Group Testing To Eliminate Efficiently
All Defectives in a Binomial Sample

By MILTON SOBEL and PHYLLIS A. GROLL

(Manuscript received November 13, 1958)

In group-testing, a set of x units is taken from a total starting set of N
units, and the x units (I £ x = N) are tested simultancously as a group
with one of two possible outcomes: either all x units are good or at least one
defective unit is present (we don’t know how many or which ones). Under
this type of testing, the problem is to find the best integer x for the first test
and to find a rule for choosing the best subsequent test-groups (which may
depend on resulls already observed), in order to minimize the expected total
number of group-tests required to classify each of the N units as good or
defective. It is assumed that the N unils can be treated like independent
binomial chance variables with a common, known probability p of any one
being defective; the case of unknown p and several generalizalions of the
problem are also considered.

I. SUMMARY

A finite number, N, of units are to be tested in grot ps. A “group-test”
is a simultaneous test on x units (x to be chosen sothat 1 £ + = N)
with only two possible outcomes: “success,” indicating that all & units
are good; and “failure,” indicating that at least one of the x units is
defective (we don’t know how many or which ones). The problem is to
define a simple and efficient procedure (or an optimal procedure) for
separating all the defective units from the good units — efficiency being
defined in the sense of minimizing the expected number of group-tests
required. Each unit is assumed to represent an independent observation
from a binomial population with a common known a prior: probability,
q, of being good and p = 1 — ¢ of being defective. (The case of ¢ un-
known is briefly treated in Seetion X.)

A procedure (or decision rule), R, , which describes a mode of action
for any given value of ¢, is proposed and compared with several other
procedures applicable to the same problem. The procedure R, is simple
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in the sense that at any time, ¢, the experimenter must separate the
units not yet proven to be good or defective into only two sets; units
within either of these two sets need not be distinguishable. If it is given
that the identification of units within the group being tested is econom-
ically impractical or impossible, then the procedure R; is conjectured to
be optimal for all values of g.

Explicit instructions for carrying out R, are given for N = 1(1)16 for
all ¢ and for N = 17(1)100 for the particular values ¢ = 0.90, 0.95 and
0.99. Exact formulae for the expected number of group-tests required
under R, aregiven in Table IV B forall g and for N = 1(1)12; numerical
results for ¢ = 0.90, 0.95 and 0.99 are given in Tables VA, V B and V C
for N = 1(1)100. Other numerical comparisons are made in Tables IT A
and I B. [Tables II through VIII appear at the end of this paper.]

Another procedure, R, which is simpler to compute and compares
favorably with R, , is defined in Appendix A in terms of information
theory concepts.

Several different directions for generalization of the problem and cor-
responding generalizations of the procedure [, are considered in Section
XI. Industrial applications are mentioned, in addition to the known
application to blood testing.

II. INTRODUCTION

A problem which has hitherto been considered only in connection
with blood-testing applications'®* can be shown to have industrial
applications, and these have focused interest on a more general treat-
ment of the problem. During World War II, a great saving was accom-
plished in the field of blood testing by pooling a fixed number of blood
samples and testing the pooled sample for some particular disease. If the
disease was not present, then several people were passed by a single test;
if the disease was present, then there was enough blood remaining in
each blood sample to test each one separately. The amount of time,
money and effort saved by such a procedure depends on how rare the
disease is in the population of people being tested. In this application,
the total number of people to be tested was regarded as unknown and
very large.

The goal of the problem treated here is the same — namely, to separate
the defective units from the good units with a minimal (or approxi-
mately minimal) number of group-tests. This problem differs from the
blood-testing problem in the following respects:

i. The population size N (number of people to be tested) is known
at the outset.
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ii. The number of units in each group-test (pooled blood sample)
is not necessarily constant.

iti. If a group-test fails (the disease is present) we do not necessarily
test each item separately.

In practice, the simplicity of the procedure deserves some considera-
tion. The proposed procedure R, defined in Section III, after having
been computed and described explicitly in advance of any experimenta-
tion, is in some sense no more complicated than the blood-testing pro-
cedure deseribed above; this is explained in Section V.

Some typical industrial applications are:

1. It is desired to remove all “leakers” from a set of N devices. One
chemical apparatus is available and the devices are tested by putting
z of them (where 1 < 2 = N) in a bell jar and testing whether any of
the gas used in constructing the devices has leaked out into the bell jar.
It is assumed that the presence of gas in the bell jar indicates only that
there is at least one leaker and that the amount of gas gives no indica-
tion of the number of leakers. The a prior: probability, ¢, of a unit being
good is given by the records of similar units tested in the past.

2. Paper capacitors are tested at most n at a time, and each test in-
dicates by the presence or absence of a current whether or not there is
at least one defective present. IFor given n and ¢ and given cost of unit
manufacture, should the operator throw away a whole set of n units if
it contains at least one defective? If not, how should he proceed to sort
out the defective units to minimize the expected number of tests re-
quired? If the cost of a group-test and the cost of producing a unit are
known, a related problem is to find a procedure which minimizes the
total cost (including testing costs) of producing a good unit.

3. Christmas tree lighting problem. A bateh of n light bulbs is electrie-
ally arranged in series and tested by applying a voltage across the whole
batch or any subset thereof. If this is to be done on a routine basis, what
procedure should be used to minimize the expected number of tests re-
quired to remove all the defective light bulbs, assuming the value of ¢
is given?

4. A testindicates whether or not there is at least one good unit present
in a batch of n, without indicating which ones or how many are good.
Given g, what procedure should be used to remove the good units? This
dual problem, which is useful in salvaging good components on a routine
basis, is mathematically equivalent to those above, if the definitions of
good and defective are interchanged.

A procedure R, is defined to solve the above problems, and is compared
with several other procedures for the same problem. A procedure R, ,
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based on maximizing the information in each group-test, is defined in
Appendix A. Another procedure, Rs, which does not allow any recom-
bination, is defined in Appendix B. Two ‘halving procedures,” which
can be carried out without knowing the true value of ¢, are defined in
Appendix C. Procedures R; and Re are the best procedures that can be
obtained by the methods of Dorfman' and Sterrett,® respectively, for
small population sizes. For N = 4, 8 and 12 and various ¢ values, Table
IT A givesa numerical comparison of the expected number of group-tests
required for all these procedures.

Different directions of generalization, some of which are discussed in
Section XI, are the following:

1. Two (or more) different kinds of units with (say) known proba-
bilities g , g2 of a unit being good are present, and the two different kinds
can be put into the same test group.

2. Two (or more) experimenters may be working on a single set of N
units by carrying out simultaneous, parallel group-tests and cooperating
in such a way as to minimize the time required to accomplish the task.

3. The restriction is sometimes applied (particularly in blood-testing)
that any one unit ean be included in at most k group-tests; here the goal
is to minimize the expected number of group-tests subject to this re-
striction. For k = 2 the proposed procedure is necessarily based on the
method of Dorfman;' ie., if a group-test fails, then the units therein
are all tested individually.

4. Various generalizations appear if it is assumed that each test on x
units gives three (or more) different possible results. For example, a test
could indicate that either (a) all are good or (b) all are defective or (¢)
there are at least one good unit and at least one defective present.

5. A unit can be defective in either of two ways (e.g., electrical or
mechanical) with the two a priori probabilities of being defective as-
sumed to be independent but not necessarily equal. If there are two
different tests corresponding to the two types of defectives, then, in addi-
tion to deciding the next test-group size, it may be necessary to decide
which test to use next.

6. For positive continuous chance variables with a known distri-
bution (like weight) the following problem is analagous. It is desired to
separate N units into two groups according as the weight per unit is
less than or greater than a constant (say, unity). Any number of units
can be included in a single weighing. The problem is to accomplish the
separation in a minimal number of weighings, assuming that the indi-
vidual weights are independent observations from the common known

distribution.



GROUP TESTING TO ELIMINATE DEFECTIVES 1183

Many of these generalizations will be omitted from this paper and
treated separately.

III. THE PROCEDURE R,

The procedure R; is defined implicitly by a pair of recursion formulae
and boundary conditions, but first we shall need some definitions and
preliminary results. The units proven to be good and the units proven
to be defective are never used in subsequent tests. Aside from such units,
this procedure requires that at every stage the remaining units be sep-
arated into at most two sets. For one set of size m = 0, which we call
the defective set, it is known that it contains at least one defective unit;
for the other set of size n — m = 0, which we call the binomial set, our
a postertor? knowledge is, so to speak, in the original binomial state; i.e.,
given the past history of testing, the units in the binomial set act like
independent, binomial chance variables with a common probability p of
being defective. IFor the defective set, the conditional probability that
Y, the number of defectives present, equals y is

Pr (Y = y|¥ 2 1] —L——"’) (y=1,2-m. I

1 — qm
If X denotes the number of defectives present in a subset of size @ ran-
domly chosen from the defective set, then

G (c:)
PriX=o0/yzi=p ¥ t S =d ) )

= —l 1 — qm m 1 — qm
€T

Before defining the procedure it is convenient to prove a lemma in a
more general setting. Let T'(r;) (¢ = 1, 2, ---, ) denote a test on n
units (1 = r; £ n) such that there are only two mutually exclusive
possible outcomes: a “failure,” indicating that there are at reast r; de-
fectives present, and a “success,” indicating that at most r, — 1 of the
units in the test are defective. In Lemma 1 we consider any integers r; ,

rowithl =r, En(i= 0,1, 2, ---, t), but the most important appli-

cation isthe case rgp = 1, = --- = r, = 1. Let @ be any set of units,
and let @ (7 = 1, 2, .-+, t) denote sets not necessarily disjoint from
one another but such that each is digjoint from ®; the case { = 1 is

the one used for procedure R, . At the outset, all units are independ-
ently and binomially distributed with a common probability p of be-
ing defective.
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Lemma 1: If a test T(r;) on @ + ®&; produces a failure for (i = 1,
2, .-+, 1) and another test T(7) on @ also produces a failure, then for
ro = max r; the conditional distribution associated with all the units in
the sets ®:(¢ = 1, 2, -+, t), given both conditions above, is exactly
the same as the original binomial distribution.

Proof: Let A and B; denote the chance number of defectives present
in @ and ®; , respectively. For the jth set ®; the conditional probability

P of interest is

P=PrB, <b|lA+ B zri=12"-,1,42zn (3

Since 7y = max r:(z = 1, 2, -+, ), the condition 4 = », implies that
A + B; = r;, and hence
P="Pr{B; =b|4A = rd. (4)

Since ®, and @ are disjoint, it follows that B; and A are independent
and hence, from (4),

P = PriB; = b}, (5)

which proves the lemma.

Let Gi(m, n; ¢) = Gi(m, n) denote the expected number of group-
tests remaining to be performed if the defective set is presently of size
m, the hinomial set is presently of size n — m, the a priori probability of
a good unit is the known constant ¢ and the procedure R, is used. For
the special case m = 0 we use the symbol Hi(n; ¢) = Hi(n). The values
of m and n vary as the procedure is carried out; at the outset, m = 0
and n = N. It will also be convenient to refer to the G-situation or
G(m, n)-situation if m > 1 and to the H-situation or H (n)-situation if
m = 0.

Recursion Formulae Defining Procedure Ry

If 2 denotes the size of the very next group-test, then we write for
any situation withm = 0

Hi(n) = 1 + min {¢"Hi(n — 2) + (1 — ¢") Gi(z, n)},  (6)

1<z<n

and, with the help of (2) and Lemma 1, we write forn =2 m = 2

Gi(m,n) = 1 4+ min {(tf —_;’")Gl(m —x,n — )

1=z=m—1
1 —¢
(=g}
— 4

(7)
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The boundary conditions state that for all ¢
Hi(0) =0 and G(l,n)=Hin—-1) for n=1,2---. (8)

In (6) and (7) the constant 1 represents the very next group-test of
size x and the expression in braces is the conditional expected number
of additional group-tests given x. It follows from (6) and (8) that
Hy(1) = 1 for all q.

Remark 1:To justify writing G\(x, n) in (7) we make use of Lemma 1
witht =2, r, =0,r = rn = 1; we take @ + ®, as the defective set of
size m and @ as a subset of size ¥ < m. Then, by Lemma 1, if the sub-
set @ of size x is shown to contain at least one defective, the a posteriori
distribution associated with the m — 2 units in By is exactly binomial.
These are then mixed or recombined with the n — m “binomial units,”
giving a total of n — x binomial units, and this justifies the expression
Gi(x, n) in (7).

Remark 2: These two recursion formulae, together with the boundary
conditions, allow one to compute successively for any ¢ the functions
(2, 2), Hi(2), G1(2, 3), Gi(3, 3), Hi(3), Gi(2, 4), G1(3, 4), G1(4, 4),
Hi(4), -+ to any desired value of m and n.

Remark 3: The integer @ which accomplishes the minimization in (6)
and (7) for each situation characterized by the integers m and n is par-
ticularly important, since this is the size of the next test to be run ac-
cording to the procedure R, . These integers * = xx(n; ¢) and x = x4(m,
n; q) implicitly define the procedure R, . An illustration of how the pro-
cedure R, is to be carried out is given in Section 1V,

Remark 4: If m > 1, then it is assumed in (7) that a subset of size x
with 1 £ 2 < m will be taken from the defective set without mixing it
with units from the binomial set. It follows from (6), (7) and (8) that
any lack of optimality can only arise from this “no mixing” assumption,
This assumption was used in the derivation of the algorithm (7) (see
Remark 1 above). It will be noted in Section XITII that, when all the
units are individually identified, then by dropping this assumption, an
improvement to the procedure R, for high values of ¢ ean be found. A
specific example of a modification and improvement of the procedure R, ,
which drops the ‘“‘no mixing’ assumption at the expense of more com-
plication will be more thoroughly discussed in a separate paper.

IV. ILLUSTRATION OF THE PROCEDURE Rl

Suppose we start with N = 12 units and it is given that ¢ = 0.98.
Referring to the column headed H,(12) in Fig. 3, we find that the first
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test-group is of size x = 12; i.e., we start by testing all 12 units. If a
success oceurs, the experiment is over; if a failure oceurs, then accord-
ing to the column headed G1(12, n) of Fig. 4 the next test group is of
size x = 4 chosen at random from the 12. Similarly, we continue along
one of the sample paths shown in Fig. 1. The complete ‘“tree” is not
shown here, but testing continues in a similar manner and the specific
details can be obtained from Figs. 3 and 4, which appear at the end of

this paper.
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Fig. 1—Initial part of the tree for procedure R, for ¢ = 0.98 and starting with
an H(12)-situation.

