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It is well known thal the concept of relurn difference plays a central role
in the classical theory of linear feedback systems developed by Black, Ny-
quist, Blackman and Bode. This concept, which relates to the influence of a
single algebraic system-constraint of the form fo = vfi where fi and f5 re-
spectively may be regarded as a controlling signal and a controlled signal,
retains ils prominence in the subsequent signal-flow graph theoretic exten-
sions by Mason. It is particularly pertinent to the study of the stability of
the system, ils degree of immunity from parameter variations, and the de-
termination of ils transmission and driving-point properties.

This paper reports on a generalization of Blackman’s equalion and on
some generalizations of Bode’s return difference theorems. Here atlention is
focused not on a single constraint of the form f» = +xfy, but instead on a set
of constraining equations.

I. INTRODUCTION

It is well known that the concept of return difference plays a central
role in the classical theory of linear feedback systems developed by
Black,! Nyquist,? Blackman® and Bode.* This concept, which relates to
the influence of a single algebraic system-constraint of the form fu = vf
where f, and f. respectively may be regarded as a controlling signal and a
controlled signal, retains its prominence in the subsequent signal-flow
graph theoretic extensions by Mason.? It is particularly pertinent to the
study of the stability of the system, its degree of immunity from parame-
ter variations, and the determination of its transmission and driving-
point properties.

This paper reports on a generalization of Blackman’s equation?® and
on some generalizations of Bode’s return difference theorems.® Here at-
tention is focused not on a single constraint of the form f, = /i, but
instead on a set of constraining equations. For this reason the results
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are applicable to systems which possess in the usual physical sense a
multiplicity of feedback loops. However it will become clear that the
results are not restricted to situations of this type.

In Section IT we deseribe the basic system considered throughout the
paper. Section III presents an explicit expression for w(X), the trans-
mission or driving-point function to be studied. We then introduce defini-
tions, based on a simple topological characterization of the relation be-
tween the system input and output variables, of the loop-difference
matrix, the null loop-difference matrix, and the complementary loop-
difference matrix. The determinants of these matrices are of fundamental
importance in the subsequent discussion. In Section VI we derive a gen-
eralization of Blackman’s interesting equation. The material in Sections
VII and VIII relates to generalizations of Bode’s well-known return
difference theorems. Some applications and illustrations of the theory
are discussed in Section IX.

II. THE BASIC SYSTEM AND THE SET OF EQUATIONS 8

We shall be concerned throughout with the transmission and driving-
point properties of the structure shown in Fig. 1, an arbitrary linear
time-invariant two-port network containing no independent sources.

The Laplace-transformed equilibrium equations which implicitly de-
fine the external properties of the two-port are of the form:

> (awe; + Bisis) =0 (k=1,2,---,K) (1)

where ¢; and 7; respectively are branch voltages and currents and the
ay; and B;; are functions of the complex-frequency variable.

We wish to focus attention on the influence of a prescribed subset of
the linear constraints implied by (1). This subset is assumed to be ex-
pressible as

atp

fo= 2 wufi (k=1,2,---,q) (2)

t=g+1

in which each f; is one of the e; or one of the z;. It is convenient to
interpret these relations as corresponding to a set of ¢ controlled (i.e.,

Fig. 1 — Two-port network.
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dependent) sources, where the quantity on the left-hand side of each
equation is a controlled-source output and each f; on the right-hand
side is a controlling variable. Thus we take the viewpoint that the two-
port network contains a controlled-source subnetwork characterized by
(2) even when the two-port does not contain devices such as vacuum
tubes or transistors with which controlled-sources are ordinarily asso-
ciated. We shall denote by & the set of controlled-source constraints (2).

Let the components of a g-vector W be the fi (k= 1,2, ---, ¢q) ar-
ranged in any one of the ¢! possible orders, and let the components of a
p-vector @ be the controlling variables f; (1 = ¢ + 1, ¢+ 2, --- , ¢+ p)
arranged in any one of the p! possible orders. Then (2) can be written
as W = X®. We shall call the ¢ X p matrix X the controlled-source
matrix or the matrix of controlled-source coefficients.

1II. EVALUATION OF THE TRANSFER AND DRIVING-POINT FUNCTIONS FOR
THE TWO-PORT

Our primary concern here is the determination of the influence of
(i.e., of the controlled-source subnetwork) on the transfer and driving-
point funetions for the two-port network.

Let y» = w(X)y represent the relation to be studied in which .
and 7, respectively are response and excitation functions (each function
may be either a voltage or a current). If w(X) is a driving-point immit-
tance, y» and y, respectively are a current and a voltage or a voltage and
a current at the same port.

Consider now an evaluation of w(X). With y and the components
of W treated as independent variables, we apply the superposition
theorem to obtaint

Y. = dy, + BW (3)
where d and B are defined by the equation. In particular when X = 0,
W = 0, and i = dy, . That is, d = w(0).
Similarly we can express ® as
® = Ay + Cw (4)

where the matrices A and C are defined by the equation, After pre-
multiplying both sides of (4) by X and using W = X, we find that

w = (1, — XC]'XAy, (5)

where 1, is the identity matrix of order ¢.

f We are assuming that y. is uniquely determined by 3, and ¥. See the relevant
discussion in the next section.
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Fig. 2 — Basic flow-graph representation of the relation between y, and y..

From (3), (5), and d = w(0)
w(X) = y(y1)”" = w(0) + B[lg — XC]'XA. (6)

1IV. THE BASIC FLOW GRAPH

In order to express w(X) in terms of quantities that are related to
concepts of importance in the classical theory of linear feedback systems,
we first represent the relation between i, and y. by the signal-flow
graph’ in Fig. 2. The matrix equation associated with “node-group”
@ is (4), and so forth. This topological characterization of the influence
of § plays a central role in the subsequent discussion. We shall call
A, B, C, and d “flow-matrices.”

It is worth emphasizing at the outset that although the signal-flow
graph exhibits feedback in the sense that the outputs of the controlled
sources (i.e., the elements of W) influence the value of the controlling
variables (i.e., the elements of @), it is not necessary that feedback
exist in the network in the usual physical sense. For example, the
physical system may comprise simply a set of driving-point impedances
and the controlled sources may represent a certain subset of these
one-port elements. Feedback arises in the topological characterization
merely because of the form of the equations that we have chosen to
write.

