,
respectively. On substituting these corresponding values of X and ¢ in
the preceding equation, there are obtained four equations in the four
unknowns: X3 sin ¢, X3 €05 ¢; , Xog sin ¢s , and Xy c0s ¢2 . These four
unknowns may be evaluated from the determinant D given by :

0 1 0 1

1 0 sina, cosa
D = .

0 —1 sina: cosas

-1 0 sinaz cos ag
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where: 0 = foom Iz
2 L
The ratio fo/f, can be read from Fig. 2.
The same procedure may be employed to determine the values of
Xy» and Xy, from observations of the deflections at the node ' of the
second mode. (The same equations apply in this case, except that f./f;
in the determinant terms is replaced by f3/f1 .) A check on the accuracy
of the computations (or of the assumption that only the first three
modes are present) is given by comparing the values for the energy
content of the first mode obtained (by means of Fig. 5) from the values
found for X;» and X; : these values of 7" should be the same.

ot e
.“».0
3

VI. FORCE AT PROP

A prop, or point of simple support, is taken as restraining the beam
from deflection, without the application of any moment (or clamping
action). Aside from the minor variation in the instantancous point of
support resulting from the finite dimensions of supporting surfaces,
this condition is satisfied by the support actually provided when a
spring is tensioned against a stud or contact. In general, vibration
results in a force modulation F’ sin wt corresponding to each mode
present, where w/(27) is the frequency of that mode and I is propor-
tional to the square root of its energy content. As the sense of this force
modulation varies with the phase of the mode, it alternately increases
or decreases the total tension against the prop, which includes the static
tension and the total force modulation of all modes present. The propped
mode equations only apply rigorously when this total tension has the
same sense as the static tension, as otherwise the prop is no longer
effective and the spring moves away from it. (Practically, the effect of
such separation may be ignored if it occurs only over a short interval of
time.)

This force modulation is related to contact chatter, contact noise,
and wear. When the spring is propped at the contact, an open results
whenever the total tension hecomes zero (or small enough to produce
high contact resistance). Similarly, contact resistance variations re-
sulting from force variations produce noise. Wear, whether at a contact
or other support, such as a card, depends upon both the longitudinal
motion and upon the normal force, or total tension.

If the energy content of a mode is estimated, or determined from
amplitude observations, the amplitude of the force modulation for the
first three modes may be determined from Tig. 6. This gives values of
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F*/(sT), where T is the energy content of the mode in question and s
is the static stiffness of the spring. The latter quantity may be measured
directly, or computed as 3£7/L°, where E is Young’s modulus for the
spring material and / is the moment of inertia of its cross-section.

It will be seen from Fig. 6 that F'2/sT varies greatly in magnitude
with the prop location. Except for the fundamental, all modes have
prop locations for which F’ is zero. These correspond to the nodes of
corresponding modes of a free (unpropped) eantilever, in which the
spring vibrates without deflection at the prop without requiring any
restraint, and hence without force modulation.

In general, and in particular for an end prop, as with a closed contact,
F*/sT increases with the order of the mode. Hence a given energy
content produces a greater force modulation, and is therefore more
likely to produce chatter, the higher the order of the mode. (The open
intervals, on the other hand, are necessarily shorter with the higher
modes, because of the higher frequencies.) In relay spring vibration,
the energy content of the fundamental is usually larger than that of the
other modes, so that chatter commonly occurs at intervals equal to the
period of the fundamental, but each interval may comprise a number
of brief opens, corresponding to the shorter intervals in which higher
modes are in phase with the fundamental. The fine chatter immediately
following contact impact, however, corresponds wholly to higher modes,
occurring at a time when the sense of the fundamental force modulation
is the same as that of the static force.

VII. LONGITUDINAL COMPONENT OF VIBRATORY MOTION

In vibration, the deflected position of the spring defines a path from
the clamp to the prop point which is necessarily longer than the distance
between these points measured along the rest position of the spring. The
difference between these two lengths represents a longitudinal compo-
nent of the motion at the prop. This may be termed the vibratory slide,
as distinguished from the slide resulting, for example, from motion of
the prop point in actuation. The amplitude of this motion is of interest
in connection with wear, particularly the wear of a card serving as a
prop. The vibration characteristics affecting the wear are the amplitude
of this vibratory slide, and the normal force on the prop, which varies
with the force modulation discussed in the preceding section.