It is obvious that the above procedure terminates in a finite number of
steps. In fact, it can be shown for procedure R, (proof is omitted) that
the maximum number M(n) [M(m,n)] for any H-situation [G-situation]
oceurs when ¢ is close to unity and the n unanalyzed units are all defec-

tive. It follows easily that
M(n)
M(m,n)

1+a(n)

m+ 1D +an))+1—-2 ,
alm) + o[l +an — D]+ 1 — 270 (m > 1)

Il

(10)

I
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where «a(z), for any positive integer z, is defined by
2(1(:) é 2 < 21+u(z). (11)

I'or the example above,a(12) = 3 and M(12) = 37;it is interesting to note
that the constant term in H;(n) expressed in powers of ¢ in Table IV B
is also the length of the longest “chain’ (that is, 37 for n = 12) in the
“tree” used for the interval of g-values ending at unity. Although the
maximum number is so large, the expected number of tests is only 2.07.
This is explained partly by the fact that the procedure terminates after
one group-test with probability 0.7847. A table of such probabilities for
the number of tests T required when ¢ = 0.98 and N = 12 is given
below:

T ‘ 1 2 . 3 4 5 6 ‘ 7 8 9 10-37

Proba-
bility

0.7847) 0 ' 0 0 | 0.0801 0.1124‘ 0.0003 0.0016| 0.0134| 0.0075

If we assign the probability 0.0075 to T = 10, we obtain an estimate of
H,(12) (namely, 2.070) which is a lower bound. The exact value, 2.073,
can be obtained from the formula for #,(12) in Table IV B. Similarly,
an estimate of the standard deviation is computed to be ¢ == 2.1, and
this also is easily shown to be a lower bound.

It is interesting to note that, if the starting number N is exactly a
power of 2 and ¢ is large, the procedure f; starts off the same as a
“halving” procedure. Such a procedure R; is defined in Appendix C for
any N, and it has the property that it can be carried out without know-
ing the true value of ¢. To compare the means and standard deviations
of R; and R, , we consider the case N = 6, where M = 14 for both R,
and Ry . For any ¢ > 0.844, the expectation under R, can be put in the
form

E(T;R) = 1(¢") + 4(3pq") + 5(3pg’ + 2p°¢") + 6(2p°¢")
+ 7(79°¢" + 20°¢") + 8(4p°¢" + 5p'd’) + 9(8p'¢" + 3p'’)
+ 10(5p°¢" + 5p'") + 11(3p'¢" + 2p°9)
+ 123" + P’ + 1K' + 20°0) + U + p°),

(12)

where, for each term, the expression in parentheses is the probability
that 7' takes on the value of the associated integer coefficient. F'or any ¢
the corresponding expression under R; is



1188 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1959

E(T;R:) = 1(¢") + 4(3p¢") + 5(3pq” + 20°") + 6(p°¢" + p'd)
+ 7(79°¢") + 8(5p°¢* + 5p°¢") + 9(6p°¢" + 2p'e)
+ 10(7p'¢" + 49°¢) + 11(p°¢ + 4p°C + p'0)
+ 12(4p'¢" + 29°¢) + 13(p'¢" + 20°9) + 14(p’q + p°).
The procedure R; is better than R, (at least for ¢ > 0.844) since
E(T;R,) — E(T;R,) = 2p°¢" + 59°¢ + 4p'¢" + p’g =2 0. (14)

[The fact that each term in (14) is positive indicates that R; is better
than R;, even if we know how many defectives are actually present
among the N units.] Some numerical comparisons of means and standard
deviations are given in Table I. The maximum difference for N = 6 be-
tween £(T; Ry) and E(T; R,) occurs at ¢ = 0.844, and is equal to 0.0379.
For N = 6, the procedure R, appears to have a variance smaller than

(13)

TaBLE I — CoMraRISON OF PROCEDURES R; AND Ry FOR N = 6

q = 0.85 g = 0.90 g = 0.95 g = 098 g = 0.99
E(T; By 3.8118 2.9434 2.0092 1.4133 1.2083
E(T; Rs) 3.8472 2.9605 2.0136 1.4141 1.2085
a(T; Ry) 2.536 2.269 1.762 1.179 0.850
a(T; R4) 2.503 2.304 1.776 1.183 0.851

that of R4 for all ¢ < 1. A more complete comparison of £(7T; R,) with
that of several other procedures is given in Table TT A.

V. THE SIMPLICITY OF [,

It will be shown in this section that, for any given ¢ and any situation
G'(m, n), the appropriate x [i.e., the integer which accomplishes the mini-
mization in (7)] does not depend on n. A somewhat simpler method of
computing 2 is given and a new function of m alone is introduced to re-
place Gy(m, n) in the definition of the procedure R; . For any m and any
pair of integers (x, ¥ + 1) both possible under R, , there is always a
single dividing point g¢(2) = ge(x, 4 1; m) that separates the interval
for x from the interval for x + 1. (This property was observed for
m = n = 16 and is treated as a conjecture for all m and n in Section VII.)

According to Remark 4 in Section ITI, the procedure R, for m > 1 is
to “break down” the defective set. This “breaking down’ is continued
until a single unit is established to be defective and removed. Instead
of randomizing the order of the units in the defective group again and
again before each test group is selected, it will be convenient to assume,
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without affecting the properties of the procedure R;, that the order is
randomized only once at the outset.f Units or groups of units removed
later are then to be taken in that order. If the ith unit (in that order) is
the first defective unit, then the *breaking down’ mentioned above
leads to an H-situation with n — 7 binomial units, and the converse also
holds true.}

It is econvenient to introduce F;(m, ¢) = Fi(m) defined as the expected
number of group-tests required to “break down’ a defective set of size
m and for the first time reach an H-situation when ¢ is given and the
procedure R, is used. Then Fy(m) clearly does not depend on n and the
above argument permits us to write

) = Fim) + (2 ) Eammon = o, as)
For algebraic simplicity we let

1 — qﬂl " 1 — qm
Gi*(m,n) = e Gy (m,n) and F1*(m) = T=¢ Fi(m). (16)
Then (7) and (15) take on the simpler forms

Gy*(m, n) = Z qf—l

= (17)
+ min {¢"Gi*(m — a,n — a) + Gi*(x,n)},
l£xr=m—1
Giy*(m,n) = Fy*(m) + Zl g "Hi(n — 7). (18)

Substituting (18) in (17), the three summations cancel and the result is

m

Fi*(m) = Z qi_1 4+ min  {¢F*(m — x) + Fi*(x)}, (19)

i=1 l=r=m—1

which does not depend on n. The boundary condition, F,*(1) = 0 forall ¢,
also does not depend on n. It is clear from this derivation that (19),
which does not depend on n, must define the same integer values
x = xg(m;q) as (17) or (7). This proves the following theorem.

1 It should be pointed out that even this single randomization at the outset
ean be (Iisregnr(le({ in carrying out the procedure R, if there is no doubt about the
assumption of independent chance variables or if the units are already well-mixed
in the process of delivery to the experimenter.

1 It follows from the above that, for any procedure which “breaks down” the
defective set in the above-mentioned manner (including a method of testing units
from the defeetive set one at a time until a defective unit is found), the expected
number of good units eliminated between a G(m,n)-situation and the next H-situa-
tion is ¢/p — mgm/(1 — ¢™), and the number of defective units eliminated is
always exactly one.
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Theorem 1: For any G-situation with » = m > 1 and any g, the size
of the next test group, defined implicitly by (7), does not depend on n.

This result simplifies the explicit instructions needed to describe the
procedure. Thus the two diagrams, Figs. 3 and 4, describe the procedure
R, for all values of ¢ and for any N = 16.

Equations (15) and (16) can also be substituted in (6), yielding

Hiy(n) =1 4+ min {q”Hl(n— x)
lsx<n

. (20)
+ (1 —-1¢q) [Fl*(:b‘) + ; ¢ 'Hi(n — i):l},

which, together with (19), gives a pair of “one-dimensional” recursion
formulae for defining R, instead of the “two-dimensional” set, (6) and
(7).

Remark &: It should be pointed that, if one were to ask for a procedure
that “breaks down” the defective set in as small an expected number of
group tests as possible, then one would write (19) as one of the basic
recursion formulae defining the procedure. This shows that R, ‘“breaks
down”’ the defective set and returns to an H-situation in a minimal num-

ber of tests.

VI. SOME PROPERTIES OF Rl FOR ¢ CLOSE TO UNITY

For any G-situation with m > 1, consider the effect of increasing g.
It is easy to see by an induction argument that Gi(m, n) is a strictly
decreasing function of ¢. The function Hi(n) is also strictly deereasing
unless the value of g is such that the procedure R, tests all units one at
a time, in which case Hi(n) is constant. The “‘tree” remains the same
in an interval as g increases, and changes only when it becomes more
efficient under R, to increase the size of some test group in the “tree”;
ie., if we proceed down the “tree’” along any path, the first change en-
countered, if any, will be an increase in some test group size. It there-
fore seems reasonable to expect (in both G- and H-situations) that the
largest value of z assigned by Ry (say, Zmax) occurs in an interval of ¢-
values ending at unity. This unproved assertion that under R, large
values of z are associated with large values of ¢ is an immediate conse-
quence of Conjectures 1 and 2 stated in Section 7.

For fixed m > 1, let the integers a(m) and g(m)

[a(m) 21, 0= B(m) <2""]
be defined by
m = 2" 4+ B(m). (20a)
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Under the assumption that R, assigns zm.x in an interval of ¢ values end-
ing at unity, it will be shown for any G-situation that in this interval
the value of * = Zumax 18 given by

27~ for 2% < m < 3.2
e = {m — 2% for 3.2°" < < 27, 20
As a corollary it then follows that, under R, (G-situation),
%S Tmx S 5 (22)
Also in the above-mentioned interval we have
pertm) = atm) (A0 4 oo L2000 o)

Proof of (21), (22) and (23): In (19), sincez £ m — 1 and
m —a = m — 1, we can use the induction hypothesis (23) to obtain

Fy*(m) — 2.¢"' = min {q’a(m - x) (Ll)
o | l1€e<m—1 1—gq

m—28 (m—zx 1 —_ 28(m—xr) 1 o
tat )(q— + alv) 4 (24)
1—g —

o 1 _qﬂ.ﬂ(r)
+ o |
1 —gq

Tor ¢ close to unity, the right side of (24) is equivalent to minimizing
Q(x) = [ra(z) + 28(x)] + [(m — 2)a(m — x) + 28(m — x)]. (25)

Tor the moment, let us utilize the symmetry of @(x) for2 £ x £ m — 2
and limit our considerations to x < m/2 and m = 4.

Let [m/2] denote the largest integer less than or equal to m/2. Ior
x = [m/2)], [m/2] — 1, -+, we consider @(xz + 1) — Q(x) and distin-
guish several cases according as

a. alz — 1) = a(z) =a(m —2) £ alm — x4+ 1);
b.a(z — 1) +1 =az) =a(m —z) £ alm —x+ 1);
c. alr — 1) = alz) =alm —x — 1)

alm—x) —1=a(m—z+1) —1; (26)
doalz—1)+ 1 =alz) =am—a—1)
=am—2a)—1=alm—z+1) — 1;

e. m=2x+ land alz) < a(m —az — 1).
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Using the fact that, for any integer y > 1,
yla(y) — aly — D]+ 2[B(y) — By — )] = 2, (27)

we obtain for all the cases in (26) the result,

Qlx + 1) — Q(x) = a(z) — a(m — x) = 0. (28)
In particular, the value is zero only when (26a) holds and e(x) =
a{(m — ). Hence, @Q(z) is a nonincreasing function of the integer x

for 1 £ x £ m/2 and is constant for zp = & = m — =z, where 2, is de-
fined by

Of(ll?(] - 1) + 1= CE(.’L'{])
or (29)

a{x) = alm — 2y — 1) = a(m — ) — 1,

Il

alm — xg — 1)

whichever gives the maximum. These imply that
2o = 2°9Y < — xy — 1 < 2°00F = 2
or (30)
T < m — a0 = 2% < 2.

Both lead to the same results; namely,

s;u0<f)1”. (31)

A

@z

It follows that

2m

é Tmax é ?

w{‘i

and, from (29), for any integer z with o = = m — o, the values of
a(x) and a(m — 2) can differ by at most unity.

For any x with 2y £ = £ m — x, we consider two cases according as
| a(x) — a(m — z) | is zero or unity. Let the expression in braces in (24)
be denoted Cy*(x). For integers x withzo < x = m — o the number of
terms in C1*(x) is constant and the expression C;*(2) is to be minimized
by making more powers of g larger.

Case 1. We can write

1 -4 gy |1 — g2
Cr*(z) = a(:u)[ q ] g ’[_L
1—gq —

28(z)
s |1 — ¢
+ q I:_l s ],

(32)
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and the problem is to find the x which minimizes C,*(2) for large values
of ¢ (i.e., to find yax). Since a(z) = a(m — z), B(m — x) — B(z) =
m — 2x and, using the fact that xm.x = m/3, we consider only integers
x = m/3 and obtain

m—x = 2(m — 2x) = 2[B(m — x) — B(a)], (33)
and hence

m— 2B8(m —x) = x — 28(x). (34)

It follows that the last term in (32) has lower powers of ¢ than the
previous term and that (32) is minimized by setting 3(x) = 0, i.e., by
taking @ma.x to be a power of 2. To complete the proof of (21) and (23),
we note that

m=zx+ (m—z)=2""7 42" 4L g(m — 2)

31"
= 2°7% 4 g(m — ), )

so that a(m) = a(x) + 1, 8(m) = B(m — a) and, since & = 2. 15 2
power of 2, we have

Tmax = 2'1“")_1- (36)
Sinee, by (35), 8(m) = B(m — x) < 212%™ then (36) holds for 2°™ <

m < 3[2°"""). Substituting these values of a(z), 8(z), a(m — ) and
B(m — z) into (32) and using (24) gives

_m , _ 2B(m)
Fl*(m) — a(?n) (1 q ) + qm—_ﬂ(m) (1—Q_) , (37)
1 —¢q 1 —ygq

which completes the induction for Case 1. Conversely, if 2™ < m < 3
[2°™7Y then 0 = 2°™ ™" and, forany  with 2o £ © < m — x,, we have
a(x) = a(m — ). Hence (32) is minimized for zu. = 20 = 2°™" by
the above argument.

