Group Testing To Eliminate Efficiently All Defectives in a Binomial Sample ## By MILTON SOBEL and PHYLLIS A. GROLL (Manuscript received November 13, 1958) In group-testing, a set of x units is taken from a total starting set of N units, and the x units ($1 \le x \le N$) are tested simultaneously as a group with one of two possible outcomes: either all x units are good or at least one defective unit is present (we don't know how many or which ones). Under this type of testing, the problem is to find the best integer x for the first test and to find a rule for choosing the best subsequent test-groups (which may depend on results already observed), in order to minimize the expected total number of group-tests required to classify each of the N units as good or defective. It is assumed that the N units can be treated like independent binomial chance variables with a common, known probability p of any one being defective; the case of unknown p and several generalizations of the problem are also considered. #### I. SUMMARY A finite number, N, of units are to be tested in groups. A "group-test" is a simultaneous test on x units (x to be chosen so that $1 \le x \le N$) with only two possible outcomes: "success," indicating that all x units are good; and "failure," indicating that at least one of the x units is defective (we don't know how many or which ones). The problem is to define a simple and efficient procedure (or an optimal procedure) for separating all the defective units from the good units — efficiency being defined in the sense of minimizing the expected number of group-tests required. Each unit is assumed to represent an independent observation from a binomial population with a common known a priori probability, q, of being good and p = 1 - q of being defective. (The case of q unknown is briefly treated in Section X.) A procedure (or decision rule), R_1 , which describes a mode of action for any given value of q, is proposed and compared with several other procedures applicable to the same problem. The procedure R_1 is simple in the sense that at any time, t, the experimenter must separate the units not yet proven to be good or defective into only two sets; units within either of these two sets need not be distinguishable. If it is given that the identification of units within the group being tested is economically impractical or impossible, then the procedure R_1 is conjectured to be optimal for all values of q. Explicit instructions for carrying out R_1 are given for N=1(1)16 for all q and for N=17(1)100 for the particular values $q=0.90,\,0.95$ and 0.99. Exact formulae for the expected number of group-tests required under R_1 are given in Table IV B for all q and for N=1(1)12; numerical results for $q=0.90,\,0.95$ and 0.99 are given in Tables V A, V B and V C for N=1(1)100. Other numerical comparisons are made in Tables II A and II B. [Tables II through VIII appear at the end of this paper.] Another procedure, R_2 , which is simpler to compute and compares favorably with R_1 , is defined in Appendix A in terms of information theory concepts. Several different directions for generalization of the problem and corresponding generalizations of the procedure R_1 are considered in Section XI. Industrial applications are mentioned, in addition to the known application to blood testing. #### II. INTRODUCTION A problem which has hitherto been considered only in connection with blood-testing applications^{1,2,3} can be shown to have industrial applications, and these have focused interest on a more general treatment of the problem. During World War II, a great saving was accomplished in the field of blood testing by pooling a fixed number of blood samples and testing the pooled sample for some particular disease. If the disease was not present, then several people were passed by a single test; if the disease was present, then there was enough blood remaining in each blood sample to test each one separately. The amount of time, money and effort saved by such a procedure depends on how rare the disease is in the population of people being tested. In this application, the total number of people to be tested was regarded as unknown and very large. The goal of the problem treated here is the same — namely, to separate the defective units from the good units with a minimal (or approximately minimal) number of group-tests. This problem differs from the blood-testing problem in the following respects: i. The population size N (number of people to be tested) is known at the outset. - ii. The number of units in each group-test (pooled blood sample) is not necessarily constant. - iii. If a group-test fails (the disease is present) we do not necessarily test each item separately. In practice, the simplicity of the procedure deserves some consideration. The proposed procedure R_1 defined in Section III, after having been computed and described explicitly in advance of any experimentation, is in some sense no more complicated than the blood-testing procedure described above; this is explained in Section V. Some typical industrial applications are: - 1. It is desired to remove all "leakers" from a set of N devices. One chemical apparatus is available and the devices are tested by putting x of them (where $1 \le x \le N$) in a bell jar and testing whether any of the gas used in constructing the devices has leaked out into the bell jar. It is assumed that the presence of gas in the bell jar indicates only that there is at least one leaker and that the amount of gas gives no indication of the number of leakers. The *a priori* probability, q, of a unit being good is given by the records of similar units tested in the past. - 2. Paper capacitors are tested at most n at a time, and each test indicates by the presence or absence of a current whether or not there is at least one defective present. For given n and q and given cost of unit manufacture, should the operator throw away a whole set of n units if it contains at least one defective? If not, how should he proceed to sort out the defective units to minimize the expected number of tests required? If the cost of a group-test and the cost of producing a unit are known, a related problem is to find a procedure which minimizes the total cost (including testing costs) of producing a good unit. - 3. Christmas tree lighting problem. A batch of n light bulbs is electrically arranged in series and tested by applying a voltage across the whole batch or any subset thereof. If this is to be done on a routine basis, what procedure should be used to minimize the expected number of tests required to remove all the defective light bulbs, assuming the value of q is given? - 4. A test indicates whether or not there is at least one good unit present in a batch of n, without indicating which ones or how many are good. Given q, what procedure should be used to remove the good units? This dual problem, which is useful in salvaging good components on a routine basis, is mathematically equivalent to those above, if the definitions of good and defective are interchanged. A procedure R_1 is defined to solve the above problems, and is compared with several other procedures for the same problem. A procedure R_2 , based on maximizing the information in each group-test, is defined in Appendix A. Another procedure, R_3 , which does not allow any recombination, is defined in Appendix B. Two "halving procedures," which can be carried out without knowing the true value of q, are defined in Appendix C. Procedures R_7 and R_6 are the best procedures that can be obtained by the methods of Dorfman¹ and Sterrett,³ respectively, for small population sizes. For N=4, 8 and 12 and various q values, Table II A gives a numerical comparison of the expected number of group-tests required for all these procedures. Different directions of generalization, some of which are discussed in Section XI, are the following: 1. Two (or more) different kinds of units with (say) known probabilities q_1 , q_2 of a unit being good are present, and the two different kinds can be put into the same test group. 2. Two (or more) experimenters may be working on a single set of N units by carrying out simultaneous, parallel group-tests and cooperating in such a way as to minimize the time required to accomplish the task. 3. The restriction is sometimes applied (particularly in blood-testing) that any one unit can be included in at most k group-tests; here the goal is to minimize the expected number of group-tests subject to this restriction. For k=2 the proposed procedure is necessarily based on the method of Dorfman; i.e., if a group-test fails, then the units therein are all tested individually. 4. Various generalizations appear if it is assumed that each test on x units gives three (or more) different possible results. For example, a test could indicate that either (a) all are good or (b) all are defective or (c) there are at least one good unit and at least one defective present. 5. A unit can be defective in either of two ways (e.g., electrical or mechanical) with the two *a priori* probabilities of being defective assumed to be independent but not necessarily equal. If there are two different tests corresponding to the two types of defectives, then, in addition to deciding the next test-group size, it may be necessary to decide which test to use next. 6. For positive continuous chance variables with a known distribution (like weight) the following problem is analogous. It is desired to separate N units into two groups according as the weight per unit is less than or greater than a constant (say, unity). Any number of units can be included in a single weighing. The problem is to accomplish the separation in a minimal number of weighings, assuming that the individual weights are independent observations from the common known distribution. Many of these generalizations will be omitted from this paper and
treated separately. ### III. THE PROCEDURE R_1 The procedure R_1 is defined implicitly by a pair of recursion formulae and boundary conditions, but first we shall need some definitions and preliminary results. The units proven to be good and the units proven to be defective are never used in subsequent tests. Aside from such units, this procedure requires that at every stage the remaining units be separated into at most two sets. For one set of size $m \ge 0$, which we call the defective set, it is known that it contains at least one defective unit; for the other set of size $n - m \ge 0$, which we call the binomial set, our a posteriori knowledge is, so to speak, in the original binomial state; i.e., given the past history of testing, the units in the binomial set act like independent binomial chance variables with a common probability p of being defective. For the defective set, the conditional probability that Y, the number of defectives present, equals y is $$\Pr\{Y = y \mid Y \ge 1\} = \frac{\binom{m}{y} p^y q^{m-y}}{1 - q^m} \qquad (y = 1, 2, \dots, m).$$ (1) If X denotes the number of defectives present in a subset of size x randomly chosen from the defective set, then $$\Pr\left\{X = 0 \mid Y \ge 1\right\} = \sum_{y=1}^{m-x} \frac{\binom{m}{y} p^y q^{m-y}}{1 - q^m} \frac{\binom{m-y}{x}}{\binom{m}{x}} = \frac{q^x (1 - q^{m-x})}{1 - q^m}. \quad (2)$$ Before defining the procedure it is convenient to prove a lemma in a more general setting. Let $T(r_i)$ $(i=1,2,\cdots,t)$ denote a test on n units $(1 \le r_i \le n)$ such that there are only two mutually exclusive possible outcomes: a "failure," indicating that there are at reast r_i defectives present, and a "success," indicating that at most $r_i - 1$ of the units in the test are defective. In Lemma 1 we consider any integers r_i , r_0 with $1 \le r_i \le n(i=0,1,2,\cdots,t)$, but the most important application is the case $r_0 = r_1 = \cdots = r_t = 1$. Let α be any set of units, and let $\alpha_i(i=1,2,\cdots,t)$ denote sets not necessarily disjoint from one another but such that each is disjoint from α ; the case t=1 is the one used for procedure R_1 . At the outset, all units are independently and binomially distributed with a common probability p of being defective. Lemma 1: If a test $T(r_i)$ on $\alpha + \alpha_i$ produces a failure for $(i = 1, 2, \dots, t)$ and another test $T(r_0)$ on α also produces a failure, then for $r_0 \geq \max r_i$ the conditional distribution associated with all the units in the sets $\alpha_i(i = 1, 2, \dots, t)$, given both conditions above, is exactly the same as the original binomial distribution. *Proof:* Let A and B_i denote the chance number of defectives present in α and α_i , respectively. For the jth set α_j the conditional probability P of interest is $$P = \Pr\{B_i \le b \mid A + B_i \ge r_i (i = 1, 2, \dots, t), A \ge r_0\}.$$ (3) Since $r_0 \ge \max r_i (i = 1, 2, \dots, t)$, the condition $A \ge r_0$ implies that $A + B_i \ge r_i$, and hence $$P = \Pr\{B_i \le b \mid A \ge r_0\}. \tag{4}$$ Since \mathfrak{G}_j and \mathfrak{A} are disjoint, it follows that B_j and A are independent and hence, from (4), $$P = \Pr\{B_i \le b\},\tag{5}$$ which proves the lemma. Let $G_1(m, n; q) = G_1(m, n)$ denote the expected number of grouptests remaining to be performed if the defective set is presently of size m, the binomial set is presently of size n - m, the a priori probability of a good unit is the known constant q and the procedure R_1 is used. For the special case m = 0 we use the symbol $H_1(n; q) = H_1(n)$. The values of m and n vary as the procedure is carried out; at the outset, m = 0 and n = N. It will also be convenient to refer to the G-situation or G(m, n)-situation if m > 1 and to the H-situation or H(n)-situation if m = 0. Recursion Formulae Defining Procedure R₁ If x denotes the size of the very next group-test, then we write for any situation with m=0 $$H_1(n) = 1 + \min_{1 \le x \le n} \{ q^x H_1(n-x) + (1-q^x) G_1(x,n) \}, \quad (6)$$ and, with the help of (2) and Lemma 1, we write for $n \geq m \geq 2$ $$G_{1}(m,n) = 1 + \min_{1 \le x \le m-1} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{1}(m - x, n - x) + \left(\frac{1 - q^{x}}{1 - q^{m}} \right) G_{1}(x, n) \right\}.$$ $$(7)$$ The boundary conditions state that for all q $$H_1(0) = 0$$ and $G_1(1, n) = H_1(n - 1)$ for $n = 1, 2, \cdots$. (8) In (6) and (7) the constant 1 represents the very next group-test of size x and the expression in braces is the conditional expected number of additional group-tests given x. It follows from (6) and (8) that $H_1(1) = 1$ for all q. Remark 1: To justify writing $G_1(x, n)$ in (7) we make use of Lemma 1 with t = 2, $r_2 = 0$, $r_1 = r_0 = 1$; we take $\alpha + \alpha_1$ as the defective set of size m and α as a subset of size x < m. Then, by Lemma 1, if the subset α of size x is shown to contain at least one defective, the α posteriori distribution associated with the m - x units in B_1 is exactly binomial. These are then mixed or recombined with the n - m "binomial units," giving a total of n - x binomial units, and this justifies the expression $G_1(x, n)$ in (7). Remark 2: These two recursion formulae, together with the boundary conditions, allow one to compute successively for any q the functions $G_1(2, 2)$, $H_1(2)$, $G_1(2, 3)$, $G_1(3, 3)$, $H_1(3)$, $G_1(2, 4)$, $G_1(3, 4)$, $G_1(4, 4)$, $H_1(4)$, \cdots to any desired value of m and n. Remark 3: The integer x which accomplishes the minimization in (6) and (7) for each situation characterized by the integers m and n is particularly important, since this is the size of the next test to be run according to the procedure R_1 . These integers $x = x_H(n; q)$ and $x = x_G(m, n; q)$ implicitly define the procedure R_1 . An illustration of how the procedure R_1 is to be carried out is given in Section IV. Remark 4: If m > 1, then it is assumed in (7) that a subset of size x with $1 \le x < m$ will be taken from the defective set without mixing it with units from the binomial set. It follows from (6), (7) and (8) that any lack of optimality can only arise from this "no mixing" assumption. This assumption was used in the derivation of the algorithm (7) (see Remark 1 above). It will be noted in Section XIII that, when all the units are individually identified, then by dropping this assumption, an improvement to the procedure R_1 for high values of q can be found. A specific example of a modification and improvement of the procedure R_1 , which drops the "no mixing" assumption at the expense of more complication will be more thoroughly discussed in a separate paper. ### IV. ILLUSTRATION OF THE PROCEDURE R_1 Suppose we start with N = 12 units and it is given that q = 0.98. Referring to the column headed $H_1(12)$ in Fig. 3, we find that the first test-group is of size x = 12; i.e., we start by testing all 12 units. If a success occurs, the experiment is over; if a failure occurs, then according to the column headed $G_1(12, n)$ of Fig. 4 the next test group is of size x = 4 chosen at random from the 12. Similarly, we continue along one of the sample paths shown in Fig. 1. The complete "tree" is not shown here, but testing continues in a similar manner and the specific details can be obtained from Figs. 3 and 4, which appear at the end of this paper. Fig. 1—Initial part of the tree for procedure R_1 for q=0.98 and starting with an H(12)-situation. It is obvious that the above procedure terminates in a finite number of steps. In fact, it can be shown for procedure R_1 (proof is omitted) that the maximum number M(n) [M(m,n)] for any H-situation [G-situation] occurs when q is close to unity and the n unanalyzed units are all defective. It follows easily that $$M(n) = (n+1) [1 + \alpha(n)] + 1 - 2^{1+\alpha(n)},$$ $$M(m,n) = \alpha(m) + n [1 + \alpha(n-1)] + 1 - 2^{1+\alpha(n-1)}, (m > 1)$$ (10) where $\alpha(z)$, for any positive integer z, is defined by $$2^{\alpha(z)} \le z < 2^{1+\alpha(z)}. (11)$$ For the example above, $\alpha(12) = 3$ and M(12) = 37; it is interesting to note that the constant term in $H_1(n)$ expressed in powers of q in Table IV B is also the length of the longest "chain" (that is, 37 for n = 12) in the "tree" used for the interval of q-values ending at unity. Although the maximum number is so large, the expected number of tests is only 2.07. This is explained partly by the fact that the procedure terminates after one group-test with probability 0.7847. A table of such probabilities for the number of tests T required when q = 0.98 and N = 12 is given below: | T | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10-37 | |------------------|--------|---|---|---|--------|--------|--------|--------|--------|--------| | Proba-
bility | 0.7847 | 0 | 0 | 0 | 0.0801 | 0.1124 | 0.0003 | 0.0016 | 0.0134 | 0.0075 | If we assign the probability 0.0075 to T=10, we obtain an estimate of $H_1(12)$ (namely, 2.070) which is a lower bound. The exact value, 2.073, can be obtained from the formula for $H_1(12)$ in Table IV B. Similarly, an estimate of the standard deviation is computed to be $\sigma \cong 2.1$, and this also is easily shown to be a lower bound. It is interesting to note that, if the starting number N is exactly a power of 2 and q is large, the procedure R_1 starts off the same as a "halving" procedure. Such a procedure R_4 is defined in Appendix C for any N, and it has the property that it can be carried out without knowing the true value of q. To compare the means and standard deviations of R_1 and R_4 , we consider the case N=6, where M=14 for both R_1 and R_4 . For any q>0.844, the expectation under R_1 can be put in the form $$E(T;R_1) = 1(q^6) + 4(3pq^5) + 5(3pq^5 + 2p^2q^4) + 6(2p^2q^4)$$ $$+ 7(7p^2q^4 + 2p^3q^3) + 8(4p^2q^4 + 5p^3q^3) + 9(8p^3q^3 + 3p^4q^2)$$ $$+ 10(5p^3q^3 + 5p^4q^2) +
11(3p^4q^2 + 2p^5q)$$ $$+ 12(3p^4q^2 + p^5q) + 13(p^4q^2 + 2p^5q) + 14(p^5q + p^6),$$ $$(12)$$ where, for each term, the expression in parentheses is the probability that T takes on the value of the associated integer coefficient. For any q the corresponding expression under R_4 is $$E(T;R_4) = 1(q^6) + 4(3pq^5) + 5(3pq^5 + 2p^2q^4) + 6(p^2q^4 + p^3q^3)$$ $$+ 7(7p^2q^4) + 8(5p^2q^4 + 5p^3q^3) + 9(6p^3q^3 + 2p^4q^2)$$ $$+ 10(7p^3q^3 + 4p^4q^2) + 11(p^3q^3 + 4p^4q^2 + p^5q)$$ $$+ 12(4p^4q^2 + 2p^5q) + 13(p^4q^2 + 2p^5q) + 14(p^5q + p^6).$$ (13) The procedure R_1 is better than R_4 (at least for q > 0.844) since $$E(T;R_4) - E(T;R_1) = 2p^2q^4 + 5p^3q^3 + 4p^4q^2 + p^5q \ge 0.$$ (14) [The fact that each term in (14) is positive indicates that R_1 is better than R_4 , even if we know how many defectives are actually present among the N units.] Some numerical comparisons of means and standard deviations are given in Table I. The maximum difference for N=6 between $E(T;R_4)$ and $E(T;R_1)$ occurs at q=0.844, and is equal to 0.0379. For N=6, the procedure R_1 appears to have a variance smaller than Table I — Comparison of Procedures R_1 and R_4 for N=6 | | q = 0.85 | q = 0.90 | q = 0.95 | q = 0.98 | q = 0.99 | |-----------------------------------|----------|----------|----------|----------|----------| | $E(T; R_1) \\ E(T; R_4)$ | 3.8118 | 2.9434 | 2.0092 | 1.4133 | 1.2083 | | | 3.8472 | 2.9605 | 2.0136 | 1.4141 | 1.2085 | | $\sigma(T; R_1)$ $\sigma(T; R_4)$ | 2.536 | 2.269 | 1.762 | 1.179 | 0.850 | | | 2.593 | 2.304 | 1.776 | 1.183 | 0.851 | that of R_4 for all q < 1. A more complete comparison of $E(T; R_1)$ with that of several other procedures is given in Table II A. ### V. THE SIMPLICITY OF R_1 It will be shown in this section that, for any given q and any situation G(m, n), the appropriate x [i.e., the integer which accomplishes the minimization in (7)] does not depend on n. A somewhat simpler method of computing x is given and a new function of m alone is introduced to replace $G_1(m, n)$ in the definition of the procedure R_1 . For any m and any pair of integers (x, x + 1) both possible under R_1 , there is always a single dividing point $q_g(x) = q_g(x, x + 1; m)$ that separates the interval for x from the interval for x + 1. (This property was observed for $m \le n \le 16$ and is treated as a conjecture for all m and n in Section VII.) According to Remark 4 in Section III, the procedure R_1 for m > 1 is to "break down" the defective set. This "breaking down" is continued until a single unit is established to be defective and removed. Instead of randomizing the order of the units in the defective group again and again before each test group is selected, it will be convenient to assume, without affecting the properties of the procedure R_1 , that the order is randomized only once at the outset.† Units or groups of units removed later are then to be taken in that order. If the *i*th unit (in that order) is the first defective unit, then the "breaking down" mentioned above leads to an H-situation with n-i binomial units, and the converse also holds true.‡ It is convenient to introduce $F_1(m, q) = F_1(m)$ defined as the expected number of group-tests required to "break down" a defective set of size m and for the first time reach an H-situation when q is given and the procedure R_1 is used. Then $F_1(m)$ clearly does not depend on n and the above argument permits us to write $$G_1(m,n) = F_1(m) + \left(\frac{p}{1-q^m}\right) \sum_{i=1}^m q^{i-1} H_1(n-i).$$ (15) For algebraic simplicity we let $$G_1^*(m,n) = \left(\frac{1-q^m}{1-q}\right)G_1(m,n) \text{ and } F_1^*(m) = \left(\frac{1-q^m}{1-q}\right)F_1(m).$$ (16) Then (7) and (15) take on the simpler forms $$G_1^*(m,n) = \sum_{i=1}^m q^{i-1} + \min_{\substack{1 \le x \le m-1}} \{ q^x G_1^*(m-x,n-x) + G_1^*(x,n) \},$$ (17) $$G_1^*(m,n) = F_1^*(m) + \sum_{i=1}^m q^{i-1} H_1(n-i).$$ (18) Substituting (18) in (17), the three summations cancel and the result is $$F_1^*(m) = \sum_{i=1}^m q^{i-1} + \min_{1 \le x \le m-1} \{ q^x F_1^*(m-x) + F_1^*(x) \}, \tag{19}$$ which does not depend on n. The boundary condition, $F_1^*(1) = 0$ for all q, also does not depend on n. It is clear from this derivation that (19), which does not depend on n, must define the same integer values $x = x_q(m; q)$ as (17) or (7). This proves the following theorem. [†] It should be pointed out that even this single randomization at the outset can be disregarded in carrying out the procedure R_1 if there is no doubt about the assumption of independent chance variables or if the units are already well-mixed in the process of delivery to the experimenter. [‡] It follows from the above that, for any procedure which "breaks down" the defective set in the above-mentioned manner (including a method of testing units from the defective set one at a time until a defective unit is found), the expected number of good units eliminated between a G(m,n)-situation and the next H-situation is $q/p - mq^m/(1 - q^m)$, and the number of defective units eliminated is always exactly one. Theorem 1: For any G-situation with $n \ge m > 1$ and any q, the size of the next test group, defined implicitly by (7), does not depend on n. This result simplifies the explicit instructions needed to describe the procedure. Thus the two diagrams, Figs. 3 and 4, describe the procedure R_1 for all values of q and for any $N \leq 16$. Equations (15) and (16) can also be substituted in (6), yielding $$H_{1}(n) = 1 + \min_{1 \leq x \leq n} \left\{ q^{x} H_{1}(n-x) + (1-q) \left[F_{1}^{*}(x) + \sum_{i=1}^{x} q^{i-1} H_{1}(n-i) \right] \right\},$$ (20) which, together with (19), gives a pair of "one-dimensional" recursion formulae for defining R_1 instead of the "two-dimensional" set, (6) and (7). Remark 5: It should be pointed that, if one were to ask for a procedure that "breaks down" the defective set in as small an expected number of group tests as possible, then one would write (19) as one of the basic recursion formulae defining the procedure. This shows that R_1 "breaks down" the defective set and returns to an H-situation in a minimal number of tests. # VI. SOME PROPERTIES OF R_1 FOR q CLOSE TO UNITY For any G-situation with m > 1, consider the effect of increasing q. It is easy to see by an induction argument that $G_1(m, n)$ is a strictly decreasing function of q. The function $H_1(n)$ is also strictly decreasing unless the value of q is such that the procedure R_1 tests all units one at a time, in which case $H_1(n)$ is constant. The "tree" remains the same in an interval as q increases, and changes only when it becomes more efficient under R_1 to increase the size of some test group in the "tree"; i.e., if we proceed down the "tree" along any path, the first change encountered, if any, will be an increase in some test group size. It therefore seems reasonable to expect (in both G- and H-situations) that the largest value of x assigned by R_1 (say, x_{\max}) occurs in an interval of q-values ending at unity. This unproved assertion that under R_1 large values of x are associated with large values of x is an immediate consequence of Conjectures 1 and 2 stated in Section 7. For fixed m > 1, let the integers $\alpha(m)$ and $\beta(m)$ $$[\alpha(m) \ge 1, \qquad 0 \le \beta(m) < 2^{\alpha(m)}]$$ be defined by $$m = 2^{\alpha(m)} + \beta(m). \tag{20a}$$ Under the assumption that R_1 assigns x_{max} in an interval of q values ending at unity, it will be shown for any G-situation that in this interval the value of $x = x_{\text{max}}$ is given by $$x_{\text{max}} = \begin{cases} 2^{\alpha(m)-1} & \text{for} & 2^{\alpha(m)} \le m \le 3 \cdot 2^{\alpha(m)-1} \\ m - 2^{\alpha(m)} & \text{for} & 3 \cdot 2^{\alpha(m-1)} \le m < 2^{\alpha(m)+1}. \end{cases}$$ (21) As a corollary it then follows that, under R_1 (G-situation), $$\frac{m}{3} \le x_{\text{max}} \le \frac{m}{2}. \tag{22}$$ Also in the above-mentioned interval we have $$F_1^*(m) = \alpha(m) \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left[\frac{1 - q^{2\beta(m)}}{1 - q} \right]. \tag{23}$$ Proof of (21), (22) and (23): In (19), since $x \le m-1$ and $m-x \le m-1$, we can use the induction hypothesis (23) to obtain $$F_{1}^{*}(m) - \sum_{i=1}^{m} q^{i-1} = \min_{1 \le x \le m-1} \left\{ q^{x} \alpha(m-x) \left(\frac{1-q^{m-x}}{1-q} \right) + q^{m-2\beta(m-x)} \left(\frac{1-q^{2\beta(m-x)}}{1-q} \right) + \alpha(x) \left(\frac{1-q^{x}}{1-q} \right) + q^{x-2\beta(x)} \left(\frac{1-q^{2\beta(x)}}{1-q} \right) \right\}.$$ $$(24)$$ For q close to unity, the right side of (24) is equivalent to minimizing $$Q(x) = [x\alpha(x) + 2\beta(x)] + [(m-x)\alpha(m-x) + 2\beta(m-x)].$$ (25) For the moment, let us utilize the symmetry of Q(x) for $2 \le x \le m-2$ and limit our considerations to $x \le m/2$ and $m \ge 4$. Let [m/2] denote the largest integer less than or equal to m/2. For $x = [m/2], [m/2] - 1, \dots$, we consider Q(x + 1) - Q(x) and distinguish several cases according as a. $$\alpha(x-1) = \alpha(x) = \alpha(m-x) \le \alpha(m-x+1);$$ b. $\alpha(x-1) + 1 = \alpha(x) = \alpha(m-x) \le \alpha(m-x+1);$ c. $\alpha(x-1) = \alpha(x) = \alpha(m-x-1)$ $= \alpha(m-x) - 1 = \alpha(m-x+1) - 1;$ (26) d. $\alpha(x-1) + 1 = \alpha(x) = \alpha(m-x-1)$ $= \alpha(m-x) - 1 = \alpha(m-x+1) - 1;$ e. $$m \ge 2x + 1$$ and $\alpha(x) < \alpha(m - x - 1)$. Using the fact that, for any integer y > 1, $$y[\alpha(y) - \alpha(y-1)] + 2[\beta(y) - \beta(y-1)] = 2, \tag{27}$$ we obtain for all the cases in (26) the result, $$Q(x+1) - Q(x) = \alpha(x) - \alpha(m-x) \le 0.$$ (28) In particular, the value is zero only when (26a) holds and $\alpha(x) = \alpha(m-x)$. Hence, Q(x) is a nonincreasing function of the integer x for $1 \le x \le m/2$ and is constant for $x_0 \le x \le m-x_0$, where x_0 is defined by $$\alpha(x_0-1)+1=\alpha(x_0)=\alpha(m-x_0-1)$$ \mathbf{or} $$\alpha(x_0) = \alpha(m - x_0 - 1) = \alpha(m -
x_0) - 1,$$ whichever gives the maximum. These imply that $$x_0 = 2^{\alpha(x_0)} \le m - x_0 - 1 < 2^{\alpha(x_0)+1} = 2x_0$$ or $$(30)$$ $$x_0 < m - x_0 = 2^{\alpha(x_0) + 1} \le 2x_0.$$ Both lead to the same results; namely, $$\frac{m}{3} \le x_0 < \frac{m}{2} \,. \tag{31}$$ (29) It follows that $$\frac{m}{3} \le x_{\text{max}} \le \frac{2m}{3}$$ and, from (29), for any integer x with $x_0 \le x \le m - x_0$, the values of $\alpha(x)$ and $\alpha(m-x)$ can differ by at most unity. For any x with $x_0 \le x \le m - x_0$ we consider two cases according as $|\alpha(x) - \alpha(m - x)|$ is zero or unity. Let the expression in braces in (24) be denoted $C_1^*(x)$. For integers x with $x_0 \le x \le m - x_0$ the number of terms in $C_1^*(x)$ is constant and the expression $C_1^*(x)$ is to be minimized by making more powers of q larger. Case 1. We can write $$C_1^*(x) = \alpha(x) \left[\frac{1 - q^m}{1 - q} \right] + q^{m - 2\beta(m - x)} \left[\frac{1 - q^{2\beta(m - x)}}{1 - q} \right] + q^{x - 2\beta(x)} \left[\frac{1 - q^{2\beta(x)}}{1 - q} \right],$$ (32) and the problem is to find the x which minimizes $C_1^*(x)$ for large values of q (i.e., to find x_{max}). Since $\alpha(x) = \alpha(m-x)$, $\beta(m-x) - \beta(x) = m-2x$ and, using the fact that $x_{\text{max}} \ge m/3$, we consider only integers $x \ge m/3$ and obtain $$m - x \ge 2(m - 2x) = 2[\beta(m - x) - \beta(x)],$$ (33) and hence $$m - 2\beta(m - x) \ge x - 2\beta(x). \tag{34}$$ It follows that the last term in (32) has lower powers of q than the previous term and that (32) is minimized by setting $\beta(x) = 0$, i.e., by taking x_{max} to be a power of 2. To complete the proof of (21) and (23), we note that $$m = x + (m - x) = 2^{\alpha(x)} + 2^{\alpha(m-x)} + \beta(m - x)$$ = $2^{\alpha(x)+1} + \beta(m - x)$, (35) so that $\alpha(m) = \alpha(x) + 1$, $\beta(m) = \beta(m - x)$ and, since $x = x_{\text{max}}$ is a power of 2, we have $$x_{\text{max}} = 2^{\alpha(m)-1}.$$ (36) Since, by (35), $\beta(m) = \beta(m-x) < \frac{1}{2}2^{\alpha(m)}$, then (36) holds for $2^{\alpha(m)} \le m < 3[2^{\alpha(m)-1}]$. Substituting these values of $\alpha(x)$, $\beta(x)$, $\alpha(m-x)$ and $\beta(m-x)$ into (32) and using (24) gives $$F_1^*(m) = \alpha(m) \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left(\frac{1 - q^{2\beta(m)}}{1 - q} \right), \tag{37}$$ which completes the induction for Case 1. Conversely, if $2^{\alpha(m)} \leq m < 3$ $[2^{\alpha(m)-1}]$ then $x_0 = 2^{\alpha(m)-1}$ and, for any x with $x_0 \leq x \leq m - x_0$, we have $\alpha(x) = \alpha(m-x)$. Hence (32) is minimized for $x_{\max} = x_0 = 2^{\alpha(m)-1}$ by the above argument. $$m = x + (m - x) = 3[2^{\alpha(x)}] + \beta(x),$$ $\alpha(m) = \alpha(x) + 1 \text{ and } \beta(m) = 2^{\alpha(x)} + \beta(x) = x. \text{ It follows that}$ $x = x_{\text{max}} = m - 2^{\alpha(m)}.$ (38) In the latter alternative, it can be concluded that $x = 2^{\alpha(m)} > m/2$. In the latter alternative (or in both alternatives), we now compare the values of $C_1^*(x)$, computed from (24), for the two arguments, $$x_1 = 2^{\alpha(m)} > m/2$$ and $x_2 = m - 2^{\alpha(m)} < m/2$. Using the general result that $\beta(m^*) < m^*/2$ for any positive integer m^* and the implied result that $\alpha(m-2^{\alpha(m)}) = \alpha(m)-1$, it is easy to show (the details are omitted) that $C_1^*(x_2) < C_1^*(x_1)$ for 0 < q < 1. Hence, for either alternative, we obtain the same result, (38). As a corollary, (22) holds. In this case $C_1^*(x)$, after algebraic simplification, is given by $$C_1^*(x) = [\alpha(m) - 1] \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left[\frac{1 - q^{2\beta(m)}}{1 - q} \right], \quad (39)$$ which, using (24), again gives the result (23). The fact that (23) holds for m=2, 3 and 4 is easily shown and the details are omitted. This completes the proof of (23). It is also possible to get expressions for $G_1^*(m, m)$, $G_1^*(m, n)$ and $H_1(n)$ for large values of q using (23) and the fact that, for any positive n and sufficiently large values of q (depending on n), $$H_1(n) = 1 + (1 - q^n)G_1(n, n) = 1 + pG_1^*(n, n).$$ (40) Then, by (18), we obtain for large values of q $$G_1^*(m,m) = m - 1 + qF_1^*(m) + p \sum_{j=2}^m F_1^*(j),$$ (41) $$G_{1}^{*}(m, n) = n - 1 - (n - m - 1)q^{m} + F_{1}^{*}(m) + p(1 - q^{m}) \sum_{j=2}^{n-m-1} F_{1}^{*}(j) + p \sum_{j=n-m}^{n-1} F_{1}^{*}(j),$$ (42) $$H_1(n) = q + np + pF_1^*(n) + p^2 \sum_{j=2}^{n-1} F_1^*(j),$$ (43) where (42) is to be used only for m < n and the summation from a to b is taken to be zero for b < a. Using these and (23), the last equation (i.e., the equation for the last q-interval which ends at unity) can be obtained independently and more simply for $F_1^*(m)$, $G_1^*(m, n)$ and $H_1(n)$. It is clear from the results above that, as q approaches unity, $$\lim H_1(n) = 1 \tag{43a}$$ and that, for q in an interval ending at unity, we have $x_H(n; q) = n$. Here $x_H(n; q)$ is the size of the next test group when the procedure R_1 is used for an H(n)-situation with a priori probability q of a unit being good. In an H-situation the probability that there are no defectives present approaches unity as q approaches unity. In a G-situation with m>1, the probability that there is exactly one defective in the defective set and none in the binomial set approaches unity as q approaches unity. Defining $x_G(m; q)$ in a similar manner, it was shown above that $x_G(m; q) = x_{\max}$ [as given in (21)] in an interval ending at unity, and it follows from (23), (41) and (42) [or (23) and (15)] that, as q approaches unity, $$\lim F_1(m) = \alpha(m) + 2 \frac{\beta(m)}{m}$$ $(m > 1), (43b)$ $\lim G_1(m, n) =$ $$\begin{cases} 1 + \lim F_1(m) = 1 + \alpha(m) + 2\frac{\beta(m)}{m} & (\text{for } n > m) \\ 1 - \frac{1}{m} + \alpha(m) + 2\frac{\beta(m)}{m} & (\text{for } n = m). \end{cases}$$ (43c) It is interesting to note that the result (43c) depends on m but not on n. #### VII. CONJECTURED PROPERTIES OF R1 In this section we shall state some properties which appear to hold for procedure R_1 based on numerical calculations for $N \leq 16$ but have not been proved for all N. 1. For any G-situation with fixed m > 1, if $x_G(m; q)$ denotes the size of the next test group under R_1 , then $x_G(m; q)$ is a nondecreasing step function of q with step size unity. That is, for any pair $q \le q^+ \le 1$, $$x_G(m;q) \le x_G(m;q^+) \tag{44}$$ and, for sufficiently small $\epsilon > 0$, $$x_G(m; q + \epsilon) \le x_G(m; q) + 1. \tag{45}$$ Also for fixed q the value of $x_g(m+1;q)$ is either the same or one greater than $x_g(m;q)$; i. e. $$x_G(m;q) \le x_G(m+1;q) \le x_G(m;q) + 1.$$ (46) If the dividing point between x and x + 1 for any G-situation under R_1 [denoted by $q_G(x; m)$] is shown to exist (and be unique), then the three properties (44), (45) and (46) are equivalent to the two properties that, for any m > 1, $$q_G(x; m) \ge q_G(x; m+1) \text{ for } 1 \le x < x_{\text{max}},$$ (47) $$q_g(x; m) < q_g(x+1; m) \text{ for } 1 \le x < x_{\text{max}} - 1.$$ (48) The assumption used in Section VI that the largest x-values are associated with the largest q-values is a simple consequence of (44). 2. For any *H*-situtation, we can define $x_H(n; q)$ similar to $x_G(m; q)$ and the property corresponding to (44) still holds: that, for $q \le q^+ \le 1$ and all positive integers n, $$x_H(n;q) \le x_H(n;q^+).$$ (49) We can also define $q_H(x; n)$ similar to $q_G(x; m)$ with the understanding that, if x does not appear under $H_1(n)$ in Fig. 3, then the interval for x is assumed to have length zero but the endpoints still exist, and, in fact, $q_H(x-1, n)$ will then be equal to $q_H(x; n)$. Then (49) is equivalent to the property that for all $x \ge 1$ and all positive integers n $$q_H(x; n) \le q_H(x+1; n).$$ (50) - 3. If the experimental situation is such that it is impossible or economically impractical to identify or keep separate the individual units in any test group, then, after each test on a batch of x units, the disposition of the x units must be made on a batch basis. In such a situation it is conjectured that the procedure R_1 is the optimal procedure for all values of q. - 4. There are various patterns existing in Table II B both within a column and across columns, none of which have been proved. For example, if $q = q_a(x; m)$ is the dividing point between x and x + 1, then the first entry in the appropriate column is $1 q^{2x} q^{2x+1}$, and the last entry, for $m = \infty$, is $1 q^x q^{x+1}$. In the first column, the entry can be written as $1 q q^2 + q^m$ for all m. In the second column of Table II B the pattern shown is to replace the highest power of q (say, q^h) by q^{h-2} or by $q^{h+2} + q^{h+3}$, depending on whether m is odd or even. Thus the pattern displays a cycle of 2. In the third column one can similarly find a pattern with a cycle of 3, starting with $m \ge 9$. If a general rule for all these patterns were proved then it might be easier to find the dividing points for higher values of m. The conjecture in this case lies in the fact that these patterns exist and can be mathematically established. VIII. CHARACTER OF R_1 FOR SMALL VALUES OF q For the procedure R_1 it will now be shown that, when $$q < q_0 = \frac{1}{2}(\sqrt{5} - 1) = 0.618$$ (to three decimal places), then, for both G- and H-situations with any positive integers $m \leq n$, the units are all tested one at a time. Of course, if we start with the H-situation and test units one at a time, then a G-situation never arises, but in the induction proof that follows it must first be shown for the G-situation and then for the H-situation. This property that units are tested one at a time was recently shown to hold for the optimal procedure (without specifying what the optimal procedure is or whether it exists). Simple formulae for $H_1(n)$, $G_1(m, n)$ and $F_1(m)$ are obtained for $q \leq q_0$.