The longitudinal displacement is zero for the rest position of the spring
and attains full amplitude, or maximum displacement, for full amplitude
of the normal deflection in either sense. The longitudinal motion there-
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fore has twice the frequency of the flexural vibration producing it. As
shown in the Appendix, the longitudinal motion is harmonie, and as
such has an amplitude Z/2 about a displacement Z/2 from the rest
position, where Z is the full excursion, or double amplitude.

When a single mode is present alone, the longitudinal motion has
only one component, with a frequency twice that of the mode producing
it. Values of the ratio me’L’Z/T have been determined for the first five
modes, and are given in Iig. 7. It will be seen that the values of this
ratio increase with the order of the mode. To obtain comparable values
of Z for the same cnergy content 7', however, these values of mo'L'Z/T
must be divided by (f/f1)°, and when this is done it is found that the
longitudinal displacement for the same energy content decreases with
the order of the mode.

If two or more modes are present together, the longitudinal motion
ineludes the motion that either would produce separately, and additional
motion at frequencies, as shown in the Appendix, equal to the sums and
differences of the frequencies of the modes present. Iixpressions for the
amplitudes of the additional motions are included in the Appendix,
and these were evaluated for the case where the first and second modes
only are present. The additional displacement was found to be only
five per cent of that produced by the first mode alone (for equal energy
contents of the two modes). Thus the longitudinal motion when two or
more modes are present differs little from the sum of the motions that
each would produce separately for the same energy content.

For a given total energy content, therefore, the longitudinal amplitude
is o maximum when only the fundamental mode is present. This, how-
ever, does not suffice to show that the wear is a maximum if all the
energy is in the fundamental, rather than distributed among several
modes. The wear also varies with the normal force, and it was shown
in the preceding section that the force modulation for a given energy
content is greater the higher the mode. It would therefore be necessary
to know the relation of wear to both longitudinal motion and normal
force to determine how the wear varies with the distribution of energy
among the possible modes.

VIII. CONTACT WIPE

There is another type of longitudinal motion that occurs at a closed
contact (end propped spring) because the contact surface is offset
from the center line of the spring by a distance L”. This results in a
longitudinal motion 2’ = Z’ sin wt at the contact surface, where ARES
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L”(dX/dz), . This quantity can be evaluated from the table of the ratio
me’L}(dX /dx),’/T given Section A.10 of the Appendix.

IX. DISCUSSION

The material contained in this paper has been prepared for reference
purposes and for use in analytical or experimental studies, primarily
those relating to contact springs (although it is of course applicable to
any use of propped cantilever beams). Few conelusions of engineering
interest may be drawn directly from this material; such value as it has
must appear in its application. The possible use of the madterial may he
indicated here by a brief discussion of its application to relay spring
vibration.

Relay operation results in spring vibration, and such vibration may
result in contact chatter and also in wear, particularly of such actuating
members as studs or cards. The vibration amplitudes and frequencies
(at least of the lower modes) are readily observed and measured, for
example by the rapid record shadowgraph.? To reduce chatter and
wear, information is required as to (a) the relations between the vibra-
tion characteristics and the relay design and conditions of actuation,
and (b) the relations between chatter and wear and the vibration
characteristics.

Such information may be obtained either by analysis or by direct
experiment, but in either case the vibration characteristics are involved.
In studying the excitation problem analytically, the amplitudes and
frequencies must be determined from energy estimates, while an experi-
mental study requires that the energy be evaluated from observed
amplitudes.

The incidence of chatter can he determined directly from knowledge
of the vibration, provided the force modulation is computed from the
observed amplitudes by the relations given here. A similar analysis of
wear would require knowledge of the dependence of wear (for particular
materials) on both normal force and longitudinal displacement. Infor-
mation as to these relations is incomplete, but if available their applica-
tion would require the determination from the observed vibration of
the resulting normal force variation and longitudinal displacement by
means of the relations given here.