C'ase 2. Since we are now considering only possibilities outside Case 1,
we must have 3[2°™7" £ m £ 2°™* Using (29), and the fact that
ry = & = m — xy, it follows that either a(x) = a(m — v — 1) =
a(m — x) — 1, so that m — x is a power of 2 and * < m/2, or else
a(m — ) = afr — 1) = a(r) — 1, s0 that xi1s a power of 2and x > m/2.
In the former alternative, we obtain

m= x4+ (m — z) = 3[2°7] + 8(x),
a(m) = a(r) + 1 and g(m) = 2*“ + B(x) = x. It follows that

T = Tyax = M — 2'1(“). (38)
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In the latter alternative, it can be concluded that x = 2™ > m/2. In
the latter alternative (or in both alternatives), we now compare the
values of ('*(x), computed from (24), for the two arguments,
2 = 22 > m/2 and 1 =m — 2°™ < m/2.
Using the general result that g(m*) < m*/2 for any positive integer m*
and the implied result that e(m — 2°™) = a(m) — 1, it is easy to show
(the details are omitted) that Ci*(22) < Cy*(zy) for 0 < ¢ < 1. Hence,
for either alternative, we obtain the same result, (38). As a corollary,
(22) holds. In this case C1*(x), after algebraic simplification, is given by
1—4q" mopemy | 1 — ¢*"
6@ = lam) - 1 (=LY + e [LE0 ] @0
—q I —q
which, using (24), again gives the result (23). The fact that (23) holds
for m = 2, 3 and 4 is easily shown and the details are omitted. This
completes the proof of (23).
It is also possible to get expressions for Gy*(m, m), Gi*(m, n) and
Hi(n) for large values of ¢ using (23) and the fact that, for any posi-
tive n and sufficiently large values of ¢ (depending on n),

Hi(n) =14 (1 — ¢")Gi(n,n) = 1+ pGi*(n, n). (40)
Then, by (18), we obtain for large values of ¢

GFmym) = m — 1+ gFy*(m) + p i F(), (41)
G*¥(m,n) =n—1— (n—m— 1)¢" + F*(m)
n—m—1 . n—1 (42)
+ p(1 — ¢™) ; F*(7) + Pj;mFl*(j),
Hy(n) = ¢ + np + pFr*(n) + 7' i F(), (43)

where (42) is to be used only for m < n and the summation from a to b
is taken to be zero for b < a. Using these and (23), the last equation
(i.e., the equation for the last g-interval which ends at unity) can be
obtained independently and more simply for F *(m), G1*(m, n) and
Hl(ﬂ}

It is clear from the results above that, as ¢ approaches unity,

lim H;(n) =1 (43a)

and that, for ¢ in an interval ending at unity, we have zx(n; ¢) = n.
Here z4(n; q) is the size of the next test group when the procedure R,
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is used for an H(n)-situation with a priori probability ¢ of a unit being
good. In an H-situation the probability that there are no defectives pres-
ent approaches unity as ¢ approachesunity. Ina G-situation with m > 1,
the probability that there is exactly one defective in the defective set
and none in the binomial set approaches unity as ¢ approaches unity.
Defining x4(m; ¢) in a similar manner, it was shown above that
xg(m; ¢) = Tuux [as given in (21)] in an interval ending at unity, and
it follows from (23), (41) and (42) [or (23) and (15)] that, as ¢ ap-
proaches unity,

lim Fy(m) = a(m) + 2‘% (m>1), (43b)
lim Gl(m, ?’L) =
1 4+ lim Fi(m) =14+ alm) + 2 p(m) (forn > m)
m (43c)
1 — N + al(m) + 2 B(m) (forn = m).
m m

It is interesting to note that the result (43c) depends on m but not on n.

VII. CONJECTURED PROPERTIES OF R;

In this section we shall state some properties which appear to hold
for procedure R, based on numerical calculations for N < 16 but have
not been proved for all N.

1. I'or any G-situation with fixed m > 1, if x¢(m; ¢) denotes the size
of the next test group under R;, then x4(m; ¢) is a nondecreasing step
function of ¢ with step size unity. That is, for any pair ¢ < ¢7 = 1,

xo(m; ) = xe(m;q") (44)
and, for sufficiently small e > 0,
xo(m; q + €) =< xe(m;q) + 1. (45)

Also for fixed ¢ the value of x4(m + 1; ¢) is either the same or one greater
than xq¢(m; ¢);1i. e.

ra(m; q) = xe(m + 1;¢) < xe(m; q) + 1. (46)

If the dividing point between x and x + 1 for any G-situation under R,
[denoted by ge(x; m)] is shown to exist (and be unique), then the three
properties (44), (45) and (46) are equivalent to the two properties that,
for any m > 1,
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ge(z;m) = ge(z;m + 1) for 1 =2 < Taux, (47)
ge(x;m) < go(z + 1;m) for 1 =2 < Tuax — L. (48)

The assumption used in Section VI that the largest x-values are as-
sociated with the largest g-values is a simple consequence of (44).

2. For any H-situtation, we can define x,(n; ¢) similar to 1g(m q)
and the property corresponding to (44) still holds: that, for ¢ = " =1
and all positive integers =,

zu(n; @) < waln;q"). (49)

We can also define gu(x; n) similar to ge(x; m) with the understanding
that, if # does not appear under H,(n) in Fig. 3, then the interval for
2 is assumed to have length zero but the endpoints still exist, and, in
fact, gu(x — 1, n) will then be equal to gu(z; n). Then (49) is equiva-
lent to the property that for all z = 1 and all positive integers n

gu(z;n) = qu(z + 1;n). (50)

3. If the experimental situation is such that it is impossible or eco-
nomically impractical to identify or keep separate the individual units
in any test group, then, after each test on a batch of x units, the disposi-
tion of the z units must be made on a batch basis. In such a situation
it is conjectured that the procedure Ry is the optimal procedure for all
values of g.

4. There are various patterns existing in Table II B both within a
column and across columns, none of which have been proved. For ex-
ample, if ¢ = ge(x; m) is the dividing point betweeu x and x + 1, then
the first entry in the appropriate column is 1 — ¢" — ¢, and the last
entry, form = «,is 1 — ¢° — ¢"*'. In the first column, the entry can
be writtenas 1 — ¢ — ¢ + ¢" for :111 m. In the second column of Tmble
II B the pattern shown is to replace the highest power of ¢ (say, ¢ ") by

¢ *orbyq "+ ¢"", depending on whether m is odd or even. Thus the
pattern displays a cycle of 2. In the third column one can similarly find
a pattern with a cycle of 3, starting with m = 9. If a general rule for all
these patterns were proved then it might be easier to find the dividing
points for higher values of m. The conjecture in this case lies in the fact
that these patterns exist and can be mathematically established.

VIII. CHARACTER OF R; FOR SMALL VALUES OF ¢
For the procedure R, it will now be shown that, when
q<q=3~5—-1)=0618
(to three decimal places), then, for both G- and H-situations with any



GROUP TESTING TO ELIMINATE DEFECTIVES 1197

positive integers m = n, the units are all tested one at a time. Of course,
if we start with the H-situation and test units one at a time, then a G-situ-
ation never arises, but in the induction proof that follows it must first be
shown for the G-situation and then for the H-situation. This property
that units are tested one at a time was recently shown®* to hold for the
optimal procedure (without specifying what the optimal procedure is or
whether it exists). Simple formulae for H,(n), Gy(m, n) and F,(m) are
obtained for ¢ < .
Theorem 2: For procedure By with 1 £ m < nand 0 £ ¢ < ¢,

va(m; q) = xuln; q) = 1, (51)
Hy(n) = n, (52)
m—1
Gi(myn) =n — 2L (53)
1 — I
m—1 ) m
Prim) =4 4124 "= mg" (54)

p 1 — g

[Remarks: The last term in (53) results from the possibility of saving
one test it the defective set of size m contains exactly one defective unit
that is discovered inferentially by showing that all the other m — 1 units
are good. It is interesting to note that (54) can be obtained by sum-
ming the series

Fl(?".,) = 1 _p qm (]‘ + 2(1 + 3([2 + e + (m - l)qm_." ('_5)
9

+ (m — 1)¢"™).

In the proof below, (54) is shown first and then (52); the proof of these
contain the result (51). Then (53) follows from (15), (52) and (54)].

Proof: The proof of (54) is by induction. The result holds for m = 1,
since F(1) = 0. Assuming (54) holds for arguments less than m, we
can use (19) with (16) to obtain

m m—r—1 . m—zx
¥ (m) = 1 pq + min {q’[l Ed (m — 2 — 1)pg ]

1srsm—1 p2
I71 - mil m
Ll-q *E.t'—l)pq}z[l—q —gm-l)pq] (56)
p* 4
1 — m 1 . n - —
+ T+ 2 min {x(¢" = ¢") — pg"').

P Plz2zsm—1
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To prove part of (51) it is now shown that the minimum of the expres-
sion above in braces [say, fo(x)] is attained at z = 1. Since this is obvious
for m = 2, it is now assumed that m = 3. Then

folz) = fo(1) = (& = D"+ 1 — 2¢" — pg" (57)

and it suffices to show that, for ¢ = g and x = 2, 3, ,m — 1,
file) =1 —2¢" —pg™" 2 0. (58)
Similarly, it suffices to show that, for ¢ £ gpand x = 3,4, ---,m — 1,
f( ) _.fl( ) q lrl(2) 1 + q —1 _ pqa:—ﬂ ; 0. (59)
More generally, if it suffices to show that, for ¢ < gand z = y + 1,

y-+-2,---,1n-— L

fu@) =14+ (y — Dg— 2™ —pg"" 20, (60)

then it also suffices to show that, for¢ < gpanda =y + 2,y + 3, -+ -,

m — 1,

Sule) = Ly + 1)
q

Settingy = m — 3 in (61), it suffices to show that, for ¢ = @ and x =
m — 1 (we can now replace x by m — 1),

14+ (m—4)g—(m—2)¢=1—q—¢+ (m—3)pgz 0. (62)

=14y — ag" ¥ — pg" "z 0. (61)

z.'+l( ) =

Since go is the root of 1 — ¢ — ¢" and m = 3, the inequality (62) is proved
and the minimum of (56) is attained at x = 1. Setting x = 1 in (56)
gives the bracketed expression in (56) and proves the result (54).

To prove (52), we substitute (54) in (20) to obtain

1

Hi(n) =1+ 11312 {q‘(n —x) —p¢" "+ p Z: ig
+p2 (n— i)q"_l} (63)
t=1
=n+1— max {2¢" + pg" '},
I<z=zn

where the value of ¢ ' for ¢ = 0 and 2 = 1 is taken to be unity.
To prove the rest of (51), it is now shown that the maximum of the
expression above in braces [say, h(x)] is attained at = 1 forq = qo.
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Then, for ¢ = goand x = 1,
) — h(z+ 1) =apg” — 2¢" + q"-'_l

1 2 (64)
=q¢ [l —q¢g—q¢+ (x—1)pg = 0.

Clearly, the maximum of h(x) is attained at * = 1 not only for
0 < g = g butalsofor ¢ = 0. Setting x = 1 in (63) gives H,(n) = n,
and this completes the proof of (52). The fact that the minimum is
attained only atz = 1 for ¢ < ¢oin both (56) and (63) proves (51) and
shows that, under R, with ¢ < ¢, units are tested one at a time.

IX. CONSTRUCTION OF TABLES FOR [

Figs. 3 and 4 deseribe the procedure R, for n = 2(1)16 and m = n
in the form of two diagrams that are easy to use in a practical situation.
Tables ITT A and IIT B give the polynomials, the roots of which are the
dividing points in Figs. 3 and 4. Table IV A gives the polynomial equa-
tion for Fy*(m) for m = 2(1)16. Tables IV B and IV C give the poly-
nomial equations for H:1(n) and G1*(m, n), respectively, forn = 2(1)12
and 2 £ m = n. These can be obtained from (6), (7) and (8), or from
(18), (19) and (20) and the boundary conditions, H,(0) = F*(1) = 0.
For the sake of brevity, Table IV C has heen reduced so that it gives.the
results only for ¢ = 0.85, and only for pairs m,n which ecan arise starting
from an H(n)-situation with n < 12,

Having computed Hi(n) and Fi*(m) for 2 = m = n £ 12, we can
make the procedure £, explicit for 12 £ n = 16 by a different method,
which will now be explained. Let H,(n | ) denote the value of H,(n) if
(i.e., for those g-values for which) the next sample size is x; let F1*(m | x)
be defined similarly. Then (20) can be written as

Hin|z) — Hi(n — 1) =1+ pF*x)
= 65
— 2 ¢Hin —14) — Hi(n — i — 1)]. (65)

Writing a similar equation for H,(n | i) for y > x and subtracting gives

Hi(n|x) — Hi(n|y) = —plF*(y) — Fi*(x)]

y=l ) (66)
+ ; ¢Hi(n —j) — H(n —j — 1)

It4 =2 <y = 16 and 12 < n = 16, then the right member of (66)

involves H-function arguments only up to 12. In particular, for y =
x 4+ 1 we set the right member of (66) equal to zero and obtain a poly-
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nomial whose root (between zero and one) is the dividing point, gu(x, n),
between z and x + 1. Table IT A shows that, for n > 12 and @ < 4, the
pattern for the dividing points is well stabilized; for example, the value
of qu(1, n) = 0.618 (to three decimal places) is shown to hold for all
n in Section VIII. By considering various pairs z, y (most often of the
type z, * + 1) in (66) it is possible to determine the procedure R, for
the H(n)-situation for 12 < n = 16, without explicitly computing the
formula for Hy(n).
Similarly, we can do the same for the G-situation by using

F*(m|z) — Fi*(m|y) = Fi*(y) — Fi*(z)

g (67)
+ ¢'F*¥(m — y) — ¢"F1*(m — 2),

but in this case (according to Section VI) we need only consider values
y = = + 1 up to and including m/2.

Table IT A gives a numerical comparison for N = 4, 8 and 12 of R,
and several other procedures, two of which are based on the work of
Dorfman’ and Sterrett:’ the others are defined in the Appendices to this
paper. Table I1 B gives a brief numerical comparison of Hy(n) and Hs(n)
(corresponding to procedure R; defined in Appendix B) for large values
of n [viz., n = 10(10)100] and ¢ = 0.90, 0.95 and 0.99; these entries
were computed on the IBM-704.

Tables V A, V B and V C give the numerical values of H(n) and
G1(m, n) as well as the values of ze(m; ¢) and xx(n; ¢q) for ¢ = 0.90, 0.95
0.99 for 2 £ n < 100, and for appropriate values of m; these entries were
computed on the IBM-704. For ¢ = 0.90 the value of x is always at most
9 and hence, if we start with an H-situation, there is no need to consider
values of m > 9; similarly, for ¢ = 0.95 we disregard values of m > 19.
For ¢ = 0.99 we should consider all values of m up to and including
m = 100 but many of these were omitted for the sake of brevity. It is
interesting to note that Gy(m, n) is strictly monotonic in the second argu-
ment (and hence algo in the argument n — m) for fixed m, but it is curious
and difficult to explain why it is not monotonic in the first argument for
fixed n.

X. A SUGGESTED PROCEDURE FOR THE CASE OF UNKNOWN ¢

It is reasonable to expect that a knowledge of good procedures for the
case of known ¢ will suggest good procedures for the case of unknown g¢.
From this point of view we consider modifications of the basic procedure
R, that make it adaptable when ¢ is unknown. It is suggested that after
each test we form a new estimate of ¢ and that the procedure R, be
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used with the estimated value in place of the true value. At the outset
we can start with an estimate based on past experience or we can start
by testing one unit at a time. A thorough investigation of the relative
merit of this procedure has not been carried out. Some discussion on the
maximum likelihood method of estimating ¢ is given below.