Theorem 2: For procedure R_1 with $1 \leq m \leq n$ and $0 \leq q < q_0$, $$x_G(m;q) = x_H(n;q) = 1,$$ (51) $$H_1(n) = n, (52)$$ $$G_1(m,n) = n - \frac{pq^{m-1}}{1 - q^m},$$ (53) $$F_1(m) = \frac{q}{p} + \frac{1 - q^{m-1} - mq^m}{1 - q^m}.$$ (54) [Remarks: The last term in (53) results from the possibility of saving one test if the defective set of size m contains exactly one defective unit that is discovered inferentially by showing that all the other m-1 units are good. It is interesting to note that (54) can be obtained by summing the series $$F_1(m) = \frac{p}{1 - q^m} \left(1 + 2q + 3q^2 + \dots + (m - 1)q^{m-2} + (m - 1)q^{m-1} \right).$$ (55) In the proof below, (54) is shown first and then (52); the proof of these contain the result (51). Then (53) follows from (15), (52) and (54)]. *Proof:* The proof of (54) is by induction. The result holds for m=1, since F(1)=0. Assuming (54) holds for arguments less than m, we can use (19) with (16) to obtain $$F_{1}^{*}(m) = \frac{1 - q^{m}}{p} + \min_{1 \le x \le m-1} \left\{ q^{x} \left[\frac{1 - q^{m-x-1} - (m-x-1)pq^{m-x}}{p^{2}} \right] + \frac{1 - q^{x-1} - (x-1)pq^{x}}{p^{2}} \right\} = \left[\frac{1 - q^{m-1} - (m-1)pq^{m}}{p^{2}} \right] + \frac{1 - q^{m}}{p} + \frac{1}{p} \min_{1 \le x \le m-1} \left\{ x(q^{m} - q^{x}) - pq^{x-1} \right\}.$$ (56) To prove part of (51) it is now shown that the minimum of the expression above in braces [say, $f_0(x)$] is attained at x = 1. Since this is obvious for m = 2, it is now assumed that $m \ge 3$. Then $$f_0(x) - f_0(1) = (x - 1)q^m + 1 - xq^x - pq^{x-1},$$ (57) and it suffices to show that, for $q \leq q_0$ and $x = 2, 3, \dots, m-1$, $$f_1(x) = 1 - xq^x - pq^{x-1} \ge 0.$$ (58) Similarly, it suffices to show that, for $q \leq q_0$ and $x = 3, 4, \dots, m-1$, $$f_2(x) = \frac{f_1(x) - f_1(2)}{q} = 1 + q - xq^{x-1} - pq^{x-2} \ge 0.$$ (59) More generally, if it suffices to show that, for $q \le q_0$ and x = y + 1, $y + 2, \dots, m - 1$, $$f_{y}(x) = 1 + (y - 1)q - xq^{x-y+1} - pq^{x-y} \ge 0,$$ (60) then it also suffices to show that, for $q \le q_0$ and x = y + 2, y + 3, \cdots , m - 1, $$f_{y+1}(x) = \frac{f_y(x) - f_y(y+1)}{q} = 1 + yq - xq^{x-y} - pq^{x-y-1} \ge 0.$$ (61) Setting y = m - 3 in (61), it suffices to show that, for $q \le q_0$ and x = m - 1 (we can now replace x by m - 1), $$1 + (m-4)q - (m-2)q^2 = 1 - q - q^2 + (m-3)pq \ge 0.$$ (62) Since q_0 is the root of $1 - q - q^2$ and $m \ge 3$, the inequality (62) is proved and the minimum of (56) is attained at x = 1. Setting x = 1 in (56) gives the bracketed expression in (56) and proves the result (54). To prove (52), we substitute (54) in (20) to obtain $$H_{1}(n) = 1 + \min_{1 \le x \le n} \left\{ q^{x}(n-x) - pq^{x-1} + p \sum_{i=1}^{x} iq^{i-1} + p \sum_{i=1}^{x} (n-i)q^{i-1} \right\}$$ $$= n + 1 - \max_{1 \le x \le n} \left\{ xq^{x} + pq^{x-1} \right\},$$ (63) where the value of q^{x-1} for q=0 and x=1 is taken to be unity. To prove the rest of (51), it is now shown that the maximum of the expression above in braces [say, h(x)] is attained at x = 1 for $q \le q_0$. Then, for $q \leq q_0$ and $x \geq 1$, $$h(x) - h(x+1) = xpq^{x} - 2q^{x} + q^{x-1}$$ = $q^{x-1}[1 - q - q^{2} + (x-1)pq] \ge 0.$ (64) Clearly, the maximum of h(x) is attained at x = 1 not only for $0 < q \le q_0$ but also for q = 0. Setting x = 1 in (63) gives $H_1(n) = n$, and this completes the proof of (52). The fact that the minimum is attained only at x = 1 for $q < q_0$ in both (56) and (63) proves (51) and shows that, under R_1 with $q < q_0$, units are tested one at a time. ### IX. CONSTRUCTION OF TABLES FOR R_1 Figs. 3 and 4 describe the procedure R_1 for n=2(1)16 and $m \leq n$ in the form of two diagrams that are easy to use in a practical situation. Tables III A and III B give the polynomials, the roots of which are the dividing points in Figs. 3 and 4. Table IV A gives the polynomial equation for $F_1^*(m)$ for m=2(1)16. Tables IV B and IV C give the polynomial equations for $H_1(n)$ and $G_1^*(m,n)$, respectively, for n=2(1)12 and $2 \leq m \leq n$. These can be obtained from (6), (7) and (8), or from (18), (19) and (20) and the boundary conditions, $H_1(0) = F_1^*(1) = 0$. For the sake of brevity, Table IV C has been reduced so that it gives the results only for $q \geq 0.85$, and only for pairs m,n which can arise starting from an H(n)-situation with $n \leq 12$. Having computed $H_1(n)$ and $F_1^*(m)$ for $2 \le m \le n \le 12$, we can make the procedure R_1 explicit for $12 \le n \le 16$ by a different method, which will now be explained. Let $H_1(n \mid x)$ denote the value of $H_1(n)$ if (i.e., for those q-values for which) the next sample size is x; let $F_1^*(m \mid x)$ be defined similarly. Then (20) can be written as $$H_{1}(n \mid x) - H_{1}(n-1) = 1 + pF_{1}^{*}(x)$$ $$- \sum_{i=1}^{x-1} q^{i}[H_{1}(n-i) - H_{1}(n-i-1)].$$ (65) Writing a similar equation for $H_1(n \mid y)$ for y > x and subtracting gives $$H_{1}(n \mid x) - H_{1}(n \mid y) = -p[F_{1}^{*}(y) - F_{1}^{*}(x)] + \sum_{j=x}^{y-1} q^{j}[H_{1}(n-j) - H_{1}(n-j-1)].$$ (66) If $4 \le x < y \le 16$ and $12 < n \le 16$, then the right member of (66) involves *H*-function arguments only up to 12. In particular, for y = x + 1 we set the right member of (66) equal to zero and obtain a poly- nomial whose root (between zero and one) is the dividing point, $q_H(x, n)$, between x and x + 1. Table II A shows that, for n > 12 and x < 4, the pattern for the dividing points is well stabilized; for example, the value of $q_H(1, n) = 0.618$ (to three decimal places) is shown to hold for all n in Section VIII. By considering various pairs x, y (most often of the type x, x + 1) in (66) it is possible to determine the procedure R_1 for the H(n)-situation for $12 < n \le 16$, without explicitly computing the formula for $H_1(n)$. Similarly, we can do the same for the G-situation by using $$F_1^*(m \mid x) - F_1^*(m \mid y) = F_1^*(y) - F_1^*(x) + q^y F_1^*(m - y) - q^x F_1^*(m - x),$$ (67) but in this case (according to Section VI) we need only consider values y = x + 1 up to and including m/2. Table II A gives a numerical comparison for N=4, 8 and 12 of R_1 and several other procedures, two of which are based on the work of Dorfman¹ and Sterrett; the others are defined in the Appendices to this paper. Table II B gives a brief numerical comparison of $H_1(n)$ and $H_3(n)$ (corresponding to procedure R_3 defined in Appendix B) for large values of n [viz., n=10(10)100] and q=0.90, 0.95 and 0.99; these entries were computed on the IBM-704. Tables V A, V B and V C give the numerical values of $H_1(n)$ and $G_1(m, n)$ as well as the values of $x_0(m; q)$ and $x_H(n; q)$ for q = 0.90, 0.95 0.99 for $2 \le n \le 100$, and for appropriate values of m; these entries were computed on the IBM-704. For q = 0.90 the value of x is always at most 9 and hence, if we start with an H-situation, there is no need to consider values of m > 9; similarly, for q = 0.95 we disregard values of m > 19. For q = 0.99 we should consider all values of m up to and including m = 100 but many of these were omitted for the sake of brevity. It is interesting to note that $G_1(m, n)$ is strictly monotonic in the second argument (and hence also in the argument n - m) for fixed m, but it is curious and difficult to explain why it is not monotonic in the first argument for fixed n. ### x. a suggested procedure for the case of unknown q It is reasonable to expect that a knowledge of good procedures for the case of known q will suggest good procedures for the case of unknown q. From this point of view we consider modifications of the basic procedure R_1 that make it adaptable when q is unknown. It is suggested that after each test we form a new estimate of q and that the procedure R_1 be used with the estimated value in place of the true value. At the outset we can start with an estimate based on past experience or we can start by testing one unit at a time. A thorough investigation of the relative merit of this procedure has not been carried out. Some discussion on the maximum likelihood method of estimating q is given below. Let d and s denote the number of units proven defective and proven good, respectively, so that at any stage of experimentation we have $$N = d + s + m + (n - m) = d + s + n, (68)$$ where N is the total number of units at the outset, m is the size of the defective set (which is known to contain at least one defective) and n-m is the size of the binomial set. The likelihood L of the observed result (68) is given by $$L = {\binom{N-n}{d}} p^d q^{N-n-d} (1-q^m). {(69)}$$ Then it is easily shown that $$\frac{d}{dq}(\log L) = -\frac{d}{dp}(\log L) = -\frac{1}{pq} \left[d - (N-n)p + \frac{mpq^m}{1-q^m} \right].$$ (70) Setting the latter equal to zero, we find that, for $m \neq 0$, the maximum likelihood estimate \hat{q} of q is the root of $$(N - n + m)(1 - \hat{q}^m)(1 - \hat{q}) - d(1 - \hat{q}^m) - m(1 - \hat{q}) = 0 \quad (71)$$ or, equivalently, $$s - d \sum_{i=1}^{m} \hat{q}^{i} - (m+s)\hat{q}^{m} = 0$$ (72) and, for m=0, we have $\hat{q}=s/(d+s)$, the usual estimate. For s=0 and $m+d\geq 1$, we get $\hat{q}=0$ and, for s=1, it is easily seen, using the Descartes Rule of Signs, that (72) has exactly one root \hat{q} (allowing multiplicities) in the unit interval and hence \hat{q} is uniquely defined. The remaining case, s=m=d=0, can only occur at the outset when there is no observations on which to base an estimate. It is interesting to note that the same result (71) or (72) can also be obtained by computing the conditional expected proportion of defectives among the N units, given the observed s, d, m and n, and setting it equal to 1-q. The equation thus obtained is the same as (71), and its root is \hat{q} . The above method of getting an estimate is being suggested in connection with procedure R_1 , but it can also be used in connection with the procedures R_2 and R_4
(see Appendices) without any change. For procedures R_3 and R_5 we can have several defective sets and several binomial sets at any one time, and (71) then becomes $$d + (1 - \hat{q}) \left[\sum_{i=1}^{I} \frac{m_i}{1 - \hat{q}^{m_i}} - \left(N - \sum_{j=1}^{J} n_j' \right) \right] = 0, \quad (73)$$ where m_1 , m_2 , \cdots , m_I are the sizes of the defective sets, n_1' , n_2' , \cdots , n_{J}' are the sizes of the binomial sets, and $$N = d + s + \sum_{i=1}^{I} m_i + \sum_{j=1}^{J} n_j'.$$ (74) If the number of tests carried out is large (and hence N-n must be large), the maximum likelihood estimate is approximately normally distributed with expectation equal to the true value of q and variance given by $$\sigma^2(\hat{q}) \cong \left[E \left(\frac{d \log L}{dq} \right)^2 \right]^{-1},$$ (75) where m and n in (69) are to be regarded as chance variables. Taking expectation first for fixed m and n and then with respect to m and n, gives $$\sigma^{2}(\hat{q}) \cong \left[E\left(\frac{N-n}{pq}\right) + E\left(\frac{mq^{m-1}}{1-q^{m}}\right)^{2} \right]^{-1}. \tag{76}$$ Since $mpq^{m-1} < 1 - q^m$ for all m and all q < 1, and since the expectation of a square is nonnegative, for asymptotically large N - n $$\frac{p^2q}{p+q[N-E(n)]} \le \sigma^2(\hat{q}) \le \frac{pq}{N-E(n)}. \tag{77}$$ In particular, if we continue to test until a fixed proportion $\theta > 0$ of the N units are determined to be good or bad (i.e., until $n/N = 1 - \theta$, approximately) then, for asymptotically large N (so that $N\theta$ is also large), we obtain $$\frac{p^2q}{N\theta p + q} \le \sigma^2(\hat{q}) \le \frac{pq}{N\theta}. \tag{78}$$ For $\theta = 1$ and large N, the two bounds are essentially equal and the common value is the same as for ordinary binomial sampling. In general, at any stage of experimentation it appears to be conservative to estimate $\sigma^2(\hat{q})$ in the same way as for ordinary binomial sampling based on N - n observations, using the value of n that is actually realized at that time. In regard to the procedure, if the size of the very first test group is based on past experience, the question arises as to whether this past experience should also enter into the second, third and other early estimates of q. If it does not enter, then in the early tests we may find sudden jumps from testing very small numbers to testing very large numbers and *vice versa*, both of which are undesirable. This makes it useful to find a method to continue to use past experience until the estimate of q (without using past experience) is stabilized. In the absence of past experience, this same feature may make it desirable to test several units one at a time before starting to use any group-testing procedure. ### XI. SOME GENERALIZATIONS OF R_1 Returning to the case of known probabilities q, we consider some generalizations of the same basic problem and, in each case, the appropriate generalization of the procedure R_1 . The appropriate formulae will be given, but only a few simple computations will be carried out. 1. Two (or more) different kinds of units with known probabilities (say, $q_1 \leq q_2$) of a good unit are present and both can be put into the same test group. Let $H_{11}(n_1, n_2)$ denote the expected number of tests required under the proposed procedure R_{11} if there are n_i units of type i with $q = q_i (i = 1, 2)$ and the binomial chance variables associated with the units are mutually independent. Let $G_{11}(m_1, m_2; n_1, n_2)$ denote the expected number of tests required under R_{11} if there is a defective set containing m_1 units of type 1 and m_2 units of type 2 (known to contain at least one defective among the $m_1 + m_2$ units) and a binomial set containing $n_1 - m_1 \ge 0$ of type 1 and $n_2 - m_2 \ge 0$ of type 2. The recursion formulae corresponding to (6), (7) and (8) are $$H_{11}(n_1, n_2) = 1 + \min \{ q_1^x q_2^y H_{11}(n_1 - x, n_2 - y) + (1 - q_1^x q_2^y) G_{11}(x, y; n_1, n_2) \},$$ (79) where the minimum is over pairs (x, y) with $0 \le x \le n_1$, $0 \le y \le n_2$ and $x + y \ge 1$, and $$G_{11}(m_1, m_2; n_1, n_2) = 1 + \min \left\{ \left(\frac{q_1^x q_2^y - q_1^{m_1} q_2^{m_2}}{1 - q_1^{m_1} q_2^{m_2}} \right) + \left(\frac{1 - q_1^x q_2^y}{1 - q_1^{m_1} q_2^{m_2}} \right) G_{11}(x, y; n_1, n_2) \right\},$$ $$(80)$$ where the minimum is over pairs (x, y) with $0 \le x \le m_1$, $0 \le y \le m_2$ and $1 \le x + y \le m_1 + m_2 - 1$. The boundary conditions state that, for all $q_1 \le q_2$, $$G_{11}(1, 0; n_1, n_2) = H_{11}(n_1 - 1, n_2)$$ for all $n_1 \ge 1, n_2 \ge 0$, (81) $$G_{11}(0, 1; n_1, n_2) = H_{11}(n_1, n_2 - 1)$$ for all $n_1 \ge 0, n_2 \ge 1$, (82) $$G_{11}(m_1, 0; n_1, 0) = G_1(m_1, n_1; q_1);$$ $$G_{11}(0, m_2; 0, n_2) = G_1(m_2, n_2; q_2),$$ (83) $$H_{11}(n_1, 0) = H_1(n_1; q_1); \qquad H_{11}(0, n_2) = H_1(n_2; q_2),$$ (84) where the right-hand member of each equality in (83) and (84) refers to the basic procedure R_1 defined by (6), (7) and (8). It is clear that $H_{11}(1, 0) = H_{11}(0, 1) = 1$ and $H_{11}(0, 0) = 0$. It follows from (80) that, for $q_1 \le q_2$, $$G_{11}(1,1;1,1) = \frac{2 - q_2 - q_1 q_2}{1 - q_1 q_2}, \tag{85}$$ and the rule is to test first the unit of type 2. Using this result, we can compute $$H_{11}(1, 1) = 1 + \min(1, 2 - q_2 - q_1 q_2),$$ (86) and the rule is to test either unit separately if $1-q_2-q_1q_2>0$ and to test both simultaneously if $1-q_2-q_1q_2\leq 0$. The latter inequality is a direct generalization of the inequality $1-q-q^2\leq 0$, which played a prominent role in the basic procedure R_1 . We state (without proof) that, if $q_1\leq q_2<\frac{1}{2}\left(\sqrt{5}-1\right)=0.618$ (to three decimals), all testing is carried out one unit at a time. 2. Two (or more) experimenters may be working on a single set of N units by carrying out simultaneous, parallel group-tests and cooperating in such a way as to minimize the time required to accomplish the task. It is clear that no saving can be effected in the expected total number of tests by having more than one experimenter. However, if the simultaneous tests are regarded as a stage, each of which lasts the same amount of time, then minimizing the expected number of stages is equivalent to minimizing the expected time required to accomplish the task. These remarks indicate that there may be some conflict in these two aims of reducing the expected time and the expected total number of tests. For this reason, it should be stated that our primary emphasis in this problem is to reduce the expected time. Let m and m' denote the sizes of defective sets and let $n-(m+m')\geq 0$ denote the size of the binomial set. Let $H_{12}(n)$ denote the expected number of stages required for m=m'=0 by the proposed procedure R_{12} . Let $G_{12}(m,m',n)$ denote the expected number of stages required by R_{12} if we have two defective sets of size m, m' and one binomial set of size $m-m-m'\geq 0$. Let $G_{12}(m,0,n)$ and $G_{12}(0,m,n)$ be denoted by $G_{12}(m,n)$, so that $G_{12}(0,n)=H_{12}(n)$. The recursion formulae for R_{12} are $$H_{12}(n) = 1 + \min_{\substack{x,y \ge 1 \\ x+y \le n}} [q^{x+y}H_{12}(n-x-y) + q^{x}(1-q^{y})G_{12}(y,n-x)$$ $$+ q^{y}(1-q^{x})G_{12}(x,n-y) + (1-q^{x})(1-q^{y}) G_{12}(x,y,n)],$$ $$G_{12}(m,m',n) = 1 + \min_{\substack{1 \le x \le m-1 \\ 1 \le y \le m'-1}} \left\{ \left(\frac{q^{x}-q^{y}}{1-q^{m}} \right) \left(\frac{q^{y}-q^{m'}}{1-q^{m'}} \right) \right.$$ $$\cdot G_{12}(m-x,m'-y,n-x-y)$$ $$+ \left(\frac{q^{x}-q^{m}}{1-q^{m}} \right) \left(\frac{1-q^{y}}{1-q^{m'}} \right) G_{12}(m-x,y,n-x)$$ $$+ \left(\frac{1-q^{x}}{1-q^{m}} \right) \left(\frac{q^{y}-q^{m'}}{1-q^{m'}} \right) G_{12}(x,m'-y,n-y)$$ $$+ \left(\frac{1-q^{x}}{1-q^{m}} \right) \left(\frac{1-q^{y}}{1-q^{m'}} \right) G_{12}(x,y,n) \right\}$$ $$(87)$$ and $$G_{12}(m,n) = 1 + \min \left\{ \min_{\substack{x, y \ge 1 \\ x+y \le m}} G_{12}(x,y), \min_{\substack{1 \le x \le m-1 \\ 1 \le y \le n-m}} G_{12}''(x,y) \right\}, \quad (89)$$ where $G_{12}'(x, y)$ and $G_{12}''(x, y)$ are defined by $$G_{12}'(x,y) = \left(\frac{q^{x+y} - q^m}{1 - q^m}\right) G_{12}(m - x - y, n - x - y)$$ $$+ \frac{q^x (1 - q^y)}{1 - q^m} G_{12}(y, n - x)$$ $$+ \frac{q^y (1 - q^x)}{1 - q^m} G_{12}(x, n - y)$$ $$+ \frac{(1 - q^x)(1 - q^y)}{1 - q^m} G_{12}(x, y, n)$$ (90) and $$G_{12}''(x, y) = \frac{q^{y}(q^{x} - q^{m})}{1 - q^{m}} G_{12}(m - x, n - x - y)$$ $$+ \frac{q^{y}(1 - q^{x})}{1 - q^{m}} G_{12}(x, n - y)$$ $$+ \frac{(1 - q^{y})(q^{x} - q^{m})}{1 - q^{m}} G_{12}(m - x, y, n - x)$$ $$+ \frac{(1 - q^{y})(1 - q^{x})}{1 - q^{m}} G_{12}(x, y, n).$$ (91) The boundary conditions state that, for all q, $$G_{12}(m, 1, n) = G_{12}(1, m, n) = G_{12}(m, n - 1)$$ for $0 \le m \le n - 1$. (92) $$G_{12}(1,n) = H_{12}(n-1) \text{ for } n \ge 1,$$ (93) $$H_{12}(0) = 0. (94)$$ It is easy to see that $H_{12}(1) = G_{12}(2, 2) = H_{12}(2) = 1$ and $G_{12}(3, 4) = G_{12}(4, 4) = 2$ for all q. Remark 6: The extra complication in (89) insures that, for $n \ge 2$, one experimenter will not be idle while another is carrying out a test. Remark 7: It is conjectured that in (89) the possibility x + y = m can be omitted, with the exception of the single case m = n = 2 (and m' = 0). Remark 8: It is also conjectured that G_{12}'' , which is needed for the cases n > m = 2, can be disregarded when m > 2; i.e., that G_{12}' always gives a smaller minimum for m > 2. Remark 9: It is conjectured that, at any stage in which $m = m' \ge 2$ or in which we have both m = m' = 0 and n even, the two test group sizes, x and y, will be equal. If either m or m' = 0, it is conjectured that the two test group sizes will differ by at most unity. Further calculations yield $G_{12}(2,3) = rac{2+q}{1+q}$ for all q $Test Group Sizes <math> rac{x}{y}$ $rac{y}{1D \ 1B}$, (95) $G_{12}(3,3) = rac{2+2q+q^2}{1+q+q^2}$ for all q $1D \ 1D$, (96) $$G_{12}(2,4) = \begin{cases} 2 & \text{for } 0 \le q < 0.682 & 1D \