Because of the relatively large amplitudes associated with the funda-
mental mode, it is the most conspicuous feature of relay spring vibration.
The relation given above between the normal force and the energy
content shows that the foree modulation for a given energy increases
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with the order of the mode, indicating the considerable effect on chatter
that may result from the presence of higher modes. The effect of the
higher modes on wear is less well understood. The relations given here
show that the diversion of energy from lower to higher modes increases
the force modulation, but decreases the longitudinal displacement.

APPENDIX
Derivation of Equations

A.1 Equations of Flexural Vibration

As shown in such texts as Ref. 3, bending of a beam may be described
in terms of the deflection y at a point located at a distance z, measured
along the length of the beam from a clamp or other point of reference.
Then dy/dx is the slope of the deflection curve, and, for the small
deflections assumed in the simple theory of bending, the curvature of
the neutral axis is given by d*y/dz*. In this simple theory, the moment
M at the point x is given by:

M = El(dy/da"), (1)

where k£ is Young’s modulus and 7 is the moment of inertia of the
beam’s cross-section. The shearing foree F is equal to dM/dz, and is
therefore given by:

F = EI(d'y/da"). (2)
In motion, the inertia reaction of a differential element of length

must equal the difference hetween the shearing forces at the ends of
the element. Hence:

2 T a4
by y BLay _,, (3)
ar* pa dxt

where p is the density of the beam and « is the area of its cross-section.
Equation (3) is the general differential equation for flexural vibrations
of beams of uniform section, assuming the simple theory of bending to
apply. The general form of solution is given by:

y = X sin (vt + k), (4)

where X is a function of x only, the solution to the equation d*X /dz* =
¢'X, given by

X = A(sin ex 4+ B eos cx + C ginh cx + D cosh cx), (5)
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in which ¢ is given by:
¢' = w'pa/EI. (6)

A.2 Modes of a Propped Cantilever
For a propped cantilever, x may be measured from the clamped end,
as indicated in Fig. 1. Let L be the length of the beam, and L’ the value
of a for the prop. Subject to continuity, different forms of (5) apply at
either side of the prop: let these be X, for x < L/, and X, for v > I,
and write (5) as:
X, = A, (sin cx + By cos cx + (1 sinh ex + Dy cosh ex), (5a)
X, = Ay (sine(x — L) + Bacosc(e — L) + Cysinh e(x — L
+ D cosh ¢(x — L')). (5b)
Writing X7, X7, X' for the successive derivatives of X with respect to
cx, the houndary conditions applying arc as follows:
Tore =0 X, =X/=0,
Fora = IJ’, ‘\71 - X'_! = 0, ‘Y[, = Argr, ‘\’1” = .\’2”, (7)
Torax =1L, X/ =X'"=0
Writing a for eL’, and b for ¢(L — L'), substitution of the expressions
for X, and X in the boundary eonditions (7) gives the frequency equa-

tion:
¢os a-sinh @ — sin a-cosh @ cos b-sinh b — sin b-cosh b (8)

b

1 — cos a-cosh a 1 + cos b-cosh b

and the following expressions for the coefficients:
¢, = —1,

sin a — sinh a
cos @ — cosha’

Bl = *Dl =

1 + cos b-cosh b — sin b-ginh b

Cz=

1 + cos b-cosh b 4 sin b-sinh b’ (9)
—B.— D. = sin b-cosh b — cos b-sinh b
= P27 1 F cos b-cosh b + sin b-sinh b’
Ay cos a — cosh a 1 4 cos b-cosh b

4, 1 — cos a-cosh a 1 + cos b-cosh b + sin b-sinh b’
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The ratio b/a (= L/L’ — 1) is determined by the prop location.
Then the values of a which satisfy (8) determine values of ¢ (= a/L’),
which correspond to values of the frequency w/(27) given by (6). The
successive frequencies thus determined are those of successive modes of
vibration. Substitution in (9) of the value of a for any particular mode
determines the coefficients of the expression for the corresponding
deflection curve. The one remaining coefficient, A; or 4., measures the
amplitude.