Let d and s denote the number of units proven defective and proven
good, respectively, so that at any stage of experimentation we have

N=d+s+m+(n—m)=d+ s+ n, (68)

where N is the total number of units at the outset, m is the size of the
defective set (which is known to contain at least one defective) and
n — m is the size of the binomial set. The likelihood L of the observed
result (68) is given by

p=(Y ") - (69)

Then it is easily shown that

d d 1 mpq"
—(logL) = ——(log L) = —~|:d — (N —n)p + :I (70)
dg " dp B Pq L =g

Setting the latter equal to zero, we find that, for m = 0, the maximum
likelihood estimate § of ¢ is the root of

N =n+m)(1—4¢)(1—-§—dl—=¢")—ml-4q =0 (71)

or, equivalently,

m

s—d 2§ — (m+8)§" =0 (72)
i=1

and, for m = 0, we have § = s/(d + s), the usual estimate. For s = 0
and m + d = 1, we get § = 0 and, for s = 1, it is easily seen, using the
Descartes Rule of Signs, that (72) has exactly one root § (allowing multi-
plicities) in the unit interval and hence § is uniquely defined. The re-
maining case, s = m = d = 0, can only oceur at the outset when there
is no observations on which to base an estimate. It is interesting to note
that the same result (71) or (72) can also be obtained by computing
the conditional expected proportion of defectives among the N units,
given the observed s, d, m and n, and setting it equal to 1 — ¢. The
equation thus obtained is the same as (71), and its root is §.

The above method of getting an estimate is being suggested in con-
nection with procedure R, , but it can also be used in connection with
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the procedures R. and Ry (see Appendices) without any change. For
procedures R; and Rs we can have several defective sets and several bi-
nomial sets at any one time, and (71) then becomes

d+(1—é)[i%‘q.m—(lv—;2ln;)]=0, (73)

where m, , ma , - - - , mr are the sizes of the defective sets, n/, na', ==+ , n)’
are the sizes of the binomial sets, and

I J
N:d—i-s—l—zlm.-—l—;n,-’. (74)

If the number of tests carried out is large (and hence N — n must be
large), the maximum likelihood estimate is approximately normally dis-
tributed with expectation equal to the true value of ¢ and variance

given by
YR d log L)"‘:Il
o) =[5(1EY ] (75)

where m and n in (69) are to be regarded as chance variables. Taking
expectation first for fixed m and n and then with respect to m and =,

gives
m—1 \ 27]—1
o =[e(MGr) e () @

Since mpg" ' < 1 — ¢" for all m and all ¢ < 1, and since the expecta-
tion of a square is nonnegative, for asymptotically large N — n

1

2
L <dg) = P4 77)

sV - Bl = 7Y = N Tw (
In particular, if we continue to test until a fixed proportion § > 0 of
the N units are determined to be good or bad (i.e., untiln/N =1 — 4,
approximately) then, for asymptotically large N (so that N@ is also
large), we obtain

P’ 20y < P4

méﬂ'((])ém- (78)
For § = 1 and large N, the two bounds are essentially equal and the
common value is the same as for ordinary binomial sampling. In general,
at any stage of experimentation it appears to be conservative to esti-
mate ¢ (§) in the same way as for ordinary binomial sampling based on
N — n observations, using the value of n that is actually realized at that
time.
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In regard to the procedure, if the size of the very first test group is
based on past experience, the question arises as to whether this past
experience should also enter into the second, third and other early esti-
mates of ¢. If it does not enter, then in the early tests we may find sud-
den jumps from testing very small numbers to testing very large num-
bers and vice versa, both of which are undesirable. This makes it useful
to find o method to continue to use past experience until the estimate of g
(without using past experience) is stabilized. In the absence of past ex-
perience, this same feature may make it desirable to test several units
one at a time before starting to use any group-testing procedure.

XI. SOME GENERALIZATIONS OF R,

Returning to the case of known probabilities ¢, we consider some gen-
eralizations of the same basic problem and, in each case, the appropriate
generalization of the procedure R,. The appropriate formulae will be
given, but only a few simple computations will be carried out.

1. Two (or more) different kinds of units with known probabilities
(say, . = qu) of a good unit are present and both can be put into the
same test group.

Let Hu(ny, ns) denote the expected number of tests required under
the proposed procedure Ry if there are n; units of type ¢ with ¢ =
¢:(i = 1, 2) and the binomial chance variables associated with the units
are mutually independent. Let Gi(mi, ma ; n1, n2) denote the expected
number of tests required under Ry, if there is a defective set containing
my units of type 1 and m» units of type 2 (known to contain at least one
defective among the m; + m. units) and a binomial set containing
n — mi = 0of type 1 and na — ma 2 0 of type 2. The recursion formulae

corresponding to (6), (7) and (8) are
Hu(ni,ne) = 1+ min {¢"@"Hu(nm — &, na — ¥) (79)
+ (1 — ") Gulz, y; m, na)},

where the minimum is over pairs (x, ) with0 =z =2 0,0 2 y = ne
and x + y = 1,and

(112(12” _ qlmlq2mg)

1 _ ql’"1q2m2

Gulmi, my;m,ns) = 1 4+ min {(

Gu(m— a,me — y;m — T, M2 — ¥) (80)

1 — qqugﬂ
+(1 _ qlmlqzmg) Gn(-’i-, Y m, ??2)} y
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where the minimum is over pairs (z, y) with0 £z =2 m ,0 2 y £ mg
and 1 £ z + y = my + me — 1. The boundary conditions state that,
for all ¢ £ ¢,

Gu(l, 0; my, ny) = Hy(ng — 1, n) forall = 2 1, n = 0, (81)
GH(O, 1, Ty, ﬂg) = }[11(]?,1 , N2 — I.) for all n ; O, Ne ; ], (82)
Gu(my, 0;ny, 0) = Gl , m @m); (83)

G1u(0, ms 5 0, ny) = Gi(Mma, na ;5 @),
Hu(ny, 0) = Hi(m s @) Hu(0, ne) = Hi(na; q2), (84)

where the right-hand member of each equality in (83) and (84) refers
to the basic procedure R; defined by (6), (7) and (8).

It is elear that Hyy(1, 0) = Hu(0, 1) = 1 and Hy, (0, 0) = 0. It fol-
lows from (80) that, for ¢ = ¢,

Gu(l, 151,1) = 2= 0 = 0 (85)
1 - q1G2

and the rule is to test first the unit of type 2. Using this result, we ecan
compute

Hu(], 1) =1 + Illill(l, 2 — {2 — q1q2), (86}

and the rule is to test either unit separately if 1 — ¢2 — g2 > 0 and to
test both simultaneously if 1 — ¢ — ¢i¢= = 0. The latter inequality is a
direct generalization of the inequality 1 — ¢ — ¢® < 0, which played a
prominent role in the basie procedure R, . We state (without proof) that,
ifq £ ¢ <3i(+/5—1)=0.618 (tothree decimals), all testing is car-
ried out one unit at a time.

2. Two (or more) experimenters may be working on a single set of N
units by earrying out simultaneous, parallel group-tests and cooperating
in such a way as to minimize the time required to accomplish the task.

It is clear that no saving can be effected in the expected total number
of tests by having more than one experimenter. However, if the simul-
taneous tests are regarded as a stage, each of which lasts the same amount
of time, then minimizing the expected number of stages is equivalent
to minimizing the expected time required to accomplish the task. These
remarks indicate that there may be some conflict in these two aims of
reducing the expected time and the expected total number of tests. For
this reason, it should be stated that our primary emphasis in this prob-
lem is to reduce the expected time.
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Let m and m” denote the sizes of defective setsand letn — (m +m’) = 0
denote the size of the binomial set. Let Hi»(n) denote the expected num-
ber of stages required for m = m’ = 0 by the proposed procedure R;. .
Let (ia(m, m’, n) denote the expected number of stages required by Ry,
if we have two defective sets of size m, m’ and one binomial set of size
n—m — m" = 0. Let Gia(m, 0, n) and G1(0, m, n) be denoted by
Gha(m, n), so that G12(0, n) = Hyz(n). The recursion formulae for R, are

Hu(n) =1 + min [¢""Hu(n — 2 — y) + (1 = ¢")Guly,n — x)
ENR-
x +Hy—$ n (87)

+¢'(1 = )Gu(a,n — y) + (L= ¢)(1 = ¢") Gulz,y,n)],

r _ Y v __m
Gis(m,m’,n) = 1 + min {(q '%")(q qm,)
1 i r):d} 1 — q 1 — q

EE
lswvs

Galm —a,m’ —y,n —x — )

¢ = "L = " Gl — . yn —
+ (I — qm )(1 —_ qu) Glg(m £ Y, n -'L) (88)

z v o_ m!
+ (1 — 1 )(q a4 ) Gro(a,m’ — y,m — y)
1 — qm 1 — qm

— q — oY
+ (1 q )(1 q r) Gl‘a(ﬂ:.v 1 ] ﬂ’)}
1 — qm 1 — qm
and

Gi(m,n) = 1 + min [ min Gi'(x, y), min  Gn'(z, y)} (89)

ryzl rEm—1

1s
rt+y=m l=y=sn—m

where Gy’ (2, i) and Gv.” (x, y) are defined by

(‘ ' _ q.r+y qm . ‘ ‘
fe (2, y) = T Gulm—x—yn—x—1y)

3 v
* qgl_ﬁ?a)' Gp(y,n — x)
- (90)
v o
+ M G]z(;]:, n — y)
1 —qgn

+ m Gra(x, y, n)
1 —gq
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and

m

v T _ m
G (x, y) = 2(1(1—_L) Gulm —z,n —x —y)

u 1 — x
+Q%Gm(m, n—y)
p (91)
o z W
+ g’%_mq,) Gu(m — x,y,n — @)

e —lqi(;m"— ) Gl y ).

The boundary conditions state that, for all g,
Gm(?n, l, I’l-) = Gu(], m, ?’L} = Gm{m, mn — 1)

(92)

for 0 =m=n—1,
Gu(l,n) = Hp(n — 1) for n = 1, (93)
Hy:(0) = 0. (94)

It is easy to see that Hu(1) = Gu(2, 2) = Hip(2) = 1 and
Giu(3,4) =G(4,4) = 2 for all q.

Remark 6: The extra complication in (89) insures that, for n = 2,
one experimenter will not be idle while another is carrying out a test.

Remark 7: Tt is conjectured that in (89) the possibility x + y = m
can be omitted, with the exception of the single case m = n = 2 (and
m' = 0).

Remark 8: Tt is also conjectured that Gi.”, which is needed for the
cases n > m = 2, can be disregarded when m > 2;i.e., that G always
gives a smaller minimum for m > 2.

Remark 9: Tt is conjectured that, at any stage in whichm = m’ = 2
or in which we have both m = m’ = 0 and n even, the two test group
sizes, z and y, will be equal. If either m or m’ = 0, it is conjectured that
the two test group sizes will differ by at most unity.

Further calculations yield

Test Group Sizes

rL ¥
Gi(2,3) = ?—1——3 for all ¢ 1D 1B, (95)
_2+2+4¢
Gho(3,3) = T for all ¢ 1D 1D, (96)
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2 for0 < ¢ < 0.682 1D 1B,
Gia(2,4) = s (97)
3+a—¢ for 0.682 < ¢ < 1.000 1D 2B,
I+¢
) 2
Gi(2,2,4) = &:;f;l__q*;_q for all ¢ 1D 1D, (98)
2 for0 = g < 0.691 1B 1B,
Hs(4) = (99)

3 -3¢ +2¢ — ¢ for0.691 < ¢ < 1.000 2B 2B,

where 1B indicates that 1 unit is taken from the binomial set to form
one of the two test-groups and D, D’ denote different defective sets.

It is interesting to compare the above result for H.(4) for ¢ = 0.691
with the procedure R;»* of giving each experimenter two units to analyze
independently of each other and without any mutual cooperation. Let 7'
denote the total number of tests and S denote the number of stages re-
quired. Then, for ¢ = 0.691 (letting T, T denote the number of tests
in two independent experiments with n = 2 under R,), it is easily shown
that

E{S|Rp¥ = Elmax(Ty, T2) |R} =3 — ¢ — ¢, (100)
E{T | Ry = 2Hw(4) — 2¢ — 2¢° + 2¢° — 24", (101)
Hence we find that, for ¢ = 0.691,
E{S| R — E(S| Ru¥
= Hu(4) — 3—¢ —¢') = =2¢(1 —¢) 20,
E(T | Ry} — E{T | R
=6 —2¢— 2¢ +2¢" — 2¢" — 2H:(2) = 2¢'(1 — ¢) = 0,

(102)

(103)

which illustrates the fact that . effects an improvement in the expected
number of stages at the expense of a slight increase in the expected total
number of tests.

3. In this generalization we apply the restriction that any one unit
can be included in at most K group-tests. This is particularly appropriate
in the blood testing application, where a single blood sample can be used
in a small number K of blood tests and the patient does not want to be
annoyed by having more than one blood sample taken.

In this problem there is again only one defective set but it is now de-
noted by a vectorm = {my, m;, -+, mg_}, where m; = 0 is the num-
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ber of units that have already been included in 7 group-tests. Similarly,
the union of the binomial and defective sets is denoted by

ﬂ‘—'{ﬂu,’n‘h, "','nxf]}

and the binomial set alone is the difference n — m. The symbol for
the size of the next test group will be x = {xo, 2, + -+, Tx_1}, Where z;
is the number of units taken from n; in an H-situation (from m; in a
G-situation). The symbols 2, m, n will be used for the sum of the com-
ponents in the vectors x, m, n, respectively. Let Gy;"(m; n) denote the
expected number of group-tests required to remove all defective units
if the defective set is m and the binomial set isn — m. If m = 0,
we denote this expectation by Hy;“(n). For the special case in which n
has all except one component (say, n;) equal to zero, we will drop the
zeros and write Hy;™(n;), with a scalar argument. The recursion formulae
for this procedure Ry;* are given by

Hii"(m) = 1 + min {¢"Hy"(n — x) + (1 — ¢")Gu"(x;n)},
’i‘l-l<xzw‘1<ﬂ:1 and ( 104 )
DE:,SHJ
(=01, E—1)

Gy;"(m;n) = 1 + min {(ti : ;’ )Glax(m —X;n — x)

ullxvut.h "
lgrsm—1
DS:,Sm, (105)

G=0,7, k-1
1 — T
+ (l—q.,.) Gys" (x; n)},
—q

where, as usual, m > 1. The hboundary conditions state that, for all g,
we have Hi;*(0) = 0 and, for m = 1, we can write G;"(m; n) =
Hi:"(n — m). It is easy to see that H;;"(n) = 1 forn = 1 and all ¢.
Some further computations for n = 2 and n = 3 give, for any K:

g —interval z - value j—value
JHMK(ZJ') =
H(2) 0 <g¢ =< 1.000 (see Ry) 0=j=<K-2 (106)
2 0<q=<1000 (0,---,0,0,1) 7 =K-—1
H13K(3;’) =
Hi(3) 0 < ¢ = 1.000 (see Ry) 0<jsK-3
3 0 = q g 0.618 (01 ot '70) 11 0) (107)
4—q—q¢ 0618=<¢=0707 (0,---,0,1,0); j =K—2
4— ¢ —2¢" 0707 = ¢ <1000 (0,---,0,3,0)]
3 0=g¢=100 (0,---,0,0,1) j=K-—1
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If K = 1, all units are tested individually. If K = 2, then, after a set
of size m > 1 is shown to be defective, all the units in that set are tested
individually; this is the procedure recommended by Dorfman.' A more
thorough investigation for particular values of K = 3 will be given in a
separate paper.