Before proceeding it is important to note that for some choices of ¥
it may not be possible to characterize the two-port by equations of the
form (3) and (4) and hence by the flow graph in Fig. 2. The superpo-
sition theorem implies that when ¥, and ® are uniquely determined by
y1 and W7, the relations are of the form (3) and (4); it does not imply
that such relations exist. The one-port network shown in Fig. 3 is one
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Fig. 3 — Single controlled-source one-port.

of the simplest structures which illustrate the difficulty. For this net-
work, with w(X) the well-defined driving-point admittance, all four
flow matrices A, B, C, and d fail to exist.

There are much more sophisticated situations of this general type.
Nevertheless, almost all feedback networks of interest do not exhibit
this degeneracy. Furthermore when the difficulty does occur, it is
generally possible to consider the limiting form of a network for which
the degeneracy is not present. For example, if the one-port in Fig. 3
is modified by adding a series resistor, the flow matrices A, B, C, and d
become well-defined and the expression obtained for the driving-point
admittance reduces to (X) " as the value of the series resistor approaches
Zero.

With this motivation we state the

Assumption: It is assumed throughout that the relation between y, and y»
can be represented by a signal-flow graph of the type shown in Fig. 2.

Consider now the definition of three matrices that are related to the
flow graph.

4.1 The Loop-Difference Matrix for the Branch X: F3(X;)

The loop-difference matrix for the branch X is defined as follows.
Introduce an additional node-group P in the flow-graph of Fig. 2 by
replacing X with a cascade of any two branches X; and X; such that
XX, = X. Let the orders of X, and X, respectively be ¢ X m and m X p.
Next, break the feedback loop by splitting P into a source node-group
P’ and a sink node-group P” to obtain the graph in Fig,. 4.

With #, set equal to zero, suppose that an arbitrary signal vector
S,., of order m, is applied to P’. The resulting signals at node-groups
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y,s Y,

Fig. 4 — Signal-flow graph for defining the loop-difference matrix and the null
loop-difference matrix.

w, @, and P” respectively are X;S,, , CX;S,, , and X,CX,S,, . The vector
signal difference at P’,P” (i.e., the signal at P’ less that at P”) is [1,, —
X,CX,JS,. . We shall ecall [1,, — X,CX] the loop-difference matrix for
the branch X and denote it by Fy(Xi), which indicates explicitly its
dependence on X;. When X;, X:, and C are scalars, Fz(X;) becomes
independent of X, and reduces to Mason’s flow-graph definition of the
loop-difference for the branch X.

4.2 The Null Loop-Difference Mairix for the Branch X: Fz(X,)

This matrix is evaluated under the condition that  is adjusted so
that y, = 0. Specifically, if an arbitrary signal vector S,, is applied to
P’ in Fig. 4, the signal reaching y» by way of the branch B is BX;S,,
so that, if y. is to be zero, y must be —d 'BX,S,,. The total signal
arriving at @ is —d 'ABX;S,. + CX;S,., and hence the signal at P”
is [X.CX;, — d 'X,ABX,]S,. . Thus the vector signal difference at P’,P”,
under the condition that y, is adjusted so that y, = 0, is [1,, — X.CX; +
d"'X,ABX,|S,.. We call [1,, — X.CX; + d 'X,ABX,] the null loop-
difference matrix for the branch X and denote it by Fg(X;). When A,
B, C, X,, and X, are all scalars, Fy(X,) reduces to Truxal’s definition"
of the null loop-difference for the branch X, and is independent of the
choice of X, . It is convenient to write: F5(X;) = [1,, — X,CX,], where
C=C - d'AB.

4.3 The Complementary Loop-Difference Matrix for the Branch X: Fy(X;)

The complementary loop-difference matrix, denoted by Fz(X,), is
defined by the requirement that when an arbitrary S,, is applied to
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P', F;(X,)S,, is the vector signal difference at P',P” under the condition
that , is adjusted so that (3 + 1) = 0. This matrix is therefore ob-
tained from the expression for the null loop-difference matrix by setting
d = 1. That is, F5(X;) = [1,, — X.CXy] where C = C — AB. The comple-
mentary loop-difference matrix is of utility when d = 0. In such cases
the null loop-difference matrix is not defined.

It is evident that the concepts of loop-difference matrix, null loop-
difference matrix, and complementary loop-difference matrix need not
be restricted to the branch X in Fig. 2; they relate without ambiguity
to any branch in a signal-flow graph which possesses a single input node
and a single output node.

4.4 Circuit Interpretations of C, €, and C

It is important to note that the matrices C, ¢, and C possess very
explicit circuit interpretations. When the elements of W (i.e., the outputs
of the controlled sources) are treated as independent variables, the p-
vector of voltages and currents @ is equal to CW, Cw, and Cw re-
spectively when j is set equal to zero, y; is adjusted so that y, = 0, and
i1 is adjusted so that (y + y2) = 0. The evaluation of these matrices
from the circuit is simplified considerably by the fact that the controlled
sources are treated as independent sources.

v. THE DETERMINANTS det Fy(X,), det Fz(X,), anp det Fy(Xi)

Our primary interest in the matrices F5(X;), Fy(X), and F;(Xy) is
with regard to their determinants. Here we wish to establish two ele-
mentary properties of these determinants which add to an understanding
of the character of the expression for w(X) presented in the next section.
Further properties of these determinants are considered subsequent to
the derivation of the expression for w(X).

Although the matrices Fy(X;) and (X)) generally depend upon
the choice of X, , it is true that

Lemma I:
det Fg(X,) = det F5(1,)
det Fﬁ(Xl) = det Fﬁ(lq)

The lemma is proved in Appendix A. It implies, of course, that the
determinants are independent of the choice of X;. This property is
evidently shared by det Fj(X:) since F5(X)) can be obtained formally
from Fy3(X,) by setting d = 1.
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Lemma I is often of assistance in evaluating the determinants.
For example, if the normal rank of X is unity, as is the case when §
contains a single equation, X can be written as X,X, where X; and X,
respectively are ¢ X 1 and 1 X p matrices. In such instances the de-
terminants of the loop-difference matrix, null loop-difference matrix,
and complementary loop-difference matrix can be expressed respectively
as simply 1 — X,CX;, 1 — X,€X,, and 1 —X,CX,. Similar simplifica-
tions can of course be exploited if C, €, or € is of unit normal rank.