A3 The Frequency Equation

As the mass m of the beam is equal to pal, (6) may be written in
the form:

w' = (s/3m)(cL)", (10)

where s is the static stiffness of the beam as a free cantilever, or 3£7/L°.
As a = el the values of a satisfying (8) for a given prop location, or
value of L'/L, determine corresponding values of ¢L, and hence corre-
sponding values of the frequency w/(2m).

The special case in which L' = 0, ora = 0, b = cL, is that of a simple
(unpropped ) cantilever, and (8) then reduces to:

1 + cos b-cosh b = 0. (11)

The first three roots of this equation give values of b°, or (eL)®, of
3-52, 22.0 and 61-8. For the higher roots, a good approximation to b
is given by w(n — 3), where n is an integer. From (10), the frequency
Jo of the fundamental cantilever mode is given by:

Jo = 0323 v/ (s/m), (12)

and the frequency of any other mode is given in terms of f, by:

% = (eL)?/3.52 (13)
For various values of L’/L, (8) has been solved numerically to
determine the values of a and thus of ¢L for the first five modes. By
means of (13), the resulting values of f/f; have been determined, and
are plotted in Fig. 2.
Another special case of interest is that of an end prop, for which L' =
L,ora = ¢L, b = 0. In this case, (8) reduces to:

tan ¢ = tanh a. (14)
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The values of a (or cL) satisfying this equation are given approxi-
mately by =(n + 1), where n is an integer. The value of (cL)*® for the
fundamental end propped mode is 15.50, giving a frequency 4.40 times
fo, the frequency of the fundamental cantilever mode.

A4 Nodes and Loops of Deflection Curves

On substituting in (5) the expressions for the coefficients for X,
given by (9), the deflection curve for # < L' is given by:

X./4; = [fi(a) — fi(u)] (cosh u — cos u), (15)
where w = cz, and fi(u) is given by:

sin 4 — sinh u
cosw — coshu’ (16)

fl(u) =

Thus the nodes (points of zero deflection) lying between the clamp
and the prop (z < L') occur at those values of u for which fi(u) = fila).
These values of u may thus be determined for any mode and prop
location from (16) and the corresponding value of a. As u/a = x/L,
there may thus be determined the values of the node locations '/ L
lying between the clamp and prop. The locations of the nodes for the
second and third modes lying in this region are plotted against L'/L in
Fig. 3.

The loops (points of maximum deflection) of the deflection curve
oceur at those values of u for which dX/du = 0. By differentiation of
(15), it is found that these values of u for x < L' are those for which
fo(u) = fi(a), where fo(u) is given by:

cosh u — cos u
R = e T a7)

For any mode and prop location and the corresponding value of a
there can be determined those values of w for which fu(u) = fi(a).
From these can be determined the corresponding loop locations z/L

lying between the clamp and plot.
Similarly, from (5) and the coefficients of X, given by (9), the node
locations lying beyond the prop, x > L', are given by:

0 = Bysin (u — a) + Bssinh (u — a)
— Bs [cos (u — a) — cosh (v — a)],

where:
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By =14 cos b cosh b + sin b sinh b,
By =1+ cos bcosh b — sin b sinh b,
By = sin b cosh b — cos b sinh b.

The node locations in Fig. 3 lying beyond the prop have been deter-
mined from these equations.
Similarly, the loop locations lying beyond the prop are given by:

0 = Bycos(u — a) + Bicosh (u — a) + B;[sin (v — a) + sinh (v — a)].

A.5 Free-End Deflection

On substituting in (5) the expressions for the coefficients given by
(9), it is found that the free-end deflection X, the value of X, for
x = L, is given by:

X, 2(sin b + sinh b)

As 1 + cos b-cosh b + sin b-sinh b’ (18)

or by:

Xo _ 2(sin b + sinh b)(1 — cos a-cosh a)
Ay (1 + cos b-cosh b) (cos @ — cosh a)

(19)

A6 Energy Content

The energy content of a vibrating beam is the integral over the length
of pay?-dx/2, where 3, or dy/dt, is the maximum velocity (occurring at
zero deflection, when all the energy is kinetic). Then, from (4), the
energy content 7' is given by:

L
2T = w'pa f X% da. (20)
o

For the propped beam, the integral

L
f X% de
0

is given by:
L L
f X de + f X, dx.
0 L'

As shown in Ref, 3 these two component integrals are given by:



630 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963

'

L' L
4e f X]E'(f.lf = [:%Xl)‘r]_r” - JX—]'.Y]_”

0 0

+ ex(X)? — 2X/X)" 4+ X))
(21)

L

L
4Cf .ng'fl.lf = [3.¥2Xz’” — XQIX-E”
L'

L
4 elx — LN(XS — 2X/X)" + X.").