Under R; for any H(n)-situation the maximum number of additional
tests M*(n) in which any particular unit will be included before experi-
mentation is concluded (allowing a random reordering of units in the
binomial and defective sets after every test) occurs when ¢ is close to
unity and the sample has all units defective. It is easily seen that, un-
der R,

M*(n) = M(n) — (n — 1) = (n + Da(r) + 3 — 27" (108)

where a(n) and M(n) are defined by (10) and (11). Under Ry", let
j(n) denote the largest subseript associated with a nonzero component
of n. For K = M*(n) 4+ j(n), the restriction that no unit should be in-
cluded in more than K group-tests does not affect the procedure R,
and hence we have for procedure Ry~

Hu"(n) = Hi(n) for 0 <j(n) <K — M*(n),  (109)

which generalizes some results in (106) and (107) and shows that Ry*
is a generalization of R, .

Since units in the last component of the defective or the binomial sets
cannot be tested in groups, we can remove at any time for individual
testing all units in the last component of the binomial set and all but
one of the units in the last component of the defective set without af-
fecting the expected number of tests under Ry;" . It is easy to show that
this leads to the two reduection formulae

]{13K{n) = Nk + HwK(?lo, e, NE_3, 0), (110)
. _ 7l+mX_1 3
Glﬂh(m; ﬂ) = Ng_1+ (}1([_*6{”‘) Hlah(no y "ty MR-z, 0)
+q (1 - q*“"'“) (111)
1 J— qm
'[Gl;;x(?no, e, Mr_2, 1, Ng, - Ng_2, 0) —_ 1],

which are useful in computations and for checking.

It is conjectured that, for m = 0 or m > 1, the procedure Ry~ can
always be earried out by putting in the next test-group only units that
have been included in the same number of group tests (i.e., units in the
same subset) ; the only possible exception to this is that, in any H-situa-
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tion, if ¢ is sufficiently close to unity, then Ry™ will eall for a test of all
the remaining units; i.e., x = n,

Under the above conjecture, it is possible to carry out a simplification
as in Section V and show, in direct analogy with (19), that

F'™(m) = Z ¢+ Jnin Mg Fu™(m — x) + Fa™ @), (112)
where x has 2; in the (¢ + 1)th position and zeros elsewhere (so that
2 = x;), and ¢ is defined as the subscript associated with the first non-
zero component of m. The function Fi;"(m) is defined as the expected
number of group-tests required to reach the next H-situatirn, and then
we define, as in Section V,

Pu(m )_(

Hence under the above conjecture it is again seen that, for any G-situa-
tion with m > 1, the next test-group x depends on m but is independent
ofn — m.

It appears to be true (but has not been rigorously proved) that, in
this case also, for ¢ < go = 0.618 (to three decimal places) all units are
tested one at a time.

)Pla (m) (113)

XII. AN ASYMPTOTIC FORMULA For H;(n)

In this section we shall use results obtained by considering an informa-
tion procedure R, which is defined in Appendix A. The procedure I;
appears to be a best test in the sense that it maximizes the information
in the very next test but does not take into account the exact finite num-
ber of units present and the possible ways of distributing them among
subsequent tests. It is therefore intuitively reasonable to expect that the
procedure R, tends toward R, in the H-situation as n — « and also in
the G-situation as m — . A more rigorous proof of this assertion would
be desirable. It should also be pointed out that there is considerable
numerical evidence in Tables ITTA and ITIB of the above assertion, which

explaing the reason for putting opposite m = =« and n = « in these
tables the polynomial equations
l—¢—¢g"=0 (x=1,2--), (114)

which are derived for procedure R, in Appendix A.
We shall now derive an asymptotic formula for H,(n) for large n
based on the assumption that the above reasoning is correct. For large
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values of n and fixed g, the expected number of tests required under
procedure R, is approximately given by

expected number of tests needed to reach

Hi(n) = n the next H-situation under R,

. (115)

expected number of units analyzed between
H-situations under R,

The ratio of »n to the denominator in (115) is the approximate number of
H-situations reached if we start with n units, and this is clearly to be
multiplied by the expected number of tests required to proceed from one
H-situation to the next. Let 7' and 1/ denotc the chance variables in the
numerator and demoninator, respectively, of (115). For a fixed ¢ we
find from the limiting procedure R, that, for an H(n)-situation with »
large, we will, under R, “almost always” be using the same test-group
size x, where r is that positive integer for which ¢ is closer to one-half
than is either ¢°~' or ¢"™'. Then, for this fixed integer z, which depends
on the given g, we have

T

I —gq

— (116)

EUIRY =2 +p 2™ =
£

which 1s obtained by assuming a single randomization of the order of the
units at the outset and considering the different possible positions of the
first defective.

Since Fy(x) is the expected number of tests required under R; to get
from a G(m, n)-situation to the next H(n)-situation, we have

EIT|R) = ¢ 4+ (1 — @)1 + Fu(x)] = 1 + pFe*(x), (117)

where F/*(2) is tabulated in Table IV A for x = 2(1)16 and all values of
q. Hence, we obtain from (115), (116) and (117)

npll + pF*(x)]

Hl(n) = 1— ¢

, (118)
where z is defined above in terms of g. This is the main result of this
section; we now consider some special cases.

For values of g close to unity we can use (23) to replace F;*(x) by an
explicit expression. If we also replace (1 — ¢°)/(1 — ¢) by z for ¢ close
to unity, we obtain for ¢ close to unity

Hi(n) =2 {1 + plea(z) + 28(2)1}, (119)

where a(z) and B(a) are defined in (20a). If ¢ approaches unity, x be-
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comes large; if a(z) = 2, then 28(x) < 2°“™ = za(x) and, since
a(x) — o, it follows that we can disregard 28(x) in (119). For g close
to unity and z large, the dividing points get closer and closer, and we
obtain

021 —¢ — ¢ =1 -2, (120)

-1
so that x = |:log2 (é):l . Also, from the definition of a(z),

2" < g < 2.2°9 (121)

E

so that
logs (;—';) < alz) < log, (2). (122)

Using the upper value in (122) gives

-1
H,(n) = nlog; (%) + np log. I:logg (5)] . (123)

It can be shown that the first term in (123) goes to zero faster than the
second as ¢ approaches unity, and hence we drop the first term and re-
write the second in the form

Hy(n) = —np log: p. (124)
In particular, if p = 1/n so that ¢ = 1 — (1/n), we obtain from (124)
Hi({n) =2 logs n. (125)

In this case, we also have x = n = 1/p, and a better estimate is obtained
by setting ¢° = ¢ 'in (23) and (118). Assuming that (23) is either equal
to I'1*(x) or is a good approximation to it, we obtain

N T 28() =
Hy(n) = ? [ﬁﬂ‘—(’—)] = [1 + alx) + J (126)

[ — et X e — 1

TFor the case n = N = 100 and ¢ = 0.99, we obtain 8.32 as the exact
value from Table V C; log. 100 = 6.64, from (125); 7.79, from (119);
and 8.20 from (126).

A rough lower bound on H (n) for any procedure can be easily obtained
from information theory. The total information in n units is

—n(p log: p + qlog: q),

and this is to be equated with the product of the expected number of
tests H(n) and the average information obtained per group-test. Since
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the maximum information per group-test (in bits) is unity, we obtain
for any procedure

H(n) =2 —n(plog: p + ¢log: gq). (127)

Forn = N = 100 and ¢ = 0.99, this gives 8.09 as a lower bound. Since
a result better than 8.09 is impossible, the smallness of the difference
8.32 — 8.09 = 0.23 is an indication of how far &, can possibly be from
an optimal solution. However, it should not be inferred that the lower
bound (127) can be reached for any value of q (except possibly for
p = ¢ = %) by any procedme In fact, for ¢ < % and g decreasing to-
wards zero, it has been shown' that an optimal procedure must have
H(n) = n, whereas the right member of (127) approaches zero.

It has been pointed out to the authors by S. W. Roberts that a lower
hound for G(m, n) for any procedure is easily shown to be

1 i—1
pq Pq

G

F(m,n) = ; = ,,.I: g (1 _ q"‘)

+ (n— i) (plogep + qlog, q)]

1%

Il

[¢" logz ¢" + (1 — ¢") loga (1 — ¢™)]

1
1 — qm (128)

- (n + 1”_1_'1 q,,,) (p log: p + qlogs @)

XIII, LACK OF OPTIMALITY OF PROCEDURE R1

To illustrate the fact that R, is not optimal in the general case when
units are identifiable and “mixing” of units from the binomial and de-
fective sets is allowed, we shall describe a method of obtaining an im-
provement on R, . It is sufficient to consider the case N = 3, but the
case N = 4 is more typical, and we shall use the latter. Let Ry* denote a
procedure for N = 4, part of which is described by I'ig. 2 and the remain-
ing part of which is arbitrary. (We can therefore also regard Ro* as a
set of procedures, with the common part shown in Fig. 2.) Let a1, a»,
by, b denote individual units; it will be assumed that the a-units are
distinguishable from the b-units. The part of I'ig. 2 enclosed by dashed
lines is different from R, , since it includes mixing; the rest of the pro-
cedure agrees with R, for ¢ close to unity. For g close tounityand m = 2,
after the first two group-tests result in failure, we should act as if there
was exactly one defective present until it is proved otherwise. Then, for
g close to unity, the above procedure R¢* terminates in one or two ad-
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TEST

NUMBER PROCEDURE Ry (STARTING WITH H (4)-SITUATION)
1 (alaaz,bl,bz)
s f
2 END (a;, az)
5 l-—'F
|
|
3 (by) : (ay,by,b;)
s f I s f
I
4 END (bz) IEND (az,by,bz)
sle | s £
|
5 END | END (ANY FINITE
]

CONTINUATION)
Fig. 2— Procedure Ry*.

ditional tests with probability close to 3 for each. More precisely, we
obtain for the conditional expected number of additional tests required
under Ry*, given that the first two tests result in a failure,

3 3 2 3
% _ _Pq 2pq pflg) _ 3¢ + pf(q)
GRS = -t st g 1o 0 (129

where f(¢) is a polynomial in ¢. In comparison, we have under R, for
0.707 < ¢ < 1.000

pH1(3) n pgH,(2)

Gu(2,4) = L+ 5 +

(130)

T-lp_q (6 + 2¢ — 2¢" — 2¢").

For ¢ approaching unity, the value in (129) approaches §, while that in
(130) approaches 2. This proves that any finite continuation in Fig. 2
will be better than R, for ¢ sufficiently close to unity. In a particular
procedure to be discussed in a separate paper, the dividing point for the
G(2, 4)-situation between “no-mixing” and “mixing” is

g = (1+ 4/33)/8 = 0.843

(to three decimal places). The maximum improvement over R, for
n = 4 in the expected number of tests required for the H-situation is a
decrease of 0.04. The price to be paid for this improvement will be an
increase in the complexity of the procedure.
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APPENDIX A

The Information Procedure

Another procedure which was investigated is based on choosing that
value of & which maximizes the “amount of information” that the next
test will give. The amount of information in a test with two outcomes is
ploga(1/p) + qloga(1/q) if pis the probability of either outcome. Hence,
equating the information in an H-situation obtained by taking x and
x + 1in the next test gives

¢ loge ¢ + (1 — ¢%) logs (1 — ¢7)
— qz+1 10g2 g:r—H + (1 _ qI-H) logg (1 _ qn:-H)’

whose root will be used as a dividing point between x and & + 1. It is
easy to verify that, for any integer x and any integer n = x + 1, the
unique positive root of (131) is also the unique positive root of

1—¢ — ¢t =o. (132)

(131)

It is interesting to note that the solution implicit in (132) is easily seen
to be equivalent to finding that positive integer « (for fixed, known ¢)
for which ¢” is closer to 4 than is either ¢ or ¢, In fact, by (132),
the right endpoint of the interval for x is such that ¢° and ¢**' are
centered about $ and the left endpoint of the interval for z is such that
¢" and ¢ are centered about L. Similarly, for the G-situation with
m > 1, we equate

qd: _ q??l qz _ q'n’l 1 _ q.’L‘ 1 _ qa:
¢ 9 X 1
(1 - q"‘)l()g“ (1 - q”‘) + (1 - q”') o8 (1 - q’") (133)

with the same expression, except that 2 is replaced by 2 + 1, and find
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that, for any » = m > 1, the dividing point between x and = + 1 is
the unique root in the interior of the unit interval (if it exists) of

| — g — ¢ 4 " = 0. (134)

If we remove the root ¢ = 1in (134), the dividing point is the unique
positive root (if it exists) of

l+g+q - +d —¢" —¢"— =g =0 (135)

If the root does not exist for some m > 1, then x + 1 will never be used
for that m. Tt should be noted that the left member of (134) is a strictly
increasing function of x and, for x = (m — 1)/2, m > 1 and any
fixed ¢ with0 = ¢ < 1, we have

1 — q: _ q.r+1 + q-m ; (1 _ q(ln.—l)m)(l _ q(m+1)12) > 0. (136)

It follows that the highest value of « for which a nondegenerate root ex-
ists is such that # + 1 < (m -+ 1)/2 and hence, under this procedure,
we never take a test group of size greater than m/2. It is interesting to
note that the dividing points for any G-situation do not depend on 7.

These equations define a new procedure R,, which we shall also call
the information procedure. For this, let Fo(m) denote the expected num-
ber of group-tests required to “break up” a defective set of size m, i.e.,
to reach an H-situation. Let Fo*(m) = (1 — ¢™)p 'Fo(m). Then we
can write as in (20), for any n and for the appropriate interval where the
next test group is of size z,

Fo*(m | x) = Z} ¢+ ¢F*(m — @) + Fo*(x) (m > 1), (137)

Holn|2) =1+ ¢"Ha(n — z) + pFa*(x) + pgq‘”fh(n —14). (138)

The boundary conditions state that F»*(1) = H,(0) = 0 for all . Those
expressions for Fy*(m) which are used to generate expressions for H. s(n)
for2 £ m £ n £ 12 are given in Table VIIT; the resulting expressions
for Hy(n) (with z-values) are given in Table VI. Table VII gives the
dividing points for » = 1(1)100 and for m = 1(1)16, 20(5)100 for
procedure s .

It should be noted that the F.*{(m) as well as the H,(n)-function are
not all eontinuous. At the point of discontinuity the x corresponding to
the smaller expeetation should be used.