With the result stated in Lemma I as motivation, we shall throughout
the remainder of the paper denote det Fy(X,), det F3(X,), and det
F3(X,) respectively by det Fy, det Fy |, and det Fy .

Recall that the components of W' and & respectively are the con-
trolled variables and controlling variables arranged in any definite
orders. Thus the matrices X, F3(X,), and F3(X,) are not uniquely
defined by the details of the two-port structure and the set of controlled-
source constraints §. Nevertheless,

Lemma II: det Fy and det ¥ are invariant with respect to the ordering of
the components of ¥ and .

In other words, the determinants are uniquely defined by the details
of the two-port and §. The proof of this important result is straight-
forward: Let @' and W respectively denote vectors obtained from @ and
" by any reordering of the components, Then @' = U® and ¥/ = VW,
where U and V are nonsingular matrices. In terms of @' and W’ the
controlled-source constraints read W = X'®’ where X’ = VXU ', and
the equations corresponding to (3) and (4) are

Y = dip + BN = dy, + BV 'w” (7)
@ = Ay, + C'w = UAy, + UCV 'w, (8)
IMinally, note that for all d = 0
det [1, — X'(C' — d 'A'B")] = det [1, — VXU (UCV' — ¢ '"UABV )|
= det [1, — X(C — d'AB)].

VI. GENERALIZATION OF BLACKMAN'S EQUATION

At this point we are in a position to state and prove the following
generalization of Blackman’s classical result.

Theorem I: If w(0) # 0,

w(X) = w(0) iﬁZﬁ ]_f:
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6.1 Proof
Consider equation (6), which for convenience is repeated below:
w(X) = ()" = w(0) 4+ B[1, — XC] 'XA. (9)

Recall that adj (M), the adjoint of an arbitrary square matrix M of
order g, is defined by

M adj (M) = adj (M)M = 1, det M.
Thus w(X) can be expressed as
w(X) = w(0) + Badj (1, — XC)XA[det (1, — XC)|™

_ w(0) [det [1, — XC] + w(0)'Badj (1, — XC)XA:‘
- det [1, — XC| '

Since det Fg = det [1, — XC], we must prove that det [1, — XC] +
w(0)'Badj (1, — XC)XA = det F; or, more explicitly, that

det [1, — XC] + w(0) 'Badj (1, — XC)XA
= det [1, — X(C — w(0)'AB)].

(10)

We first prove the following result which will be used also in a later
section.

Lemma TII: Let G and H respectively be nonsingular matrices of orders
n and m, and let T and J respectively denote mairices of orders n X m
and m X n. Then,

dellG + TH 'J)det H = det[H + JG'I)det G.

The proof follows from the lemma established in Appendix A which
states that det [1, + DE] = det [1,, + ED] for arbitrary matrices D
and E 10&1)9( tively of orders n X m and m X n. Taking D = G 'I and
E = H'J, we have: det (1, + G 'IH'J] det H det G = det [1,, +
H 'JG'I| det G det H. Moreover, det [1, + G'TH 'J] det G = det
(G + IH'J], and det (1,, + H 'JG 'I) det H = det [H + JG~ ).

The identity (10) is a direct consequence of the following corollary
of Lemma TIT.

Lemma IV: Let G, 1, and J respectively denote matrices of orders n X n,
n X 1, and 1 X n. Then,

del[G + 1J] = det G + T adj(G)L.

To establish this result, consider Lemma IIT with H = 1 and m = 1.
Clearly when G is nonsingular, det [G + IJ] = (1 + JG'I) det G =
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Fig. 5 — (a) Network with the open-cireuit transfer impedance from port 1
to port 2 equal to w(X); (b) modified network with driving-point impedance

w(X).

det G 4+ J adj (G)I. A continuity argument of the type used in Ap-
pendix A shows that Lemma IV is valid also when G is singular.

Expression (10) can be obtained from Lemma IV by taking
G = (1, — XC),I = XA, and J = w(0) 'B. This completes the proof
of Theorem 1.

6.2 Remarks Relating to Theorem I

When w(X) is a driving-point impedance function, the null loop-
difference matrix is evaluated under the condition that the current at
the terminal pair at which the impedance is defined is adjusted so that
the voltage at the terminal pair is zero. Thus, in this case, the null
loop-difference matrix is equal to the loop-difference matrix evaluated
from the network when the terminal pair is shorted. Similarly when
w(X) is a driving-point admittance function, the null loop-difference
matrix is equal to the loop-difference matrix evaluated from the network
when the terminal pair is open-circuited.

The conceptual and computational simplifications mentioned in the
last paragraph are not valid if w(X) is a transfer function.t However,
by introducing an additional controlled source, the evaluation of the
open-circuit transfer impedance or short-circuit transfer admittance
of any three-terminal network can be reduced to the evaluation of a
driving-point function. This reduction is illustrated in Fig. 5 for the
transfer impedance case.

t Of course we assume here that w(X) is not both a transfer function and a
driving-point function associated with the two-port in Fig. 1.
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6.3 Relation of Theorem I to Earlier Work

The expression given in Theorem I reduces to Blackman’s classical
result® when it is applied to the driving-point immittance case in which
% characterizes a single unilateral amplifier, and the equation is expressed
in terms of physically-defined open-circuit and short-cireuit return dif-
ferences.

A particularly suceinct derivation of an equation of this form (for
the single amplifier case) was subsequently presented by Bode' who
exploited the properties of the determinant of the network immittance
matrix. In addition Bode introduced the useful concept of return differ-
ence with respect to a two-terminal element. Signal-flow graph interpre-
tations of Blackman’s expression were later considered by Mason® and
by Truxal. Our proof of Theorem I is a generalization of Truxal’s work.

Exploiting a suggestion by Bode,* Mulligan” has stated an entirely
different generalizationt of Blackman’s equation for cases in which a
multiplicity of nonreciprocal elements are to be considered. His result is
an explicit expression obtained by repeated application of Blackman’s
original result.