On substituting the boundary conditions given by (7), the expression
for the energy content reduces to:

9

1= SN — L)X 4 DX XX, (22)
where X/, X" and X" are the first three derivatives of X with
respect to cx at * = L', and X is, as before, the value of Xz at x = L.
Expressions for the derivatives can be obtained by differentiation of
(15), from which it is found that the second term in the bracket of (22)
is equal to 41/4,°f;*(a). Then (22) reduces to:

T _ 1 L’ ‘ 1. Al 2 r N
me'X2 8 [[ I + 45 (\_;) N (u)], (23)

where X /A, is given by (19), and fi(e) by (16). Values of ma' X,/ T
for the first five modes have been computed from (23) and are shown
plotted against L//L in I'ig. 4.

As the effective mass m’ in terms of motion at the free end is defined
as the kinetic energy T divided by half the square of the end velocity,
or (wX)?/2, the quantity given by (23) is one half the ratio of the
effective mass of the beam to its actual mass, or m'/(2m).

A7 Energy Content in Terms of Amplitude at Nodes of Other Modes

Let X2 be the deflection in the first mode at @ = v/, the location of
the node of the second mode. Using the value of @ applying to the first
mode (for a particular prop location L'/L), and taking v = ax.'/L/,
(15) may be used to determine X;»/A,. I'rom this and the value of
T/(me?A?) given by (23) there may be determined the value of
mwX 122/ T. Such values have been determined for various values of
L'/L, and are plotted against L'/L in Fig. 5.

The same procedure has been used to determine the values of
me’ X1i'/ T, mw'Xay' /T and me X' /T given in Fig. 5. Xy is the ampli-
tude of the third mode at 2./, while X3 and Xu; are the amplitudes of
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the first and second modes respectively at zy’, the first (rear) node of
the third mode,

A8 Force Modulation at the Prop

The shearing force I on a section of the heam is given by (2), and its
maximum value, or foree amplitude, is therefore given by ¢'EI.-X""
(where, as before, X"’ = d'X/du'). The discontinuity at the prop
results in a difference hetween X"’ and X, corresponding to a force
" sin (wt + k) acting on the prop, where F’ is given by:

F' = EENX)" — X)) e (24)

The force I sin (wi + k) is, of course, additive to any static tension
acting at the prop.

Tixpressions for Xy and X,/ at + = L’ may be obtained by dif-
ferentiation of (5) and substitution of the expressions for the coefficients
given by (9), giving:

F’ X, _ .)f:i(ﬂ)

4y = L 2 5
Tert ~ P d T 2 (25)

where fy(1) is given hy:
fulu) = sin w-sinh (26)

sin u + sinh «’

The quantity given by the left side of (25) may be squared and
simplified as follows:

A N A o 3F”
ABET A2EI(el)? Ele'l,  sA(cl)w®m’

where, from (6), w’pa is substituted for ¢'EI, m is substituted for pal,
and s for 3E1/L'. As before, m is the mass of the spring and s is its
stiffness as a free cantilever,

It follows that F7*/(sT) is given by:

F_’2 B (cL)z_ o 2‘?nw2r112
sT — 3 A BT T

(27)

Using (23) and (25) to evaluate the second and third terms on the
right-hand side of (27), the latter equation has heen used to determine
values of F”*/(sT) for the first three modes for various prop locations
(L//L). The results are plotted in Fig. 6.
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A.9 Longitudinal Component of Motion at the Prop

The longitudinal component of the motion at the prop is the dis-
placement z in the direction of the spring length. This is equal to the
difference between the distance from the clamp to the prop measured
along the displacement curve and that measured along the rest position.
As the latter distance is I, z is given by:

N ST
z=L’—f0 1/1+(%) dz.