1B, \\ \frac{3+q-q^3}{1+q} & \text{for } 0.682 \le q \le 1.000 \ 1D \ 2B, \end{cases}$$ (97) $$G_{12}(2, 2, 4) = \frac{2 + 4q + q^2}{(1 + q)^2}$$ for all q 1D 1D', (98) $$H_{12}(4) = \frac{1D \cdot 1D}{(1+q)^2}, \text{ for an } q \text{ 1D } 1D, (98)$$ $$H_{12}(4) = \begin{cases} 2 & \text{for } 0 \le q < 0.691 & 1B \cdot 1B, \\ 3 - 3q^2 + 2q^3 - q^4 & \text{for } 0.691 \le q \le 1.000 \cdot 2B \cdot 2B, \end{cases}$$ $$(99)$$ where 1B indicates that 1 unit is taken from the binomial set to form one of the two test-groups and D, D' denote different defective sets. It is interesting to compare the above result for $H_{12}(4)$ for $q \ge 0.691$ with the procedure R_{12}^* of giving each experimenter two units to analyze independently of each other and without any mutual cooperation. Let T denote the total number of tests and S denote the number of stages required. Then, for $q \ge 0.691$ (letting T_1 , T_2 denote the number of tests in two independent experiments with n = 2 under R_1), it is easily shown that $$E\{S \mid R_{12}^*\} = E\{\max(T_1, T_2) \mid R_1\} = 3 - q^2 - q^4,$$ (100) $$E\{T \mid R_{12}\} = 2H_{12}(4) - 2q - 2q^2 + 2q^3 - 2q^4.$$ (101) Hence we find that, for $q \ge 0.691$, $$E\{S \mid R_{12}\} - E\{S \mid R_{12}^*\}$$ $$= H_{12}(4) - (3 - q^2 - q^4) = -2q^2(1 - q) \le 0,$$ (102) $$E\{T \mid R_{12}\} - E\{T \mid R_{12}^*\}$$ $$= 6 - 2q - 2q^2 + 2q^3 - 2q^4 - 2H_1(2) = 2q^3(1 - q) \ge 0,$$ (103) which illustrates the fact that R_{12} effects an improvement in the expected number of stages at the expense of a slight increase in the expected total number of tests. 3. In this generalization we apply the restriction that any one unit can be included in at most K group-tests. This is particularly appropriate in the blood testing application, where a single blood sample can be used in a small number K of blood tests and the patient does not want to be annoyed by having more than one blood sample taken. In this problem there is again only one defective set but it is now denoted by a vector $\mathbf{m} = \{m_0, m_1, \dots, m_{K-1}\}$, where $m_j \ge 0$ is the num- ber of units that have already been included in j group-tests. Similarly, the union of the binomial and defective sets is denoted by $$\mathbf{n} = \{n_0, n_1, \cdots, n_{K-1}\}\$$ and the binomial set alone is the difference $\mathbf{n} - \mathbf{m}$. The symbol for the size of the next test group will be $\mathbf{x} = \{x_0, x_1, \cdots, x_{K-1}\}$, where x_j is the number of units taken from n_j in an H-situation (from m_j in a G-situation). The symbols x, m, n will be used for the sum of the components in the vectors $\mathbf{x}, \mathbf{m}, \mathbf{n}$, respectively. Let $G_{13}^K(\mathbf{m}; \mathbf{n})$ denote the expected number of group-tests required to remove all defective units if the defective set is \mathbf{m} and the binomial set is $\mathbf{n} - \mathbf{m}$. If m = 0, we denote this expectation by $H_{13}^K(\mathbf{n})$. For the special case in which \mathbf{n} has all except one component (say, n_j) equal to zero, we will drop the zeros and write $H_{13}^K(n_j)$, with a scalar argument. The recursion formulae for this procedure R_{13}^K are given by $$H_{13}^{K}(\mathbf{m}) = 1 + \min_{\substack{\text{all } \mathbf{x} \text{ with} \\ 1 \leq x \leq n \text{ and} \\ 0 \leq x_{1} \leq n_{1} \\ (j=0,1,\dots,K-1)}} \{q^{x} H_{13}^{K}(\mathbf{n} - \mathbf{x}) + (1-q^{x}) G_{13}^{K}(\mathbf{x}; \mathbf{n})\},$$ (104) $$G_{13}^{K}(\mathbf{m}; \mathbf{n}) = 1 + \min_{\substack{\text{all } \mathbf{x} \text{ with} \\ 1 \leq x \leq m-1 \\ 0 \leq x_{i} \leq m_{i} \\ (j = 0, \dots, K-1)}} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{13}^{K}(\mathbf{m} - \mathbf{x}; \mathbf{n} - \mathbf{x}) \right.$$ $$(105)$$ $$+\left(\frac{1-q^x}{1-q^m}\right)G_{13}^{K}(\mathbf{x}; \mathbf{n}),$$ where, as usual, m > 1. The boundary conditions state that, for all q, we have $H_{13}^{K}(\mathbf{O}) = 0$ and, for m = 1, we can write $G_{13}^{K}(\mathbf{m}; \mathbf{n}) = H_{13}^{K}(\mathbf{n} - \mathbf{m})$. It is easy to see that $H_{13}^{K}(\mathbf{n}) = 1$ for n = 1 and all q. Some further computations for n = 2 and n = 3 give, for any K: $$\frac{q - \text{interval}}{H_{13}^{K}(2_{j})} = \frac{y - \text{value}}{H_{13}^{K}(2_{j})} = \begin{cases} H_{1}(2) & 0 \leq q \leq 1.000 & (\sec R_{1}) & 0 \leq j \leq K - 2 & (106) \\ 2 & 0 \leq q \leq 1.000 & (0, \dots, 0, 0, 1) & j = K - 1 \end{cases}$$ $$H_{13}^{K}(3_{j}) = \begin{cases} H_{1}(3) & 0 \leq q \leq 1.000 & (\sec R_{1}) & 0 \leq j \leq K - 3 \\ 3 & 0 \leq q \leq 0.618 & (0, \dots, 0, 1, 0) \\ 4 - q - q^{2} & 0.618 \leq q \leq 0.707 & (0, \dots, 0, 1, 0) \\ 4 - q^{2} - 2q^{3} & 0.707 \leq q \leq 1.000 & (0, \dots, 0, 3, 0) \\ 3 & 0 \leq q \leq 1.000 & (0, \dots, 0, 0, 1) & j = K - 1. \end{cases}$$ $$(107)$$ If K = 1, all units are tested individually. If K = 2, then, after a set of size m > 1 is shown to be defective, all the units in that set are tested individually; this is the procedure recommended by Dorfman.¹ A more thorough investigation for particular values of $K \ge 3$ will be given in a separate paper. Under R_1 for any H(n)-situation the maximum number of additional tests $M^*(n)$ in which any particular unit will be included before experimentation is concluded (allowing a random reordering of units in the binomial and defective sets after every test) occurs when q is close to unity and the sample has all units defective. It is easily seen that, under R_1 , $$M^*(n) = M(n) - (n-1) = (n+1)\alpha(n) + 3 - 2^{1+\alpha(n)}, (108)$$ where $\alpha(n)$ and M(n) are defined by (10) and (11). Under R_{13}^{K} , let $j(\mathbf{n})$ denote the largest subscript associated with a nonzero component of \mathbf{n} . For $K \geq M^*(n) + j(\mathbf{n})$, the restriction that no unit should be included in more than K group-tests does not affect the procedure R_1 , and hence we have for procedure R_{13}^{K} $$H_{13}^{\kappa}(\mathbf{n}) = H_1(n) \text{ for } 0 \le j(\mathbf{n}) \le K - M^*(n),$$ (109) which generalizes some results in (106) and (107) and shows that R_{13}^{K} is a generalization of R_1 . Since units in the last component of the defective or the binomial sets cannot be tested in groups, we can remove at any time for individual testing all units in the last component of the binomial set and all but one of the units in the last component of the defective set without affecting the expected number of tests under $R_{13}^{\ \ \ \ \ \ \ \ }$. It is easy to show that this leads to the two reduction formulae $$H_{13}^{K}(\mathbf{n}) = n_{K-1} + H_{13}^{K}(n_{0}, \dots, n_{K-2}, 0),$$ $$G_{13}^{K}(\mathbf{m}; \mathbf{n}) = n_{K-1} + \left(\frac{1 - q^{-1+m_{K-1}}}{1 - q^{m}}\right) H_{13}^{K}(n_{0}, \dots, n_{K-2}, 0)$$ $$+ q^{-1+m_{K-1}} \left(\frac{1 - q^{+1-m_{K-1}}}{1 - q^{m}}\right)$$ $$\cdot [G_{13}^{K}(m_{0}, \dots, m_{K-2}, 1; n_{0}, \dots n_{K-2}, 0) - 1],$$ $$(110)$$ which are useful in computations and for checking. It is conjectured that, for m = 0 or m > 1, the procedure R_{13}^{κ} can always be carried out by putting in the next test-group only units that have been included in the same number of group tests (i.e., units in the same subset); the only possible exception to this is that, in any H-situa- tion, if q is sufficiently close to unity, then R_{13}^{κ} will call for a test of all the remaining units; i.e., $\mathbf{x} = \mathbf{n}$. Under the above conjecture, it is possible to carry out a simplification as in Section V and show, in direct analogy with (19), that $$F_{13}^{*K}(\mathbf{m}) = \sum_{i=1}^{m} q^{i-1} + \min_{1 \le x \le m_i - 1} \{ q^x F_{13}^{*K}(\mathbf{m} - \mathbf{x}) + F_{13}^{*K}(\mathbf{x}) \}, \quad (112)$$ where **x** has x_i in the (i + 1)th position and zeros elsewhere (so that $x = x_i$), and i is defined as the subscript associated with the first non-zero component of **m**. The function $F_{13}{}^{K}(\mathbf{m})$ is defined as the expected number of group-tests required to reach the next H-situation, and then we define, as in Section V, $$F_{13}^{\bullet K}(\mathbf{m}) = \left(\frac{1-q^m}{1-q}\right) F_{13}^{K}(\mathbf{m}).$$ (113) Hence under the above conjecture it is again seen that, for any G-situation with m > 1, the next test-group \mathbf{x} depends on \mathbf{m} but is independent of $\mathbf{n} - \mathbf{m}$. It appears to be true (but has not been rigorously proved) that, in this case also, for $q < q_0 = 0.618$ (to three decimal places) all units are tested one at a time. # XII. AN ASYMPTOTIC FORMULA FOR $H_1(n)$ In this section we shall use results obtained by considering an information procedure R_2 , which is defined in Appendix A. The procedure R_2 appears to be a best test in the sense that it maximizes the information in the very next test but does not take into account the exact finite number of units present and the possible ways of distributing them among subsequent tests. It is therefore intuitively reasonable to expect that the procedure R_1 tends toward R_2 in the H-situation as $n \to \infty$ and also in the G-situation as $m \to \infty$. A more rigorous proof of this assertion would be desirable. It should also be pointed out that there is considerable numerical evidence in Tables IIIA and IIIB of the above assertion, which explains the reason for putting opposite $m = \infty$ and $n = \infty$ in these tables the polynomial equations $$1 - q^x - q^{x+1} = 0$$ $(x = 1, 2, \dots), (114)$ which are derived for procedure R_2 in Appendix A. We shall now derive an asymptotic formula for $H_1(n)$ for large n based on the assumption that the above reasoning is correct. For large values of n and fixed q, the expected number of tests required under procedure R_1 is approximately given by $$H_1(n) \cong n \begin{pmatrix} \text{expected number of tests needed to reach} \\ \frac{\text{the next } H\text{-situation under }
R_1}{\text{expected number of units analyzed between}} \end{pmatrix}.$$ (115) The ratio of n to the denominator in (115) is the approximate number of H-situations reached if we start with n units, and this is clearly to be multiplied by the expected number of tests required to proceed from one H-situation to the next. Let T and U denote the chance variables in the numerator and demoninator, respectively, of (115). For a fixed q we find from the limiting procedure R_2 that, for an H(n)-situation with n large, we will, under R_1 , "almost always" be using the same test-group size x, where x is that positive integer for which q^x is closer to one-half than is either q^{x-1} or q^{x+1} . Then, for this fixed integer x, which depends on the given q, we have $$E\{U \mid R_1\} = xq^x + p \sum_{j=1}^x jq^{j-1} = \frac{1-q^x}{1-q},$$ (116) which is obtained by assuming a single randomization of the order of the units at the outset and considering the different possible positions of the first defective. Since $F_1(x)$ is the expected number of tests required under R_1 to get from a G(m, n)-situation to the next H(n)-situation, we have $$E\{T \mid R_1\} = q^x + (1 - q^x)[1 + F_1(x)] = 1 + pF_1^*(x), \quad (117)$$ where $F_1^*(x)$ is tabulated in Table IV A for x = 2(1)16 and all values of q. Hence, we obtain from (115), (116) and (117) $$H_1(n) \cong \frac{np[1 + pF_1^*(x)]}{1 - q^x},$$ (118) where x is defined above in terms of q. This is the main result of this section; we now consider some special cases. For values of q close to unity we can use (23) to replace $F_1^*(x)$ by an explicit expression. If we also replace $(1 - q^z)/(1 - q)$ by z for q close to unity, we obtain for q close to unity $$H_1(n) \cong \frac{n}{r} \{1 + p[x\alpha(x) + 2\beta(x)]\},$$ (119) where $\alpha(x)$ and $\beta(x)$ are defined in (20a). If q approaches unity, x be- comes large; if $\alpha(x) \geq 2$, then $2\beta(x) < 2^{\alpha(x)+1} \leq x\alpha(x)$ and, since $\alpha(x) \to \infty$, it follows that we can disregard $2\beta(x)$ in (119). For q close to unity and x large, the dividing points get closer and closer, and we obtain $$0 \cong 1 - q^x - q^{x+1} \cong 1 - 2q^x, \tag{120}$$ so that $x \cong \left\lceil \log_2\left(\frac{1}{q}\right) \right\rceil^{-1}$. Also, from the definition of $\alpha(x)$, $$2^{\alpha(x)} \le x \le 2 \cdot 2^{\alpha(x)},\tag{121}$$ so that $$\log_2\left(\frac{x}{2}\right) \le \alpha(x) \le \log_2(x). \tag{122}$$ Using the upper value in (122) gives $$H_1(n) \cong n \log_2\left(\frac{1}{q}\right) + np \log_2\left[\log_2\left(\frac{1}{q}\right)\right]^{-1}.$$ (123) It can be shown that the first term in (123) goes to zero faster than the second as q approaches unity, and hence we drop the first term and rewrite the second in the form $$H_1(n) \cong -np \log_2 p. \tag{124}$$ In particular, if p = 1/n so that q = 1 - (1/n), we obtain from (124) $$H_1(n) \cong \log_2 n. \tag{125}$$ In this case, we also have x = n = 1/p, and a better estimate is obtained by setting $q^x = e^{-1}$ in (23) and (118). Assuming that (23) is either equal to $F_1^*(x)$ or is a good approximation to it, we obtain $$H_1(n) \cong \frac{n}{x} \left[\frac{1 + pF_1^*(x)}{1 - e^{-1}} \right] = \frac{n}{x} \left[1 + \alpha(x) + \frac{e^{2\beta(x)/x}}{e - 1} \right].$$ (126) For the case n = N = 100 and q = 0.99, we obtain 8.32 as the exact value from Table V C; $\log_2 100 = 6.64$, from (125); 7.79, from (119); and 8.20 from (126). A rough lower bound on H(n) for any procedure can be easily obtained from information theory. The total information in n units is $$-n(p\log_2 p + q\log_2 q),$$ and this is to be equated with the product of the expected number of tests H(n) and the average information obtained per group-test. Since the maximum information per group-test (in bits) is unity, we obtain for any procedure $$H(n) \ge -n(p \log_2 p + q \log_2 q).$$ (127) For n = N = 100 and q = 0.99, this gives 8.09 as a lower bound. Since a result better than 8.09 is impossible, the smallness of the difference 8.32 - 8.09 = 0.23 is an indication of how far R_1 can possibly be from an optimal solution. However, it should not be inferred that the lower bound (127) can be reached for any value of q (except possibly for $p = q = \frac{1}{2}$) by any procedure. In fact, for $q < \frac{1}{2}$ and q decreasing towards zero, it has been shown that an optimal procedure must have H(n) = n, whereas the right member of (127) approaches zero. It has been pointed out to the authors by S. W. Roberts that a lower bound for G(m, n) for any procedure is easily shown to be $$G(m,n) \geq \sum_{i=1}^{m} \frac{pq^{i-1}}{1-q^{m}} \left[\log_{2} \left(\frac{pq^{i-1}}{1-q^{m}} \right) + (n-i)(p \log_{2} p + q \log_{2} q) \right]$$ $$= \frac{1}{1-q^{m}} \left[q^{m} \log_{2} q^{m} + (1-q^{m}) \log_{2} (1-q^{m}) \right]$$ $$- \left(n + \frac{mq^{m}}{1-q^{m}} \right) (p \log_{2} p + q \log_{2} q).$$ (128) XIII. LACK OF OPTIMALITY OF PROCEDURE R_1 To illustrate the fact that R_1 is not optimal in the general case when units are identifiable and "mixing" of units from the binomial and defective sets is allowed, we shall describe a method of obtaining an improvement on R_1 . It is sufficient to consider the case N=3, but the case N=4 is more typical, and we shall use the latter. Let R_0^* denote a procedure for N=4, part of which is described by Fig. 2 and the remaining part of which is arbitrary. (We can therefore also regard R_0^* as a set of procedures, with the common part shown in Fig. 2.) Let a_1 , a_2 , b_1 , b_2 denote individual units; it will be assumed that the a-units are distinguishable from the b-units. The part of Fig. 2 enclosed by dashed lines is different from R_1 , since it includes mixing; the rest of the procedure agrees with R_1 for q close to unity. For q close to unity and m=2, after the first two group-tests result in failure, we should act as if there was exactly one defective present until it is proved otherwise. Then, for q close to unity, the above procedure R_0^* terminates in one or two ad- ditional tests with probability close to $\frac{1}{2}$ for each. More precisely, we obtain for the conditional expected number of additional tests required under R_0^* , given that the first two tests result in a failure, $$G(2,4 \mid R_0^*) = \frac{pq^3}{1-q^2} + \frac{2pq^3}{1-q^2} + \frac{p^2f(q)}{1-q^2} = \frac{3q^3 + pf(q)}{1+q}, \quad (129)$$ where f(q) is a polynomial in q. In comparison, we have under R_1 for 0.707 < q < 1.000 $$G_1(2,4) = 1 + \frac{pH_1(3)}{1-q^2} + \frac{pqH_1(2)}{1-q^2}$$ $$= \frac{1}{1+q} (6 + 2q - 2q^2 - 2q^3).$$ (130) For q approaching unity, the value in (129) approaches $\frac{3}{2}$, while that in (130) approaches 2. This proves that any finite continuation in Fig. 2 will be better than R_1 for q sufficiently close to unity. In a particular procedure to be discussed in a separate paper, the dividing point for the G(2, 4)-situation between "no-mixing" and "mixing" is $$q = (1 + \sqrt{33})/8 = 0.843$$ (to three decimal places). The maximum improvement over R_1 for n=4 in the expected number of tests required for the H-situation is a decrease of 0.04. The price to be paid for this improvement will be an increase in the complexity of the procedure. #### ACKNOWLEDGMENT The authors wish to thank J. E. Clark of Bell Telephone Laboratories for bringing this problem to their attention. Grateful acknowledgment is also due to H. O. Pollak and E. N. Gilbert for suggesting the procedure R_3 and for supplying some numerical values for R_3 given in Table II B. Thanks are also due to S. W. Roberts, Jr., and R. B. Murphy of Bell Telephone Laboratories and I. R. Savage of the University of Minnesota for helpful comments made after reading the paper. We also wish to thank D. E. Carlson, Mrs. W. L. Mammel and D. E. Eastwood, for their help in setting up the program on the IBM-704 for the numerical computations pertaining to procedures R_1 and R_3 . #### APPENDIX A #### The Information Procedure Another procedure which was investigated is based on choosing that value of x which maximizes the "amount of information" that the next test will give. The amount of information in a test with two outcomes is $p \log_2(1/p) + q \log_2(1/q)$ if p is the probability of either outcome. Hence, equating the information in an H-situation obtained by taking x and x + 1 in the next test gives $$q^{x} \log_{2} q^{x} + (1 - q^{x}) \log_{2} (1 - q^{x})$$ $$= q^{x+1} \log_{2} q^{x+1} + (1 - q^{x+1}) \log_{2} (1 - q^{x+1}),$$ (131) whose root will be used as a dividing point between x and x + 1. It is easy to verify that, for any integer x and any integer $n \ge x + 1$, the unique positive root of (131) is also the unique positive root of $$1 - q^x - q^{x+1} = 0. (132)$$ It is interesting to note that the solution implicit in (132) is easily seen to be equivalent to finding that positive integer x (for fixed, known q) for which q^x is closer to $\frac{1}{2}$ than is either q^{x-1} or q^{x+1} . In fact, by (132), the right endpoint of the interval for x is such that q^x and q^{x+1} are centered about $\frac{1}{2}$ and the left endpoint of the interval for x is such that q^x and q^{x-1} are centered about $\frac{1}{2}$. Similarly, for the G-situation with m > 1, we equate $$\left(\frac{q^x - q^m}{1 - q^m}\right) \log_2\left(\frac{q^x - q^m}{1 - q^m}\right) + \left(\frac{1 - q^x}{1 - q^m}\right) \log_2\left(\frac{1 - q^x}{1 - q^m}\right)$$ (133) with the same expression, except that x is replaced by x + 1, and find that, for any $n \ge m > 1$, the dividing point between x and x + 1 is the unique root in the interior of the unit interval (if it exists) of $$1 - q^x - q^{x+1} + q^m = 0. (134)$$ If we remove the root q = 1 in (134), the dividing point is the unique positive root (if it exists) of $$1 + q + q^{2} + \cdots + q^{x-1} - q^{x+1} - q^{x+2} - \cdots - q^{m-1} = 0.$$ (135) If the root does
not exist for some m > 1, then x + 1 will never be used for that m. It should be noted that the left member of (134) is a strictly increasing function of x and, for $x \ge (m-1)/2$, m > 1 and any fixed q with $0 \le q < 1$, we have $$1 - q^{x} - q^{x+1} + q^{m} \ge (1 - q^{(m-1)/2})(1 - q^{(m+1)/2}) > 0.$$ (136) It follows that the highest value of x for which a nondegenerate root exists is such that x+1 < (m+1)/2 and hence, under this procedure, we never take a test group of size greater than m/2. It is interesting to note that the dividing points for any G-situation do not depend on n. These equations define a new procedure R_2 , which we shall also call the *information procedure*. For this, let $F_2(m)$ denote the expected number of group-tests required to "break up" a defective set of size m, i.e., to reach an H-situation. Let $F_2^*(m) = (1 - q^m)p^{-1}F_2(m)$. Then we can write as in (20), for any n and for the appropriate interval where the next test group is of size x, $$F_2^*(m \mid x) = \sum_{i=1}^m q^{i-1} + q^x F_2^*(m-x) + F_2^*(x) \qquad (m > 1), \quad (137)$$ $$H_2(n \mid x) = 1 + q^x H_2(n - x) + p F_2^*(x) + p \sum_{i=1}^{x} q^{i-1} H_2(n - i).$$ (138) The boundary conditions state that $F_2^*(1) = H_2(0) = 0$ for all q. Those expressions for $F_2^*(m)$ which are used to generate expressions for $H_2(n)$ for $2 \le m \le n \le 12$ are given in Table VIII; the resulting expressions for $H_2(n)$ (with x-values) are given in Table VI. Table VII gives the dividing points for n = 1(1)100 and for m = 1(1)16, 20(5)100 for procedure R_2 . It should be noted that the $F_2^*(m)$ as well as the $H_2(n)$ -function are not all continuous. At the point of discontinuity the x corresponding to the smaller expectation should be used. It is interesting to observe in the numerical comparisons of Table III A that the procedure R_2 compares quite favorably with the procedure R_1 . In addition, the fact that the dividing points are easier to compute makes it better for practical applications, since the dividing points for R_1 are only known exactly up to n = 16. It is also interesting to note that the limiting expressions in Table III A as $n \to \infty$ and in Table III B as $m \to \infty$ are the same as (132). It is interesting to note that a succession of modifications $R_2^{(j)}(j=1,$ $(2, \ldots)$ of the information procedure, (R_2, α) are possible such that $(R_2^{(1)})$ R_2 and $R_2^{(j)} = R_1$ for $j \ge M(m,n)$. Here M(m,n), as defined in (10), is the maximum number of group-tests required if we start with a G(m,n)situation [where G(0,n) corresponds to H(n)]. Under the procedure $R_2^{(j)}$ we find and use that x which maximizes the ratio of the information expected from at most j group-tests to the conditional expected number of tests required given that we will stop after at most j group-tests. In the special case when there is no possibility of stopping before j tests, we can disregard the denominator and simply maximize the information. For the case j = 1 this is clearly equivalent to R_2 . For $j \ge M(m,n)$ the information expected from at most j tests is the same regardless of what x is used next and of what sample path is taken, since all units are then analyzed. Hence, the numerator above can be disregarded and the problem is to minimize the denominator or expected number of tests. Under the assumption of "no-mixing" of units from the binomial and defective sets, this gives the procedure R_1 . For any H(n)-situation with $n \ge 4$ and $j \ge 2$, these procedures appear to eliminate the possibility of taking n-1 units in the next test-group. For example, if n=4, j=2 and q>0.618, then we will want to compare x=2 and x=3. For j=1, the dividing point between x=2 and x=3 is q=0.755. Since neither x=2 nor x=3 can result in termination after one test, we can disregard the denominator and compare for x=2 and x=3 the information expected from two group-tests. After simplification, the difference between the results expected after x=2 and x=3 can be written as $$p^{2}q[(1+q)\log_{2}(1+q)-q\log_{2}q] \ge 0, \tag{139}$$ which shows that x=2 is preferable to x=3 for all q>0.618. The same result holds for all $j\geq 2$. Then we find that the dividing point between x=2 and x=4 for j=2 is the nondegenerate root between zero and unity of $$(2 - 2q - q^4 - q^5 - 2q^7)q \log_2 q - (2 + q^6)$$ $$(1 - q^2) \log_2 (1 + q) - q^4 (1 - q^4) \log_2 p = 0,$$ (140) which is 0.789 to three decimal places. For $j \ge 8 = M(0,4)$ the corresponding dividing point for $R_2^{(j)} = R_1$ is the root of $1 - q^2 - q^4 = 0$, or 0.786 to three decimal places. Curiously enough, the same result 0.786 is also the dividing point between x = 2 and x = 4 for j = 1. For the special case x=1, we state without proof that, for any