6.4 (eneralization of Bode's Relation between Feedback and Impedance

Theorem I'l: Let det F'y denole the determinant of the loop-difference matrix
for the set of controlled-source constraints §, evaluated under the condition
thal y. = 9 'y». Let w(X) — w(0) not vanish identically in X. Then
det 'y is a linear-fractional function of n that vanishes in n if and only if
n = w(X).

The proof is based on Lemma IV: From the signal-flow graph obtained
from Ilig. 2 by adding a branch from y. to y; with transmission ',
it is clear that

det F’y = det {1, — X[C + AB(5 — d) ']}
Using Lemma TV,
det F’; = det [1, — XC] — Badj (1, — XC)XA(n — d‘)71

Thus the equation det F'z = 0 implies that y = w(X), assuming that

t Subsequent to preparing this paper and soliciting comments from colleagues,
it came to the writer's attention that a result similar to Theorem I is econtained
in the recently published book by Yutze Chow and Etienne Cassignol: Linear
Signal-Flow Graphs and Applieations, John Wiley and Sons, New York, 1962.
They consider the situation that corresponds here to the special case in which
is a set of equations of the form fi = wfieg (k = 1,2, ..., g). Their proof is con-
siderably different from ours.
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Badj (1, — XC)XA = w(X) — w(0) does not vanish identically in X.

Of course when w(X) is a driving-point impedance function, the
condition 7, = 4 'y» corresponds to adding an impedance —y in series
with the one-port.’

6.5 T'he Expression for w(X) when w(0) = 0

Theorem I does not apply when w(0) = 0. In fact, in all such instances
the null loop-difference matrix does not exist. The following corollary
which involves the complementary loop-difference matrix is of assistance
in these cases.

Corollary I: If w(0) = 0,

det Fy — det Fy
det Fy

This result is readily established: Here d = 0 in the flow graph of Fig. 2.
Suppose that the branch d is replaced with one having unit transmission.
Then the ratio of y. to y; for the resulting graph is w(X) 4+ 1. However,
using Theorem I and the definition of Fy, w(X) 4 1 = det Fy[det Fy] "

w(X) =

VII. THE MATRICES Fgz, AND Fyz, , AND THE NOTION OF A “RESIDUAL SET
OF EQUATIONS’’ OBTAINED FROM

In this section we generalize the definitions of the loop-difference
matrix and the null loop-difference matrix and then introduce the notion
of a “residual set of equations” obtained from {, in order to both
facilitate and provide a firm general basis for the subsequent derivation
of some fundamental properties of det Fy and det Fy . The complemen-
tary loop-difference matrix need not be considered separately since
it is merely a special case of the null loop-difference matrix. The ma-
terial presented in this and the next section is in many respects a gen-
eralization of Bode's classical theory relating to return difference with
respect to a single element.*

7.1 The Matrices Fyy, and Fyy,

The relation between 1z, and the quantities @, ¥, and ¥, clearly
remains unchanged if the signal-flow graph shown in I'ig. 2 is replaced
with the graph in Fig. 6, where X, is an arbitrary ¢ X p matrix. Let
the loop-difference matrix and null loop-difference matrix for the branch
(X — Xp) in Fig. 6 be defined in the same manner as for X in Fig. 2,
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l:h ng

Fig. 6 — Signal-flow graph for the definition of Fgy, and Fgg, .

and let § denote the “reference set” of equations obtained from (2)
when the controlled-source matrix X is set equal to X, . We introduce

Definition I: The matrices Fyz, and Fy, respectively denote the loop-
difference matrix and the nwdl loop-difference matriz for the branch (X — X,)
in Fig. 6. When Xy = 0, we write: Fyz, = Fy, By, = Fy. The determi-
nants detl Fyz, and det Fygy, respectively are referred to as the determinant
of the loop-difference matriz and the determinant of the null loop-difference
malriz for the sel of controlled-source constraints §, with respect to the
reference set §y .

The branch (X — X;) in Fig. 6, which corresponds to the matrix
relation ¥ = (X — X,)®, may be interpreted as characterizing a set
of controlled sources which focuses attention on the departure of the
elements of X from those of X; or, equivalently, on the departure of &
from & .

We wish to prove

Theorem II1: Let det Fy|z—z, and det ¥y |z—z, respectively denote the
determinants oblained from det Fy and det ¥z by replacing each element of
X with the corresponding element of Xo. Then,

det Fﬁﬁo = —_dé’f Fﬁ
det Fy [z,

det F;;;;n = ——d(.].t Fﬁ -
det Fy ‘5!=i§o

Node-group W in Fig. 6 can be climinated to obtain the flow graph in
Fig. 7. For example, the branch transmission from ¥ to @ in Fig. 7
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[1p- CXo] ' C

B[1q=XoC]"

d+BXo[1p-CXo] " A
91 ga

Fig. 7 — Flow-graph obtained from Fig. 6 by eliminating node-group w'.

is the transmission of the subgraph in Fig. 8. From Fig. 7 it is clear that

det Fy, = det [1, — (1, — CXo)'C(X — Xo)]. (11)
Thus,

det Fyg, = det [(1, — CXo)7'] det [1, — CX]

__ det Fy (12)
det Fy |5,
Now consider det Fyg, . Since
det B, det F
w(X) = w(0 b= w(Xy) % .

( ) det Fﬁ w( 0) det Fﬁrﬁu (]‘3)
= [d + BX,(1, — cx,)a] det Fomo det Fulogy

det Fj
where (12) has been used to obtain the last expression in (14), we have
det By = [1 4+ d 'BXo(1, — CX,) 'A] det Fy, det Fy [5-5, (15)
= {det [1, — CXy] + d'BXpadj (1, — CX,)A] det Fyy, . (16)
Although it is assumed in (13) that det Fy and det Fy, do not vanish