Neglecting quantities of smaller order, this reduces to:

B 1 j-L' dy)‘z

If only one mode of vibration is present, y = X-sin (wf), where
w/(2x) is the frequency of this mode. Substitution in (28) gives the
following expression for z:

z = Z sin® (wt), (29)

*1fb' axy
Z=5] (E,) dz. (30)

Equation (29) shows that the maximum longitudinal displacement is Z.
Assin® (wf) = (1 — cos (2wt)) /2, the longitudinal motion is an harmonie
motion of frequency 2«/(2x) and amplitude Z/2 about a displacement
Z/2 from the rest position. In other words, Z is the double amplitude,
or full range of the longitudinal motion.

If two modes of vibration of frequencies w./(27) and w,/(2w) are
present together, the normal displacement y is given by:

y = X, sin (wat) + X, sin (wid).

where Z is given by:

In this case, substitution in (28) shows that the longitudinal displace-
ment 2 is given by:
2 = Zpsin® (wnt) + Zp sin® (@ut) + Zmy sin (wat) -sin (o,t),  (31)

where Z,, and Z, are given by (29) for X = X,, and X = X, respec-
tively, and Z,,, is given by:

Y (dX.) (dX.) )
T = fn ) O (32)

Equation (31) shows that in this case the longitudinal displacement is
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the sum of (7) the displacements that would he produced by each mode
if it were present alone and (77) an additional displacement having a
maximum value of Z,,, . From the relation:

Sin (wnt) - sin (wait) = 3 [c08 (wm — w, )t + €08 (wm + wa)i],

it follows that this additional displacement corresponds to the sum of
two motions, both of amplitude Z,./2, having frequencies equal to
the sum and difference of the frequencies of the two modes present.

In the same way, it can be shown that if there are more than two
modes present, the displacement will include the displacements produced
by the separate modes, and additional displacements having maximum
values Z,., corresponding to each pair of modes present.

To evaluate the maximum longitudinal displacements, it is necessary
to obtain expressions for Z from (30) and Z,,, from (32). This may be
done by a procedure paralleling that used by Timoshenko (loe. cit.) to
derive (21). As ¢'v = d'X/d2* for any mode, ¢,'dX,/dz = d°X./d2°
and ¢,'dX,/dz = d°X,/dx’. By cross multiplication and subtraction
there is obtained:

L [
" dr dz

L ldX, d°X, dX, d"'.\’,,,)
h j:) (T drs  de dev ) d (33)

_ "'[fzx,,, d'X, _dX,d'X, _d'X,d'X, d'X, (l")(,,.]
0

(Cu‘ -

“dr dat dr dr! da?  da? dx? da?

where the second equation is obtained by integration by parts.

In this equation, X,, and X, are the expressions for the deflection
curve X, for the portion of the beam between the clamp and the prop
location, corresponding to the modes of frequencies w,/(2r) and
w,/(2m). Kquation (33) may be used to provide an expression for
Zmn by substituting the boundary conditions (7), which eliminate the
first two terms, and by using the derivatives of (15) to express the
remaining terms. There is thus obtained:

lem" _ 4wmw,, f-l(am)fs(au) _
A"GJI n B wl’l2 - w"lz{ n [ f (a") fl(a"‘)] (34)

4(an)f3(am) _
- oo [5G e

where fi(u), fo(u) and fi(u) are given by (16), (17), and (26), and
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Ja(we) is given by:

sin u-cosh « — cos u-sinh u
cos 1w — cosh u

filu) = (35)

An expression for Z, the integral of (30), may be obtained from (33)
by considering X as a function of ¢ and letting ¢, — ¢n equal é¢, where
sc is a small quantity. Then et — e = de,’-8e, neglecting quantities
of smaller order, and similarly, X, = X,, + (dX./de)-dc. On making
these substitutions in (33) and neglecting quantities of higher order of
¢ than the first, this equation reduces to:

Hraxy [T S r— 2 12 2 Nt
+ ™ de = “)[3eXX" 4+ caX” — 2cxXX
0 v

. 2 2
— eX"X" + faX",

where the subseripts n and m have been dropped because, for de negli-
gible, ¢ and X apply to a single mode.