H(n)-situation, the dividing point between x=1 and x=2 is again $\frac{1}{2}(\sqrt{5}-1)=0.618$ to three decimal places. Formulae for the expected number of tests under $R_2^{(j)}$ for 1 < j < M(m,n) have not been derived in this paper. #### APPENDIX B #### Definition of Procedure R₃ It may happen in some problems that recombination is undesirable or impossible, or it may be that we are interested in finding out just how much is saved by allowing recombinations. Both are good reasons for considering a procedure R_3 that is similar to R_1 except that recombinations are not allowed. This simply means that any two operationally formed sets cannot be combined to form a new set from which subsequent test-groups are to be taken. In procedure R_1 the possibility of mixing proper subsets of two different sets was never used, and the same will be true for R_3 . If both recombinations and mixing are not used, then, as the experiment continues, the operationally formed sets can only be broken down further into smaller and smaller sets, yielding a nested set of partitions; i.e., any two units separated at some stage remain separated in subsequent stages. It follows that any defective set present is not affected by the number or size or nature of other sets present. Hence, we define $G_3(m)$, with a single argument, as the conditional expected number of group-tests required to remove all the defectives from a set of size m which is known to have at least one defective. The recursion formulae for R_3 are, for $n \ge 1$ and m > 1, $$H_{3}(n) = 1 + \min_{1 \le x \le n} \{ q^{x} H_{3}(n - x) + (1 - q^{x}) [G_{3}(x) + H_{3}(n - x)] \},$$ $$G_{3}(m) = 1 + \min_{1 \le x \le m-1} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{3}(m - x) \right\}$$ $$(141)$$ $$+\left(\frac{1-q^x}{1-q^m}\right)[G_3(x) + H_3(n-x)]\Big\},$$ with boundary conditions $H_3(0) = G_3(1) = 0$ for all q. If we let $G_3^*(m)$ denote $(1 - q^m)p^{-1}G_3(m)$ and simplify, we obtain $$H_3(n) = 1 + \min_{1 \le x \le n} \{ H_3(n - x) + pG_3^*(x) \}, \tag{143}$$ $$G_{3}^{*}(m) = \sum_{i=1}^{m} q^{i-1} + \min_{1 \le x \le m-1} \left\{ G_{3}^{*}(x) + q^{x} G_{3}^{*}(m-x) + H_{3}(n-x) \left(\sum_{i=1}^{x} q^{i-1} \right) \right\},$$ $$(144)$$ with boundary conditions $H_3(0) = G_3*(1) = 0$ for all q. Numerical comparisons of the results for R_1 and R_3 are given in Tables II A and II B. #### APPENDIX C #### Definition of Two Halving Procedures Two "halving" procedures R_4 and R_5 are defined below, the principal purpose being to compare the results on the expected number of tests required with comparable results for R_1 and R_3 . The procedure R_4 allows recombinations exactly as in R_1 , while R_5 is the same as R_4 except that recombinations are not allowed. Both R_4 and R_5 are of particular interest, since they can be carried out without knowing the true value of q. The procedure R_4 is carried out like R_1 except that, if the defective set is of size m > 1, the next test group is a subset of size $m' = \lfloor m/2 \rfloor$ (i.e., the largest integer contained in m/2) randomly selected from the defective set and, if m = 0 or 1, the entire binomial set is used in the next test-group. In particular, we start with all N units in the first test-group. The recursion formulae for R_4 are $$H_4(n) = q^n + (1 - q^n)[1 + G_4(n, n)] = 1 + (1 - q^n)G_4(n, n), \quad (145)$$ $$G_4(m,n) = 1 + \left(\frac{1-q^{m'}}{1-q^m}\right)G_4(m',n) + q^{m'}\left(\frac{1-q^{m-m'}}{1-q^m}\right)G_4(m-m',n-m') \qquad (m>1),$$ (146) with the same boundary conditions as in R_1 . If we let $F_4(m)$ denote the expected number of tests required to break up a defective set of size m, it can be shown as in the case of R_1 that $$G_4(m,n) = F_4(m) + \left(\frac{p}{1-q^m}\right) \sum_{i=1}^m q^{i-1} H_4(n-i).$$ (147) If we let $$G_4^*(m,n) = \left(\frac{1-q^m}{1-q}\right)G_4(m,n)$$ and $F_4^*(m) = \left(\frac{1-q^m}{1-q}\right)F_4(m)$, (148) the recursion formulae for R_4 reduce to $$F_4^*(m) = \sum_{i=1}^m q^{i-1} + F_4^*(m') + q^{m'} F_4^*(m-m') \qquad (m > 1), \quad (149)$$ $$H_4(n) = 1 + pG_4*(m, n)$$ $$= 1 + p\{F_4^*(n) + \sum_{i=1}^n q^{i-1}H_4(n-i)\},$$ (150) with boundary conditions $F_4^*(1) = H_4(0) = 0$ for all q. For $n \leq 5$, the results are the same as those for R_1 , if we take q close to unity in the formulae for R_1 . The results for $H_4(n)$ for n = 6(1)12 are, for all q: $$H_4(6) = 14 - 9q - 2q^2 - q^3 - q^5,$$ $$H_4(7) = 17 - 11q - 3q^2 - q^3 + q^4 - 2q^5,$$ $$H_4(8) = 21 - 14q - 4q^2 - q^3 + q^4 - 2q^5, (151)$$ $$H_4(9) = 25 - 18q - 4q^2 - q^3 + q^4 - 2q^5 + q^7 - q^9,$$ $$H_4(10) = 29 - 22q - 4q^2 + q^4 - 3q^5 + q^7 - q^9$$ $$H_4(11) = 33 - 26q - 4q^2 + q^3 - 4q^5 + 2q^6 + q^7 - q^8 - q^9$$ $$H_4(12) = 37 - 29q - 4q^2$$ $-4q^5 + 2q^6 + q^7 - q^8 - q^9$ The recursion formulae for the halving procedure R_5 , which continues to separate sets into smaller and smaller subdivision, are $$H_{5}(n) = 1 + (1 - q^{n})G_{5}(n), \tag{152}$$ $$G_{5}(m) = 1 + \left(\frac{1 - q^{m'}}{1 - q^{m}}\right) [G_{5}(m') + H_{4}(m - m')] + q^{m'} \left(\frac{1 - q^{m-m'}}{1 - q^{m}}\right) G_{5}(m - m') \quad
(m > 1),$$ (153) where m' is defined as above. Here it was not necessary to use a double argument with G because there is no recombination allowed. The bound- ary condition is $G_5(1) = 0$ for all q. If we define $G_4^*(m)$ as in (153) and use (152), the recursion formulae reduce to $$H_5(n) = 1 + pG_5^*(n), (154)$$ $$G_{5}^{*}(m) = \sum_{i=1}^{m'} q^{i-1} + \sum_{i=1}^{m} q^{i-1} + G_{5}^{*}(m') + G_{5}^{*}(m - m') \qquad (m > 1),$$ (155) with the boundary condition $G_5^*(1) = 0$ for all q. For $n \leq 3$, the results are the same as for R_1 if we take q close to unity in the formulae for R_1 . The results for $H_5(n)$ for n = 4(1)12 are: APPENDIX D #### Known Procedures An attempt has been made to put the Dorfman procedure and the Sterrett procedure³ in the best form that is comparable with the other procedures treated here. For each of N = 4, 8 and 12, we have found the division into equal (or approximately equal) subsets such that the Dorfman plan of testing defective sets one at a time gives the smallest possible expected number of tests required. It should not be inferred that these results would be the same if a straightforward application of the tables published by Dorfman and Sterrett, respectively, were made, since their tables are only concerned with very large N. In the Dorfman plan we use a common test-group size for binomial sets and, for defective sets, the units are all tested one at a time. In the Sterrett plan, there is a common test group size for binomial sets at the outset and, for defective sets, the units are tested one at a time only until a defective unit is found. Then the remaining units, from that defective set only, are pooled and tested. This is continued until that particular defective set is completely analyzed before we start with other sets. We have also assumed that logical inference would be used whenever possible in the Dorfman and Sterrett procedures. For the Dorfman procedure R_7 , if the common group size is c, then, for any binomial set of size n (where $n \leq c$), we obtain $$H_7(n) = q^n + (1 - q^n) \left(n + 1 - \frac{pq^{n-1}}{1 - q^n} \right)$$ $$= n + 1 - q^{n-1} - (n-1)q^n.$$ (157) For example, for N=12 and q=0.90, we find that $c_1=c_2=c_3=4$ gives the best results and, using (157), with c=4, we obtain $$H_7(12) = 3H_7(4) = 3(5 - q^3 - 3q^4) = 6.908.$$ (158) For the Sterrett procedure R_6 , if the group size at the outset is c, then, for each binomial set of size n (where $n \leq c$), we obtain $$H_{6}(n) = q^{n} + p[2 + H_{6}(n-1)] + qp[3 + H_{6}(n-2)] + \dots + q^{n-2}p[n + H_{6}(1)] + q^{n-1}pn = q^{n} + npq^{n-1} + p\sum_{i=2}^{n} iq^{i-2} + p\sum_{i=1}^{n-1} q^{i-1}H_{6}(n-i),$$ (159) with boundary condition $H_6(1) = 1$ for all q. It can be verified (we omit the details) that the solution of this system is given by $$H_6(n) = (2n-1) - (n-1)q - \sum_{i=2}^{n} q^i.$$ (160) For example, for N = 12 and q = 0.90, we find that $c_1 = c_2 = c_3 = 4$ gives the best results and, using (160), with c = 4, we obtain $$H_6(12) = 3H_6(4) = 6.315.$$ (161) APPENDIX E #### Cost Considerations In this Appendix we introduce another procedure R_8 , which brings into play the cost of throwing away a good unit and balances it against the cost of conducting another group-test. It is interesting to note that R_8 was the solution given when the problem was first brought to the authors' attention in a practical application. For procedure R_8 we divide all the N units into approximately equal subsets of size x', where x' is the nearest positive integer to the solution in x of $$(1-p)^x = \frac{1}{2},\tag{162}$$ where p is the known a priori probability of a unit being defective. It is assumed here that $p \ll \frac{1}{2}$. Each subgroup is tested either simultaneously or in sequence, and good subgroups are removed. Assuming x' > 1, subsets shown to contain at least one defective are pooled. Since the same number of defectives has now been put into a pooled set of approximate size N/2, it follows that the probability of drawing a defective from the pooled set is approximately double the original a priori probability p. Then the pooled subset is again divided into approximately equal subsets of size x'', where x'' is the nearest positive integer to the solution of $$(1-2p)^x = \frac{1}{2}. (163)$$ The process is repeated (say) a total of t times. If tp gets larger than $\frac{1}{2}$, x is taken to be unity and the units would then be tested one at a time. However, it may be more economical to stop the procedure before tp reaches $\frac{1}{2}$ and scrap the pooled defective subgroup. The amount of saving may be substantial if the cost of manufacturing a unit, say c_0 , is small compared to the cost of each group-test, say c_1 . Suppose, for example, that we start with N=8 units and q is given to be 0.90. The approximate solution of (162) is x'=7 but, since this leaves a subset of size 1, we make our first test on all 8 units. If the test is a success we are through; otherwise we look for a solution of (163) and find that x''=3. The 8 units are divided into subsets of size 3, 3 and 2, and each is tested. Good subsets are removed. We purposely avoid the next stage which requires testing one at a time. Hence, any of these three sets of size 3, 3, and 2 that proves to contain at least one defective is scrapped. Let T denote the number of tests required in the above example and let D denote the total number of scrapped units (i.e., good units and defectives that are discarded). Then, for this procedure R_8 with N=8 and q=0.90, we obtain $$E\{T \mid R_8\} = 4 - 3q^8 = 2.709, \tag{164}$$ $$E\{D \mid R_8\} = 8 - 2q^2 - 6q^3 = 2.006.$$ (165) If we define the expected loss $E\{L \mid R_i\}$ for any procedure R_i by $$E\{L \mid R_i\} = c_0 E\{D \mid R_i\} + c_1 E\{T \mid R_i\}, \qquad (166)$$ we find for procedures R_1 and R_8 , respectively, $$E\{L \mid R_1\} = 0.800 \ c_0 + 3.904 \ c_1 \,, \tag{167}$$ $$E\{L \mid R_8\} = 2.006 \ c_0 + 2.709 \ c_1 \ . \tag{168}$$ A comparison of these two expressions shows that R_8 will be more economical in this case if the ratio $$\frac{c_1}{c_0} \ge \frac{2.006 - 0.800}{3.904 - 2.709} = 1.009 = 1$$, approximately. (169) Hence, R_8 is more economical in this case if the total cost of a single test is greater than the total cost of manufacturing a single unit. Similarly, it can be shown that it would be more economical to stop after the first test (and scrap all 8 units if there is at least one defective present) when the ratio of the two costs in (169) is greater than 1.492 (or approximately 1.5). #### REFERENCES - 1. Dorfman, R., The Detection of Defective Members of Large Populations, Ann. Math. Stat., 14, 1943, p. 436. - Feller, W., An Introduction to Probability Theory and Its Applications, 2nd edition, John Wiley & Sons, New York, 1951, p. 189. Sterrett, A., On the Detection of Defective Members of Large Populations, Ann. Math. Stat., 28, 1957, p. 1033. - 4. Ungar, P., The Cut-Off Point for Group Testing, to be published. Fig. 3 — Diagram showing number of observations to be taken in any H-situation for n=1 through 16 — for procedure R_1 . Fig. 4 — Diagram showing number of observations to be taken in any G-situation for m=2 through 16 and any $n\geqq m$ — for procedure R_1 . Table II A — Comparison of the Expected Number of Group-Tests Required for Different Procedures for $N=4,\,8,\,12$ and Selected Values of q | Procedure | | | - | ç | 7 | | | | |--|----------------------------|---|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------| | | 0.00 | 0.50 | 0.75 | 0.90 | 0.95 | 0.98 | 0.99 | 1.00 | | $\begin{array}{c} R_1 \\ \text{(Proposed Procedure)} \end{array}$ | 4.000
8.000
12.000 | | 6.619 | $2.051 \\ 3.904 \\ 5.790$ | | | $1.110 \\ 1.308 \\ 1.543$ | 1.000
1.000
1.000 | | R_2 (Information Procedure) | 4.000
8.000
12.000 | | 6.663 | 4.141 | $1.538 \\ 2.500 \\ 3.599$ | | $1.110 \\ 1.308 \\ 1.544$ | 1.000
1.000
1.000 | | $\begin{array}{c} R_3 \\ \text{(Proposed without Recombinations)} \end{array}$ | 4.000
8.000
12.000 | 8.000 | $3.375 \\ 6.719 \\ 10.062$ | | $1.576 \\ 2.631 \\ 3.851$ | 1.236 1.680 2.209 | 1.119
1.345
1.617 | 1.000
1.000
1.000 | | R_4 (Halving with Recombinations) | | 12.875 | | | $1.538 \\ 2.500 \\ 3.620$ | | 1.110
1.308
1.544 | 1.000
1.000
1.000 | | $\begin{array}{c} R_5 \\ \text{(Halving without Recombinations)} \end{array}$ | | 11.309 | | | $1.578 \\ 2.678 \\ 3.900$ | $1.236 \\ 1.700 \\ 2.229$ | $1.119 \\ 1.355 \\ 1.627$ | 1.000
1.000
1.000 | | R_{6} (Sterrett) | 4.000
8.000
12.000 | $\begin{array}{c} 4.000 \\ 8.000 \\ 12.000 \end{array}$ | | $2.105 \\ 4.210 \\ 6.315$ | $1.576 \\ 3.151 \\ 4.333$ | $1.236 \\ 1.807 \\ 2.973$ | 1.119 1.412 1.852 | 1.000
1.000
1.000 | | (Dorfman) R_7 | $4.000 \\ 8.000 \\ 12.000$ | 8.000 | | 2.303
4.605
6.908 | $1.699 \\ 3.398 \\ 5.097$ | $1.292 \\ 2.176 \\ 3.334$ | $1.148 \\ 1.609 \\ 2.354$ | 1.000
1.000
1.000 | Table II B — Comparison of $H_1(n)$ and $H_3(n)$ for Three Values of q and Larger n-Values | 11 | q = | 0.90 | q = | 0.95 | q = | 0.99 | |------------|----------|----------|----------|----------|----------|----------| | 74 | $H_1(n)$ | $H_3(n)$ | $H_1(n)$ | $H_3(n)$ | $H_1(n)$ | $H_3(n)$ | | 10 | 4.872 | 5.101 | 3.039 | 3.242 | 1.425 | 1.481 | | 20 | 9.572 | 10.155 | 5.940 | 6.456 | 2.051 | 2.221 | | 30 | 14.301 | 15.209 | 8.791 | 9.626 | 2.738 | 3.057 | | 40 | 19.024 | 20.260 | 11.671 | 12.798 | 3.478 | 3.943 | | 5 0 | 23.750 | 25.361 | 14.555 | 16.009 | 4.243 | 4.853 | | 60 | 28.475 | 30.415 | 17.438 | 19.246 | 5.026 | 5.792 | | 70 | 33.200 | 35.469 | 20.316 | 22.415 | 5.830 | 6.754 | | 80 | 37.925 |
40.520 | 23.197 | 25.591 | 6.647 | 7.717 | | 90 | 42.650 | 45.621 | 26.078 | 28.781 | 7.477 | 8.683 | | 100 | 47.375 | 50.675 | 28.959 | 32.019 | 8.230 | 9.687 | Each polynomial shown with its unique real root in the unit interval 0 < q < 1; these roots determining the region where the next Table III A — To Be Used with Procedure R_1 in Any H(n) Situation with $n \le 16$ or n Very Large test group is of size x. The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$). | | ible
" " | 0.707
0.786
0.817
0.884
0.884
0.896
0.896
0.991
0.912
0.912
0.937
0.937 | 1.000 | |--|---|--|---| | | (maximum possible $x < n$) and $x = n$ | t column 1 $^{2}q^{5}$ $^{2}q^{7}$ $^{2}q^{7}$ $^{2}q^{7}$ $^{2}q^{9}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ | | | | s II | 0.922
0.912-
0.908 | 0.912 | | ween: | x = 7 and $x =$ | $1-q^3-q^3$ $1-q^2-q^3$ $1-q^7-q^4$ | $0.899^{-1} 1-q^7-q^8$ | | int bety | | 0.912-
0.889-
0.883
0.893 | 0.899- | | The unique real root in the unit interval of the polynomial shown is the dividing point between: | x = 6 and x = 7 | 0.857 0.899 0.897 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.891 0.999 | $0.881 \left 1 - q^6 - q^7 \right $ | | omial s | | 0.889
0.881
0.879
0.888
0.888 | 0.881 | | nit interval of the poly | x = 5 and x = 6 | $ \begin{pmatrix} 0.857 \\ 0.840 \\ -q^6 - q^8 & 0.856 \\ 1 - q^6 - q^7 \\ 1 - q^4 - q^6 \\ 1 - q^4 - q^6 \\ 2 + 4 \operatorname{and} x = 6) * \\ 0.857 \\ 1 - q + q^5 - q^7 - q^1 \\ 0.857 \\ 1 - q + q^5 - q^7 - q^1 \\ 0.857 \\ 1 - q + q^5 - q^4 - q^5 - q^{12} \\ 0.853 \\ 1 - q + q^5 - q^4 - q^5 - q^{11} \\ 0.853 \\ 1 - q + q^2 - q^4 - q^5 - q^{11} \\ 0.863 \\ 1 - q^2 - q^4 - q^5 - q^{11} \\ 0.860 \\ 1 - q^2 - q^4 $ | $ 0.857 1-q^5-q^6$ | | n the u | - 2 | 0.857
11-q ⁴ -q ⁶
10.857
10.857
10.857
10.857
10.857 | 0.857 | | ique real root i | x = 4 and x = 5 | $ \begin{vmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$ | $0.755 \left 1 - q^3 - q^4 \right 0.819 \left 1 - q^4 - q^5 \right $ | | The un | and
4 | 7 0.819
8 0.812
9 0.824
1 0.819
1 0.819
1 0.819
1 0.819
1 0.819 | $q^4 0.819$ | | | x = 3 and $x = 4$ | $\begin{array}{c} 1 - q^3 - q \\ 1 - q - q^3 - q \\ 1 - q - q^3 - q \\ 1 q^3 - q \\ 1 -$ | $1 - q^3 - q$ | | | x = 2 and $x = 3$ | (see last c | ∞ $ 1-q-q^2$ 0.618 $ 1-q^2-q^3$ 0.755 | | | and 2 | 0.618
0.618
0.618
0.618
0.618
0.618
0.618
0.618
0.618
0.618 | 0.618 | | | x = 1 and $x = 2$ | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ | $1 - q - q^2$ | | | * | 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 | * The interval for x = 5 vanishes for n = 12. Table III B — To Be Used with Procedure R_1 in Any G(m,n) Situation with $2 \le m \le n \le 16$ or m Very Large Each polynomial shown with its unique real root in the unit interval 0 < q < 1; these roots determining the region where the next test group (taken from the defective set) is of size x. The exponential symbols +, - indicate only the relative magnitude of two or three different roots that are equal to three decimal places (i.e., $a^- < a^+$ or $a^- < a < a^+$). | | , × | [2] | -21 | |--|---
--|---| | | = x p | 0.0 | 0.9 | | | = 7 an | $q^{14}-q^{1}$ | q^7-q^8 | | | "
 | 1 1 | 100 | | | # | 0.94 | 0.89 | | :u | x = 5 and $x = 6$ $x = 6$ and $x = 7$ $x = 7$ and $x = 8$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $0.857 \left \begin{array}{c c} 1-q^5-q^6 \end{array} \right \begin{array}{c c} 0.881 \left 1-q^6-q^7 \end{array} \left \begin{array}{c c} 0.899 \end{array} \right 1-q^7-q^8 \end{array} \left \begin{array}{c c} 0.912^- \end{array} \right $ | | The unique real root in the unit interval of the polynomial shown is the dividing point between: | 9 = | 0.936 | 0.881 | | g poin | and x | -q ¹¹
-q ¹⁰ | q^6 | | dividing | #
= 5 | 0.922
0.912- $1-q^{10}-q^{11}$ 0.936
0.899- $1-q^3-q^{10}$ 0.930
0.888+ $1-q^3-q^{10}$ 0.922 | $1-q^5-$ | | ı is the | ll
N | 0.922
0.912-
0.899- | 0.857 | | shown | and x | $^{1}-q^{12}$ | | | nomial | x = 4 and $x = 5$ | $\begin{array}{c} 0.899 \\ 0.881 \\ 0.857 \\ 0.857 \\ 0.845 \\ 0.838 \\ 1 - q^a - q^a \\ 0.838 \\ 1 - q^a - q^a \\ 0.838 \\ 1 - q^a - q^a \\ 0.839 0.839 \\ 1 - q^a - q^a \\ 0.839 \\ 0.839 \\ 1 - q^a - q^a \\ 0.839 \\$ | $0.819 \left 1-q^4-q^5 \right $ | | e poly | | 0.899-
0.881
0.887
0.867
0.867
0.887
0.888
1-
0.832
1-
0.832
1-
0.832 | 19 1- | | of th | 4 | 0.899-
0.857
0.857
0.857
0.846
0.838
0.838
0.838 | 8.0 | | nterval | x = 3 and $x =$ | q^{12} q^{14} | | | unit i | = 3 ar | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ₹. | | in the | ĸ | 5 - 5 - 1 - 1 - 1 - 5 - 5 - 5 - 5 - 5 - | $-q^{3}-q$ | | eal root | | $ \begin{vmatrix} -q^4 - q^5 \\ 1 - q^4 - q^5 \\ 1 - q^2 - q^4 \\ 1 - q^2 - q^6 - q^7 \\ 1 - q^2 - q^6 - q^7 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^2 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^1 \\ 1 - q^3 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 $ | $0.755 \mid 1-q^3-q^4$ | | ique r | 3 | $- \frac{1}{q^{13}} \frac{1}{(1 - q^{13})^2}$ | | | The un | x = 2 and $x = 3$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | = 2 a: | $-q^{7}$ $-$ | | | | × | 0. 755 0. 682 0. 683 0. 683 1. $q^4 - q^5$ 0. 683 1. $q^4 - q^4$ 0. 683 1. $q^4 - q^4$ 0. 684 1. $q^3 - q^4$ 0. 684 1. $q^3 - q^4$ 0. 685 1. $q^3 - q^5 - q^4$ 0. 689 1. $q^3 - q^5 - q^4$ 0. 689 1. $q^3 - q^5 - q^4$ 0. 619 1. $q^3 - q^5 - q^4 - q^4$ 0. 619 1. $q^3 - q^5 - q^7 - q^4$ 0. 619 1. $q^3 - q^5 - q^7 - q^4$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618 | $q^2 - q^3$ | | | | 7.755 7.682 7.682 7.683
7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 7.683 | $.618^{-}$ $1-q^2-q^3$ | | | . 2 | 0.755
0.682
0.682
0.652
1.0637
1.0637
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628
1.0628 | 0.618 | | | x = 1 and x = 2 | | | | | = 1 aı | q^3 $q^3 - q^4$ | ٠. | | | ĸ | $ \begin{vmatrix} 1 - q^2 - q^3 \\ 1 - q^2 - q^3 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 - q^5 \\ 0 - q^3 - q^4 - q^4 - q^5 \\ 1 - q^2 - q^3 - q^4 - q^5 - q^5 \\ 1 - q^2 - q^3 - q^4 - q^3 \\ 1 - q^2 - q^3 - q^4 - q^6 \\ 1 - q^2 - q^3 - q^4 - q^1 \\ 1 - q^2 - q^3 - q^4 - q^1 \\ 1 - q^2 - q^3 - q^4 - q^2 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 -$ | ∞ $1-q-q^2$ | | * | | 2 5 4 4 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 8 | Table IV A — Formulae for $F_1^*(m)$ for Procedure R_1 and Values of the Next Test-Group Size x for m=2(1)16 | | q-i | nterval | x | 1 | q | q^2 | q^3 | q^4 | q^5 | q^6 | q^7 | q^8 | q^9 | q^{10} | q^{11} | q^{12} | q13 | q^{14} | q^{15} | | |---------------------|--|--|--|---|---------------------------------|-------------------|----------------------------|--|---|--|-----------------------------|---------------------------------|----------------------------------|---|---|----------|-----|----------|----------|--| | $F_1^*(2)$ | 0.000 | to 1.000 | 1 | 1 | 1 | _ | _ | _ | _ | | | | | | | | | | | | | $F_1^*(3)$ | 0.000 | to 1.000 | 1 | 1 | 2 | 2 | | | _ | | | | | _ | | | | | | | | $F_1^*(4)$ | 0.000
0.755 | to 0.755
to 1.000 | 1
2 | 1 2 | $\frac{2}{2}$ | 3 2 | 3 2 | | | | | _ | | | | | | | | | | $F_1^*(5)$ | 0.000
0.682 | to 0.682
to 1.000 | $\frac{1}{2}$ | $\frac{1}{2}$ | 2 2 | $\frac{3}{2}$ | 4 3 | 3 | | | | | | | | | | | | | | $F_1^*(6)$ | 0.000
0.652
0.755 | to 0.652
to 0.755
to 1.000 | 1
2
2 | $\frac{1}{2}$ | 2
2
2 | 3
2
3 | 4
3
3 | 5
4
3 | 5
4
3 | | | | | | | | | | | | | F ₁ *(7) | 0.000
0.637
0.682
0.857 | to 0.637
to 0.682
to 0.857
to 1.000 | $\frac{1}{2}$ | 1
2
2
2 | 2
2
2
3 | 3
2
3
3 | $\frac{4}{3}$ | 5
4
3