It is interesting to observe in the numerical comparisons of Table ITT A
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that the procedure R. compares quite favorably with the procedure R, .
In addition, the fact that the dividing points are easier to compute
makes it better for practical applications, since the dividing points for
Ry are only known exactly up to n = 16. It is also interesting to note
that the limiting expressions in Table ITI A asn — = and in Table I1I B
as m — o« are the same as (132),

It is interesting to note that a succession of modifications R."”(j = 1,
2, ...) of the information procedure, &, are possible such that R, =
Ry and R."” = R, for j = M(m,n). Here M(m,n), as defined in (10), is
the maximum number of group-tests required if we start with a G(m,n)-
situation [where 7(0,n) corresponds to H(n)]. Under the procedure R,'?
we find and use that x which maximizes the ratio of the information ex-
pected from at most j group-tests to the conditional expected number
of tests required given that we will stop after at most j group-tests. In
the special case when there is no possibility of stopping before j tests,
we can disregard the denominator and simply maximize the information.
TFor the case j = 1 this is clearly equivalent to K. . For j = M(m,n) the
information expected from at most j tests is the same regardless of what
x is used next and of what sample path is taken, since all units are then
analyzed. Hence, the numerator above can be disregarded and the prob-
lem is to minimize the denominator or expected number of tests. Under
the assumption of “no-mixing” of units from the binomial and defective
sets, this gives the procedure R .

For any H(n)-situation with n = 4 and 7 = 2, these procedures appear
to eliminate the possibility of taking n — 1 units in the next test-group.
For example, if n = 4,7 = 2 and ¢ > 0.618, then we will want to com-
pare ¢ = 2 and x = 3. For j = 1, the dividing point between ¥ = 2
and z = 3 is ¢ = 0.755. Since neither x = 2 nor * = 3 can result in
termination after one test, we can disregard the denominator and com-
pare for ¥ = 2 and x = 3 the information expected from two group-tests.
After simplification, the difference between the results expected after
= 2Zand r = 3 can bhe written as

Pl + ) loga (1 + ¢) — qlog2 gl 2 0, (139)
which shows that ¥ = 2 is preferable to = 3 for all ¢ > 0.618. The
same result holds for all 7 = 2. Then we find that the dividing point
between ¥ = 2 and v = 4 for j = 2 is the nondegenerate root between
zero and unity of
2—-2¢—-¢ —¢ = 20)glogqg — 2+ ¢)

; (140)
(1 —¢)log (1 +¢) — ¢'(1 — ¢ logap = 0,
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which is 0.789 to three decimal places. For j = 8 = M(0,4) the corre-
sponding dividing point for R = Ryistheroot of 1 — ¢ — ¢* =
0, or 0.786 to three decimal places. Curiously enough, the same result
0.786 is also the dividing point between x = 2 and & = 4 forj = 1.

For the special case * = 1, we state without proof that, for any
H(n)-situation, the dividing point between z = 1 and = = 2 is again
1(4/5 — 1) = 0.618 to three decimal places.

Tormulae for the expected number of tests under R forl < <
M(m,n) have not been derived in this paper.

APPENDIX B

Definition of Procedure Ry

It may happen in some problems that recombination is undesirable or
impossible, or it may be that we are interested in finding out just how
much is saved by allowing recombinations. Both are good reasons for
congidering a procedure R; that is similar to R, except that recombina-
tions are not allowed. This simply means that any two operationally
formed sets cannot be combined to form a new set from which subse-
quent. test-groups are to be taken. In procedure R; the possibility of
mixing proper subsets of two different sets was never used, and the same
will be true for E;. If both recombinations and mixing are not used,
then, as the experiment continues, the operationally formed sets can
only be broken down further into smaller and smaller sets, yielding a
nested set of partitions; i.e., any two units separated at some stage re-
main separated in subsequent stages. It follows that any defective set
present is not affected by the number or size or nature of other sets
present. Hence, we define Gs(m), with a single argument, as the condi-
tional expected number of group-tests required to remove all the de-
fectives from a set of size m which is known to have at least one defec-
tive.

The recursion formulae for B; are, forn = 1 and m > 1,

Hiyn) =1+ min {Hy(n — a)
tErsn (141)
+ (1 - QT)[GS(E) + Hi(n — 2)},

Gy(m) =1 + min {(({: _gqm) Gy(m — z)

l<r<m—1 i

(142)

+ (i : 2:‘) [Gs(x) + Ha(n — 33)]} ’
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with boundary conditions H3(0) = G3(1) = 0 for all g. If we let G5*(m)
denote (1 — ¢™)p 'Gs(m) and simplify, we obtain
Hin) =1+ 1min {Hy(n — z) 4+ pG*(x)}, (143)

m

G*(m) = 2. ¢ + min {Gg*(x) + ¢Gs*(m — z)

=l lgrsm—1
+ Hi(n — ) (Z} q""l)},

with boundary conditions H;(0) = G4*(1) = 0 for all q.
Numerical comparisons of the results for B, and R, are given in Ta-
bles IT A and II B.

(144)

APPENDIX C

Definition of Two Halving Procedures

Two “halving” procedures F. and R; are defined below, the principal
purpose being to compare the results on the expected number of tests
required with comparable results for R, and R;. The procedure R, al-
lows recombinations exactly as in R, , while R; is the same as R, except
that recombinations are not allowed. Both R, and R; are of particular
interest, since they can be carried out without knowing the true value
of q.

The procedure Ry is carried out like R, except that, if the defective
set is of size m > 1, the next test group is a subset of size m’ = [m/2]
(i.e., the largest integer contained in m/2) randomly selected from the
defective set and, if m = 0 or 1, the entire binomial set is used in the next
test-group. In particular, we start with all N units in the first test-group.
The recursion formulae for R, are

Hin)=¢"+ 1 —¢")1 +G(n,n)] =1+ (1 — ¢")Gys(n,n), (145)

m'

Gilmym) = 1 + G —1 )(;4(m', n)

m

(146)

m—m'

+ ¢ (lf—_—qqm) Gi(m —m',n —m’)  (m>1),

with the same boundary conditions as in R, . If we let Fs(m) denote the
expected number of tests required to break up a defective set of size m,
it can be shown as in the case of R, that
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Gi(m, n) = Fi(m) + (1 _p qm) Z: ¢ Hi(n —4).  (147)

If we let

G*(m,n) = (11—_qq )G4(7n,ﬂ) and F.*(m) =(%)F4(m), (148)

the recursion formulae for R, reduce to
FE(m) = ¢+ Fi*(m') + ¢" Fm —m’)  (m > 1), (149)
i=1

Hi(n) = 1 4+ pG*(m, n)
no 150
= 1+ plF*(n) + 2 ¢ Hi(n = D), e

with boundary conditions Fy*(1) = H4(0) = 0 for all ¢. For n = 5,
the results are the same as those for Ri, if we take ¢ close to unity
in the formulae for B;. The results for Hy(n) for n = 6(1)12 are, for
all ¢:

Hi(6) =14— 9¢—2—-¢ - q

Hy(7) =17 —1l¢— 3¢ — ¢ + ¢ — 27,

Hi(8) =21 — lg—4¢ — ¢ +4' — 27, (151)
Hi(9) =25 —18¢ —4¢ — ¢ +¢' — 2¢ +q' -4,
H4(10) = 29 — 22¢ — 4¢’ +q =3¢ +q -4,
Hi(11) = 33 — 260 — 4¢" + ¢’ — 4+ 2+ ¢ — ¢ — ¢,
H,(12) = 37 — 29¢ — 4¢" — 4+ 2 +d - ¢ -

The recursion formulae for the halving procedure Rs , which continues
to separate sets into smaller and smaller subdivision, are

Hi(n) =1 4+ (1 — ¢")Gs(n), (152)

Gi(m) =1+ G - Z ) [Gs(m) + Ha(m — m”)]
(153)

+ g™ (ll;fq—-) Gs(m —m')  (m>1),

where m’ is defined as above. Here it was not necessary to use a double
argument with G because there is no recombination allowed. The bound-
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ary condition is (5(1) = 0 for all ¢. If we define G4*(m) as in (153)
and use (152), the recursion formulae reduce to

Hs(n) = 1 + pGs*(n), (154)
Ge¥m) =2 ¢ 2 ¢ ]
1=l i=l1 (]50)

+ G*(m') + G*¥(m — m') (m > 1),

with the boundary condition Gy*(1) = 0 for all ¢. For n < 3, the results
are the same as for B, if we take ¢ close to unity in the formulae for R;.
The results for Hy(n) for n = 4(1)12 are:

Hy4) = 7—2¢—3¢ - q,

Hi5) = 9—3¢—3¢— ¢ -,

Hy(6) =11 — 4q — 24 — 3¢° — - q,

Hy(7) =13 —4q —4¢ — 2¢° — ¢' -,

Hy(8) =15 — 4q — 6¢° — 3¢’ - q,

Hy(9) =17 —5g — 6¢ — ¢ — 2¢' — ¢ —q', (156)
H,(10) = 19 — 6g — Gg* — 2¢° — 3¢’ -q"
Hy(11) = 21 — 7q — 5¢° — 4" 2 — ¢ —-q,
Hy(12) = 23 — 8¢ — 44 — 6¢° — 3¢’ - q"

APPENDIX D
Known Procedures

An attempt has been made to put the Dorfman procedure' and the
Sterrett procedure® in the best form that is comparable with the other
procedures treated here. For each of N = 4, 8§ and 12, we have found
the division into equal (or approximately equal) subsets such that
the Dorfman plan of testing defective sets one at a time gives the small-
est possible expected number of tests required. It should not be inferred
that these results would be the same if a straightforward application of
the tables published by Dorfman and Sterrett, respectively, were made,
gince their tables are only concerned with very large N. In the Dorfman
plan we use a common test-group size for binomial sets and, for defective
sets, the units are all tested one at a time. In the Sterrett plan, there is a
common test group size for binomial sets at the outset and, for defective
sets, the units are tested one at o time only until a defective unit is found.
Then the remaining units, from that defective set only, are pooled and
tested. This is continued until that particular defective set is completely
analyzed before we start with other sets. We have also assumed that
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logical inference would be used whenever possible in the Dorfman and
Sterrett procedures.

For the Dorfman procedure R; , if the common group size is ¢, then,
for any binomial set of size n (where n £ ¢), we obtain

n—1
Hi(n) =¢"+ (1 — ") (n +1 - lpi qn)
=n+1—¢" = (n—1)"

Tor example, for N = 12 and ¢ = 0.90, we find that ¢, = ¢, = &3 = 4
gives the best results and, using (157), with ¢ = 4, we obtain

H,(12) = 3Hq(4) = 3(5 — ¢° — 3¢") = 6.908. (158)

For the Sterrett procedure Ry, if the group size at the outset is c,
then, for each binomial set of size n (where n = ¢), we obtain

Hi(n) = ¢" 4+ p[2 + Hs(n — 1)] + gp[3 + He(n — 2)]
4 o " pln + Ho(D)] + ¢ o

(157)

(159)

Il

n n—1
¢ + npg" + p; ig” 4+ p Zl ¢ 'Hi(n — 1),

with boundary condition He(1) = 1 for all ¢. It can be verified (we omit
the details) that the solution of this system is given by

He(n) = (2n — 1) — (n — 1)g ﬁéqi. (160)

For example, for N = 12 and ¢ = 0.90, we find that ¢; = ¢2 = ¢5 = 4
gives the best results and, using (160), with ¢ = 4, we obtain

Ho(12) = 3Hy(4) = 6.315. (161)
APPENDIX E

Clost Constderations

In this Appendix we introduce another procedure Rg, which brings
into play the cost of throwing away a good unit and balances it against
the cost of conducting another group-test. It is interesting to note that
Rs was the solution given when the problem was first brought to the
authors’ attention in a practical application.

For procedure Ry we divide all the N units into approximately equal
subsets of size 2/, where 2’ is the nearest positive integer to the solution
in z of
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(1 —p)7 =4, (162)

where p is the known a priors probability of a unit being defective. It
is assumed here that p << . ISach subgroup is tested either simultane-
ously or in sequence, and good subgroups are removed. Assuming 2’ > 1,
subsets shown to contain at least one defective are pooled. Since the
same number of defectives has now been put into a pooled set of approxi-
mate size N /2, it follows that the probability of drawing a defective from
the pooled set is approximately double the original a priori probability
p. Then the pooled subset is again divided into approximately equal sub-
sets of size @”, where x” is the nearest positive integer to the solution of

(1—2p)" =3 (163)

The process is repeated (say) a total of ¢ times. If {p gets larger than 1,
x is taken to be unity and the units would then be tested one at a time.
However, it may be more economical to stop the procedure before tp
reaches § and serap the pooled defective subgroup. The amount of sav-
ing may be substantial if the cost of manufacturing a unit, say ¢, is
small compared to the cost of each group-test, say ¢; .

Suppose, for example, that we start with N = 8 units and ¢ is given
to be 0.90. The approximate solution of (162) is 2’ = 7 but, since this
leaves a subset of size 1, we make our first test on all 8 units. If the test
is n success we are through; otherwise we look for a solution of (163)
and find that x” = 3. The 8 units are divided into subsets of size 3, 3
and 2, and each is tested. Good subsets are removed. We purposely
avoid the next stage which requires testing one at a time. Hence, any
of these three sets of size 3, 3, and 2 that proves to contain at least one
defective is scrapped.

Let T denote the number of tests required in the above example and
let D denote the total number of scrapped units (i.e., good units and de-
fectives that are disecarded). Then, for this procedure Rg with N = 8§
and ¢ = 0.90, we obtain

E{T|Rs) =4 — 3¢° = 2.709, (164)
E{D| Ry} =8 — 2¢° — 6¢° = 2.006. (165)
If we define the expected loss E{L | R} for any procedure R; by
E{L|R} = oE\D | R} + aE{T | RJ, (166)
we find for procedures R, and Rs, respectively,
E{L| Ry} = 0800 ¢ + 3.904 ¢, , (167)

F{L| Rg} = 2.006 ¢, + 2.709 ¢, . (168)



1224 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1959

A comparison of these two expressions shows that Rs will be more eco-
nomieal in this case if the ratio

¢ o 2.006 — 0.800
¢ = 3904 — 2709

Hence, Rj is more economical in this case if the total cost of a single test
is greater than the total cost of manufacturing a single unit.

Similarly, it ean be shown that it would be more economical to stop
after the first test (and scrap all 8 units if there is at least one defective
present) when the ratio of the two costs in (169) is greater than 1.492
(or approximately 1.5).