Xo

1q C

Tig. 8 — Subgraph for evaluation of transmission from W' to @ in Fig. 7.
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identically in the complex-frequency variable, it can readily be shown
with a continuity argument that the validity of (16) does not depend
upon these assumptions. According to Lemma IV, the expression within
the branches in (16) is equal to det [1, — €Xo]. Therefore

det Fﬁ

det Fygp = ——o 22—
T et Fy [y,

7.2 The “residual set of equations”

Recall that the set § is the collection of ¢ equations:

a+p

fk =~Z'Yk"fl’ (k: 11 2» JQ) (17)
1=q+1
Let ® denote an arbitrary subset of ®,, the set of all ordered pairs of
integers (j,7) such that 1 £ 7 < ¢, g+ 1 ¢ < ¢ + p. Let 2 denote
A

a sum over all integers ¢ such that (k,7)e® [i.e., such that (/%,7) is an
element of @), and denote by ®* the complement of ® with respect to
®o . Then it is certainly true that

Je =i + %’Yhf.‘ (k=1,2, -+, q)
where

fk’ = %'kafu (k = 1121 ST, Q)‘ (18)

In accordance with the controlled-source interpretation of (17), the
fi' are the contributions to the controlled-source outputs associated
with the subset of coefficients {y; | (k,7)e®]. Let §-® denote the set of
r equations (r £ ¢) obtained from (18) by omitting all equations of the

form fi’ = 0. The set §-® is referred to as a residual set of equations
obtained from .

VIII. THEOREMS CONCERNING det Fy.q axp det Fy.q

To each choice of @ there corresponds a signal-flow graph characteri-
zation of the relation between y; and y. of the type shown in Fig. 2
where the elements of the flow matrices analogous to A, B, C, and d
are independent of those literal coeflicients v.; for which (k7)e®, and
where the branch analogous to X is associated with the set of equations
F-®. Accordingly, each choice of ® defines a set of controlled-source
interpretable equations §-@®, a pair of determinants det Fs.q and det
Fs.q , and an initial state of the physical system [i.c., a system obtained
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by setting v = 0 for all (/k,7) contained in ®]. The primary purpose
of this section is to derive some fundamental results that relate det
F;.q, and det Fy.q, respectively to det Fs.q, and det Fy.q,, where 6
and ®. are any two subsets of @ . The set F-®¢ = § is of interest
here only in that §-®; and §-®. are obtained from it in a preseribed
manmner.

Our first objective is to relate det Fy.q and det Fy.q respectively to
det F; and det Fy. Consider

Lemma V: Let A’, B, C’, and d’ respectively denote the flow maltrices in
Fig. 7 which correspond to A, B, C, and d in Fig. 2. Let ®, W', A’, B',
and C’ be partitioned as follows:

‘I’l}s ’ I:lFlr]'f' ' |:A1’j|8
P = g = A =
I:‘I’e (p —s) wy |(¢g — 1)’ A [(p — )

B’ = [Blf Bgl], C, _ [Cu C]g:IS
r (q —_ ?‘) Cg[ ng ('P -— S)’
r (g —r)

and let all of the nonzero elements of (X — Xy) be restricted to X,. , the
r X s submatriz standing in the wpper left-hand corner. Then det Fyy,
and det Fyg, respectively are equal to the determinant of the loop-difference
matriz and the determinant of the null loop-difference malrix for the branch
X,, tn the flow graph of Fig. 9.

The proof follows at once from the expressions for det Fgy, and det
Fys, in terms of d’ and the submatrices of A’, B’ and C'. The details
are omitted.

Suppose now that the elements of W* and ® are chosen so that all of
the cocfficients v, [(k,7)e®] are contained in the r X s submatrix in the

Cn

df

Fig. 9 — Flow-graph relevant to Lemma V.
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upper left-hand corner of X, where s is the smallest integer for which
this is possible, and that X, in Fig. 7 is obtained from X by replacing
the vi;[(k,)e®] by zeros. It then follows from Lemmas 1T and V that
det Fgz, = det Fy.q and det Fys, = detFy.q . Thus a direct application
of Theorem III at this point proves

Theorem IV

At Fyy = — ML Fs
det Fy |y = 0
(kDe®
del F,‘g.m = _(hjt F“ .
det F;} Yki = 0
(k) e®

Note that det Fy.q and det Fg.q are linear-fractional functions in each
of the yi[(k,7)e®@*]. This fact is often of assistance in evaluating the
determinants.

det Fy vei = 0

yei = 0 det F;g
and (kyi)ea.

Now consider (hi)ew

Recall that these quantities are respectively the determinant of the loop-
difference matrix and the determinant of the null loop-difference matrix
for the branch X in Fig. 2 when v, = 0[(k4)e®]. Consecuently it
follows from Lemma IT, Lemma V, and the significance of §-®* that:

det Fy |vii = 0 det Fgg« [vii = 0
(ki)ye® (ki)e® _
(19)
det, Fa.m- Yri = 0
N (ki)e®.
(l(‘t FE Yki = 0 _ (](‘-tu Fl‘i-(ﬂ' Yii = 0
(ki)eat (ki)e®
. (20)
_ det Fﬁ-;n‘ Yii = 0
(ka)ed.
1 det Fy.qe ki = ) det Foge|vei =0 .
where !(. ki)e® and (ki)e® respectively

are equal to det Fz.qe and det F;.q+ evaluated from the flow graph or
directly from the circuit under the condition that vz = 0 for all (k,7)
contained in ®. Theorem IV and identities (19) and (20) imply
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Theorem V: Let ®, and ®» denote two arbitrary subsets of Gto. Then

det FE-(Rz‘ Yei = 0
det Fy.qy _ (k3)e®e
det FE-(RQ det Fﬁ-ﬂh‘ Yei = 0

(k,?:)E(RL

det Fﬁ.mga Yki = 0
det Fﬁ'(ﬂl _ (k,?:)B(Rg
df_’t Fﬁ.(ﬁﬂ d@t Fﬁ'ﬂh‘ Yei = 0 ’

(k,i)eﬁh

We wish now to focus attention on the particular situation in which

®, and ®. are disjoint. We shall prove

Theorem VI: Let ® and R be any two disjoint subsels of ®o. Then

det Fy.q, || ve: = 0
det FE-CM _ (k,’i)B(Rg
det Fﬁ.mz det Fﬁ-(ﬂz Yei = 0

(k,’.':) eRy

det Fy.q, || vei = 0
det Fﬁ‘ﬂh _ (IC,’E.)E(RQ,
det Fﬁ'fﬁz det Fﬁ'(}h Yii = 0 '