3 | 6
5
4
3 | 6
5
4
3 | | | | | | | | | | | | F ₁ *(8) | 0.000
0.629
0.652
0.755
0.819
0.899 | to 0.629
to 0.652
to 0.755
to 0.819
to 0.899
to 1.000 | 1
2
2
2
3
4 | 1
2
2
2
2
3 | 2
2
2
2
3
3 | 3233333 | 4 3 3 3 3 3 3 | 5
4
3
4
3
3 | 6
5
4
4
3
3 | 7
6
5
4
4
3 | 7
6
5
4
4
3 | | | | | | | | | | | $F_1^*(9)$ | 0.000
0.624
0.637
0.682
0.803
0.881 | to 0.624
to 0.637
to 0.682
to 0.803
to 0.881
to 1.000 | 1
2
2
2
3
4 | 1
2
2
2
2
3 | 2
2
2
3
3 | 9 2 3 3 3 3 3 | 4
3
3
3
3
3 | 5
4
3
4
3
3 | -654443 | 7
6
5
4
4
3 | -8
7
6
5
4
4 | 8 7 6 5 4 4 | | | | | | | | | | $F_1^*(10)$ | 0.000
0.622
0.629
0.652
0.755
0.782
0.857 | to 0.622
to 0.629
to 0.652
to 0.755
to 0.782
to 0.857
to 1.000 | 1
2
2
2
2
3
4 | 1
2
2
2
2
2
3 | 2
2
2
2
3
3 | 3 2 3 3 3 3 3 3 3 | 4 3 3 3 3 3 3 3 3 | 5
4
3
4
4
3
3 | 6
5
4
4
4
4
3 | 6
5
4
5
4 | 8
7
6
5
4
4 | 9
8
7
6
5
4 | 9
8
7
6
5
4 | | | | | | | | | $F_1*(11)$ | 0.000
0.620
0.624
0.637
0.682
0.779
0.819
0.857 | to 0.620
to 0.624
to 0.637
to 0.682
to 0.779
to 0.819
to 0.857
to 1.000 | 1
2
2
2
2
3
4 | 1
2
2
2
2
2
2
2
3 | 2
2
2
2
3
3
3 | 3233333333 | 4 3 3 3 3 3 3 3 3 | -54344343 | 6
5
4
4
4
4
4
4
4 | $\begin{bmatrix} 6 \\ 5 \\ 4 \\ 5 \\ 4 \\ 4 \end{bmatrix}$ | 87655444 | 9
8
7
6
5
4
4 | 10
9
8
7
6
5
4 | 10
9
8
7
6
5
5
4 | | | | | | | | $F_1^*(12)$ | | to 0.619
to 0.622
to 0.629
to 0.652
to 0.755
to 0.768
to 0.803
to 0.846 ⁺
to 0.899 ⁻
to 1.000 | 1
2
2
2
2
2
3
3
4
4 | 2
2
2
2
2
2
2
2 | 222223333333 | 32333333333 | 3 3 | 5
4
3
4
4
4
3
4
3
4 | 4
4
4
4
4
4
4 | 6
5
4
5
4
4
4
4 | 6
5
5
5
4
4 | 8
7
6
5
6
5
4 | 8
7
6
6
5
5
4 | 11
10
9
8
7
6
6
5
4 | 11
10
9
8
7
6
6
5
4 | | | | | | [†] These equations are not needed to compute $H_1(n)$ -formulae if the experiment starts with a "pure binomial" set of any size N (i.e., if m=0 at the outset). | | q-interval | x | 1 | q | q^2 | q^3 | q^4 | q^5 | <i>q</i> 6 | q^7 | q^8 | <i>q</i> 9 | q^{10} | q^{11} | q12 | q13 | q14 | q^{15} | | |----------------------|--|---|--|-----------------------------------|---------------------------------|--|--|--|---|--|---|--
---|---|---|--|--|----------------------|---------------------------------------| | F ₁ *(13) | 0.000 to 0.619
0.619 to 0.620
0.620 to 0.624
0.624 to 0.637
0.637 to 0.682
0.682 to 0.767
0.767 to 0.782
0.782 to 0.834
0.834 to 0.881
0.881 to 0.922
0.922 to 1.000 | 1
2
2
2
2
2
3
3
4
4
5 | | 2 2 2 2 2 3 3 3 3 3 3 3 | 3233333333333 | 4 3 3 3 3 3 3 3 4 | 5 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 6 5 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 87
65
55
54
44
44 | $ \begin{array}{c} -988765565544444 \end{array} $ | 10
9
8
7
6
6
6
5
5
4
4 | 11
10
9
8
7
6
6
5
4
4 | 12
11
10
9
8
7
6
6
5
5 | 12
11
10
9
8
7
6
6
5
5 | | | | † † † † † † † † | | F ₁ *(14) | 0.000 to 0.619 ⁻
0.619 ⁻ to 0.619 ⁺
0.619 ⁺ to 0.622
0.622 to 0.629
0.629 to 0.652
0.652 to 0.755
0.755 to 0.762 ⁺
0.762 ⁺ to 0.779
0.779 to 0.819
0.819 to 0.834
0.834 to 0.857
0.857 to 0.912 ⁻
0.912 ⁻ to 0.936
0.936 to 1.000 | 1 2 2 2 2 2 2 2 3 3 3 4 4 4 5 6 | 1 2 2 2 2 2 2 3 3 3 3 3 | 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 | 3 2 3 3 3 3 3 3 3 3 3 3 4 | 4 3 3 3 3 3 3 3 3 4 4 | 5 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 | 6
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 7 6 5 4 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8765555444444444444444444444444444444444 | -987656655544444 | 10
9
8
7
6
6
6
6
5
5
5
4
4
4 | 11
10
9
8
7
6
7
6
5
5
4
4 | 12
11
10
9
8
7
7
6
6
5
5
4
4 | 13
12
11
10
9
8
7
7
6
6
6
5
4 | 13
12
11
10
9
8
7
7
6
6
6
5
5 | | | † † † † † † † † † | | F ₁ *(15) | 0.000 to 0.618 ⁴ 0.618 ⁺ to 0.619 0.619 to 0.620 0.620 to 0.624 0.624 to 0.637 0.637 to 0.682 0.762 to 0.768 0.768 to 0.803 0.803 to 0.832 0.832 to 0.857 0.857 to 0.899 0.899 to 0.930 0.930 to 0.946 0.946 to 1.000 | 1
2
2
2
2
2
2
2
2
2
3
3
3
4
4
4
5
6
7 | 1
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3 | 2222222333333334 | 3 2 3 3 3 3 3 3 3 3 3 4 4 | 4
3
3
3
3
3
3
3
3
3
4
4
4
4 | 5 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 | 6
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 7
6
5
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4 | 8 7 6 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 987656655544444 | 10
9
8
7
6
6
6
6
5
5
5
5
4
4
4 | 11
10
9
8
7
6
7
6
6
5
5
5
4
4
4 | 12
11
10
9
8
7
7
7
6
6
5
5
5
4
4 | 13
12
11
10
9
8
7
7
6
6
5
5
5
4
4 | 14
13
12
11
10
9
8
7
7
6
6
5
5
5 | $ \begin{array}{c} 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 5 \\ 5 \\ 4 \\ \end{array} $ | | † † † † † † † † † | | F ₁ *(16) | 0.000 to 0.618 ⁻ 0.618 ⁻ to 0.619 ⁻ 0.619 ⁻ to 0.629 0.629 to 0.629 0.629 to 0.755 0.755 to 0.759 0.767 to 0.782 0.829 to 0.829 0.829 to 0.846 ⁺ 0.846 ⁺ to 0.888 ⁺ 0.888 ⁺ to 0.922 0.922 to 0.941 0.941 to 0.953 0.953 to 1.000 | 1
2
2
2
2
2
2
2
2
2
2
3
3
3
4
4
5
6
6
7
8 | 1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3 | 222222223333333444 | 3 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 | 4 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 | 5
4
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 6
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 7
6
5
4
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4 | 8
7
6
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4 | 9
8
7
6
6
6
6
6
5
5
5
5
4
4
4
4
4 | $\begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 5 \\ 5 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$ | 11
10
9
8
7
6
7
7
6
6
5
5
5
5
4
4
4 | 12
11
10
9
8
7
7
7
6
6
5
5
5
4
4
4 | 13
12
11
10
9
8
7
7
6
6
5
5
5
4
4 | 14
13
12
11
10
9
8
8
7
7
6
6
5
5
5
4
4 | $\frac{13}{12}$ | 14
13
12
11 | † † † † † † † † † † † † † † † † † † † | The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$). Table IV B — Formulae for $H_1(n)$ and Values of the Next Sample Size x for Any H-situation Expressed as Functions of q for n=2(1)12 When the Procedure R_1 Is Used. The integer shown below q^y opposite $H_1(n)$ is the coefficient of q^y in the polynomial formula for $H_1(n)$. | | q-interval | x | 1 | q , | q ² | q^3 | <i>q</i> ⁴ | <i>q</i> 5 | q ⁶ | q7
 | q8
 | q9 | q10 | q11 | q15 | |----------|--|---|---|---|--|---|--|--|--|---|--------|----|-----|-----|-----| | $H_1(2)$ | 0.000 to 0.618
0.618 to 1.000 | $\frac{1}{2}$ | $\frac{2}{3}$ | -1 | -1 | | | | | | | | | | | | $H_1(3)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 1.000 | $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ | 3
5
5 | $-3 \\ -2$ | | $^{1}_{-1}$ | | | | | | | | | | | $H_1(4)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.786
0.786 to 1.000 | 1
2
2
4 | 4
7
7
8 | $-5 \\ -4 \\ -4$ | -1 | -1 | 1 | | | | | | | | | | $H_1(5)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.817
0.817 to 1.000 | 1
2
2
3
3
5 | 5
9
9
10
11 | $ \begin{array}{r r} -7 \\ -6 \\ -5 \\ -6 \\ \end{array} $ | $\begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$ | $ \begin{array}{r} -1 \\ -2 \\ -1 \end{array} $ | 1 1 0 | -1 | | | | | | | | | $H_1(6)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.817
0.817 to 0.844
0.844 to 1.000 | 1
2
2
3
3
3
6 | 6
11
11
11
12
13
14 | $ \begin{array}{r r} -9 \\ -8 \\ -6 \\ -7 \\ -9 \\ \end{array} $ | $\begin{vmatrix} 1 \\ -2 \\ -3 \\ -2 \end{vmatrix}$ | $\begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$ | $\begin{array}{c c} 2 \\ 1 \\ 0 \end{array}$ | $-1 \\ 0 \\ 1 \\ -1$ | $\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$ | | | | | | | | $H_1(7)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.817
0.817 to 0.819
0.819 to 0.844
0.844 to 0.869
0.869 to 1.000 | 1
2
2
3
3
3
4
4
7 | 7
13
13
13
14
15
16
17 | | $\begin{vmatrix} 2 \\ -3 \\ -4 \\ -3 \\ -3 \\ -1 \end{vmatrix}$ | $\begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$ | $\begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$ | $\begin{bmatrix} -1 \\ 0 \\ -2 \\ -1 \\ 0 \end{bmatrix}$ | $\begin{vmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 0 \end{vmatrix}$ | 1 | | | | | | | $H_1(8)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.844
0.844 to 0.869
0.869 to 0.885
0.885 to 0.899
0.899 to 1.000 | 1
2
2
3
3
4
4
4
4
4
4
8
8 | 8
15
15
16
17
18
19
20
20
20
21 | $ \begin{array}{c} -13 \\ -12 \\ -8 \\ -9 \\ -10 \\ -14 \\ -16 \\ -15 \\ -14 \\ -16 \\ -15 \\ -14 \end{array} $ | $egin{array}{c} & 3 & -4 \ 3 & -5 \ -2 \ 4 & -3 \ -2 \ 4 & -2 \ \end{array}$ | $\begin{bmatrix} -4 \\ -2 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ | 3
3
3
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0 | $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -2 & -1 \\ 0 & -1 \\ -1 & -1 \end{bmatrix}$ | $\begin{bmatrix} 1 & 1 \\ -2 & -1 \\ -1 & 1 \end{bmatrix}$ | $\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$ | 1 1 | | | | | Table IV B — Continued | | I Al | 1111 | 1 V | ъ- | | 1000 | nue | <u></u> | 1 | | | 1 | | | | |-----------
--|---|--|--|--|--|--|---|---|---|---|---|---|-----------------------------|----------| | | q-interval | x | 1 | q | q^2 | q^3 | q4 | <i>q</i> ⁵ | <i>q</i> ⁶ | <i>q</i> ⁷ | q8 | <i>q</i> 9 | q10 | q11 | q^{12} | | $H_1(9)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.824
0.824 to 0.844
0.844 to 0.857
0.857 to 0.869
0.869 to 0.885
0.896 to 0.899
0.899 to 1.000 | 1
2
3
3
3
3
4
4
5
5
9 | 9
17
17
18
19
20
21
22
23
23
23
23
24
25 | $\begin{array}{c} -15 \\ -14 \\ -9 \\ -10 \\ -12 \\ -14 \\ -16 \\ -17 \\ -19 \\ -18 \\ -17 \\ -17 \\ -19 \\ \end{array}$ | $ \begin{array}{r} -6 \\ -5 \\ -4 \\ -3 \\ -3 \\ -1 \\ -1 \end{array} $ | $ \begin{array}{r} -4 \\ -5 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ \end{array} $ | $ \begin{array}{c} 3 \\ 4 \\ 4 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \end{array} $ | $\begin{array}{c} -2 \\ -3 \\ -1 \\ -1 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$ | $egin{array}{c} 1 \\ -2 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array}$ | $\begin{matrix} 0 \\ -1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{matrix}$ | $ \begin{array}{c} -1 \\ 1 \\ 0 \\ 1 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ -1 \\ -1 \\ 0 \end{array} $ | $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ | | | | | $H_1(10)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.824
0.824 to 0.840
0.840 to 0.844
0.844 to 0.857
0.857 to 0.869
0.869 to 0.895
0.885 to 0.896
0.896 to 0.899-
0.904 to 1.000 | 1
2
2
3
3
3
3
4
4
5
5
5
5
5
6
10 | 10
19
19
19
20
21
22
24
25
26
26
26
26
27
28 | -17 -16 -10 -11 -13 -15 -18 -20 -20 -22 -21 -20 -21 -23 -23 | $^{-7}_{-6}$ | $\begin{array}{c} -5 \\ -6 \\ -2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1$ | $\begin{array}{c} 4\\ 5\\ 5\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\end{array}$ | $\begin{array}{c} -3 \\ -4 \\ -2 \\ -2 \\ -2 \\ -4 \\ -2 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$ | $\begin{array}{c} 2\\ 3\\ -2\\ 0\\ 0\\ 0\\ 0\\ -1\\ -1\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1\end{array}$ | $\begin{array}{c} -1 \\ -2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 1 \end{array}$ | $\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{array}$ | $\begin{array}{c} 1\\ -1\\ -1\\ -1\\ \end{array}$ $\begin{array}{c} -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1 \end{array}$ | -1 1 1 -1 -1 -1 1 2 | | | | $H_1(11)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.824
0.824 to 0.840
0.840 to 0.844
0.844 to 0.856
0.856 to 0.857
0.857 to 0.869
0.869 to 0.881
0.881 to 0.885
0.885 to 0.896
0.896 to 0.896
0.896 to 0.899
0.899 to 0.904
0.904 to 0.912
0.912 to 1.000 | 1
2
2
3
3
3
3
3
4
4
4
4
4
5
5
5
6
6
6
6
6
6
6
1
1 | 11
21
21
22
23
24
27
28
29
29
29
29
29
29
30
31
32
33 | -19 -18 -11 -12 -14 -16 -21 -23 -23 -25 -25 -24 -24 -24 -23 -25 -27 | 76 -7 -8 -7 -6 -4 -3 -1 -1 -1 -2 -2 0 -1 -2 | $\begin{array}{c} -6 \\ -7 \\ -2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ -2 \\ -1 \\ -1 \end{array}$ | 5
6
6
4
3
2
3
3
2
1
0
-2
-2
-2
-1
-1
-1 | $\begin{array}{r} -4 \\ -5 \\ -3 \\ -3 \\ -5 \\ -2 \\ -2 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \end{array}$ | $egin{array}{c} 3 \\ 4 \\ -2 \\ 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$ | $ \begin{array}{r} -22 \\ -33 \\ 31 \\ 11 \\ 11 \\ 12 \\ 33 \\ 22 \\ 1 \\ 00 \\ -1 \\ 00 \\ 0 \end{array} $ | $\begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ -1 \\ -1 \end{array}$ | $\begin{array}{c} 0 \\ -1 \\ -2 \\ -1 \end{array}$ $\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$ | $ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 2 \\ 0 \end{array} $ | 1
-1
1
1
1
1 | | Table IV B — Continued | | <i>q</i> -interval | x | 1 | q | q^2 | q^3 | q4 | q^5 | q^6 | q^7 | q 8 | <i>q</i> 9 | q^{10} | q^{11} | q12 | |-----------|--|---|---|--|-------|--|--|--|---|--|--
---|--|--|-------------------------------| | $H_1(12)$ | 0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.844
0.824 to 0.844
0.844 to 0.856
0.856 to 0.857
0.857 to 0.869
0.881 to 0.881
0.881 to 0.885
0.885 to 0.896
0.896 to 0.899
0.899 to 0.904
0.904 to 0.912 | 1
2
2
3
3
3
3
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6 | 12 23 23 23 24 25 26 30 31 31 32 32 32 32 32 32 32 33 34 35 | $\begin{array}{c} -21 \\ -20 \\ -12 \\ -13 \\ -15 \\ -17 \\ -24 \\ -26 \\ -28 \\ -28 \\ -28 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\$ | | $ \begin{bmatrix} -8 \\ -22 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 0 \\ 0 \\ -1 \\ -3 \\ -2 \\ \end{bmatrix} $ | $\begin{array}{c} -67753244320-3-22-1-1-1 \end{array}$ | $\begin{array}{c} -5 \\ -6 \\ -4 \\ -3 \\ -3 \\ -3 \\ -4 \\ -2 \\ -11 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$ | $\begin{array}{c} 4 \\ 5 \\ -2 \\ 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ \end{array}$ | $\begin{array}{c} -3 \\ -4 \\ 4 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \end{array}$ | $ \begin{array}{r} 3 \\ -1 \\ -2 \\ -2 \\ 1 \\ 1 \\ 1 \\ 0 \end{array} $ | $\begin{bmatrix} -2 \\ -2 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ $ | 0
1
2
1
1
1
-1
-1
-1
-1
-2
-2
-2 | $\begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ | -1
1
-1
-1
1
1 | | | 0.912 ⁻ to 0.912 ⁺
0.912 ⁺ to 0.919
0.919 to 1.000 | 7
7
12 | 35
36
37 | | | $ \begin{array}{r r} -2 \\ -1 \\ -1 \end{array} $ | $-1 \\ -1 \\ 0$ | $\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$ | 0 0 | 0
0
0 | $-1 \\ -1 \\ -1$ | $\begin{vmatrix} 0 \\ -1 \\ -1 \end{vmatrix}$ | 0 | 1
0 | 1 | The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$). ## Table IV C — Formulae for $G_1^*(m, n)$ and the Values of the Next Sample Size x for Certain G-Situations Expressed as Functions of q for n=2(1)12 and $q \ge 0.850$ When Procedure R_1 is Used The integer shown below q^y opposite $G_1^*(m,n)$ is the coefficient of q^y in the polynomial formula for $G_1^*(m,n)$. | n | m | <i>q</i> -interval | x | | | | | | G_1^* | (m,n) | | | | | | |---|-------------|---|--------|----------------------|------------------|--|--|------------------------|---|---|-----------------------|--------------|------------|-----|-------| | | "" | q-intervar | | 1 | q | q ² | q ³ | q ⁴ | <i>q</i> ⁵ | q ⁶ | q ⁷ | q8 | <i>q</i> 9 | q10 | q^1 | | 2 | 2 | 0.850 to 1.000 |) 1 | 2 | 1 | | | | | | | | | | | | 3 | 2 3 | 0.850 to 1.000
0.850 to 1.000 | | 4 4 | 1 2 | -1
1 | | | | | | | | | | | 4 | 2 4 | 0.850 to 1.000
0.850 to 1.000 | | 6 7 | 2 3 | -2 1 | -2 | | | | | | | | | | 5 | 2
3
5 | 0.850 to 1.000
0.850 to 1.000
0.850 to 1.000 | 1 | 9
9
10 | 2
3
3 | -4
1
1 | -2
-3
1 | -1
-2
1 | | | | | | | | | 6 | 2
3
6 | 0.850 to 1.000
0.850 to 1.000
0.850 to 1.000 |) 1 | 12
12
13 | 2
3
3 | $\begin{bmatrix} -6 \\ 1 \\ 2 \end{bmatrix}$ | $ \begin{array}{c c} -2 \\ -4 \\ 2 \end{array} $ | -1
-2
1 | -1
-2 | | | | | | | | 7 | 2
3
4 | 0.850 to 1.000
0.850 to 1.000
0.850 to 1.000 | 1 | 15
15
16 | 2
3
3 | $\begin{bmatrix} -8 \\ 2 \\ 2 \end{bmatrix}$ | $ \begin{array}{c c} -2 \\ -6 \\ 1 \end{array} $ | -1 -3 -5 | -1 -2 -3 | -1 -1 -2 | | | | | | | | 7 | 0.850 to 0.857
0.857 to 1.000 | | 16
16 | 3 4 | 3 | 2 2 | 1
1 | 1 | 1 | | | | | | | 8 | 2 | 0.850 to 0.869
0.869 to 1.000 | | 18
18 | 2 3 | -11
-11 | $-2 \\ -2$ | -1
-1 | -1
-2 | -1
-1 | 1 | | | | _ | | | 3 | 0.850 to 0.869
0.869 to 1.000 | | 18
18 | 3 | 2
2 | -9
-9 | -3
-3 | -1
-2 | -1
-1 | -1 | | | | | | | 4 | 0.850 to 0.869
0.869 to 1.000 | | 19
19 | 3
4 | 2
2 | 1
1 | -7
-7 | -3
-4 | $-2 \\ -2$ | -1 | | | | | | | 8 | 0.850 to 0.869
0.869 to 0.899
0.899 to 1.000 | - 3 | 19
19
20 | 4
5
5 | 3
3
3 | 2
2
2 | 1
1
1 | 1
0 | 1 | 2
1 | | | | | | 9 | 2 | 0.850 to 0.869
0.869 to 0.885
0.885 to 0.899
0.899 to 1.000 | 1
1 | 21
21
21
22 | 2
3
4
3 | -14
-14
-14
-14 | $ \begin{array}{r} -2 \\ -2 \\ -2 \\ -2 \\ \end{array} $ | -1
-1
-2
-2 | $ \begin{array}{rrr} -1 \\ -2 \\ -2 \\ -2 \end{array} $ | -1
-1
0
-1 | 1
0
0 | 1
1
-1 | | | | | | 3 | 0.850 to 0.869
0.869 to 0.885
0.885 to 0.899
0.899 ⁻ to 1.000 | 1 | 21
21
21
22 | 3
4
5
4 | 2
2
2
2 | -12
-12
-12
-12 | | $ \begin{array}{r} -1 \\ -2 \\ -2 \\ -2 \end{array} $ | $ \begin{array}{r} -2 \\ -2 \\ -1 \\ -2 \end{array} $ | $0 \\ -1 \\ -1 \\ -1$ | 1
1
-1 | | | | | | 4 | 0.850 to 0.869
0.869 to 0.885
0.885 to 0.899
0.899 ⁻ to 1.000 | | 22
22
22
23 | 3
4
5
4 | 2
2
2
2 | 1
1
1
1 | -9
-9
-10
-10 | -3
-4
-4
-4 | $ \begin{array}{r} -2 \\ -2 \\ -1 \\ -2 \end{array} $ | -1
-1
-1 | -2
-1 | | | | | | | | | | | | | | G_1^* | m,n) | | | | | | |----|----|--|-----|----------|-----|------------|------------|--|--|---|------------|----------|------------|----------|------------------------| | n | m | q-interval | x | 1 | q | q^2 | <i>q</i> ³ | q^4 | <i>q</i> ⁵ | q^6 | q^7 | q^8 | q^9 | q^{10} | <i>q</i> ¹¹ | | 9 | | 0.850 to 0.869 | 2 | 22 | 3 | 2 | 2 | 2 | -7 | -4 | -1 | | | | | | 9 | | 0.869 to 0.885 | 2 | 22 | 4 | 2 | 2 | 2 | -8 | -4 | -2 | | | | | | | 5 | 0.885 to 0.899 | 2 | 22 | 5 | 2 | 2 | 1 | -8 | -3 | -2 | -2 | | | | | | | 0.899 ⁻ to 1.000 | 2 | 23 | 4 | 2 | 2 | 1 | -8 | -4 | -2 | -1 | | | | | | | 0.850 to 0.869 | 3 | 22 | 4 | 3 | 2 | 2 | 2 | 1 | 2 | 2 | | | | | | | 0.869 to 0.881 | 3 | 22 | 5 | 3 | 2 | 2 | 1 | 1 | 1 | 2 | | | | | | 9 | 0.881 to 0.885 | 4 | 23 | 5 | 3 | 2 | 2 | 0 | 0 | 1 | 2 | | | | | | | 0.885 to 0.899- | 4 | 23 | 6 | 3 | 2 | 1 | 0 | 1 | 1 | | | | | | | | 0.899 ⁻ to 1.000 | 4 | 24 | 5 | 3 | 2 | 1 | 0 | 0 | 1 | 1 | | | | | 10 | | 0.850 to 0.857 | 1 | 24 | 2 | -17 | -2 | 0 | -1 | -1 | 1 | 1 | -1 | | | | | | 0.857 to 0.869 | 1 | 24 | 2 | -17 | -1 | -1 | -1 | -1 | 0 | 1 | | | | | | 2 | 0.869 to 0.885 | 1 | 24 | 3 | -17 | -2 | -1 | -2 | -1 | 0 | 1 | 1 | | | | | 2 | 0.885 to 0.896 | 1 | 24 | 4 | -17 | -2 | -2 | -2 | 0 | 0 | -1 | 1 | | | | | | 0.896 to 0.899- | 1 | 25 | 4 | -17 | -3 | -2 | -2 | 0 | 1 | -1 | -1 | | | | | | 0.899 ⁻ to 1.000 | 1 | 26 | 3 | -17 | -3 | -2 | -2 | -1 | 1 | 0 | -1 | | | | | | 0.850 to 0.857 | 1 | 24 | 3 | 2 | -15 | -1 | -2 | -2 | 1 | 1 | | | | | | | 0.857 to 0.869 | 1 | 24 | 3 | 2 | -14 | -2 | -2 | -2 | 0 | 1 | 1 | | | | | 3 | 0.869 to
0.885 | 1 | 24 | 4 | 2 | -14 | -2 | -3 | -2 | -1 | 1
-1 | 1
1 | | | | | | 0.885 to 0.896 | 1 | 24 | 5 | 2 2 | -14 - 15 | $-3 \\ -3$ | -3 -3 | $-1 \\ -1$ | -1
0 | -1
-1 | -1 | | 1 | | | | 0.896 to 0.899 ⁻
0.899 ⁻ to 1.000 | 1 1 | 25
26 | 5 4 | 2 | -15 | $-3 \\ -3$ | -3
-3 | $-1 \\ -2$ | 0 | 0 | -1 | 0.850 to 0.857 | 2 | 25 | 3 | 2 | 1 | -11 | -3 | -2 | | | 1 | | | | | | 0.857 to 0.869 | 2 | 25 | 3 | 2 2 | 2 2 | $-12 \\ -12$ | $-3 \\ -4$ | $ \begin{array}{c c} -2 \\ -2 \end{array} $ | $-1 \\ -2$ | 0 | 1
1 | | | | | 4 | 0.869 to 0.885
0.885 to 0.896 | 2 2 | 25
25 | 5 | 2 | 2 | -12 -13 | -4 | $-2 \\ -1$ | $-2 \\ -2$ | -2 | 1 | | | | | | 0.896 to 0.899 | 2 | 26 | 5 | 2 | 1 | -13 | -4 | -1 | -1 | -2 | -1 | | | | | | 0.899 ⁻ to 1.000 | 2 | 27 | 4 | 2 | 1 | -13 | -4 | -2 | -1 | -1 | -1 | | | | | | 0.850 to 0.857 | 2 | 25 | 3 | 2 | 2 | 3 | -10 | -4 | 0 | 0 | -1 | | | | | | 0.857 to 0.869 | 2 | 25 | 3 | 2 | 3 | 2 | -10 | -4 | -1 | | | | | | | | 0.869 to 0.885 | 2 | 25 | 4 | 2 | 3 | 2 | -11 | -4 | -2 | | | | | | | 5 | 0.885 to 0.896 | 2 | 25 | 5 | 2 | 3 | 1 | -11 | -3 | -2 | -2 | | | | | | | 0.896 to 0.899 | 2 | 26 | 5 | 2 | 2 | 1 | -11 | -3 | -1 | -2 | $-2 \\ -2$ | | | | | | 0.899 ⁻ to 1.000 | 2 | 27 | 4 | 2 | 2 | 1 | -11 | -4 | -1 | -1 | -2 | | | | | | 0.850 to 0.857 | 2 | 25 | 3 | 3 | 2 | 3 | 1 | -8 | -2 | -1 | -1 | | | | | | 0.857 to 0.869 | 2 | 25 | 3 | 3 | 3 | 2 2 | 0 | $-8 \\ -8$ | $-3 \\ -4$ | -1
-1 | | | | | | 6 | 0.869 to 0.885 | 2 2 | 25
25 | 5 | 3 | 3 | 1 | 0 | -8
-7 | -4 | -3 | | | | | | | 0.885 to 0.896
0.896 to 0.899 | 2 | 26 | 5 | 3 | 2 | 1 | 0 | -7 | -3 | -3 | -2 | | | | | | 0.899 ⁻ to 1.000 | 2 | 27 | 4 | 3 | 2 | 1 | 0 | -8 | -3 | -2 | -2 | | | | | | 0.850 to 0.857 | 3 | 25 | 4 | 3 | 2 | 3 | 2 | 1 | 3 | 3 | 2 | | | | | | 0.857 to 0.869 | 4 | 26 | 4 | 3 | 3 | 2 | 1 | ı | 2 | 2 | 2 | | 1 | | | | 0.869 to 0.885 | 4 | 26 | 5 | 3 | 3 | 2 | 0 | 1 | 1 | 2 | 2 | | 1 | | | 10 | 0.885 to 0.896 | 4 | 26 | 6 | 3 | 3 | 1 | 0 | 2 | 1 | 0 | 2 | | | | | | 0.896 to 0.899 | 4 | 27 | 6 | 3 | 2 | 1 | 0 | 2 | 2 | | | | | | | | 0.899 ⁻ to 1.000 | 4 | 28 | 5 | 3 | 2 | 1 | 0 | 1 | 2 | 1 | | | | | 11 | | 0.850 to 0.857 | 1 | 27 | 2 | -20 | -1 | 0 | -1 | -2 | 1 | 2 | -1 | -1 | | | | | 0.857 to 0.869 | 1 | 27 | 2 | -20 | 0 | -1 | -1 | -2 | 0 | 2 | 0 | -1 | | | | | 0.869 to 0.885 | 1 | 27 | 3 | -20 | -1 | -1 | -2 | -2 | 0 | 2 | 1 | -1 | | | | 2 | 0.885 to 0.896 | 1 | 27 | 4 | -20 | -2 | $\begin{vmatrix} -2 \\ -2 \end{vmatrix}$ | $\begin{vmatrix} -2 \\ -2 \end{vmatrix}$ | 0 | 0 | -1
-1 | 1
-1 | 1 1 | | | | | 0.896 to 0.899 | | 28 | 4 | -20
20 | -3 -3 | -2 -2 | -2 -2 | -1 | 1 | 0 | -1
-1 | 1 | | | | | 0.899 ⁻ to 0.904
0.904 to 1.000 | 1 1 | 29
30 | 3 | -20
-21 | -3
-3 | -2 -2 | -2 -2 | 0 | 1 | 0 | -1
-1 | -1 | | | | 1 | 0.001 10 1.000 | 1 | 1 30 | 1 | 1 | 1 | 1 | 1 - | 1 | - | 1 | 1 | 1 | | Table IV C — Continued | _ | _ | 1 | 1 | 1 | | | | | | a.cu | | | | _ | | |-----|----|--|-----|----------|--------|--------------|---|--|------------------|------------|--|---|--|------------|----------| | n | m | q-interval | x | | | | | | G ₁ * | (m,n) | | | | | | | | | - q-intervar | | 1 | q | q^2 | q ³ | q ⁴ | q ⁵ | q 6 | q ⁷ | q^8 | q 9 | q^{10} | q11 | | 11 | | 0.850 to 0.857
0.857 to 0.869 | 1 | 27
27 | 3 | 2 2 | -17
-16 | -1
-2 | -2
-2 | -2
-2 | 1 0 | 1 | 0 | -1
-1 | | | | | 0.869 to 0.885 | 1 | 27 | 4 | 2 | -16 | -3 | -3 | -2 | -1 | 2 | 1 | | | | | | 0.885 to 0.896 | 1 | 27 | 5 | 2 | -16 | -4 | -3 | -1 | -1 | 0 | 1 | | | | | 3 | 0.896 to 0.899
0.899 to 0.904 | 1 1 | 28