As before, substitution in this of the boundary conditions (7), and
of the derivatives of (15), gives finally:

L'Z _a fila) -fila) . ] .
A = 2[{1 + ’T)(E)—— fl(ﬂ'») ’ (36)

where Z is the (double) amplitude of the longitudinal motion for a
single mode. By evaluating the right-hand side of (36) for particular
modes and values of L//L, and dividing these by corresponding
values of 7'/ (mw'A,%) given by (23), values are obtained of the ratio
mw'I/Z/T. Values of this ratio, determined in this way, are shown
plotted in Fig. 7 against L’/L for the first five modes.

The ratios given in Fig. 7 may be used to determine the maximum
longitudinal displacement for a given energy content when only one
mode is present. When two or more modes are present, the maximum
displacement is the sum of the displacements for the individual modes
and the additional term or terms Z,, . The magnitudes of these ad-
ditional terms depend upon the division of the kinetic energy among
the modes involved. For the case of two modes present together, the
one additional term present, is, from (34), proportional to A4, , and
therefore to the square root of 7,7 , the corresponding energies, whose
sum T, + 7', equals the total kinetic energy 7' It is easily shown that
for a given value of 7', T..T, , and therefore A,A4, , 1s a maximum for
T. =T, = T/2. In this case,

2 ¥
mMowm A mA no_ Wm /‘/ mw?A? mawtA?
T 20, T Ju T /.
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By evaluating the right-hand side of this equation [by means of (23)],
and multiplying the result into the corresponding value of the right-
hand side of (34), values may be obtained of the ratio mw,’L'Z ./ T.
This was done for the case where m = 1 and n = 2, where the first
two modes are present. The resulting values of mw,"L'Z1s/T are directly
comparable with those of mw,°’L'Z/T for the first mode alone, shown
in Fig. 7. The values for mw L' Z,/T were all less than 3 as compared
with values for mw,"L'Z/T of about 50. It follows that the additional
displacement resulting from the cross product term is minor.

A0 Angular End Displacement

To estimate contact wipe for a spring propped at the contact, there
is required an expression for the angular displacement at the prop,
when this is at the end of the spring. This is given by:

(d‘\) = C.-YL! .
de /L

Asin this case, L' = L, and a = cL, this equation can, by differentia-
tion of (15), be expressed as follows:

L (dX 2a(1 — cosa-cosha) .
—=—=) = . _ -, (37)
Ay \de /e cos a — cosh a

Values of the right-hand side of this expression have been determined
for the first five modes. By squaring these, and dividing them by the
corresponding values of 7 (mw'A,"), there have been obtained the
following values of me’L*(dX /dx),"/T.

me'L (dX )2
Mode T \dz /.
1 16.416
2 49.700
3 103 .68
4 178.60
51 271 .44

A.11 Use of Equations

Many of the relations given here have been expressed in numerical
form, and are shown in the figures. If additional relations are required,
they may be computed from the equations given in this Appendix (or
from expressions derived from them).

If such computation is required, it should be noted that all relations
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involved in flexural vibrations of the type considered here can be ex-
pressed as dimensionless ratios which are, directly or indirectly, de-
pendent on the roots of the frequency equation, and hence on the
appropriate values of @, a pure number, equal to cL/. The similar
number b, appearing in expressions relating to the part of the beam
hetween the prop and the free end, is equal to ¢(L — L’), and there-
fore equals a(L/L' — 1). The frequency, w/(27), is related to e by
(6) (of which (10) is an alternate form), and the frequency ratios are
therefore functions of a only. Similarly, such ratios as F'/(sT),
meX .2/ T, and mw’L'Z/T discussed above are all functions of a only.

Values of @ have been determined for the first five modes for values
of I’/L in the range from 0.5 to 1.0. To use the equations in this range
and for these modes, these values of a may be easily obtained from
I'ig. 2, as the values of f/fo given there are [from (13)] equal to (cL)*/3.52,
so they may be used to evaluate cL, and hence a(= cl').

For values of L’/L outside this range, or for modes of higher order,
values of @ must be determined by solution of (8) for the case in question.
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