= 1.009 = 1, approximately. (169)
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Fig. 3 — Diagram showing number of observations to be taken in any H-situa-
tion for n = 1 through 16 — for procedure £, .
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Fig. 4 — Diagram showing number of observations to be taken in any G-situa-

tion for m = 2 through 16 and any n = m — for procedure R, .
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TasLe IT A — ComprARISON OF THE ExPECTED NUMBER OF GROUP-TESTS
REQUIRED FOR DIFFERENT PROCEDURES FOR N = 4, §, 12
AND SELECTED VALUES OF ¢

q
Procedure

000 | 050 | 075 | 090 | 095 | 098 [ 09 | 100
R, 4.000| 4.000| 3.332| 2.051| 1.538| 1.218| 1.110| 1.000
(Proposed Procedure) §.000| 8.000] 6.619 3.904| 2.499| 1.612( 1.308| 1.000
12.000/12.000( 9.905| 5.790| 3.594| 2.073| 1.543| 1.000
R, 4.000] 4.000] 3.332| 2.051f 1.538| 1.218| 1.110| 1.000
(Information Procedure) | 8.000| 8.000| 6.663| 4.141| 2.500/ 1.612| 1.308] 1.000
12.000{12.000| 9.956| 5.839| 3.599| 2.078| 1.544| 1.000
R, 4.000{ 4.000) 3.375| 2.105| 1.576| 1.236| 1.119| 1.000
(Proposed without Re- 8,000 8.000| 6.719| 4.052| 2.631| 1.680| 1.345| 1.000
combinations) 12.000(12.000{10.062| 6.103| 3.851| 2.209| 1.617| 1.000
s 4.000| 4.000( 3.332| 2.051| 1.538| 1.218| 1.110| 1.000
(Halving with Recom- 21.000(12.875| 7.670( 3.906| 2.500| 1.612| 1.308| 1.000
binations) 37.000]21.408(12.365| 6.021| 3.620| 2.078| 1.544| 1.000
(23 7.000] 5.188| 3.496| 2.114| 1.578| 1.236| 1.119| 1.000
(Halving without Recom- {15.000(11.309| 7.576| 4.141| 2.678| 1.700| 1.355| 1.000
binations) 23.000(17.203(11.653| 6.309| 3.900| 2.229| 1.627| 1.000
Ry 4.000| 4.000| 3.375| 2.105| 1.576| 1.236( 1.119( 1.000
(Sterrett) 8.000| 8.000| 6.750| 4.210| 3.151| 1.807| 1.412| 1.000
12.000(12.000|10.125| 6.315| 4.333| 2.973| 1.852| 1.000
Rs 4.000{ 4.000| 3.375| 2.303 1.699| 1.292( 1.148| 1.000
(Dorfman) 5.000| 8.000 6.750| -L.ﬁl]5| 3.398| 2.176| 1.609, 1.000
|12.000,12.000,10.125] 6.908| 5.097| 3.334| 2.354| 1.000

TasLE II B — ComrarisoN oF Hy(n) Axp Hi(n)

OF ¢ AND LARGER n-VALUES

FOR THREE VALUES

g = 0.90 q = 095 g = 0.99
"

Hi(n) Ha(n) Hi(n) Ha(n) Hi(n) Hi(n)

10 4.872 5.101 3.039 3.242 1.425 1.481
20 9.572 10.155 5.940 6.456 2.051 2,221
30 14.301 15.209 8.791 9.626 2.738 3.057
40 19.024 20.260 11.671 12.798 3.478 3.943
50 23.750 25.361 14.555 16.009 4.243 4.853
60 28.475 30.415 17.438 19.246 5.026 5.792
70 33.200 35.469 20.316 22 .415 5.830 6.754
80 37.925 40.520 23.197 25.591 6.647 7.717
90 42.650 45.621 26.078 28.781 7.477 8.683
100 47.375 50.675 28.959 32.019 8.230 9.687
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TaBLE IV A — FoRMULAE FoR I, *(m) ForR PROCEDURE Ky AND VALUES
oF Tarw NExT Test-Grour Sizk z For m = 2(1)16

g-interval w1 a|a2|a®| gt gb b | a7 | q%| @F | 10| gt | @12 | 1% |g|q'®
F*(2) 0.000 to 1.000 | 1) 1| 1
Fi*(3) 0.000 to 1.000 | 1| 1] 2| 2
Fo*(4) 0.000 to 0.755 | 1] 1| 2| 3| 3 T
! 0.755 to 1.000 | 2| 2| 2| 2| 2
Fi*(5) 0.000 to 0.682 | 1] 1| 2| 3| 4| 4 f
! 0.682 to 1.000 | 2| 2| 2| 2| 3| 3
0.000 to 0.652 | 1] 1| 2| 3| 4| 5 5 i
F*(6) 0.652 to 0.755 | 2| 2| 2| 2| 3| 4] 4 i
0.755 to 1.000 | 2| 2| 2| 3| 3| 3| 3
0.000 to 0.637 | 1| 1| 2| 3| 4| 5| 6| 6 1
Py (7) 0.637 to 0.682 | 2 2| 2| 2| 3| 4] 5| 5 1
1 0.682 to 0.857 | 2 2| 2| 3| 3| 3| 4] 4 1
0.857 to 1.000 | 3| 2| 3| 3| 3| 3| 3| 3
0.000 to 0.629 | 1 1| 2| 3| 4| 5| 6| 7| 7 1
0.629 to 0.652 | 2| 2| 2| 2| 3| 4| 5| 6] 6 T
Fi*(8) 0.652 to 0.755 | 2| 2| 2| 3| 3| 3| 4 5| 5 T
1 0.755 to 0.819 | 2 2| 2| 3| 3| 4| 4 4] 4 i
0.819 to 0.809-| 3| 2| 3| 3| 3| 3| 3| 4] 4
0.899- to 1.000 | 4 3| 3| 3| 3| 3| 3| 3| 3
0.000 to 0.624 | 1| 1| 2| 3| 4| 5| 6| 7| 8| 8 T
0.624 to 0.637 | 2 2| 2| 2| 3| 4 56/ 7|7 T
Fr*(9) 0.637 to 0.682 | 2| 2| 2| 3 3| 3| 4| 5 6/ 6 t
1 0.682 to 0.803 | 2| 2| 2| 3] 3| 4] 4| 4| 5| 5 T
0.803 to 0.881 | 3 2| 3| 3| 3| 3| 4] 4] 4| 4 i
0.881 to 1.000 | 4| 3| 3| 3| 3| 3| 3| 3| 4 4
0.000 to 0.622 | 1f 1| 2| 3| 4| 5| 6/ 7| 8 9] 9 T
0.622 to 0.629 | 2| 2| 2| 2| 3| 4] 5| 6| 7| 8 8 T
0.629 to 0.652 | 2| 2| 2| 3| 3| 3| 4 5| 6|7 7 T
Fi*(10) 0.652 to 0.755 | 2| 2| 2| 3| 3| 4| 4| 4| 5| 6] 6 T
0.765 to 0.782 | 2| 2| 2| 3| 3| 4| 4| 5| 5| 5| 5 T
0.782 to 0.857 | 3| 2| 3| 3| 3| 3| 4| 4| 4| 5| & T
0.857 to 1.000 | 4 3| 3| 3| 3| 3| 3| 4| 4] 4| 4
0.000 to 0.620 | 1| 1| 2| 3| 4| 5| 6 7| 8| 9/10 (10 i
0.620 to 0.624 | 2| 2| 2| 2| 3| 4| 5/ 6] 7| 8 9|9 i
0.624 to 0.637 | 2| 2| 2| 3| 3| 3| 4/ 5/ 6/ 7( 8 | 8 1
Fi(11) 0.637 to 0.682 | 2| 2| 2| 3| 3| 4| 4] 4 5/ 6{ 7 | 7 i
t 0.682 to 0.779 | 2| 2| 2| 3| 3| 4| 4] 5| 5| 5/ 6 | 6 i
0.779 to 0.819 | 3| 2| 3|/ 3| 3| 3| 4| 4] 5| 5| 5 | 5 T
0.819 to0 0.857 | 3|2/ 33| 3| 4| 4 4|4 45]|5 T
0.857 to 1.000 | 4| 3| 3/ 3| 3| 3| 4| 4| 4| 4|4 | 4
0.000 to 0.610 | 1| 1| 2| 3| 4| 5| 6| 7| 8| 910 11 |11 1
0.619 to 0.622 | 2| 2| 2| 2| 3| 4| 5/ 6] 7| 8 9 |10 |10 t
0.622 to0 0.629 | 2{ 2[ 2/ 3/ 3|3/ 4 56/ 78|9|9 t
0.620 to 0.652 | 2| 2| 2| 3| 3| 4| 4| 4/ 5/ 6{ 7|8 |8 T
Fi*(12) 0.652 to 0.755 | 2| 2| 2|/ 3| 3| 4| 4/ 5/ 5 5/ 6|7 |7 T
L 0.755 to 0.768 | 2 2| 2| 3| 3| 4] 4/ 5/ 5/ 6/ 6 |6 | 6 t
0.768 to 0.803 | 3 2 3| 3/ 3|3/ 4 4 5 55|66 T
0.803 to 0.846| 3| 2| 3| 3| 3| 4| 4| 4/ 4| 5| 5|55 i
0.846™ to 0.899-| 4| 3| 3| 3| 3| 3| 4| 4/ 4 4 4|5 |5 t
0.899- to 1.000 | 4 3| 3| 3| 3| 4| 4 4| 4| 4/ 4| 4| 4 |

t These equations are not needed to compute H; (n)-formulae if the experiment
starts with a ““pure binomial” set of any size N (i.e., if m = 0 at the outset).
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g-interval

Fi*(13)

0.000
0.619
0.620
0.624
0.637
0.682
0.767
0.782
0.834
0.881
0.922

to 0.619
to 0.620
to 0.624
to 0.637
to 0.682
to 0.767
to 0.782
to 0.834
to 0.881
to 0.922
to 1.000
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Fy*(14)

0.000
0.619-
0.619*
0.622
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0.755
0.762%
0.779
0.819
0.834
0.857
0.912-
0.936

to 0.619~
to 0.619*
to 0.622
to 0.629
to 0.652
to 0.755
to 0.762%
to 0.779
to 0.819
to 0.834
to 0.857
to 0.912
to 0.936
to 1.000
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F,*(15)

0.000
0.618*
0.619
0.620
0.624
0.637
0.682
0.762
0.768
0.803
0.832
0.857
0.899~
0.930
0.946

to 0.618*
to 0.619
to 0.620
to 0.624
to 0.637
to 0.682
to 0.762
to 0.768
to 0.803
to 0.832
to 0.857
to 0.899
to 0.930
to 0.946
to 1.000
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F*(16)

0.000
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0.759
0.767
0.782
0.829
0.846%
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to 0.618
to 0.619~
to 0.619*
to 0.622
to 0.629
to 0.652
to 0.755
to 0.759
to 0.767
to 0.782
to 0.829
to 0.846%
to (.888+*
to 0.922
to 0.941
to 0.953
to 1.000
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The exponential symbols +, — indicate only the relative magnitude of two

different roots that are equal to three decimal places (i.e, a~ < a*).
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TaBLE IV B — FORMULAE FOR H;(n) Axp VALUES oF THE NEXT SAMPLE
SizE x FOrR ANY H-srruation ExpressED As FuNcTionNs oF
g For n = 2(1)12 WHEN THE Procepure R, Is Useb.

The integer shown below v opposite H,(n) is the coefficient of ¢¥ in the poly-
nomial formula for H(n).

g-interval sl g ||| et |t |et|d |||
0.000 to 0.618 |1 2
Hi(2) | o618 to 1.000 |2| 3] —1]-1
0.000 to 0.618 |1 3
H.3) |0.618 to0.707 | 2| 5 -—3—1| 1
0.707 to 1.000 | 3| 5 -—2/—-1|—1
0.000 to 0.618 [1] 4
H4) |0-818 to 0.707 |2 71 =5 o0 1|—1
1 0.707 to 0.786 | 2| 7| —4|—1—-1| 1
0.786 to 1.000 |4 | 8 —4/—2/—1
0.000 to0.618 | 1] 5
0.618 to 0.707 | 2| 9 —7/ 1| 0|-1| 1
) | 0707 to 0.755 | 2| 9 —6/ o—1 1|—1
! 0.755 to 0.786 | 3| 9 —5/—1|—2[ 1
0.78%6 to 0.817 | 3| 10| —6/—2/—1 0| 1
0.817 to 1.000 | 5| 11| —7|—2/ 0 0/—1
0.000 to 0.618 |1 6
0.618 to 0.707 | 2| 11| —9| 2/—1 o 1|-1
0.707 to 0.755 | 2| 11| —8 1|-2[ 1|-1| 1
H.6) |0.755 t00.786 |3 | 11] —6/—2—2 2/ 0-1
0.786 to 0.817 |3 | 12| —7|=3/—1] 1| 1|-1
0.817 to 0.844 |3 | 13 —9/—2| of o[—1| 1
0.844 to 1.000 | 6| 14 —10/—1| 0—1|-1
0.000 to 0.618 | 1| 7
0.618 to 0.707 |2 13| —11/ 3|-2| 1| o|-1 1
0.707 to 0.755 | 2| 13| —10| 2/—3| 2[-1| 1|-1
0.755 to0 0.786 |3 | 13 —7/-3/—2 2[ o[-1 1
H.(7) | 0.786 to 0.817 |3 | 14/ —8/—4 0| 1| 0-1
0.817 to 0.819 | 3| 15| —10/—3| 1| 0|2 1
0.819 to 0.844 | 4| 16 —11|—3| 0| o|—1f 1
0.844 to 0.869 |4 | 17| —13|—1|—1/—1] o of 1
0.860 to 1.000 | 7| 17 —12|—1|—-1|—1|—1
0.000 to 0.618 |1 8
0.618 to 0.707 | 2| 15| —13| 4/ —3| 2[—1] 0f 1|-1
0.707 to 0.755 | 2| 15| —12| 3|—4| 3|-2] 1|—1] 1
0.7556 to 0.786 | 3| 15| —8—4|—2 3| 0/—2| 1
0.78 to 0.812 | 3| 16| —9/—5/ 0o 1] o—1] 0] 1
ms | 0812 to 0.817 | 4| 17| —=10/—5| 0] 1] 0/—1
1S 0.817 to 0.819 | 4 | 18 —12|—4| 1| 0/=2| 1
0.819 to 0.844 | 4| 19 —14/—3| o 1|-1
0.844 to 0.860 | 4| 20| —16/—1|—1] o 0|—=1| 1
0.860 to 0.885 |4 [ 20| —15/—2/—1| o0|—=1| 0] 0] 1
0.885 to 0.899~ | 8 | 20| —14|—2/—1|—1|—=1| 1] 0|-1
0.899- to 1.000 | 8 || 21| —15|—2[—1|—1|—1
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TasLe IV B — Continued