29 | 5 4 | 3 | -17 -18 | $\begin{vmatrix} -4 \\ -4 \end{vmatrix}$ | -3 -3 | -1 -2 | 0 | 0 | $\begin{vmatrix} -1 \\ -1 \end{vmatrix}$ | ١, | | | | | 0.904 to 1.000 | 1 | 30 | 4 | 2 | -18 | -4 | -3 | -1 | 0 | 0 | -1 | 1
-1 | | | | | 0.850 to 0.857 | 2 | 28 | 3 | 2 | 2 | -14 | -3 | -3 | 0 | 1 | | | | | | | 0.857 to 0.869
0.869 to 0.885 | 2 2 | 28 28 | 3 4 | 2 2 | 3 | -15 | -3 | -3 | -1 | 1 | 1 | | | | | 4 | 0.885 to 0.896 | 2 | 28 | 5 | 2 | 3 3 | -15 -16 | -4
-4 | -3 -2 | $\begin{vmatrix} -2 \\ -2 \end{vmatrix}$ | 1 -1 | 1 1 | | | | | 1 | 0.896 to 0.899 | 2 | 29 | 5 | 2 | 2 | -16 | -4 | -2 | -1 | -1 | -1 | | | | | | 0.899 ⁻ to 0.904 | 2 | 30 | 4 | 3 | 1 | -16 | -4 | -3 | -1 | -1 | -1 | 1 | | | | | 0.904 to 1.000 | 2 | 31 | 4 | 2 | 1 | -16 | -4 | -2 | -1 | -1 | -1 | -1 | | | | | 0.850 to 0.857 | 2 2 | 28 | 3 | 2 | 3 | 3 | -13 | -4 | 0 | 0 | -1 | | | | | | 0.857 to 0.869
0.869 to 0.885 | 2 | 28 | 3 4 | 2 2 | 4 | 2 2 | -13 -14 | -4 -4 | $\begin{vmatrix} -1 \\ -2 \end{vmatrix}$ | | | | | | | 5 | 0.885 to 0.896 | 2 | 28 | 5 | 2 | 4 | 1 | -14 | -3 | -2 | -2 | | | | | | | 0.896 to 0.899 | 2 | 29 | 5 | 2 | 3 | 1 | -14 | -3 | -1 | -1 | -2 | -2 | | | | | 0.899 ⁻ to 0.904 | 2 | 30 | 4 | 2 | 3 | 1 | -14 | -4 | -1 | -1 | -2 | | | | | | 0.904 to 1.000 | 2 | 31 | 4 | 1 | 3 | 1 | -14 | -3 | -1 | -1 | -2 | -2 | | | | | 0.850 to 0.857 | 2 | 28 | 3 | 3 | 3 | 3 | 1 | -11 | -2 | 0 | -1 | -1 | | | | | 0.857 to 0.869 | 2 2 | 28 | 3 | 3 | 4 | 2 | 1 | -11 | -3 | 0 | 0 | -1 | | | | 6 | 0.869 to 0.885
0.885 to 0.896 | 2 | 28
28 | 5 | 3 | 4 4 | 2
1 | 0 | -11
-10 | $\begin{vmatrix} -4 \\ -4 \end{vmatrix}$ | $\begin{vmatrix} 0 \\ -2 \end{vmatrix}$ | 0 | -1
-1 | | | | | 0.896 to 0.899 | 2 | 29 | 5 | 3 | 3 | 1 | 0 | -10 | -3 | $-\frac{2}{-2}$ | -2 | -1
-1 | | | | | 0.899- to 0.904 | 2 | 30 | 4 | 4 | 2 | 1 | 0 | -11 | -3 | -2 | 2 | _ | | | | | 0.904 to 1.000 | 2 | 31 | 4 | 3 | 2 | 1 | 0 | -10 | -3 | -2 | -2 | -2 | | | | | 0.850 to 0.857 | 3 | 28 | 4 | 3 | 3 | 4 | 2 | 1 | 3 | 3 | 2 | 2 | | | | | 0.857 to 0.869
0.869 to 0.885 | 4 | 29
29 | 4
5 | 3 | 4 4 | 2 2 | 2 | 1 | 2 | 3 | 2 | 1 | | | | 11 | 0.885 to 0.896 | 4 | 29 | 6 | 3 | 4 | 1 | 1 | 1 2 | 1 1 | 3 | 2 2 | 1 1 | | | | | 0.896 to 0.899 | 4 | 30 | 6 | 3 | 3 | 1 | 1 | 2 | 2 | 1 | ő | i | | | | | 0.899- to 0.904 | 4 | 31 | 5 | 4 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | | | | | 0.904 to 1.000 | 4 | 32 | 5 | 3 | 2 | 1 | 1 | 2 | 2 | 1 | | | | | 12 | | 0.850 to 0.856
0.856 to 0.857 | 1 | 30
30 | 2 2 | -23
-23 | -1
0 | 1
0 | -1
-1 | -3
-3 | 1
2 | 2
2 | $-1 \\ 2$ | $-1 \\ -2$ | 1
-1 | | | | 0.857 to 0.869 | 1 | 30 | 2 | -23 | 1 | -1 | -2 | -3
-2 | 1 | 2 | ő | $-2 \\ -1$ | -1 | | | | 0.869 to 0.881 | 1 | 30 | 3 | -23 | 0 | -1 | -3 | -2 | 1 | 2 | 1 | -1 | -1 | | | 2 | 0.881 to 0.885 | 1 | 30 | 3 | -22 | -1 | -1 | -3 | -2 | 0 | 2 | 2 | -1 | -1 | | | | 0.885 to 0.896
0.896 to 0.899 | 1 1 | 30 | 4 | $-22 \\ -23$ | $\begin{bmatrix} -2 \\ -3 \end{bmatrix}$ | $-2 \\ -2$ | $-3 \\ -2$ | 0 | 0 | -1 | 2 | 1 | -1 | | | | 0.899 to 0.904 | 1 | 32 | 3 | -23 -23 | -3 | $-2 \\ -2$ | -2 -2 | 0
-1 | 1 1 | -1
0 | $-1 \\ -1$ | 1
1 | 1 | | | | 0.904 to 0.912- | 1 | 33 | 3 | -24 | -3 | $-\frac{1}{2}$ | -2 | 0 | 1 | 0 | -1 | -1 | 1 | | | | 0.912- to 1.000 | 1 | 34 | 3 | -25 | -3 | -2 | -1 | 0 | 1 | 0 | -2 | -1 | | | | | 0.850 to 0.856 | 1 | 30 | 3 | 2 | -20 | 0 | -2 | -2 | 0 | 1 | 1 | -1 | | | | | 0.856 to 0.857
0.857 to 0.869 | 1 1 | 30 | 3 | 2 2 | -19 | -1 | -2 | -2 | 1 | 1 | 0 | -1 | -1 | | | | 0.857 to 0.869
0.869 to 0.881 | 1 | 30
30 | 3 4 | 2 | $-18 \\ -18$ | $-2 \\ -3$ | $-2 \\ -3$ | $-2 \\ -2$ | 0
-1 | 1 2 | 1
1 | -1
0 | -1
-1 | | | | 0.881 to 0.885 | 1 | 30 | 4 | 3 | -19 | -3 | -3
-3 | $-2 \\ -2$ | -1
-2 | 2 | 2 | 0 | -1
-1 | | | 3 | 0.885 to 0.896 | 1 | 30 | 5 | 3 | -19 | -5 | -3 | -1 | -1 | 0 | 1 | 0 | 1 | | | | 0.896 to 0.899 | 1 | 31 | 5 | 3 | -20 | -5 | -3 | -1 | 0 | 0 | -1 | 0 | 1 | | | | 0.899 ⁻ to 0.904
0.904 to 0.912 ⁻ | 1 1 | 32 | 4 | 4 3 | $ \begin{array}{c c} -22 \\ -22 \end{array} $ | $-4 \\ -4$ | -3
-3 | $-2 \\ -1$ | 0 | 0 | 0 | 1
-1 | | | | | 0.912 to 1.000 | 1 | 34 | 4 | 2 | -22
-22 | -4
-4 | -3
-2 | -1
-1 | 0 | 0 | -1 | -1
-1 | -1 | | - 1 | | | 1 | | 1 | - | | - | - 1 | - | | | * | • | 1 | Table IV C — Continued | | | | | 1 | AD. | LE I | , 0 | - 00 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | aca | | | | | | | | |----|----|---|---|--|--|--|---|---|---|--|---|---|--|--|--|--|--| | | | | | | G1*(m,n) | | | | | | | | | | | | | | n | m | q-interval | x | 1 | q | q^2 | q ³ | q ⁴ | q ⁵ | <i>q</i> ⁶ | q^7 | <i>q</i> 8 | <i>q</i> ⁹ | q10 | q11 | | | | 12 | 4 | 0.850 to 0.856
0.856 to 0.857
0.857 to 0.869
0.869 to 0.881
0.881 to 0.885
0.885 to 0.896
0.896 to 0.899-
0.899 to 0.904
0.904 to 0.912-
0.912- to 1.000 |
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 31
31
31
31
31
31
32
33
34
35 | 3
3
4
4
5
5
4
4 | 2
2
2
2
3
3
3
4
4
3 | 2
3
4
4
3
3
2
1
1 | -16
-17
-18
-18
-18
-19
-19
-19
-19 | -3
-3
-5
-5
-5
-5
-5
-5
-4 | -3
-3
-3
-3
-2
-2
-2
-2 | 0
1
0
-1
-2
-2
-1
-1
-1 | 1
1
1
1
-1
-1
-1
-1 | $ \begin{array}{cccc} -1 & & & \\ 0 & & & \\ 1 & & & \\ 2 & & & \\ 0 & & & \\ 0 & & & \\ -1 & & & \\ \end{array} $ | 0
0
1
-1
-1 | -1
-1 | | | | | 6 | 0.850 to 0.856
0.856 to 0.857
0.857 to 0.869
0.869 to 0.881
0.881 to 0.885
0.895 to 0.896
0.896 to 0.899
0.890 to 0.904
0.904 to 0.912
0.912 to 1.000 | 2
2
2
2
2
2
2
2
2
2
2
2
2 | 31
31
31
31
31
31
32
33
34
35 | 3
3
4
4
5
5
4
4
4 | 3
3
3
4
4
4
5
4
3 | 3 4 5 5 4 4 4 3 2 2 2 2 | 4
3
2
2
2
1
1
1
1 | 1
1
1
0
0
0
0
0
0 | -14
-14
-14
-14
-13
-13
-14
-13 | $ \begin{array}{rrr} -2 \\ -1 \\ -2 \\ -3 \\ -4 \\ -4 \\ -3 \\ -3 \\ -3 \\ -3 \end{array} $ | 0
0
0
0
0
-2
-2
-2
-2
-2 | $ \begin{array}{c c} -1 \\ -2 \\ -1 \\ -1 \\ 0 \\ 0 \\ -2 \\ -2 \\ -2 \\ -3 \\ \end{array} $ | $ \begin{array}{rrr} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -2 \end{array} $ | | | | | | 7 | 0.850 to 0.856
0.856 to 0.857
0.857 to 0.869
0.869 to 0.881
0.881 to 0.885
0.885 to 0.896
0.896 to 0.904
0.899 to 0.904
0.904 to 0.912-
0.912- to 1.000 | 2
2
3
3
3
3
3
3
3
3 | 31
31
31
31
31
31
32
33
34
35 | 3
3
4
5
6
6
5
5
5 | 3
3
3
4
4
4
5
4
3 | 3
4
5
5
4
4
4
3
2
2
2 | 4
3
2
2
2
1
1
1
1 | 2
2
1
0
0
0
0
0
0 | 1
1
0
0
0
1
1
1
0 | -9 -8 -9 -10 -11 -11 -10 -10 -10 | $\begin{array}{c c} -2 \\ -2 \\ -2 \\ -2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \end{array}$ | $\begin{array}{c c} -1 \\ -2 \\ -1 \\ -1 \\ 0 \\ 0 \\ -2 \\ -2 \\ -2 \\ -3 \end{array}$ | $ \begin{array}{cccc} -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ 0 & & & \\ -2 & & & \\ -2 & & & \\ \end{array} $ | $\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $ | | | | | 12 | 0.850 to 0.856
0.856 to 0.857
0.857 to 0.869
0.869 to 0.881
0.881 to 0.885
0.885 to 0.896
0.896 to 0.904
0.904 to 0.912-
0.912- to 1.000 | 4
4
4
4
4
4
4
4
4 | 32
32
32
32
32
32
32
33
34
35
36 | 4
4
4
5
5
6
6
5
5
5 | 3
3
3
4
4
4
4
5
4
3 | 3 4 5 5 4 4 4 3 2 2 2 2 2 | 4
3
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 2
2
2
1
1
1
1
1
1
1
2 | 1
1
1
1
1
2
2
1
2
2 | 3 4 3 2 1 1 2 2 2 2 2 2 | 3
3
3
3
1
1
1
1 | 2
1
2
2
3
3
1
1 | 2
2
2
2
2
2
2
2
2
2 | 3
2
2
2
2
2
2
2
1
1 | | | The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$). Table V A — Expected Number of Tests Required and Size x of the Next Sample To Be Taken for Any $G_1(m,n)$ and Any $H_1(n)$ Situation When Procedure R_1 is Used and q=0.90 | | | | | | | | m,n) | ——— | <u>q – 0.</u> | | |--|--|--|--|---|--|--|--|---|--|---| | 11 | $H_1(n)$ | x | m = 2 $x = 1$ | m = 3 $x = 1$ | m = 4 $x = 2$ | m = 5 $x = 2$ | | m = 7 $x = 3$ | m = 8 $x = 4$ | $ \begin{array}{c} m = 9 \\ x = 4 \end{array} $ | | 1
2
3
4
5
6
7
8
9 | 1.000
1.290
1.661
2.051
2.490
2.943
3.414
3.904
4.395
4.872 | 1
2
3
4
5
6
7
8
9
6 | 1.526
2.153
2.485
2.866
3.282
3.728
4.191
4.672
5.163 | 2.439
2.971
3.325
3.727
4.157
4.613
5.085
5.570 | 3.056
3.547
3.925
4.343
4.784
5.250
5.728 | 3.637
4.115
4.512
4.943
5.396
5.868 | 4.148
4.621
5.033
5.476
5.938 | 4.628
5.100
5.528
5.980 | 5.100
5.575
6.014 | 5.543
6.021 | | 11
12
13
14
15
16
17
18
19
20 | 5.327
5.790
6.261
6.732
7.213
7.695
8.161
8.629
9.100
9.572 | 6
6
7
7
7
6
6
7 | 5.646
6.111
6.570
7.037
7.509
7.985
8.467
8.940
9.407
9.877 | 6.056
6.528
6.993
7.456
7.925
8.400
8.878
9.354
9.825
10.294 | 6.210
6.687
7.157
7.623
8.089
8.561
9.038
9.513
9.986
10.458 | 6.346
6.821
7.294
7.765
8.232
8.702
9.176
9.651
10.124
10.596 | 6.411
6.883
7.356
7.829
8.300
8.770
9.242
9.715
10.188
10.660 | $\begin{array}{c} 6.445 \\ 6.914 \\ 7.385 \\ 7.857 \\ 8.330 \\ 8.802 \\ 9.275 \\ 9.746 \\ 10.218 \\ 10.690 \end{array}$ | 6.470
6.933
7.401
7.872
8.345
8.819
9.293
9.764
10.235
10.706 | 6.466
6.922
7.385
7.853
8.324
8.798
9.273
9.746
10.217
10.687 | | 21
22
23
24
25
26
27
28
29
30 | 10.044
10.520
10.996
11.466
11.937
12.408
12.881
13.353
13.827
14.301 | 7
7
6
6
7
7
7
7 | 10.348
10.820
11.295
11.770
12.243
12.714
13.185
13.657
14.129
14.603 | 10.764
11.236
11.709
12.184
12.658
13.130
13.601
14.073
14.545
15.018 | 10.927
11.398
11.871
12.345
12.819
13.292
13.763
14.235
14.707
15.179 | 11.068
11.538
12.010
12.484
12.957
13.430
13.902
14.374
14.846
15.319 | 11.133
11.605
12.076
12.549
13.022
13.495
13.967
14.440
14.912
15.384 | 11.163
11.635
12.108
12.580
13.052
13.525
13.997
14.470
14.943
15.415 | 11.179
11.651
12.124
12.597
13.069
13.541
14.014
14.486
14.959
15.431 | 11.159
11.632
12.105
12.578
13.051
13.522
13.994
14.467
14.939
15.412 | | 31
32
33
34
35
36
37
38
39
40 | 14.773
15.244
15.717
16.189
16.661
17.135
17.608
18.080
18.552
19.024 | 7
7
7
7
7
7
7 | 15.077
15.549
16.021
16.493
16.965
17.438
17.910
18.384
18.856
19.328 | 15.491
15.965
16.437
16.909
17.381
17.853
18.326
18.799
19.272
19.744 | 15.653
16.126
16.598
17.071
17.543
18.015
18.487
18.960
19.433
19.906 | 15.792
16.264
16.737
17.210
17.682
18.154
18.626
19.099
19.572
20.044 | 15.857
16.329
16.802
17.275
17.747
18.219
18.692
19.164
19.637
20.110 | 15.888
16.360
16.833
17.305
17.778
18.250
18.723
19.195
19.668
20.140 | 15.904
16.377
16.849
17.321
17.794
18.266
18.739
19.212
19.684
20.157 | 15.885
16.358
16.830
17.302
17.775
18.247
18.720
19.192
19.665
20.137 | | 41
42
43
44
45
46
47
48
49
50 | 19.497
19.969
20.442
20.915
21.387
21.860
22.332
22.805
23.277
23.750 | 7
7
7
7
7
7
7 | 19.801
20.273
20.745
21.218
21.691
22.164
22.636
23.108
23.581
24.053 | $\begin{array}{c} 20.216 \\ 20.688 \\ 21.161 \\ 21.634 \\ 22.106 \\ 22.579 \\ 23.051 \\ 23.524 \\ 23.996 \\ 24.469 \end{array}$ | 20.378
20.850
21.323
21.795
22.268
22.740
23.213
23.685
24.158
24.630 | 20.517
20.989
21.462
21.934
22.407
22.879
23.352
23.825
24.297
24.769 | 20.582
21.055
21.527
21.999
22.472
22.945
23.417
23.890
24.362
24.835 | 20.613
21.085
21.558
22.030
22.503
22.975
23.448
23.920
24.393
24.865 | 20.629
21.102
21.574
22.047
22.519
22.992
23.464
23.937
24.409
24.882 | $\begin{array}{c} 20.610 \\ 21.082 \\ 21.555 \\ 22.027 \\ 22.500 \\ 22.972 \\ 23.445 \\ 23.917 \\ 24.390 \\ 24.862 \end{array}$ | Table V A — Continued | | | | | | | $G_1(n)$ | n,n) | | | | |--|--|---|--
--|--|--|--|--|--|--| | n | $H_1(n)$ | x | m = 2 $x = 1$ | m = 3 $x = 1$ | m = 4 $x = 2$ | m = 5 $x = 2$ | m = 6 $x = 2$ | m = 7 $x = 3$ | m = 8 $x = 4$ | m = 9 $x = 4$ | | 51
52
53
54
55
56
57
58 | 24.222
24.695
25.167
25.640
26.112
26.585
27.057
27.530
28.002 | 7
7
7
7
7
7
7 | 24.526
24.998
25.471
25.943
26.416
26.888
27.361
27.833
28.306 | 24.941
25.414
25.886
26.359
26.831
27.304
27.776
28.249
28.721
29.194 | 25.103
25.575
26.048
26.521
26.993
27.465
27.938
28.410
28.883
29.356 | 25.242
25.714
26.187
26.660
27.132
27.605
28.077
28.550
29.022
29.495 | 25.307
25.780
26.252
26.725
27.197
27.670
28.142
28.615
29.087
29.560 | 25.338
25.810
26.283
26.755
27.228
27.700
28.173
28.645
29.118
29.590 | 25.354
25.827
26.299
26.772
27.244
27.717
28.189
28.662
29.134
29.607 | 25.335
25.807
26.280
26.752
27.225
27.697
28.170
28.643
29.115
29.588 | | 60
61
62
63
64
65
66
67
68
69
70 | 28.475
28.947
29.420
29.892
30.365
30.837
31.310
31.782
32.255
32.727
33.200 | 7 | 28.779
29.251
29.723
30.196
30.668
31.141
31.614
32.086
32.559
33.031
33.504 | 29.194
29.666
30.139
30.611
31.084
31.556
32.029
32.502
32.974
33.446
33.919 | 29.828
30.301
30.773
31.246
31.718
32.191
32.663
33.136
33.608
34.081 | 29.967
30.440
30.912
31.385
31.857
32.330
32.802
33.275
33.747
34.220 | 30.032
30.505
30.977
31.450
31.922
32.395 | 30.063
30.535
31.008
31.480
31.953
32.425
32.898
33.370
33.843
34.316 | 30.079
30.552
31.024
31.497
31.969
32.442
32.914
33.387
33.859
34.332 | 30.060
30.533
31.005
31.478
31.950
32.423
32.895
33.368
33.840
34.313 | | 71
72
73
74
75
76
77
78
79
80 | 33.672
34.145
34.617
35.090
35.562
36.035
36.507
36.980
37.453
37.925 | 7
7
7
7
7
7
7
7 | 33.976
34.449
34.921
35.394
35.866
36.339
36.811
37.284
37.756
38.229 | 34.392
34.864
35.337
35.809
36.282
36.754
37.227
37.699
38.172
38.644 | 38.333 | 34.692
35.165
35.637
36.110
36.582
37.055
37.527
38.000
38.472
38.945 | 35.230
35.702
36.175
36.647
37.120
37.592
38.065
38.537 | 34.788
35.261
35.733
36.206
36.678
37.151
37.623
38.096
38.568
39.041 | | 34.785
35.258
35.730
36.203
36.675
37.148
37.620
38.093
38.565
39.038 | | 81
82
83
84
85
86
87
88
89 | 38.398
38.870
39.343
39.815
40.288
40.760
41.233
41.705
42.178
42.650 | 7
7
7
7
7
7
7
7 | 38.701
39.174
39.646
40.119
40.591
41.064
41.536
42.009
42.481
42.954 | 39.117
39.589
40.062
40.534
41.007
41.479
41.952
42.424
42.897
43.369 | 40.223
40.696
41.168
41.641
42.113
42.586
43.058 | $\begin{array}{c} 41.780 \\ 42.252 \\ 42.725 \end{array}$ | 39.955
2 40.427
5 40.900
41.373
0 41.845
2 42.318
6 42.790
43.263 | 39.513
39.986
40.458
40.931
41.403
41.876
42.348
42.821
43.293
43.766 | 40.002
40.475
40.947
41.420
41.892
42.365
42.837
43.310 | 40.455
40.928
41.400
41.873
42.345
42.818
43.290 | | 91
92
93
94
95
96
97
98
99 | 43.123
43.595
44.068
44.540
45.013
45.485
45.958
46.430
46.903
47.375 | 7
7
7
7
7
7
7
7 | 43.426
43.899
44.371
44.844
45.316
45.789
46.261
46.734
47.206
47.679 | 44.787
45.259
45.732
46.204
46.677
47.149
47.622 | 44.476
44.948
45.421
45.893
46.366
46.838
947.311
247.784 | 44.618
45.087
45.560
46.032
46.508
46.978
47.450
47.928 | 44.680
7 45.153
9 45.625
2 46.098
5 46.570
8 47.043
9 47.515
8 47.988 | 44.711
45.183
45.656
46.128
46.601
47.073
47.546
48.018 | 44.727
45.200
645.672
846.145
46.617
847.090
647.562
848.035 | 44.708
45.180
45.653
46.125
46.598
47.070
47.543
48.016 | Table V B—Expected Number of Tests Required and Size x of the Next Sample to be Taken for Any G(m,n) and Any $H_1(n)$ Situation when Procedure R_1 is Used and q=0.95 | 1 | 8 12 | | 65 | 26
01
01
78
39
39
07
67
67 | |---------|---------------------------------------|--|--|--| | | # # | | 7.465
7.757 | 8.026
8.301
8.578
8.858
9.139
9.707
9.993
10.280 | | | - × × | | | | | | # # # # # # # # # # # # # # # # # # # | | 7.214
7.504
7.772 | 8.046
8.323
8.603
8.884
9.167
9.451
10.024
10.311 | | | 8 27 | | | 8.065
8.345
8.626
8.626
8.909
9.194
9.480
9.766
9.766
10.053
10.341
10.629
10.629
10.629
10.629 | | | # # | | 6.961
7.251
7.516
7.788 | 8.065
8.345
8.626
8.909
9.194
9.480
9.766
10.053
10.341 | | | 16 m
7 x | 1 | | 88888888888 | | | н п | | 6.704
6.993
7.255
7.524
7.800 | . 079
. 361
. 644
. 929
. 215
. 501
. 788
. 076
. 364 | | | 15 17 3 | 1 | | 8 .097 8 .090 8 .079 8 .089 8 .381 8 .382 8 .374 8 .361 8 8 .669 8 .659 8 .644 8 .929 8 .924 9 .232 9 .215 9 9 .819 9 .806 9 .788 9 9 .819 9 .806 9 .788 9 9 .810 .0710 .094 10 .076 11 10 .633 10 .652 10 .652 10 .652 10 | | | 11 11 | | 6.443
6.732
6.990
7.257
7.530 | .090
.374
.945
.945
.945
.094
.094 | | | # # | | | 88888666000 | | | = 14
= 6 | | 6.179
6.467
6.721
6.985
7.256
7.532
7.813 | .097
.382
.382
.956
.956
.243
.531
.531
.107
.395 | | | # × | | | 888866600 | | | = 13 | | 5.913
6.201
6.451
6.712
6.979
7.253
7.815 | 110
690
690
690
690 | | | # ** | | | 888889999 | | | = 12 | | 5.643
5.932
6.178
6.435
6.699
6.971
7.247
7.528 | 102
391
679
968
257
257
545
833
121
408 | | | # 18 | | | 88889999555 | | | 11 = 4 | | 5.368
5.657
5.899
6.152
6.413
6.681
7.234
7.518 | 8.096 8.102
8.386 8.391
8.675 8.679
8.964 8.968
9.253 9.257
9.542 9.545
9.829 9.833
10.11710.1211
10.40310.4081 | | n,n) | # # # | | | 0.00 | | G1(m,n) | 10 4 = | 5.082 | 5.373
5.850
6.116
6.382
6.653
6.930
7.211
7.498 | 8.078
8.369
8.659
8.949
8.949
9.238
9.526
9.526
10.10010
10.386
10.386 | | | # # x | 5.0 | 7776665777 | 888866655 | | | 6.4 | 4.780
5.074 | 5.306
5.550
5.804
6.066
6.334
6.608
6.888
7.173
7.461 | 17 7.985 8.044 8.078 8.06 8.277 8.336 8.369 8.18 8.568 8.627 8.659 8.19 9.146 9.205 9.238 9.149 9.205 9.238 9.100 9.718 9.779 9.813 9.10.286 10.349 10.349 10.349 10.571 10.634 10.671 10. | | | # # # # # # # # # # # # # # # # # # # | 4.7.0 | 0.0000000000000000000000000000000000000 | 8888866666 | | | ∞ 4 | 4.455
4.753
4.978 | 5.218
5.467
5.726
5.991
6.262
6.540
6.822
7.109
7.398 | 985
277
568
858
858
146
432
718
002
286
571 | | | # # | 4.4.4. | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | 7.88.88.25.90.00.00.00.00.00.00.00.00.00.00.00.00. | | | 1- m | 50
57
57
08 | 52
52
52
52
53
53
54
54
55
55 | 7.947
8.240
8.531
8.820
9.107
9.392
9.676
9.959
110.243
10.530 | | | # # | 4.150
4.457
4.675
4.908 | 5.153
5.409
5.939
6.214
6.494
6.779
7.067
7.358 | 7.947
8.240
8.531
8.820
9.107
9.392
9.676
9.959
0.243 | | | 9 7 | | | | | | # # | 3.810
4.130
4.341
4.568
4.808 | 5.059
5.318
5.583
5.855
6.133
6.416
6.702
6.992
7.285 | 7.876
8.169
8.460
8.747
9.033
9.316
9.598
10.167 | | | 20.01 | | | 148
30
30
31
34
11
11 | | | # # x | 3.409
3.749
3.953
4.175
4.655 | 4.909
5.171
5.171
5.716
5.997
6.281
6.569
6.861
7.155 | 7.748
8.330
8.330
8.616
8.899
9.181
9.464
9.748 | | | 4.61 | 8883588 | | | | | # # # # # # # # # # # # # # # # # # # | 2.898
3.268
3.462
3.679
4.148 | 4.656
4.923
5.196
5.474
5.756
6.042
6.332
6.626
7.219 | 7.516
7.808
8.095
8.095
8.659
8.941
9.225
9.510
9.796 | | | 2 | | | | | | # # |
2.385
2.988
2.998
3.206
3.430
4.164 | 4.427
4.955
4.975
5.254
5.258
5.826
6.118
6.414
6.710 | 7.305
7.595
7.595
7.879
8.159
8.723
9.008
9.293
9.581 | | | 2 " " | | | 88888804408 | | | | 1.513
2.076
2.246
2.244
2.657
2.893
3.134
3.379 | 3.907
4.180
4.180
5.025
5.025
5.316
5.906
6.203 | 6.798
7.083
7.363
7.643
7.926
8.210
8.494
8.781
9.069
9.358 | | | # # # | 19946919888 | | 88888888888888888888888888888888888888 | | | | | 3.315111
3.594121
3.878132
4.16614
4.45815
5.05117
5.64819
5.64819 | 220 12
2. 499 12
2. 699 12
2. 064 13
3. 648 13
6. 633 13
921 14
2. 210 14
3. 500 14 | | | $H_1(n)$ | 1.000
1.148
1.340
1.538
1.771
2.009
2.252
2.499
2.767
3.039 | 88844477777 | 6.220
6.499
6.780
7.064
7.348
7.921
8.210
8.500
8.791 | | - | | 10847001 | 111
112
113
114
114
115
116
118
118
118
118
118
118
118
118
118 | 320 22 25 25 25 25 25 25 25 25 25 25 25 25 | | 1 | | - | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Table V B—Continued | | | ro488808980 | F480%F648E | 0941073810 | |-------------|--------------------|--|---|--| | | = 19
= 8 | 10.855
11.144
11.433
11.723
12.012
12.300
12.588
12.588
13.163 | 737
024
312
600
888
177
177
754
042
331 | 16.619
16.906
17.194
17.481
17.769
18.057
18.345
18.633
18.633
18.921
19.210 | | | # 8 | 22222222 | 13.7
14.0
14.0
15.7
15.7
16.0 | 16.
17.
17.
18.
18.
18.
19. | | | 8 8 | .887 10 855
.176 11.144
.465 11.143
.755 11.723
.044 12.012
.620 12.58
.907 12.876
.194 13.163 | 768
056
344
632
920
208
497
786
074
362 | 350
337
301
301
377
365
365
365 | | | # x
 | 10.887
11.176
11.465
11.755
12.044
12.332
12.620
12.907
13.194 | 13.768
14.345
14.632
14.632
14.920
15.208
15.497
15.786
16.074 | 900000000000000000000000000000000000000 | | | 8 8 | 917 1
206 1
495 1
785 1
073 1
648 1
648 1
510 1 | 798 13 768
.08514.056
.373 14.34
.66114.632
.950 14.920
.238 15.208
.527 15.497
.815 15.786
.104 16.074 | 79
18
18
18
18
18
17
11
18
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | | | 11 11 | 1924
1927
1927
1927
1927
1927
1927
1927
1927 | 25.00.00.00.00.00.00.00.00.00.00.00.00.00 | 9997814999 | | | # 8 | 940 10.
229 11.
518 11.
807 11.
095 12.
883 12.
670 12.
957 12.
245 13. | 820 13.
108 14.
108 14.
396 14.
684 14.
972 14.
261 15.
549
15.
126 16. | 35112 | | | = 16 | 10.940 10.917
11.229 11.206
11.807 11.785
12.095 12.073
12.670 12.648
12.670 12.648
12.957 12.935
13.245 13.223
13.532 13.510 | 820
108
144
145
145
145
145
145
145
145
145
145 | 200
200
200
200
200
200
200
200
200
200 | | | # 8 | 2222222 | 13. 820
14. 108
14. 396
14. 396
14. 972
14. 972
14. 972
15. 26
15. 549
15. 838
15. 838
16. 126
16. 126
16. 413 | 16
17
17
18
18
19
19
19 | | | = 15 | $\begin{array}{c} 976 \\ 10. 982 \\ 11. 26911. 26911. 25911. 25911. 24811. 22911. 206111. 176 \\ 55011. 55711. 25911. 25911. 24811. 22911. 206111. 176 \\ 83911. 84511. 84311. 83511. 83511. 80711. 78511 . 755 \\ 112812. 13312. 13112. 12312. 11212. 09512. 07312. 364 \\ 11712. 42212. 41912. 41112. 40012. 38312. 36112. 33 \\ 70612. 71012. 70712. 69812. 68712. 67012. 64812. 630 \\ 99412. 99912. 99512. 98612. 97512. 95712. 93712. 907 \\ 28213. 28713. 28713. 28313. 27413. 26213. 24513. 23313. 194 \\ 57013. 57513. 57513. 56213. 55013. 53213. 51013. 481 \\ \end{array}$ | 13.863 13.859 13.850 13.838 14.126 14.439 14.435 14.426 14.414 14.702 14.726 14.702 15.013 15.013 15.203 15 | 719
007
007
2295
583
871
159
447
735
023
311 | | | " " " | 22222222 | 13.
14.
14.
15.
15.
16. | 16.
17.
17.
18.
18.
19. | | | 14 | 971 10.
259 11.
835 11.
123 12.
411 12.
698 12.
986 12.
274 13. | 850 13
138 14
426 14
714 14
003 14
003 14
579 15
867 15
155 16
443 16 | 30
118
106
106
171
147
147
147
135 | | | # = x | 10.971
11.259
11.547
11.835
12.123
12.411
12.698
12.986
13.274 | 81.47.000000.4 | 0.777.3
7.77.3
7.77.3
7.77.3
9.00.0
9.00.0 | | | 13 | 980 10.
267 111.
555 111.
843 111.
131 12.
707 12.
283 13.
571 13. | 23212211 | 39 1
151
151
151
151
151
151
151
151
151
1 | | | | 10.980
11.267
11.555
11.843
12.131
12.419
12.707
12.995
13.283 | 8.14.7.0000000000000000000000000000000000 | 20.00.00.00.00.00.00.00.00.00.00.00.00.0 | | | # * | 982 10.
269 11.
845 11.
845 11.
422 12.
710 12.
999 12.
287 13. | 863 13. 859 13. 151 14. 147 14. 439 14. 435 14. 726 14. 728 14. 728 15. 014 15. 011 15. 878 15. 878 15. 878 15. 878 16. 451 16. 451 16. | 2 16
117
118
118
118
118
118
118 | | | = 12 | 986
266
267
71
71
71
71
72
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | 86
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 74
03
118
118
118
118
118
118
118
118
118
11 | | | u x | 13.22.22.23.23.23.23.23.23.23.23.23.23.23 | 13.
14.
15.
15.