(kji)e®,

Consider Theorem V. Observe that here §-®: and §- ®. respectively
can be regarded as residual sets of equations obtained from §-®.* and
%+ @*. Formally, in accordance with the notation introduced earlier,
F-® = (F-0™)- 6 and F- Ry (F-®*) - Ry . Using Theorem IV

det Fﬁ-(ﬂ; = det Fﬁ-ﬂlz‘ .
det Fﬁ-(ﬂz‘ Yei = 0
(kﬂ;)E(Rl
Hence
det Fg. g, |7e: = 0
(IG,?:)E:(Rg _ d ¢ F . 0
det Fz.q,e [ve:s = 0 = det Fy.q |7e =
(ki)e®; U @q (ky)e®a (21)

= det Fy.q,|ve: = 0

(kji)eds
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Next let @& = (& U ®.)* and note that §F-®; = (F ®*) @Ry
= (¥ ®*) Ry . Again using Theorem IV

det Fg_ma _ det FE-(R[‘ _ det Fﬁ_(ﬁzi .
det Fz. @, |vi: = 0 det Fg.qq |ve: = 0
(k,2)e®s (ki)e®s
Thus
det Fﬁ.ma Yki = 0 = det, Fﬂ‘-ﬂh' Yki = 0

(k,?:)&‘,(ﬂ] ] ®Ra (k,i)e(}h U G2
(22)
= det FE'LR:' Yki = 0

(k)e® U @ .

Finally, from (21), (22), (19) and the fact that (21) remains valid
when the subscripts 1 and 2 are interchanged, it follows directly that

det Fﬁ_mgi "Yk;‘ =0 det Fﬁ!"-ﬂh Yii = 0
(k1) e®s _ (k) e®a

det Fﬁ-ﬂh‘ e = 0 det F‘f,mg Ye: = 0 ’
(ki)e®, (kg)e®;

when ®; and ®, are disjoint. It is obvious at this point that a similar
argument suffices to establish the second identity stated in the theorem.

It is worth stating explicitly the following direct corollary of Theorem
VI.

Corollary I1: Let N, and N, be two arbitrary disjoint subsets of {1, 2, - -+ , q}.
Let {1 and §. respectively denote the subsets of equations obtained from §
by ineluding only those for which keN, and keN. . Then

det F;yl Yiki — 0
a’.et Fﬁl _ kSNg
det Fh B det F;g2 Yki = 0

kBNl

det Fﬁl Yki = 0
(I(’f, FE: ke.tVQ
det F;;i N det Fm Yki = 0

kSArl

The corollary is of utility in evaluating det Fy, and det Fy, when
det Fy, and det Fy, are known, since

det F, || y6: = 0 and det Fﬁz Yei = 0

keN, keN,

are often considerably easier to evaluate than det F;, and det Fy, .
Of course similar remarks apply to Theorem VI. Frequently Theorem V
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also is useful in this respect. These results are generalizations of a theorem
due to Bode."

The following factorization theorem can be obtained by repeated
applications of Theorem IV.

Theorem VII: Let {®,, ®Ra, ---, R} denote any collection of disjoint
subsets of ®Rq such that Uiy ®R; = ®Ro. Then

det Fﬁ = det Fﬁ-(ﬂl H det F‘Ef'(ﬁi Yki = 0
,:2 (ki)e®/

det Fﬁ = det Fﬁ-(ﬁl H det Fg.m; Yki = 0
- (ki)e®!

i—1
where ® = UZ ®;.

Observe that det Fy is expressed as a product of ordinary loop-differ-
4,5 . . .
ences’”’ when each ®:(¢ = 1,2, ---, n) contains a single element.

IX. SOME SIMPLE APPLICATIONS OF THE THEORY

The first three examples relate to a specific vacuum-tube circuit that
has been considered by Truxal.® He presents a detailed classical flow-
graph analysis.

9.1 An Application of Theorem I

To illustrate the application of Theorem I we shall compute the
driving-point impedance at port 2 of the circuit shown in Fig. 10 when
port 1 is short-circuited. The pertinent linear incremental model is
shown in Fig. 10. It is assumed that u; = pe = 20, rpn = rpe = 10, and
RL2 == RmR(RLl + R)_l = 200

Here we choose as the set § the two equations

€a = M1€g1
€y = Moy

Let W = [e,, €)' and @ = [e,1, e,]‘, where the superscript ¢ indicates
transposition. Hence X = diag [u1 , pe]. It is a trivial matter to show that

_ 440R: + 4200
42R; + 441 °

Recall that C is defined here by ® = CW where the elements of W are
treated as independent variables and port 2 is open-circuited. Similarly
@ = CW when port 2 is short-circuited. An elementary analysis yields:

w(0)
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zi.B-c-

Fig. 10 — Circuit diagram for the example.

—21R; —2.1R;
12R, + 441 12R, + 441
c = g * (23)
—Ri(28 + 2.1) — 4208 R.(28 — 2.1)
L 42R, + 441 12R, + 441
[~ —'Rk —21Rk
22K, + 210 22R; + 210
C = 20 :
—R.(208 4+ 1) — 2003 21R: (QTB B I)J
22R; + 210 22R; + 210

The determinants det Fz = det [1, — CX] and det Fy = det [1, — CX]
can be evaluated in a particularly simple manner by exploiting the fact
that they are known at the outset to be linear-fractional functions in
R; . We find that

(88.2 — 8408)R; + 441

det Fy 12R, + 441 (24)
L (462 — 84008) R + 210
det ¥y = BR; + 210
when g = pe = 20. Therefore
det Fgg

w (diag [20,20]) = w(0)

det Fy

(46.2 — 8408)R). + 21

= 9
200 (88.2 — 8408)R; + 441°

0.2 An Application of Corollary I

In this section let w(X) be the (port 1 to port 2) open-circuit voltage
transfer function for the circuit in Fig. 10, and let §, ¥, and @ he
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chosen as in the last section. Our objective here is to evaluate the trans-
fer function in accordance with Corollary I which is obviously relevant.