16. | 16
17
17
17
17
18
18
18
19
19 | | | 11 4 | 976 10. 982 10. 980
263 11. 269 11. 267
550 11. 557 11. 555
839 11. 845 11. 843
128 12. 133 12. 131
417 12. 422 12. 419
706 12. 710 12. 70
994 12. 999 12. 995
282 13. 287 13. 283
570 13. 575 | 858
146
134
434
721
008
296
584
872
161
1449 | 738
026
314
314
602
890
178
753
041
329 | | (u, | # x | 13.22.22.23.23.23.23.23.23.23.23.23.23.23 | 13. 858 13. 859 13. 859 13. 859 13. 859 13. 859 14. 126 14. 126 14. 126 14. 126 14. 126 14. 126 14. 126 14. 141 14. 141 14. 141 14. 721 14. 721 14. 721 14. 721 14. 702 14. 702 14. 141 15. 208 15. 301 15. 509 14. 501 15. 501 15. 501 15. 501 15. 571 | 16.
17.
17.
17.
18.
18.
19. | | $G_1(m, n)$ | 10 | $\begin{array}{c} 610 \\ 921 \\ 11. \\ 322 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\$ | 745 13. 807 13. 842 13. 858 032 14. 094 14. 129 14. 146 318 14. 380 14. 416 14. 434 605 14. 657 14. 703 14. 721 893 14. 955 14. 990 15. 008 182 15. 243 15. 278 15. 296 17. 15. 243 15. 243 16. 398 16. 398 16. 398 16. 332 16. 449 | 721
297
297
297
373
373
161
161
736
736
312 | | | # # x | 10.9
11.2
12.1
12.1
12.6
13.2
13.2
13.2 | 6.6.3.4.4.4.6.6.6.6.9.9.9.9.9.9.9.9.9.9.9.9.9 | 16.7
17.8
17.8
18.4
19.0
19.0 | | | 0 4 | 920 10
208 11
787 11
787 11
077 12
366 12
655 12
944 12
232 13 | 745 13.807 13.842 032 14.094 14.129 318 14.380 14.416 605 14.667 14.703 893 14.955 14.990 182 15.243 15.278 471 15.532 15.666 049 16.109 16.144 337 16.398 16.432 | 86
74
62
62
50
38
38
13
13
77 | | | 11 11 | 10.920
11.208
11.497
11.787
12.077
12.366
12.655
12.944
13.232 | \$ 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8.15.2
8.14.8
8.14.8
9.9 | | | 8 4 8 x | 858 10.
146 11.
436 11.
726 11.
017 12.
306 12.
595 12.
172 13. | 745 13.
032 14.
318 14.
318 14.
860 14.
889 14.
182 15.
471 15.
760 15.
049 16. | 042007420079 | | | 11 11 | 10.858
11.146
11.726
12.017
12.306
12.595
12.884
13.172 |
74
103
103
103
103
104
103
103
103
103
103
103
103
103
103
103 | 20.091
20.092
20.092
20.092
20.092 | | | u x | 817 10.
106 11.
396 11.
687 11.
978 12.
268 12.
268 12.
268 12.
132 13. | 704 13.
990 14.
277 14.
255 14.
853 14.
142 15.
720 15.
7009 16. | 5 16
17
2 17
2 17
3 17
4 18
1 18
1 18
1 18
1 18
1 18
1 18
1 18 | | | 1 | 742 10.817
.032 11.106
.323 11.396
.905 11.978
.905 12.268
.771 12.845
.057 13.132
.343 13.418 | 704
990
277
277
565
853
142
431
720
009 | 587
116
123
123
123
123
123
123
123
123
123
123 | | | # x | 12.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 13.
14.
14.
15.
15.
16. | 16
17
17
17
18
18
18
18
19 | | | 9 61 | 742
.032
.323
.614
.905
.195
.483
.771
.057 | 629 13.
203 14.
203 14.
203 14.
7490 14.
679 14.
667 15.
647 15.
224 16. | 512
800
087
374
661
949
949
525
525
102 | | | # # x | 1222222 | 13.
14.
14.
15.
15.
16. | 16.
17.
17.
17.
17.
18.
18.
18. | | | 2.5 | 610
192
192
192
775
064
352
639
924
209 | 98
83
77
70
53
83
93
93
93 | 81
68
68
54
54
52
52
53
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | | | = x | 10.6
10.9
11.1
11.4
11.7
112.0
12.3
12.9
13.2 | 47.08.992380 | 88877729 | | | 4.2 | . 160 10.374 10.610 10.742 10.817 10.858451 10.665 10.901 11.032 11.106 11.146743 10.957 11.192 11.323 11.306 11.48637 11.540 11.775 11.905 11.978 12.017899 12.116 11.252 12.28 12.306891 2.116 12.639 12.771 12.845 12.845469 12.686 12.924 13.057 13.132 13.172469 12.987 13.209 13.343 13.418 13.459 | 238888888888888888888888888888888888888 | 200
200
200
200
200
200
200
200
200
200 | | | 11 11 | . 374
. 665
. 957
. 249
. 540
. 829
. 116
. 401 | 2.2.2.4.1.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | 1.4.00.2.2.2.8.1.4.7. | | | * * | 0.010.010.010.010.010.010.010.010.010.0 | 3 13
3 13
3 13
5 14
6 14
6 15
6 15
1 15 | 901211111111111111111111111111111111111 | | | 1 3 | 10.160
10.451
10.743
11.036
11.327
11.899
12.184
12.469 | 90.08
1.09
1.09
1.09
1.09
1.09
1.09
1.09
1.09 | 22122222222222222222222222222222222222 | | | # × | | $\begin{array}{c} 531 \\ 13.043 \\ 13.258 \\ 14.256 \\ 14.456 \\ 14.457 \\ 15.457 \\$ | 115
116
116
117
117
118
118 | | | = 1 | 24.15
29.15
29.15
29.15
20.23
20.15
20.23
20.15
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20.23
20 | 531
819
107
395
685
685
975
555
555
129 | 416
702
990
990
277
277
485
430
719
008 | | | # # # | 9.6 | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 15.
15.
16.
16.
17.
17. | | | ĸ | 221212121214 | 44444488888 | 884444444 | | | (n | 084 15 9 649 1 657 1 6 9 649 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 | 1. 959 14 12. 531 13. 04311
2. 247 14 12. 819 13. 330 11
2. 256 14 13. 107 13. 618 11
2. 826 14 13. 395 13. 907 13. 116 14 13. 885 14. 196 13. 975 14. 485 13. 969 13 14. 265 14. 776 14. 268 13 14. 555 13. 696 13 14. 555 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15 | $\begin{array}{c} 5114.842 \\ 5215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 17.215.130
\\ 17.215.130 $ | | | $H_1(n)$ | 0.0000000000000000000000000000000000000 | 11.2
12.2
12.2
13.1
13.4
13.4
14.2
13.4
14.2 | 14.
15.
15.
15.
17. | | | 2 | 31 9.0
32 9.3
33 9.0
34 9.3
35 10.3
36 10.3
37 10.3
38 11.0
40 11.0 | 45 111.
44 12.
45 13.
45 13.
46 13.
48 13.
50 14. | 51
52
53
53
53
53
53
53
53
53
53
53
53
53
53 | | | | | | | | 498
786
074
074
363
363
938
514
514
802
090 | 378
666
954
954
531
107
395
683
971 | 259
835
123
123
411
699
988
988
988
564
564 | 140
428
716
004
004
580
868
868
445
733 | |--|---|--|---| | 221.
221.
221.
221. | 22222222222 | 227.55 | 888888888888 | | 530
818
818
106
394
682
970
970
546
546 | 410
698
986
986
274
562
850
139
427
715 | 291
867
867
1155
443
731
019
307
883 | 171
460
748
036
324
612
900
188
176
476 | | 221228282828282828282828282828282828282 | 22222222222222222222222222222222222222 | 22226.12
227.22
27.22
27.23 | 882222288.1
830.229232
830.23933 | | 559
136
136
136
136
711
711
999
999
575
575
151 | 439
727
016
3304
592
880
168
168
168
1744
032 | 320
608
896
184
473
761
049
337
625
825 | 201
489
777
777
965
8641
641
929
528
528
794 | | 22.2886.988.1288.1288.1388.1388.1388.1388.1388.13 | 22222222222222222222222222222222222222 | 2222553
226528
22725
2773
2773 | 2822
2822
2822
30.52
30.52
50.52
50.52 | | 582
1158
1158
128
128
128
138
138
138
138
138
138
138
138
138
13 | 462
038
038
326
614
902
190
190
190
190
054
054 | 343
631
207
207
207
207
207
207
207
207
207
207 | 223
511
800
088
376
8376
664
952
240
816
816 | | 19.5
20.1
20.1
20.1
21.3
21.5
21.5
21.8 | 222
222
223
223
224
24
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | 222553
222553
222553
222553
222553
22553 | 282228822
282232822
30223293
802233
802233 | | 599 1
175 2
175 2
175 2
175 2
175 1
192 2
192 2
192 2 | 480
768
920
920
920
920
784
784
784
784
784 | 360
649
837
801
801
801
801
801
801
801
801
801
801 | 241
529
817
105
394
682
682
970
970
258
343
834 | | 19.5
19.5
19.5
20.1
20.7
221.3
221.9
221.9 | 22222222222222222222222222222222222222 | 222553
222553
222653
2773
2773
2776 | 30.229.328.528
30.239.339.339
30.2399.339 | | 611
187
187
187
187
187
187
187
187
187
1 | 492
780
780
982
644
932
508
508
796
842
796
842
843
843
843
844
844
845
844
845
844
844
844
844
844 | 372
660
948
237
237
237
237
238
339
339
657
677 | 253
541
829
117
117
693
693
270
3846
846 | | 19.6
19.8
19.8
20.1
20.7
22.2
22.2 | 22222333
2222333
254222333
254233 | 2255.9
225.9
225.9
227.3
27.3
27.6 | 28.52
28.52
28.52
28.52
30.52
30.52
30.53 | | 619
1962
1962
1962
1963
1963
1963
1963
1963
1963
1963
1963 | 500
788
7788
7788
7788
778
778
778
778
77 | 381
669
245
245
245
233
821
109
397
285
397
397
685
245
397 | 262 2
838 2
126 2
126 2
702 2
278 3
854 3 | | 19.6
19.9
19.9
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | 22222222222222222222222222222222222222 | 222255
222255
22225
22225
2225
2225
22 | 8302222888898999999999999999999999999999 | | 622
199
199
2487
775
639
639
215
215
215 | 503
791
791
791
791
792
793
793
793
793
793
793
793
793
793
793 | 384
672
960
248
248
2536
2536
111
400
689
277 | 265 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 119.6
119.6
119.9
120.1
120.1
120.1
120.2
120.2 | 22222222222222222222222222222222222222 |
22222555
22222655
2222265
22225
22225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
2225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
225
25 | 28.28
28.28
28.28
28.28
30.28
30.28
30.28
30.28 | | 617 1
194 2
194 2
194 2
770 2
058 2
058 2
346 2
634 2
922 2
210 2 | 498
7862
7862
3622
3622
6502
6502
5152
5152
6032
6012 | 879
667
667
879
879
879
879
879
879
879
875
875
875
875
875
875
875
875
875
875 | 260
548
836
124
124
700
700
276
38
852
38
852 | | 19.6
19.9
20.1
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7 | 22222222222222222222222222222222222222 | 227.38
27.38
27.38
27.38
27.38
27.38
27.38
27.38 | 333299.288.58
330399.29.28 | | 888
1772
1772
1772
1772
1652
2465
2753
2041
2329
2329
2329
2329
2329
2329
2329
232 | 481
769
2057
345
633
201
201
201
201
201
201
201
201
201
201 | 362
650
938
938
226
226
226
236
802
378
956
956
955 | 243 2 531 2 531 2 531 2 531 2 531 2 531 2 531 2 53 2 53 | | 221.32
22.13
22.13
22.13
22.13 | 22.22.23.23.24.42.23.39.24.42.23.39.23.44.72.55.00.44.72.39.39.39.39.39.39.39.39.39.39.39.39.39. | 7777666555 | 282 282 282 28 28 28 28 28 28 28 28 28 2 | | 565 1
142 2
142 2
142 2
143 2
1718 2
206 2
206 2
207 2
207 2
207 2
207 2
207 2
207 2
207 2 | 446
7342
0222
3310
5982
5982
1752
4632
7512
039 | 327 25.
615 25.
903 25.
191 26.
479 26.
767 26.
055 27.
843 27. | 208
496
784
072
360
224
648
224
362
512
380
380
380 | | 201.58
201.28
201.28
201.28
201.28 | 22.22.23.05.24.1.22.23.33.05.24.1.22.23.33.33.33.33.33.33.33.33.33.33.33. | 25.33
25.6.39
26.14
27.07
27.09
27.09
27.09
27.09 | 28.28
28.28
28.28
30.28
30.28
30.58
30.58 | | 204 1 2 2 3 4 5 2 2 3 4 5 2 2 3 4 5 2 3 4 5 5 2 2 5 2 5 2 5 2 3 4 5 5 2 3 4 5 5 2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 | 885
673
673
673
673
673
673
673
673
673
673 | 266
2554
2554
2554
2554
265
265
265
265
265
265
265
265
265
265 | 147
435
723
0111
0112
587
587
163
33
451
33 | | | 22222222222222222222222222222222222222 | 2525.28
2526.28
27.28
27.28
27.28
27.28
27.28 | | | 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7820884308
99999999999 | | 90 30 30 30 30 30 30 30 30 30 30 30 30 30 | | 9.464
9.753
9.041
0.330
0.618
0.906
1.194
1.481
1.769 | 2.345
2.633
2.921
3.209
3.498
3.786
4.074
4.362
4.938 | 5.226
5.514
5.514
5.802
5.378
5.378
5.954
7.242
7.531 | S. 107
S. 395
S. 395
S. 683
S. 971
9. 259
9. 547
9. 835
9. 411 | | 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 25555555555555555555555555555555555555 | 282 25
282 25
282 25
282 26
282 27
27 | 82282888888888888888888888888888888888 | | 9.390
9.679
9.967
9.256
9.544
9.831
1.119
1.407
1.695 | 2.270
2.559
2.847
3.135
3.712
4.000
4.288
4.576
4.864 | 5.152
5.440
5.728
5.016
5.304
5.304
5.592
5.880
7.168 | 3.033
3.321
3.609
3.897
3.897
3.473
3.473
3.761
3.337
3.337 | | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 85.885.885.885.885.885.885.885.885.885. | 22225555
222266555555555555555555555555 | 33055558888 | | 9.259
9.547
9.836
9.124
9.412
9.699
9.987
1.275
1.563 | 2.139
2.427
2.715
3.003
3.292
3.580
3.868
4.156
4.144 | 5.020
5.308
5.308
5.596
5.884
5.172
5.172
5.748
7.036
7.325 | 7.901
8.189
8.477
8.765
9.053
9.341
9.629
9.917 | | 810555554
1019
1019
1019
1019
1019
1019
1019
101 | 208284282 | 82 25 25 25 25 25 25 25 25 25 25 25 25 25 | 42088648187
72888888888 | |).023
).311
).600
).887
).175
).175
(1.038
(1.326
(1.614 | 1.902
2.190
2.478
2.767
3.055
3.344
3.632
3.920
4.207 | 1.783
5.071
5.359
5.359
5.935
5.224
5.224
5.512
5.800
7.088 | 7.664
7.952
8.240
8.528
8.528
8.816
9.104
9.393
9.681
9.969 | | 8 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. | 75880087400
122222222222222222222222222222222222 | 25.55.55.55.55.55.55.55.55.55.55.55.55.5 | 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | .808
.097
.385
.672
.959
.247
.535
.535
.339 | .687
.975
.263
.263
.552
.840
.129
.417
.704
.992 | 1.568
1.44
1.144
1.144
1.120
1.008
1.297
1.585
1.585
1.161 | 7.449
3.025
3.313
3.601
3.889
3.889
1.177
1.754 | | 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 868848888888888888888888888888888888888 |
623555555
6235555555
625555555
625555555
62555555
6255555
625555
62555
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
6255
625
62 | 8844088440
222222222222222 | | 3.297
3.585
3.873
3.160
3.1448
3.023
3.311
3.311
3.873
3.873 | 1.175
1.464
1.752
1.752
2.040
2.329
2.617
2.905
3.193
3.480 | L. 056
L. 345
L. 633
L. 921
S. 209
S. 497
S. 785
S. 073
S. 650 | 5.938
7.226
7.514
7.802
8.090
8.378
8.954
9.530 | | 20.00
20.00
20.00
20.00
20.00
20.00 | ###################################### | 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 44444444444444444444444444444444444444 | | 72613
30013
58813
58813
16314
745114
74014
02814 | 892 14
892 14
181 14
175 13
175 13
193 15
190 14 | 485
773
061
349
349
637
1
926
1
502
1
790
078 | 366
654
942
230
1518
1518
1670
1670
1670
1670 | | 7.0000000000
7.00000147.00 | 222.23
222.33
222.93
23.96
23.11 | 282222223
4.7.2222223
5.7.22223
5.0.32223
5.0.3223 | 288887777888888888888889999999999 | | 62 17.
62 18.
63 18.
64 18.
65 19.
66 19.
67 19.
68 19. | 20000000000000000000000000000000000000 | 08888888888888888888888888888888888888 | 00000000000000000000000000000000000000 | | | | | 1 1 | | | m = 100 $x = 35$ | | | | |------------|-----------------------|---|---|---| | | m = 90 $x = 32$ | | | | | | m = 80 $x = 32$ | | | | | | m = 70 $x = 32$ | | | | | | m = 60 $x = 28$ | | | | | | m = 50 $x = 18$ | | | | | | m = 40 $x = 16$ | | | | | | $m = 30 \ n$ $x = 14$ | | | | | | m = 20 $x = 8$ | | 5.773 | 5.871
5.928
5.928
6.046
6.107
6.232
6.236
6.296 | | $G_1(m,n)$ | m = 10 $x = 4$ | 4.447 | 4,585
4,634
4,685
4,739
4,739
4,908
4,908
5,028
5,090 | 5.153
5.216
5.281
5.346
5.412
5.479
5.547
5.615 | | | m = 9 $x = 4$ | 4.237 | 4,433
4,483
4,536
4,591
4,704
4,762
4,822
4,884
4,946 | 5.009
5.073
5.204
5.271
5.339
5.407
5.543 | | | m = 8 $x = 4$ | 3.986
4.145
4.191 | 4.241
4.293
4.347
4.402
4.459
4.577
4.637
4.698 | 4.824
4.889
4.955
5.021
5.089
5.157
5.225
5.293
5.362 | | | m = 7 $x = 3$ | 3.798
3.974
4.018
4.066 | 4.117
4.171
4.226
4.282
4.340
4.399
4.458
4.580
4.643 | 4.708
4.773
4.839
4.907
4.975
5.043
5.111
5.179 | | | m = 6 $x = 2$ | 3.560
3.757
3.800
3.896 | 3.949
4.003
4.059
4.117
4.117
4.235
4.294
4.294
4.355
4.417 | 4. 546
4. 612
4. 612
4. 747
4. 815
4. 952
5. 020
5. 089 | | | m = 5
x = 2 | 3.240
3.468
3.510
3.556
3.603 | 3.708
3.708
3.821
3.879
3.998
4.057
4.119
4.181 | 4 4 312
4 4 447
4 4 515
4 4 583
4 7 19
4 7 88
4 8 56 | | | m = 4 $x = 2$ | 3.053
3.053
3.053
3.137
3.234
3.286 | 3.340
3.340
3.455
3.515
3.574
3.633
3.693
3.754
3.883 | 3.951
4.018
4.018
4.154
4.222
4.290
4.359
4.427
4.427 | | | m = 3 $x = 1$ | 22.343
22.776
22.922
22.922
244 | 3.030
3.030
3.148
3.266
3.326
3.326
3.326
3.326
3.326 | 3.647
3.715
3.715
3.851
3.919
3.987
4.056
4.125 | | | m = 2 $x = 1$ | 1.503
2.015
2.050
2.050
2.134
2.134
2.233
2.233
2.233 | 2.396
2.145
2.514
2.573
2.632
2.752
2.752
2.815
2.815 | 3.018
3.085
3.153
3.221
3.290
3.358
3.427
3.495 | | | e | 10.845.95 | 11
12
13
14
15
16
17
18
19
20 | 22
22
24
25
27
28
28
27
28
28 | | | $H_1(n)$ | 1.000
1.030
1.070
1.110
1.159
1.258
1.366
1.425 | 1. 484
1. 543
1. 603
1. 662
1. 722
1. 782
1. 849
1. 984
2. 051 | 2.119
2.187
2.255
2.324
2.392
2.461
2.599
2.599 | | | 2 | 10004001 | 111
122
133
144
147
170
190
190
190
190
190
190
190
190
190
19 | 222
222
222
232
232
232
232
232
232
232 | | | | 8.891 | |--|--|--| | | 8.211 | 8.293
8.361
8.430
8.499
8.569
8.639
8.710
8.782
8.782
8.782
8.782
8.782 | | 7.486 | 7.570
7.635
7.701
7.767
7.835
7.903
7.972
8.042
8.112 | 8.325
8.325
8.325
8.470
8.543
8.616
8.690
8.763
8.763
8.763 | | 6.763
6.824
6.887
6.950
7.014
7.080
7.146
7.213
7.231 | 7.418
7.487
7.557
7.628
7.699
7.770
7.842
7.915
7.915
8.060 | 8.134
8.207
8.281
8.356
8.430
8.505
8.565
8.656
8.732
8.808 | | 6.492
6.558
6.625
6.692
6.761
6.830
6.900
6.970
7.041 | 7.183
7.255
7.255
7.400
7.474
7.547
7.621
7.695
7.770 | 7.920
7.996
8.072
8.148
8.225
8.301
8.378
8.532
8.532
8.609 | | 5.821
5.890
6.028
6.028
6.170
6.241
6.314
6.387 | 6.534
6.609
6.609
6.684
6.760
6.335
6.911
7.063
7.139 | 7.292
7.369
7.446
7.523
7.600
7.677
7.755
7.910
7.989 | | 5.681
5.749
5.749
5.888
5.959
6.030
6.102
6.175
6.248 | 6.396
6.472
6.547
6.622
6.698
6.774
6.850
6.926
7.002 | 7.155
7.232
7.309
7.386
7.464
7.541
7.619
7.619
7.775 | | 5.499
5.568
5.568
5.708
5.778
5.850
5.922
6.069 | 6.218
6.294
6.369
6.445
6.520
6.520
6.672
6.748
6.825 | 6.978
7.132
7.209
7.287
7.287
7.364
7.442
7.520
7.598 | | 5.386
5.455
5.524
5.524
5.665
5.737
5.810
5.883
6.033 | 6.108
6.183
6.259
6.334
6.410
6.486
6.562
6.638
6.715 | 6.868
6.945
7.100
7.177
7.255
7.333
7.411
7.489 | | 5.227
5.296
5.365
5.436
5.507
5.579
5.652
5.726
5.801 | 5.952
6.027
6.103
6.178
6.254
6.330
6.406
6.483
6.559 | 6.713
6.790
6.867
6.945
7.100
7.178
7.256
7.334
7.413 | | 5.064
5.064
5.133
5.204
5.204
5.276
5.348
5.422
5.497
5.647 |
5.723
5.723
5.798
5.950
6.025
6.102
6.178
6.254
6.331 | 6.485
6.562
6.563
6.717
6.794
6.872
6.950
7.028
7.107 | | 4. 634
4. 704
4. 773
4. 844
4. 917
5. 140
5. 215
5. 290 | 5.366
5.441
5.517
5.593
5.669
5.745
5.821
5.898
6.052 | 6.129
6.206
6.283
6.361
6.361
6.516
6.594
6.763
6.751 | | 4.332
4.401
4.471
4.543
4.616
4.690
4.765
4.840
4.840
4.991 | 5.066
5.142
5.218
5.218
5.294
5.370
5.529
5.529
5.529
5.539 | 5.830
5.987
6.062
6.140
6.218
6.296
6.375
6.453 | | 3.703
3.773
3.842
3.915
3.989
4.064
4.139
4.214
4.289 | 4.440
4.516
4.592
4.668
4.744
4.821
4.897
4.974
5.051 | 5.205
5.282
5.380
5.438
5.515
5.594
5.672
5.750
5.829
5.908 | | 32
32
33
33
33
40
40 | 122414948
204444444
204444444444444444444444444 | 52
52
53
54
55
55
56
60 | | 2.807
2.877
2.952
3.027
3.101
3.176
3.252
3.327
3.402 | 3.554
3.630
3.706
3.706
3.859
3.935
4.012
4.012
4.243 | 4.321
4.398
4.476
4.554
4.632
4.711
4.789
4.868
4.947
5.026 | | 32
33
33
34
35
40
40 | 44
44
45
45
46
48
49
49
50 | 52
52
53
54
53
55
56
56
57
60
60 | # Table V C — Continued | | 100 | 35 | [| | | |------------|----------|--------|---|---|--| | | = 111 | #
* | | | | | | 90 | 32 | | | 881 | | | = 1 |
 | | | 10.383 10.302
10.459 10.376
10.535 10.450
10.689 10.600
10.766 10.676
10.844 10.752
10.999 10.904
11.078 10.981 | | | | 32 | | 221 | 328
328
328
328
328
328
328
328 | | | 11 | # | | 10.2 | 0000000000 | | | 70 111 | 32 ; | 09 | 9.641
9.714
9.786
9.859
9.933
10.007
10.081
10.156
10.231 | 7 10.456 10.537 10.522 10.458 10.383 10.302
8 10.617 10.697 10.601 10.536 10.459 10.376
9 10.698 10.777 10.690 10.613 10.535 10.450
10.698 10.777 10.759 10.691 10.612 10.525
10.941 11.017 10.998 10.348 10.765 10.600
10.941 11.017 10.998 10.327 10.844 10.752
11.022 11.098 11.078 11.006 10.999 10.999
11.104 11.179 11.158 11.085 10.999 10.991 | | | II | II | 9.560 | 9.641
9.714
9.786
9.859
9.933
10.007
10.081
10.156
10.231 | 0.000.0 | | | 09 | 28 x | | 9 750 9 747 9 697 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |
58
113
113
113
113
113
113
113
113
113
11 | | | II | I | 8.972
9.042
9.113
9.184
9.256
9.328
9.401
9.475
9.548 | 9.697
9.772
9.847
9.922
9.998
10.074
10.150
10.227
10.381 | 10.458
10.536
10.631
10.691
10.848
10.927
11.006
11.164 | | | 50 111 | 18 | | 9.750 9.747 9.697
9.828 9.824 9.772
9.906 9.900 9.847
9.984 9.977 9.922
10.06310.054 9.998
10.14210.13210.074
10.22010.209 10.150
10.299 10.287 10.227
10.378 10.365 10.304 | 10.522 10.458
10.601 10.536
10.680 10.613
10.759 10.691
10.839 10.770
10.998 10.927
11.078 11.006
11.158 11.085
11.238 11.164 | | | II | 11 | 8.999
9.073
9.146
9.220
9.294
9.369
9.444
9.520
9.595 | 9.750 9.747
9.828 9.824
9.906 9.900
9.984 9.977
10.122010.103
10.22010.209
10.29110.387
10.37810.365 | .537 10.522
617 10.601
697 10.603
777 10.759
837 10.918
017 10.998
098 11.078
179 11.158 | | | 40 111 | 16 x | | 0884830888 | 3098777777 | | | 11 | II | 8.987
9.062
9.137
9.213
9.289
9.365
9.442
9.518 | 9.750
9.828
9.906
9.984
10.063
10.142
10.220
10.299
10.378 | 10.456 10.537 10.617 10.537 10.617 10.698 10.777 10.860 10.937 10.941 11.022 11.098 11.104 11.104 11.186 11.260 11.186 11.260 | | | 30 111 | * | | 66677899 | 842211111111111111111111111111111111111 | | | II | = 14 | 8.884
8.961
9.038
9.116
9.270
9.348
9.504 | 9.661
9.740
9.819
9.819
9.977
10.057
10.136
10.216
10.296
10.296 | 10.456
10.537
10.617
10.698
10.941
11.022
11.104
11.186 | | | | ĸ | | | 2222222 | | | = 20 | ∞
∥ | 8.687
8.765
8.842
8.920
8.999
9.077
9.156
9.234
9.333 | 9.472
9.551
9.631
9.711
9.791
9.872
9.952
10.033
10.113 | 10.275
10.357
10.438
10.520
10.601
10.683
10.765
10.847
10.929
11.011 | | | = 111 | 8 | 8888866666 | 9.472
9.551
9.631
9.711
9.791
9.872
9.952
10.033
10.113 | 10.275
10.357
10.438
10.520
10.601
10.683
10.765
10.847
11.011 | | $G_1(m,n)$ | 10 | 4 | 73488111881 | | | | G1(1 | = 111 | #
 | 8.067
8.145
8.224
8.303
8.382
8.461
8.541
8.620
8.700 | 8.861
8.941
9.022
9.103
9.184
9.265
9.347
9.428
9.591 | 9.673
9.755
9.837
9.919
10.001
10.084
10.166
10.249
10.331
10.331 | | | | | | | | | | 6 = | 4 | 7.931
8.010
8.088
8.167
8.247
8.326
8.406
8.485
8.565 | 8.726
8.807
8.888
8.969
9.050
9.131
9.212
9.294
9.375 | 9.539
9.621
9.703
9.785
9.867
9.950
10.032
10.115
10.198 | | | 111 | × | 1-0000000000000 | | | | | ∞ | 4 | 555
333
330
330
550
550
550
550
550 | 8.551
8.632
8.713
8.794
8.875
8.956
9.037
9.119
9.201 | 9.364
9.446
9.446
9.528
9.611
9.693
9.775
9.858
9.941
10.024 | | | = 11 | *
* | 7.755
7.833
7.912
7.991
8.070
8.150
8.310
8.330
8.390
8.470 | 888888888888 | 9.6
9.6
9.6
9.8
9.8
9.8 | | | | 8 | 646661111133 | 244585555
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285
251285 | | | | | 11 | 7.646
7.724
7.803
7.883
7.962
8.041
8.121
8.201
8.282
8.362 | 8.443
8.524
8.605
8.686
8.767
8.848
8.930
9.011
9.093 | 9.257
9.339
9.421
9.503
9.586
9.668
9.751
9.834
9.917 | | | " | * | | | | | | 9 = | = 2 | 7.491
7.570
7.649
7.728
7.887
7.887
7.967
8.128
8.209 | 8.289
8.370
8.451
8.533
8.614
8.695
8.777
8.858
8.940
9.022 | 9.104
9.186
9.268
9.351
9.433
9.599
9.681
9.764
9.848 | | | 111 | н | | ထဲထဲထဲထဲထဲထဲထဲထဲထဲထဲ | 0000000000 | | | 'n | 2 | .264
.343
.422
.501
.581
.661
.741
.821
.901 | $\frac{63}{2}$ | 8.878
8.960
8.960
9.043
9.125
9.208
9.373
9.456
9.539
9.622 | | | # | 8 | 7.264
7.343
7.422
7.501
7.581
7.661
7.741
7.741
7.821
7.901
7.982 | 8.063
8.144
8.225
8.307
8.388
8.469
8.551
8.633
8.796 | 8.878
8.960
9.043
9.125
9.290
9.373
9.456
9.539 | | | -4 | | I | 0018427018 | 5762476896 | | | Ш | = 2 | .909
.988
.988
.067
.146
.326
.386
.386
.386 | . 709
. 790
. 871
. 953
. 034
. 115
. 115
. 197
. 279
. 361 | 525
607
689
772
854
937
020
103 | | | " | × | 44444466 | 72000000000000000000000000000000000000 | 888888666 | | | 33 | = 1 | 5.611
5.690
5.769
5.849
7.009
7.170
7.250 | .412
.493
.575
.656
.656
.737
.819
.901
.983 | .229
.311
.393
.476
.559
.641
.724
.807
.807 | | | # | H | 0000011111111 | 7777777733 | 888888888888888888888888888888888888888 | | | = 2 | = 1 | 987
066
145
225
305
305
385
466
546
627 | 789
870
952
033
115
115
196
278
360
342
524 | . 606
. 688
. 771
. 853
. 936
. 019
. 102
. 185
. 268
. 352 | | | : 111 | * | 6. | 444444666 | <u></u> | | | ĸ | | 61
62
63
64
65
66
67
69
70 | 71
72
74
74
75
76
77
78
79
80 | $\begin{array}{c} 828 \\ 888 \\ 888 \\ 888 \\ 890 \\ 890 \\ 800
\\ 800 \\$ | | | | _ | ០%។។សំពីមិចម៉ាម៉ាម៉ា | 1046701867 | 43542354355 | | | $H_1(n)$ | | .105
.185
.265
.345
.425
.506
.506
.587
.667
.748
.830 | . 911
. 992
. 074
. 155
. 319
. 401
. 483
. 565 | 5.729
5.812
5.895
5.977
7.060
7.143
7.227
7.310
7.393 | | | H | | 20202020202020 | vv | 99977777 | | | * | | 61
62
63
64
65
65
69
69
69
69 | 72
73
74
75
76
77
78
78
78 | 822
833
848
850
860
888
888
888
888 | | | | | - | | | | 962 | 1113 | 266 | 420 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--|--|-------------------------|------------|--| | 10.083 10.190 10.364 10.497 11.094 11.267 11.341 11.318 11.244 11.156 11.058 10.962 10.166 10.273 10.447 10.580 11.176 11.349 11.422 11.399 11.393 11.233 11.233 11.335 11.035 | 10.664 111.259 11.431 11.503 11.479 11.403 11.313 111.213 111.113 10.747 11.342 11.514 11.585 11.560 11.483 11.393 11.291 11.189 | 1.369 11. | 1.526 11. | 1.684 11.
1.763 11. | | 411.156 | 3 11 313 1 | 4 11.472 1 | 511.6311 | 8 11.791 1
7 11.871 | | 318 11.24 | 479 11. 40
560 11. 48 | 641 11.56
722 11.64 | 803 11. 72 | 966 11.88
048 11.96 | | 1.341 11. | 1.50311. | 1.666 11. | 1.830 11. | 1.994 11.
2.077 12. | | 11.267 | 11.4311 | 11.5961 | 11.7611 | 11.927
12.010 | | 11.094 | 11.259 | 11.425 | 11.591 | 11.758 | | 10.497 | 10.664 | 10.831 | 10.998 | 11.166 | | 10.190 10.364
10.273 10.447 | 10.530 | $\frac{10.697}{01.781}$ | 10.865 | 11.033
11.118 | | 10.190 | 10.356 | 10.524 10.607 | 10.691 | 10.860
10.944 | | 10.083 | 10.250 | 10.417 10.501 | 10.585 | 10.753 | | 9.931 | 10.098 | 10.265 | 10.433 | 10.602
10.686 | | 9.706 | 9.873 | 10.040 | 10.208 | 10.377
10.462 | | 9.353 | 520
604 | 688 | 856 | 109 | | 5 9.057
9 9.141 | 9.225 | 1 9.392
5 9.477 | 9 9.561 | 8 9.73010.
3 9.81510. | | - | | | | 99 9.108
100 9.193 | | | | | | 8.235 9
8.320 10 | | | | | | | | 2(1)100 | 10 | 4 | ∞ | 14 | 16 | 18 | 28 | 32 | 32 | 32 | 35 | |--|----|----|-----|----------------|-----|-----|-----|-----|-----|-----|-----| | 0.99 And m = 2 | 6 | 4 | o o | 13 | 16 | 17 | 27 | 32 | 32 | 32 | 35 | | = 0.99 AN | 8 | 4 | ∞ | 12 | 16 | 16 | 26 | 32 | 32 | 32 | 34 | | R ₁ FOR q | 7 | 8 | œ | 11 | 16 | 16 | 25 | 32 | 32 | 32 | 33 | | Ркосерике | 9 | 23 | œ | 10 | 16 | 16 | 24 | 32 | 32 | 32 | 32 | | x UNDER | ic | 21 | 1 | 6 | 16 | 16 | 23 | 32 | 32 | 32 | 32 | | Values of the Next Test-Group Size x under Procedure \mathbf{R}_1 for $q=$ | 4 | 61 | 9 | ∞ | 16 | 16 | 22 | 32 | 32 | 32 | 32 | | ext Test-C | 33 | 1 | 2 | 8 | 16 | 16 | 21 | 31 | 32 | 32 | 32 | | OF THE NE | 2 | 1 | 4 | × × | 16 | 16 | 20 | 30 | 32 | 32 | 32 | | VALUES | - | | 4 | × × | 15 | 16 | 19 | 29 | 32 | 32 | 32 | | ' | | +0 | 10+ | 20+ | 30+ | +0+ | +09 | +09 | +02 | +08 | +06 | Table VI— Expected Number of Tests Required for Procedure R_2 The integer below q^y opposite $H_2(n)$ is the coefficient of q^y in the polynomial formula for $H_2(n)$. | | q-interv | al | x | 1 | q | q^2 | q^3 | q^4 | q^5 | q^6 | q^7 | q^8 | q^9 | q^{10} | q11 | q^{12} | |--------------------|--|--|--|---------------------------------------|---|--|---|---|---|---|---|--|-----------|----------|-----|----------| | $H_{2}(2)$ | | 0.618 | 1 2 | 2
3 | -1 | -1 | | | | | | | | | | | | H ₂ (3) | 0.618 to 0 | 0.618
0.755
1.000 | 1
2
3 | 3
5
5 | $-3 \\ -2$ | -1
-1 | 1
-1 | | | | | | | | | | | $H_{2}(4)$ | 0.618 to 0
0.755 to 0 | 0.618
0.755
0.819
1.000 | 1
2
3
4 | 4
7
7
8 | -5
-3
-4 | $\begin{array}{c} 0 \\ -2 \\ -2 \end{array}$ | $-\frac{1}{-2}$ | $-\frac{1}{2}$ | | | | | | | | | | $H_{2}(5)$ | 0.618 to 0
0.755 to 0
0.819 to 0 | 0.618
0.755
0.819
0.857
1.000 | 1
2
3
4
5 | 5
9
9
11
11 | $ \begin{array}{r} -7 \\ -4 \\ -7 \\ -7 \end{array} $ | $ \begin{array}{r} 1 \\ -3 \\ -2 \\ -2 \end{array} $ | $ \begin{array}{c} 0 \\ -2 \\ -1 \\ 0 \end{array} $ | $-1 \\ -1 \\ -1 \\ 0$ | $-1 \\ -1 \\ 2 \\ -1$ | | | | | | | | | $H_{2}(6)$ | 0.618 to 0
0.755 to 0
0.819 to 0
0.857 to 0
0.881 to 0 |).618
).755
).819
).857
).881
).885 | 1
2
3
4
5
6
6 | 6
11
11
14
14
14
14 | -9
-5
-10
-10
-10
-9 | $ \begin{array}{r} 2 \\ -4 \\ -2 \\ -1 \\ -2 \end{array} $ | $ \begin{array}{r} -1 \\ -2 \\ -1 \\ 1 \\ 0 \\ -1 \end{array} $ | $\begin{array}{c} 0 \\ 4 \\ -1 \\ -1 \\ -1 \\ 0 \end{array}$ | $ \begin{array}{r} 1 \\ -1 \\ 3 \\ -3 \\ -1 \\ -1 \end{array} $ | $-1 \\ -1 \\ -1 \\ 3$ | | | | | | | | H ₂ (7) | 0.618 to 0
0.755 to 0
0.819 to 0
0.857 to 0
0.881 to 0 | 0.618
0.755
0.819
0.857
0.881
0.885
0.899 | 1
2
3
4
5
6
6
7 | 17 | -11
-6
-13
-13
-13
-11
-11 | $ \begin{array}{r} 3 \\ -5 \\ -2 \\ -2 \\ 0 \\ -3 \\ -3 \end{array} $ | $ \begin{array}{r} -2 \\ -2 \\ -1 \\ 2 \\ -1 \\ -2 \\ -1 \end{array} $ | $ \begin{array}{c} 1 \\ 5 \\ -1 \\ -2 \\ -1 \\ 2 \\ 1 \end{array} $ | $0 \\ -2 \\ 4 \\ -4 \\ -1 \\ -2 \\ -2$ | $ \begin{array}{r} -1 \\ -2 \\ -1 \\ 5 \\ -2 \\ -2 \end{array} $ | $\begin{array}{c} 1 \\ 2 \\ -1 \\ -1 \\ 3 \\ 3 \end{array}$ | | | | | | | $H_2(8)$ | 0.618 to 0
0.755 to 0
0.819 to 9
0.857 to 0
0.881 to 0
0.885 to 0
0.899 to 0
0.912 to 0 |).618
).755
).819
).857
).881
).885
).899
).912
).932 | 1
2
3
4
5
6
7
8 | 20
20
20
20 | -7 | $ \begin{array}{r} 4 \\ -6 \\ -2 \\ -2 \\ -1 \\ -4 \\ -4 \\ -4 \\ -4 \end{array} $ | $ \begin{array}{r} -3 \\ -2 \\ -1 \\ 3 \\ -2 \\ -3 \\ -1 \\ -1 \\ -1 \end{array} $ | $ \begin{array}{c} 2 \\ 6 \\ 0 \\ -3 \\ -1 \\ 4 \\ 1 \\ 1 \end{array} $ | $ \begin{array}{r} -1 \\ -3 \\ 4 \\ -5 \\ -1 \\ -3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$ | $ \begin{array}{c} 0 \\ -2 \\ -2 \\ 7 \\ -3 \\ 0 \\ 1 \end{array} $ | $ \begin{array}{c} 1 \\ 3 \\ -1 \\ -1 \\ 5 \\ -2 \\ 0 \end{array} $ | $ \begin{bmatrix} -1 \\ -1 \\ -1 \\ 3 \end{bmatrix} $ | | | | | | $H_{2}(9)$ | 0.618 to 0
0.755 to 0
0.819 to 0
0.857 to 0
0.881 to 0
0.890 to 0
0.899 to 0
0.912 to 0
0.922 to 0 |).618
).755
).819
).857
).881
).890
).899
).912
).922
).938 | 1
2
3
4
5
6
6
7
8
9 | $\frac{23}{24}$ | | $ \begin{array}{r} 5 \\ -7 \\ -2 \\ -2 \\ -5 \\ -5 \\ -4 \end{array} $ | $ \begin{array}{r} -4 \\ -2 \\ -1 \\ 4 \\ -3 \\ -4 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ \end{array} $ | $\begin{array}{c} 3 \\ 7 \\ 1 \\ -4 \\ -1 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$ | $ \begin{array}{r} -2 \\ -4 \\ 3 \\ -5 \\ -1 \\ -4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ \end{array} $ | $ \begin{array}{c} 1 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 2 \\ 1 \\ 0 \end{array} $ | $0 \\ 4 \\ -1 \\ -2 \\ 7 \\ 7 \\ -3 \\ -1 \\ 0 \\ 1$ | $ \begin{array}{r} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ \end{array} $ | $-1 \\ 4$ | | | | Table VI — Continued | | q-interval | x | 1 | q | q^2 | q^3 | q^4 | <i>q</i> ⁵ | q^6 | <i>q</i> ⁷ | <i>q</i> 8 | <i>q</i> 9 | q10 | q^{11} | q^{12} | |---------------------|--|---|--
---|--|---|--|---|---|---|---|---|---|---|--| | $H_{2}(10)$ | 0.000 to 0.618
0.618 to 0.755
0.755 to 0.819
0.819 to 0.857
0.857 to 0.881
0.881 to 0.890
0.890 to 0.899-
0.899- to 0.912
0.912 to 0.922
0.922 to 0.930
0.930 to 0.938
0.938 to 0.960
0.960 to 1.000 | 1
2
3
4
5
6
6
6
7
8
9
10
10 | 19
26
26
26
26
26
26
26
28
28
29 | $\begin{array}{r} -17 \\ -9 \\ -22 \\ -22 \\ -17 \\ -17 \\ -17 \\ -20 \\ -20 \\ -22 \\ -22 \end{array}$ | $ \begin{array}{r} 6 \\ -8 \\ -2 \\ -2 \\ 3 \\ -6 \\ -6 \\ -5 \\ -4 \\ -4 \\ \end{array} $ | | $ \begin{array}{r} 4 \\ 8 \\ 2 \\ -5 \\ -1 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $ | $ \begin{array}{r} -3 \\ -5 \\ 2 \\ -5 \\ -1 \\ -5 \\ -2 \\ -2 \\ -1 \\ -1 \\ -3 \\ \end{array} $ | $ \begin{array}{r} 2 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 3 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{r} -1 \\ 5 \\ -1 \\ -2 \\ 8 \\ 8 \\ -4 \\ -2 \\ 1 \\ -1 \\ 0 \\ 1 \end{array} $ | $ \begin{bmatrix} -1 \\ 0 \\ -2 \\ -2 \\ -6 \\ -2 \\ -1 $ | $ \begin{bmatrix} -2 \\ 3 \\ 0 \\ -1 \\ -1 \\ -1 \\ 7 \\ -3 \\ -1 $ | $\begin{vmatrix} 2 \\ -1 \end{vmatrix}$ | | | | H ₂ (11) | 0.000 to 0.618
0.618 to 0.755
0.755 to 0.819
0.819 to 0.857
0.857 to 0.881
0.881 to 0.890
0.890 to 0.899-
0.899- to 0.912
0.912 to 0.932
0.930 to 0.936
0.936 to 0.938
0.938 to 0.960
0.960 to 1.000 | 1
2
3
4
5
6
6
7
8
9
10
11
11 | 29
29
29
29
29
29
32 | $\begin{array}{c} -19 \\ -10 \\ -25 \\ -25 \\ -25 \\ -19 \\ -19 \\ -19 \\ -24 \\ -24 \\ -26 \\ -26 \end{array}$ | $ \begin{array}{r} 7 \\ -9 \\ -2 \\ -2 \\ 4 \\ -7 \\ -7 \\ -7 \\ -5 \\ -5 \\ -4 \\ -4 \\ \end{array} $ | $ \begin{array}{r} -6 \\ -2 \\ -1 \\ 6 \\ -5 \\ -6 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \end{array} $ | 5
9
3
-6
-1
10
1
1
1
1
1
1
0 | $\begin{array}{r} -4 \\ -6 \\ 1 \\ -5 \\ -1 \\ -6 \\ -2 \\ -2 \\ -2 \\ -2 \\ -4 \end{array}$ | $ \begin{array}{r} -3 \\ -2 \\ -8 \\ -4 \\ -4 \\ 0 \\ 4 \\ 1 \\ 0 \\ 2 \end{array} $ | $ \begin{array}{r} -2 \\ 6 \\ -1 \\ -2 \\ 8 \\ 8 \\ -4 \\ -3 \\ 2 \\ -2 \\ -1 \\ 0 \\ 1 \end{array} $ | $ \begin{array}{c} 1 \\ -3 \\ -1 \\ 1 \\ -2 \\ -8 \\ -3 \\ 1 \\ -1 \\ 0 \\ -1 \end{array} $ | $\begin{bmatrix} 0 \\ -2 \\ 4 \\ -1 \\ 0 \\ 0 \\ -2 \\ 10 \\ -5 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ | $ \begin{array}{r} -1 \\ 3 \\ -1 \\ -3 \\ 0 \\ 0 \\ -1 \\ -1 \\ 7 \\ 3 \end{array} $ | $ \begin{array}{c} & 1 \\ & -1 \\ & 3 \\ & -1 \\ & -1 \\ & -1 \\ & 4 \end{array} $ | | | $H_{2}(12)$ | 0.000 to 0.618
0.618 to 0.755
0.755 to 0.819
0.819 to 0.857
0.857 to 0.881
0.881 to 0.890
0.890 to 0.899-
0.899- to 0.912
0.912 to 0.922
0.922 to 0.930
0.930 to 0.936
0.936 to 0.938
0.938 to 0.941
0.941 to 0.960
0.960 to 0.972
0.972 to 1.000 | 1
2
3
4
5
6
6
6
7
8
9
10
11
11
12
12
12 | 37 | -21
-11
-28
-28
-28
-21
-21
-21
-28
-28
-30
-30
-30 | $ \begin{array}{r} 8 \\ -10 \\ -2 \\ -2 \\ 5 \\ -8 \\ -8 \\ -5 \\ -5 \\ -5 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \end{array} $ | $ \begin{array}{rrrr} -7 \\ -2 \\ -1 \\ 7 \\ -6 \\ -7 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 0 \end{array} $ | $\begin{array}{c} 6\\10\\4\\-7\\-1\\12\\1\\1\\1\\1\\0\\0\\0\\-1\\0\end{array}$ | $ \begin{array}{r} -7 \\ 0 \\ -5 \\ -1 \\ -7 \\ -2 \\ -2 \\ -2 \\ 1 \\ -3 \\ -3 \\ \end{array} $ | $\begin{array}{c} 4 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 5 \\ 1 \\ -1 \\ 3 \\ 2 \\ 2 \\ 4 \\ 2 \end{array}$ | $\begin{array}{c} -3 \\ 7 \\ -1 \\ -2 \\ 8 \\ 9 \\ -4 \\ -4 \\ 3 \\ -2 \\ -1 \\ -1 \\ 0 \\ 1 \end{array}$ | $\begin{array}{c} 2\\ -4\\ 0\\ 2\\ -1\\ -2\\ 8\\ -9\\ -4\\ 3\\ -2\\ -1\\ 0\\ -1\\ -1\\ -1 \end{array}$ | $\begin{array}{c} -1 \\ -2 \\ 4 \\ -2 \\ 0 \\ -1 \\ -2 \\ 12 \\ -7 \\ -2 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \end{array}$ | $\begin{array}{c} 0 \\ 4 \\ -2 \\ -4 \\ -1 \\ 0 \\ 0 \\ -2 \\ 10 \\ -5 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | -1
-1
-1
-1
-1
-1
4
4 | The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$). ### Table VII — The Dividing Points Between x and x+1 for the Information Procedure R_2 #### G-Situation | x | | | | | | | | | | | |--|--|--|--|--
---|---|--|---|--|--| | | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 16 | | 1
2
3
4
5
6
7 | 0.7549 | 0.6518
0.8899 | 0.6369
0.8376 | 0.6289
0.8087
0.9378 | 0.6245 ⁻
0.7913
0.9016 | 0.6204
0.7728
0.8631
0.9340 | $\begin{array}{c} 0.6195^{-} \\ 0.7677 \\ 0.8524 \\ 0.9160 \\ 0.9723 \end{array}$ | 0.6189
0.7642
0.8446
0.9031
0.9528 | 0.6186
0.7617
0.8388
0.8935
0.9384
0.9796 | 0.6182
0.7586
0.8313
0.8806
0.9193
0.9529
0.9844 | | | | | | G- | Situati | on | | | | | | | | | | ,,, | | | | | | | | | | | | | | | | l I | | x | | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | | 0.6219
0.7802
0.8786
0.9601 | 0.6181
0.7560
0.8241
0.8677
0.8999
0.9262
0.9490
0.9699
0.9900 | 0.6180
0.7549
0.8198
0.8587
0.8854
0.9056
0.9218
0.9355-
0.9474
0.9582
0.9776
0.9867 | 0.6180
0.7549
0.8193
0.8571
0.8823
0.9008
0.9150
0.9267
0.9364
0.9449
0.9524
0.9524
0.9593
0.9655+ | 0.6180
0.7549
0.8192
0.8568
0.8816
0.8993
0.9129
0.9236
0.9325+
0.9400
0.9466
0.9524
0.9576 | 0.6180
0.7549
0.8192
0.8567
0.8814
0.8989
0.9121
0.9225
0.9380
0.9440
0.9493
0.9540 | 0.6180
0.7549
0.8192
0.8567
0.8813
0.8987
0.9118
0.9220
0.9302
0.9370
0.9428
0.9428
0.9522 | 0.6180
0.7549
0.8192
0.8567
0.8813
0.8987
0.9117
0.9218
0.9299
0.9365+
0.9422
0.9470
0.9512 | 0.6180
0.7549
0.8192
0.8567
0.8813
0.8987
0.9116
0.9217
0.9297
0.9363
0.9418
0.9466
0.9507 | 0.6180
0.7549
0.8192
0.8567
0.8813
0.8987
0.9116
0.9216
0.9296
0.9362
0.9417
0.9463 | 1
2
3
4
5
6
7
8
9
10
11
12
13 | | 46
445
444
43
42
41
41
41
41
41
41
41
41
41
41
41
41
41 | 0.9991
0.9982
0.9973
0.9964
0.9955
0.9945
0.9937
0.9919
0.9899
0.9889
0.9889
0.9886
0.9826
0.9812
0.9812
0.9773
0.9758
0.9773
0.9758
0.9779
0.9691
0.9690
0.9690
0.9690
0.9690
0.9690 | 0.9956 0.9989 0.9978 0.9956 0.9956 0.9944 0.9951 0.9910 0.9810 0.9810 0.9831 0.9820 0.9834 0.9820 0.9755 0.9758 0.9758 0.9754 0.9659 | 0.9714 0.970 0.9823 0.9874 0.9925 0.9975 0.9975 0.9975 0.9943 0.9984 0.9989 0.9883 0.9888 0.9852 0.9763 0.9782 0.9764 0.9619 0.9674 0.9674 0.9698 0.9654 0.9655 0.9850 0.9650 0.9674 0.9751 0.9698 | 0.9624
0.9668
0.9709
0.9747
0.9784
0.9854
0.9852
0.9985
0.9981
0.9962
0.9984
0.9984
0.9984
0.9984
0.9984
0.9984
0.9984
0.987
0.9752
0.9776
0.9775
0.9775
0.9775
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9750
0.9 | 0.9582
0.9620
0.9656
0.9659
0.9719
0.9718
0.9748
0.9802
0.9876
0.9892
0.9876
0.9992
0.9997
0.9998
0.9999
0.99989
0.9974
0.9940
0.9898
0.9876
0.9974
0.9940
0.9898
0.9876
0.9967
0.9974
0.9967
0.9967
0.9955
0.9746
0.9746
0.9678
0.9746
0.9746
0.9746
0.9599
0.9555
0.9555 | 0.9561
0.9568
0.9628
0.9688
0.9685-
0.9710
0.9757
0.9757
0.9779
0.9819
0.9886
0.9878
0.9882
0.9996
0.9995
0.9995
0.9995
0.9995
0.9976
0.9951
0.9951
0.9951
0.9951
0.9951
0.9959
0.9959
0.9959
0.9959 | 0.9549
0.9553
0.9613
0.9645+
0.9665+
0.9689
0.9711
0.9750+
0.9780
0.9803
0.9819
0.9849
0.9883
0.9819
0.9981
0.9943
0.9944
0.9956
0.9969
0.9935-
0.9891
0.9949 | 0.9543
0.96543
0.9654
0.9664
0.9665
0.9676
0.9715
0.9780
0.9780
0.9780
0.9785
0.9809
0.9882
0.9882
0.9882
0.9882
0.9882
0.9883
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985
0.9985 | 0.9539 0.9579 0.9579 0.9598 0.9636 0.9646 0.9667 0.9705 0.9737 0.9756 0.9779 0.9784 0.9838 0.9848 0.9858 0.9858 0.9985 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 | 14 16 16 17 18 19 20 21 22 23 24 26 27 28 29 33 34 35 36 36 41 44 44 45 46 46 47 48 49 | | 12
11
10
9
8
7
6
5
4
3
2 | 0.9417
0.9362
0.9297
0.9216
0.9116
0.8987
0.8813
0.8567
0.8192
0.7549
0.6180 | 0.9420
0.9364
0.9298
0.9217
0.9116
0.8987
0.8813
0.8567
0.8192
0.7549
0.6180 | 0.9424
0.9367
0.9300
0.9218
0.9117
0.8813
0.8567
0.8192
0.7549
0.6180 | 0.9433
0.9374
0.9305-
0.9222
0.9119
0.8813
0.8567
0.8192
0.7549
0.6180 | 0.9451
0.9388
0.9315+
0.9229
0.9124
0.8991
0.8814
0.8567
0.8192
0.7549
0.6180 | 0.9489
0.9419
0.9340
0.9248
0.9137
0.8999
0.8818
0.8569
0.8192
0.7549
0.6180 | 0.9582
0.9498
0.9404
0.9298
0.9174
0.9024
0.8834
0.8576
0.8194
0.7549
0.6180 | 0.9872
0.9742
0.9608
0.9463
0.9303
0.9120
0.8898
0.8612
0.8209
0.7552
0.6180 | 0.9645 ⁻
0.9276
0.8862
0.8346
0.7599
0.6184 | 0.682 | | | 95 | 85 | 75 | 65 | 55 | 45 | 35 | 25 | 15 | 5 | $\begin{array}{c} {\rm Table\ VII-}Continued \\ {\rm \textit{H-}Situation} \end{array}$ | x | q | x | q | |---------------|---------|----------|---------| | 1 | 0.6180 | 51 | 0.9866 | | 2 | 0.7549 | 52 | 0.9869 | | $\frac{2}{3}$ | 0.8192 | 53 | 0.9871 | | 4 | 0.8567 | 54 | 0.9874 | | 5 | 0.8813 | 55 | 0.9876 | | | 0.8987 | 56 | 0.9878 | | 6 | | 20 | 0.9880 | | 7 | 0.9116 |
57 | | | 8 | 0.9216 | 58 | 0.9882 | | 9 | 0.9296 | 59 | 0.9884 | | 10 | 0.9361 | 60 | 0.9886 | | 11 | 0.9415 | 61 | 0.9888 | | 12 | 0.9460 | 62 | 0.9890 | | 13 | 0.9499 | 63 | 0.9891 | | 14 | 0.9533 | 64 | 0.9893 | | 15 | 0.9563 | 65 | 0.9895 | | 16 | 0.9588 | 66 | 0.9896 | | 17 | 0.9612 | 67 | 0.9898 | | 18 | 0.9632 | 68 | 0.9899 | | 19 | 0.9651 | 69 | 0.9901 | | 20 | 0.9667 | 70 | 0.9902 | | 21 | 0.9683 | 71 | 0.9904 | | 22 | 0.9697 | 72 | 0.9905- | | 23 | 0.9709 | 73 | 0.9906 | | 24 | 0.9709 | 74 | 0.9907 | | 24
25 | 0.9721 | 75 | 0.9909 | | 26
26 | 0.9732 | 76 | 0.9910 | | | 0.9742 | 10 | 0.9911 | | 27 | 0.9751 | 77
78 | 0.9911 | | 28 | 0.9760 | 78 | 0.9912 | | 29 | 0.9768 | 79 | 0.9913 | | 30 | 0.9775+ | 80 | 0.9914 | | 31 | 0.9782 | 81 | 0.9915+ | | 32 | 0.9789 | 82 | 0.9916 | | 33 | 0.9795+ | 83 | 0.9917 | | 34 | 0.9801 | 84 | 0.9918 | | 35 | 0.9807 | 85 | 0.9919 | | 36 | 0.9812 | 86 | 0.9920 | | 37 | 0.9817 | 87 | 0.9921 | | 38 | 0.9822 | 88 | 0.9922 | | 39 | 0.9826 | 89 | 0.9923 | | 40 | 0.9830 | 90 | 0.9924 | | 41 | 0.9834 | 91 | 0.9925 | | 42 | 0.9838 | 92 | 0.9925+ | | 43 | 0.9842 | 93 | 0.9926 | | 44 | 0.9845+ | 94 | 0.9927 | | 45 | 0.9849 | 95 | 0.9928 | | 46 | 0.9852 | 96 | 0.9928 | | 47 | 0.9855+ | 97 | 0.9929 | | 48 | 0.9858 | 98 | 0.9930 | | | 0.9861 | 99 | 0.9931 | | 49 | | | | | 49
50 | 0.9864 | 100 | 0.9931 | The exponents + and - are to be used for rounding in the usual manner. Table VIII — Polynomial Expressions for $F_2^*(m)$ for Procedure R_2 | m | Coefficient of | | | | | | | | | | | | g-interval | Next Test
Group Size | | |---|----------------------------|-----------------------|---|----------------|--|-------------|--|------------------|--|--|-------------|-----|---|----------------------------|--| | | 1 | q | q^2 | q ³ | q ⁴ | <i>q</i> 5 | q6 | q ⁷ | q8 | q9
—— | q10 | q11 | 0.000 / 7 / 1.000 | 1 | | | $egin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} \Big\}$ | 1
1
2
2
2
2 | 1
2
2
2
3 | 2
2
2
3
3 | $\frac{2}{3}$ | 3 3 3 | 3 3 | | | | | | | $\begin{array}{cccc} 0.000 & \leq q \leq 1.000 \\ 0.000 & \leq q \leq 1.000 \\ 0.755 & \leq q \leq 1.000 \\ 0.682 & < q \leq 1.000 \\ 0.652 & < q \leq 0.890 \\ 0.890 & < q \leq 1.000 \end{array}$ | 1
2
2
2
2
3 | | | $ \begin{array}{c} 7 \\ 8 \\ 9 \\ 10 \end{array} $ | 2 3 3 3 | 3 3 3 3 3 | 3333333 | თ თ თ თ თ | 333333 | 3 3 4 | 3
4
3
4 | 4
3
4
3 | 4 4 | 4 | | | $\begin{array}{c} 0.838 \leq q \leq 1.000 \\ 0.809 < q < 0.938 \\ 0.938 \leq q \leq 1.000 \\ 0.902 \leq q \leq 1.000 \\ 0.879 < q \leq 0.960 \\ 0.960 < q \leq 1.000 \end{array}$ | 3
3
4
4
4
4 | | | $\frac{10}{11}$ $12 \left\{ \right.$ | 3 3 3 | 3 3 4 | $\begin{vmatrix} 3 \\ 3 \\ 4 \end{vmatrix}$ | 4
4
3 | $\begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$ | 3
3
4 | $\begin{bmatrix} 3 \\ 4 \\ 4 \\ 3 \end{bmatrix}$ | 3
4
4
4 | $\begin{bmatrix} 4\\3\\4\\4 \end{bmatrix}$ | $\begin{bmatrix} 4 \\ 4 \\ 4 \\ 3 \end{bmatrix}$ | 4
4
4 | 4 4 | $\begin{array}{c} 0.960 < q \le 1.000 \\ 0.934 \le q \le 1.000 \\ 0.916 < q \le 0.972 \\ 0.972 < q \le 1.000 \end{array}$ | 4
5
5
5
6 | |