Since C and det Fy have already been evaluated, consider the de-
termination of the pertinent flow matrices A and B. By inspection of
the circuit, A = [1,0]° and a simple calculation yields

B — [ 2R —2(R: + 210)]
42R, + 441° 19R, + 441 |°

It follows that
det Fy = det [1. — (C — AB)X]

86.2R, + 441 2R, — 20(420)
et 42R, + 441 42R; + 441
= et
R, (408 + 42) + 84008 (46.2 — 403)R; + 441
42R; + 441 42R, + 441
_(928.2 — 8408)R; + 441 + 160,0008 (25)
- 42R, + 441 )

Therefore from Corollary I, (24), and (25)

840R, + 160,0003
(882 — 8408)R; + 441

w (diag [20,20]) =

9.3 An Application of Corollary IT
Consider the model in Fig. 11. Here let § denote the set of equations

Ca = M1€p1
€p = M26g2
ep = Rkik
Tp1 ea_=#| 531 9+b 111'2382 Tpz
N \ ©
Lkl d
L (=A)R |
gq——’*q — Egz —————— :
~ 1
q AR e

g1= "€k °
%RLE

s

- ———————

Fig. 11 — Linear model for the network in Fig. 10 when port 1 is short-circuited.
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and let §; and §, respectively denote the subsets
€a = W€g
y e = kaj,-.

Cp = U2Cy2

Truxal shows’ that det Fg, = 1 — [—0.2 + (40/21)8]R; when the

network parameters have the values given in Section 9.1. We wish

to determine the corresponding expression for det Fs, using Corollary II.
By inspection of T'ig. 11

1

pr=me=0 _ 1 + —R,.

det Fy, |*° =1, detF, | 106

Thus

(882 — 8403)R; + 441
det Fy, = 12R, + 441

which of course is identical to the right-hand side of (24).

9.4 A Flow Graph Demonstration of Corollary 11

Corollary IT can be demonstrated by considering the flow graph in
Tig. 12. Let the determinants of the loop-difference matrices for the
branches Y; and Y, respectively be denoted by det Fy, and det Fy, .
Straightforward evaluation shows that

det F |, = det {1,, — Y4[C: + K(1, — Y.C:)"'YoL]}

df‘t Fﬁg = de‘r. {ln —_ YE[CQ + L(lm —_ chi)ﬁlle”

Cy

Yy HE

Fig. 12 — Flow-graph relating to the validity of Corollary II.
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where n and m respectively are the number of rows of Y, and the number
of rows of Y.
The corollary implies that
det {1, — Yi[C; + K(1, — Y5C;) 'YoL]} _ det (1, — YiCil
det {1, — Y,[C: + L(1,. — Y,C,)'Y\K]} "~ det [1 — Y,Cy

which can readily be verified independently with the aid of Lemma IIT.

9.5 Foster’s Results Via Theorem [

As a final illustration of the theory we shall outline briefly an alterna-
tive proof of Foster’s well-known results concerning the realizability
of two-element-kind one-ports.

Let an arbitrary passive RC one-port containing only resistors and ¢
paralle]l-RC combinations with capacitance and resistance values re-
spectively ¢ and (ac,)™ (B = 1, 2, ---, q) be characterized by the
driving-point admittance function y(s 4+ «), where a is real and posi-
tive. Let § denote the set of capacitor volt-ampere constraints: ¢, =
seer (b = 1,2, -+, ¢) and consider the evaluation of y(s + oz) in
accordance with Theorem I (some of the flow matrices in Iig. 2 may
not exist if & = 0).

Irrom Theorem T and Lemma T, (s -+ a) can be expressed as

det[1, — sC,CC/]

yls + o) = wl0) g e cey

where C, = diag [(en)?, ( )i , (€4)? Y. Observe that here —C and

—C are passive open-cire mt Jesm’rance matrices. A moment’s reflection

shows that A = B'. Hence —C = —C + D where D is a nonnegative

definite matrix of unit rank. With the aid of (26) and the following
theorem it becomes a simple matter to show that

!

y(s) = g + scx + Z

(26)

S"“bﬁ
where go, € = O;a,, e 2 0 (h=1,2, -+, ¢).

Theorem VIII: Let P and Q denote two nonnegative definite hermitian
malrices of order n; let Q have wnit rank. Then

MENEMEnNR - EPuZ=T
where {1, P, +++ , Pu} 18 the set of eigenvalues of P and {ry, 712, -+, nl
is the set of eigenvalues of (P + Q). Further, if p;(j = 1, 2, n) s an

eigenvalue of P of multiplicity miim; = 1), then p; is an etgemvalue of
(P + Q) of multiplicity at least (m; — 1) and at most (m; + 1).
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The discussion in Appendix B shows that Theorem VIII is representa-
tive of more general results that can be proved by remarkably simple
arguments centering about Lemma IV, Eigenvalue inequalities of the
type discussed in the Appendix are ordinarily deduced from the extremal
properties of eig;onva.]ues.S

APPENDIX A,

Proaof of Lemma T

Since X,X. = X, Lemma I is a direct consequence of the following
result.
Lemma A: If D and E respectively are n X m and m X n ma-
trices, det [1, + DE] = det [1,, + ED].
We prove first that the lemma is true when D and E are square matrices.
Tet D and E be p X p matrices. Then, if D is nonsingular,
det [1, + DE] = det [D (1, + DE)D] = det [1, + ED]. (27)
If D is singular, it has a zero characteristic root, and hence there exists
a positive number oy such that D + o1, is nonsingular for all real o
satisfying 0 < | o | < oo. Thus when 0 < [ o [ < o0,
det [1, + (D + o1,)E] = det [1, + E(D + o1,)].  (28)
Both sides of (28) are polynomials in ¢ of at most degree p. I'urther-
more these polynomials must be identical since they agree throughout
the real interval (0, ao). Therefore (28) is valid when ¢ = 0.
Consider now the cases in which D and E are not square. Let
p = m -+ n,

m i n o m

D 0|n N E o|m
D — s E = ;

0 O|m 0 0|n

and let the symbol 1 denote a direct sum of matrices. Observe that
det [1, + DE] = det [(1. + DE) 4 1,] = det [1, + DE], and that
det (1, + ED] = det [(1,, + ED) 4 1,] = det [1,, + ED].

This proves the lemma.
APPENDIX B.

On the Eigenvalues of a Sum of Malrices: an Application of Lemma 1V

In the following discussion M* and p(M) respectively denote the
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complex-conjugate transpose and the rank of an arbitrary matrix M.
Our principal result is

Theorem A: Let {a;, az, - -+ , &) denote the set of eigenvalues of the herms-
tian matriz A, where the first p eigenvalues vanish if A 7s of nullity p, and
—(tp) "= —(apy2) T £ 0 = — (@)

Let B denole a nonnegative definite hermitian matriz of unil rank and
order n; and let

. det[l, + s(A + B)]
ko= lim = + sA]

Then — o < k £ = and the set of eigenvalues of (A + B) can be written
as {e1, ¢z, * -+, ¢} where

1.if 0 < k < w, the first p eigenvalues vanish and —(apy)”" =<

_(CJJ+1)71 = _‘(ap+2)—l = _(C:JH)_] = = _(an)_l = _(Cn)—l
2.4 —w < k < 0, the first p eigenvalues vanish and —(cpp1)' =

— () S —(ep2) TS () T = s £ =) £ —(aa)”
3.4f k = 0, the first (p + 1) eigenvalues vanish and —(ap) ™ =

_(C;H-Z)_l é —(ap+2)71 g _(CD+3)h1 é v é “(Cn)—l é _(an)_]
4. 4f k = = the first _(110 - 1) eige;ltwalues vanish (mdi —(ep)™" gl

_(al"l'l) é _(CP“H-) g _(t]'p+2)— g . T<_ _(an)i é —(C'ﬂ-)_-
Proof:

The statements relating to the number of vanishing eigenvalues of
(A + B) are a direct consequence of (i) p(A) = p(A 4+ B)
when 0 < | k| < =, (i) p(A) = 1 + p(A + B) when k = 0, and
(772) p(A) = p(A+ B) — 1 when k = <.

Consider now the real rational function in s:

y(s) = det [1, + s(A + B)]

Y= T et 1, + sA]
It is well-known that there exist two unitary matrices P and Q such
that PAP™" = diag [a1, @z, -+, a.] and Q(A + B)Q ' = diag [¢1, ¢,

-, ¢,] where the a; and ¢, are real. Hence

n

y(s) = J1 (1 + se)(1 + sa)™"

i=

Consider the evaluation of y(s) in accordance with Lemma IV. Here
B can be written as DD* where D is an n-vector. Thus
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y(s) = 1 + sD*[1, + sA] 'D
1 + sD*P '[diag(1 + sa;, 1 + saz, ---, 1 + sa,)] '"PD
1 + sH*diag[(1 + sa))™", (1 + sa), -+, (1 + sa,)”'H

s|hi P
1+§1+sa1 (29)

where H = PD = [y, ha, ---, h.]". The theorem is obviously true
when Y7y | h: |* = 0. Assume therefore that >/ | hi[* > 0.

Observe that y’(s) > 0 for all real s such that | y(s)| < o, and that
the poles of y(s) are simple. Thus the interval on the real-axis of the
s-plane between two adjacent poles contains one and only one zero of
y(s). Note that when lim,.., y(s) = &k > 0, the right-most critical
point of y(s) is a zero and that this critical point is a pole if —= <
i = 0. Similarly the left-most critical point is a zeroif & = « or —« <
k < 0;itisapoleif 0 <k < . The inequalities stated in the theorem
follow directly from these observations. The equal signs make provision
for possible coincident nonzero eigenvalues of A and (A + B). Note
that (29) implies that — = < k = =.

The following corollary of Theorem A appears to be useful in the
study of linear dynamical systems.

Il

Corollary A: Let A and B denote two hermitian matrices of order n, with

A nonnegative definite. Lel {y , @, -+, @) tn which @ = @ = -+ = @,
denole the set of eigenvalues of A; and let &, €, -+, T} 0 which & =
Gy £ -+ = &, denote the set of eigenvalues of (A + B). Then

dipg = T 14+8=1i=n]

&S diya 1 =272 (n—a)

where a« = 2(F + &), 8 = (7 — §) in which ¥ and § respectively are the
rank and signature of B.

Proof:

Consider Theorem A and assume that A is nonnegative definite. Then
either k > O or k = = [i.e., either p(A + B) = p(A) or p(A + B) =
p(A) + 1]. Thus in either case, since the ¢; and a; are nonnegative here,

{I1§C1§ﬂﬂéc‘2"'§angcn (30)

We may express B as 9 .cq B — 2i—at1 Bi where the B, are rank 1
nonnegative definite hermitian matrices. It is certainly true that ¢; does
not exceed the corresponding eigenvalue of A + &, B: and is not less
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than the corresponding eigenvalue of A — > 7_,.; B:. Hence by an
a-fold application of inequalities of the type (30) we obtain the upper
bound on & stated in the corollary. If B in Theorem A were a nonposi-
tive definite matrix the inequalities in (30) would be reversed, and
hence a B-fold application of the inequalities suffices to establish the
lower bound on ¢; .

Our final result relates to eigenvalue multiplicities.

Theorem B: Let A and B be matrices of order n. Let A be similar to a di-
agonal matriz and let the rank of B be unity. Then if @ is an eigenvalue of
A of multiplicity m(m = 1), a is an eigenvalue of (A + B) of multiplicity
at least (m — 1). Further, if in addition A and B are hermitian, a is an
eigenvalue of (A + B) of multiplicity at most (m + 1).

Proof:
Consider

det [1, + s(A + B)]
det [1, + sA]

Since B is of unit rank and A is similar to a diagonal matrix, the lemma
can be used, as in the proof of Theorem A, to show that $(s) has only
simple poles. This proves the first part of the theorem which is essen-
tially equivalent to the statement that if the dimensionality of the null-
space of [a@l, — A] is m, then the dimensionality of the null-space of
[@, — (A + B)] is not less than (m — 1) [assuming that the Jordan
form of A is diagonal and B is of unit rank]. It is not difficult to produce
proofs of the result which are based on this interpretation.

If A and B are hermitian, 4'(s) is either positive for all real s such
that | #(s) | < = or is negative for all such s (we assume that §(s) # 1),
since B must be either nonnegative definite or nonpositive definite. Thus
7(s) can have only simple zeros, from which the second part of the
theorem follows at once.

g(s) =
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