g-interval x 1 q gt | g | gb | g% | g% | 7 | % | g% | o] gt | @12
0.000 to 0.618 |1 9
0.618 to 0.707 | 2| 17| —15 5|—4| 3|—2[ 1| 0—1 1
0.707 to 0.755 | 2| 17| —14| 4|—5| 4|-3| 2|—-1| 1|—1
0.755 to 0.786 | 3| 17, —9/—5/—2| 4|—1|-2| 2| 0]—1
0.786 to 0.812 | 3| 18 —10—6| 0 2/—1|—1] 1| 1|—1
0.812 to 0.817 | 3| 19| —12|—5| 0| 2/—1|—1] 1
0.817 to 0.819 | 3| 20/ —14/—4| 1{ 1/-3| 1] 1
Hy(9) |0.819 to 0.824 |3 |21 —16/—3] 0 2-2| 0| 1
0.824 to 0.844 | 4| 22/ —17/—3| 0| 2/—2| 0 1| 0|—1
0.844 to 0.857 | 4 || 23] —19/—1|—1| 1|—1|—1| 2| 0]-1
0.857 to 0.869 | 5| 23 —19—1| 0] 0/—1|—1f 1
0.869 to 0.885 | 5| 23 —18—2[ o 0/—2| 0 o0f 1
0.885 to 0.896 | 5| 23| —17/—3| 0/—1|—1| 1|—1]—1| 2
0.896 to 0.899~ | 9| 24| —17|—3|—1|—1|—1] 1| 0/—1
0.899~ to 1.000 | 9| 25 —19/—2|—1|—1|—1| 0 1 0|]—1
0.000 to 0.618 | 1| 10
0.618 to 0.707 | 2| 19| —17| 6|—5| 4/—3| 2(—1| 0f 1|-1
0.707 to 0.755 | 2| 19| —16| 5|—6| 5|—4| 3|—2| 1{—1| 1
0.755 to 0.786 | 3 | 19| —10/—6(—2| 5(—2|—2| 2| 0[—1| 1
0.786 to 0.812 |3 20 —11|—=7| O 3[—2/ 0| 1/ 0-—1
0.812 to 0.817 | 3| 21| —13|—6] 0| 3[—2/ 0] 1|—1
0.817 to 0.819 | 3| 22| —15|—5] 1| 2(—4] 2| 1|—1
0.819 to 0.824 | 4| 24| —18|—4| 0 2/—2| 0] 1
H,(10) | 0.824 to 0.840 | 4| 25| —20/—3| 0| 2(—2/ 0 1| 0/—-1] 1
0.840 to 0.844 | 5| 25| —20/—3| 1| 2/-3] 0 1| 0-1
0.844 to 0.857 | 5| 26| —22/—-1| 0| 1|-2/—-1| 2| 0-—1
0.857 to 0.869 5| 26| —22/—1f 1|—1|—-1]—1] 1| 1] 0|—1
0.869 to 0.885 | 5| 26| —21|—2| 1/—1{—2[ 0 0 2| 0/—1
0.885 to 0.896 | 5 || 26| —20|—3| 1|—2[—1] 1|]—1| 0 2[|—1
0.806 to 0.899~ | 5| 27| —21|—3| 0|—1|—1] 1| o—1] 0] 1
0.899 to 0.904 | 6 | 28] —23|—1|—1(—1|—1] 0O 1|—1]—-1] 2
0.904 to 1.000 (10 || 29| —23|—2|—1|—1|—1] 1| 1|—1]—1
0.000 to 0.618 1] 11
0.618 to 0,707 | 2| 21 —19) 7|—6| b5|—4| 3|—2 1| 0/—-1 1
0.707 to 0.755 | 2| 21| —18| 6|—7 6|—5| 4/—3| 2/—1 1|—1
0.755 to 0.786 | 3 |21 —11|—7/—2| 6|—3|—2 3| 0—-2 1
0.786 to 0.812 | 3 | 22| —12|—8| 0| 4(=3 0| 1] o[—1] 0f 1
0.812 to 0.817 | 3 || 23| —14|—7| 1] 3|—3; 0] 1]—1
0.817 to 0.819 | 3 || 24| —16|—6| 2| 2|—5| 2| 1|—1
0.819 to 0.824 | 4 |27 —21/—4) 0] 3|-2[—1| 1
0.824 to 0.840 | 4 | 28/ —23/—3 0 3|—2|—-1| 1] 0/-1] 1
H.(11) (0.840 to 0.844 | 4| 28] —23|—3| 1} 2/=3| 0 1 0—-1f 0] 1
! 0.844 to 0.856 | 4 | 29| —25|—1| 0 1|—2(—=1] 2| 0|—1f 0] 1
0.856 to 0.857 |5 |29 —25|—1 1| 0|—-2|—1/ 3| 0/—2
0.857 to 0.869 |5 | 29 —25/—1| 2/—-2|—1|—1] 2| 1|—1]—1
0.869 to 0.881 | 5|20 —24|—2 2-2/-2/ 0 1| 2-1|—1
0.881 to 0.885 |6 | 20 —24|—1| 1]—2|—2| 0] 0] 2| 0|-1
0.885 to 0.896 | 6 || 29 —23|—2 1|-3|—1] 1|—1| 0 2|—1
0.896 to 0.899- | 6 || 30 —24|—2 0(—2|—1] 1] 0|—1 0] 1
0.899~ to 0.904 | 6 || 31 —26/ 0—2/—1|—1] 0] 1|—1 0| 2{—1
0.904 to 0.912 | 6 | 32| —27|—1|—1|—1|—1| 1] 0O—1] 0o 0] 1
0.912 to 1.000 |11 | 33 —27|—2—-1 -1 0 1} O0|—1/—-1
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TasLe IV B — Conitnued

g-interval
0.000 to 0.618
0.618 to 0.707
0.707 to 0.755
0.755 to 0.786
0.786 to 0.812
0.812 to 0.817
0.817 to 0.819
0.819 to 0.824
0.824 to 0.840
0810 to 0.844
0.844 to 0.85
Hi(12) | 856 o 0.857
0.857 to 0.869
0.860 to 0.881
0.881 to 0.885
0.885 to 0.896
0.806 to 0.899
0.899~ to 0.904
0.904 to 0.912
0.012- to 0,912+
0.912* to 0.910
0.919 to 1.000

—
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32
32
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—27
—26
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—30
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—1
—1
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-1
-1

=000

qll

|
OO = [ e Y Sy

O = b

QH

-1

-1
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The exponential symbols 4,

— indicate only the relative magnitude of two
different roots that are equal to three decimal places (ie., a= < a*).



TasLE IV C — FormULAE ror (Gi*(m, n) AND THE VALUES OF THE
NEXT SAMPLE Size 2 ForR CERTAIN G-S1TuaTiONs EXPRESSED AS

FuncrioNs oF ¢ FOR

2(1)12 AxD ¢ = 0.850 WHEN

ProceEpure R; 15 Useb
The integer shown below g opposite G\*(m,n) is the coefficient of ¢ in the polynomial formula for

Gi*(m,n).
G1*(m,n)
n | m g-interval x
1 q q'l ql q! q5 qﬂ q'f qs q! qlﬂ qll
2| 2|0.850 to1.000| 1 2] 1
3| 2/0.850 to1.000] 1 41 -1
3 10.850 to1.000 | 1 4| 2 1
4| 2/0.850 to1.000 | 1 2 -2 -2
4 (0.850 to 1.000 | 2 3 1
5| 2)0.850 to1.000 | 1 9| 2 —4| =2 -1
3 IO.SSO to 1.000 | 1 9] 3 1 -3 -2
5 I0.950 to1.000 | 2 ||10| 3 1 1 1
6| 2 Il].850 to1.000 | 1 [[12]| 2 -6 -2 -1| -1
3 0.850 to1.000 | 1 [[12| 3 1| —4] —2| -2
6 \0.850 to1.000 | 2 ([13 | 3 2 2 1
7 2 10.850 to1.000| 1 ||15] 2 -8 -2 -1 -1 -1
3 ]0.850 to1.000| 1 |[15| 3 2] =6 =3[ —-2| -1
410.850 to1.000 | 2 [[16| 3 2 1| =5 -3, -2
7 0.850 to 0.857 | 2 |[16 | 3 3 2 1 1 1
0.857 to1.000 | 3 |16 | 4 3 2 1
8 P 0.850 to0.869 | 1 18| 2 | —11 -2 -1 -1 -1 1
0.869 to1.000 | 1 |[18| 3 | —11 -2 -1 -2 -1
3 0.850 to0.869 | 1 |18 | 3 2 -9 -3 -1 -1
0.869 to1.000| 1 || 18| 4 2 -9 -3 -2 -1 -1
4 0.850 to0.869 | 2 (10| 3 2 1| =7 -3| -2
0.869 to1.000| 2 || 10| 4 2 1 -7 —4 -2 -1
0.R50 to 0.869 | 3 || 10 | 4 3 2 1 1 1 2
8 (0.R69 to 0.8099- 3 |[10 | 5 3 2 1 0 1 1
0.809- to 1.000 | 4 ||20] 5 3 2 1
k] 0.850 to0.869 | 1 |21 | 2 [ —14 -2 -1 -1 -1 1 1
2 0.869 to0.885 | 1 |[21| 3 | —14 -2 -1 -2 -1 0 1
0.885 to0.8680-| 1 |[21 | 4 [ —14| —2| —2| -2 0 0| —
0.899"to1.000 | 1 (22| 3 | —14| —2| —2| -2 -1
0.850 to0.869 | 1 |21 3 2| -12 —2 -1 -2 0 1
3 0.869 to0.885 | 1 || 21 | 4 21 -12 —2 -2 -2 -1 1
0.885 to0.800-| 1 |[21 | 5 2| =12 =3 =2 -1| -1| =1
0.889" to 1.000 | 1 || 22 | 4 21 -12 -3 -2 -2 -1
0.850 to0.869 | 2 || 22| 3 2 1 —9 -3 -2
4 0.869 to0.885 | 2 | 22| 4 2 1 —9 —4 -2 -1
0.885 to0.809°| 2 |22 | 5 2 1| —10 —4 -1 -1 -2
0.800~ to 1.000 | 2 |23 | 4 2 1| —10 —4 -2 -1 =1
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TasLe IV C— Continued

G1* (m,m)
n|m g-interval x
1 q q'_‘ ql q‘ qﬁ ql q? qa qg ql q'ﬂ
9 0.850 too.860 | 2|22 3| 2| 2| 2| -7| -4 41
5 [0-800 to0.885 | 2 |22 | 4 2| 2| 2| —&| -4 —2
0.885 to0.800- 2 [ 22| 5 2| 2| 1| —8| -3| —2| -2
0.800-to1.000 | 2 |23 | 4| 2| 2| 1| -8| —4| —2| 21
0.850 to 0.860 | 3 |22 | 4 sl o 2| 2| 1| 2| 2
0.860 to0.881 | 3 |22 ] 5 al o 2| 1| 1| 1| 2
9 |0.881 to0.885 | 4 |[23 | & al a| 2| of o 1| 2
0.885 to 0.809-| 4 || 23 | 6 3| a| 1| of 1| 1
0.800- to1.000 | 4 |26 | 5| 3| 2| 1| o of 1| 1
10 0.850 t00.857 | 1 ||2a |2 | —17| —2| of —1| 1| 1| 1| =1
0.857 t00.860 | 1|24 |2 | —17| 1| —1| =1 =1 ol 1
, (0869 to0sss | 1 2|3 7| 2 —1| —2 -1 0 1| 1
0.885 to0.896 | 1] 24| 4 | —17| —2| —2| —2| o of -1 1
0.896 to0.8%¢-| 1] 25| 4| -17| —3| —2| —2| o 1| -1| -1
0.899- to1.000 | 1 |26 | 3 | —17| —3| —2| —2| —1| 1| o <1
0.850 to0.857 | 1 |24 3 of 15| —1| —2| —2| 1| 1
0.857 to0.860 | 1 24| 3| 2| —1a| —2| —2| 2| o 1| 1
4 [0-869 to0.885 | 1|24 | 4 o 14| —2| =8| —2| —1| 1| 1
0.8%5 t00.806 | 1|24 | 5| 2|-14| —3| =3| 1| 1| 1| 1
0.806 to0.800-| 1 25| 5| 2|-156]| =3 —3| -1| of -1| -1
0.809- to 1.000 | 1 [[26 | 4 2| -15| —8| -3| —2| o] o] =1
0.850 to 0.857 | 2 || 25| 3 2| 1|-n| -] -2
0.857 to0.860 | 2 || 25 | 3 2| al-12| —3| 2| 1| ol 1
0809 to0.sss | 225 |4 | 2 212 4] -2l 2 0] 1
0.885 to0.806 | 2 25| 5| 2| o|-13| —a| -1 —2| —2| 1
0.896 to0.809- 2 26! 5| 2| 1|-13| —4| —1| -1| —2| 21
0.899- t0 1.000 | 2 |27 | 4 2| 1| -s| -] —2| 1| 1| 2
0.850 to0.857 | 2 | 25| 3 sl 2| 3|-w0| 4| of o 41
0.857 t00.860 | 2 |25 | 3 2| 3| 2|-w0]| —1] 21
0.869 t00.885 | 2 | 25 | 4 o 3| 2|-n| —4| -2
50885 too.806 | 2 |25| 5| 2| 3| 1|-m| —3| —2| —2
0.8 to0.800- 2 26| 5| 2| 2| 1|-m| 3| 1| —2| -2
0.800- tor.000| 2 27| a| 2| 2| 1|-m| —a| —1| 1] —2
0.850 to0.857 | 2 || 25| 3 sl 2| 8| 1| —8| —2| -1 1
0.857 to0.800 | 2 |25 3 3l 3| 2| 1| -8 —3| =1
0.800 to 0.885 | 2 [ 25| 4 sl sl 2| o] -8 —a| 1
610,885 to0.800 | 2 [ 25] & 3l 3| 1] of -71| -4 -3
0.806 to0.800-| 2 |26 5| 3 2| 1| of -7| -3| -3 | -2
0.800- to1.000 | 2 |27 | 4| 3| 2| 1| o -8| —3| —2| —2
0.850 t00.857 | 3 || 25| 4 3| o 8| 2| 1| 3| 3| 2
0.857 to0.860 | 4 [ 26| 4 sl 3| 2| 1| 1| 2| 2| 2
e I I I N R O R N
0.885 t00.806 | 4 |26 | 6 sl 3| 1| of 2| 1| of =
0.806 to0.800- 4 |27 6| 3| 2| 1| of 2| 2
0.800- to1.000 | 4 |28 5| 3| =2 1| ol 1| 2| 1
1 0850 to0.857 | 1 |27 | 2| =20| 1] o] —1| —2| 1| 2| 1| 21
0.857 to0.869 | 1]27| 2| —-20| of =1| —=1| —2| o] 2| o| =1
0.850 t0o0885 | 1 27| 3| —20| —1| =1| —2| —2| o 2| 1|1
2lo.885 too.es | 1 [27| 4| —20| —2| =2| —2| o] o] -1] 1] 1
0.806 to0.809- 1 |28 | ¢ | —20| —3| —2| —2| of 1| -1] -1]| 1
0.800-to 0.004 | 1 || 20| 3 |—20| —3| —2| 2| -t 1| 0] 1] 1
0.004 to1.000| 1 [30] 3| 21| —3| —2| —2| of 1| of 1|1
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TasLe IV C— Continued

Gr* (mm)
m g-interval x —
Lliag| ¢ 7 g ¢ | q ¢ g | g gt
0.850 to0.857 | 1 |27 3 2 =17 | -1 —2| -2 1 1 0| -1
0.857 to0.869 | 1 |27 | 3 2| -16| -2 | —2| -2 0 1 1] -1
0.860 to0.885 | 1 |27 | 4 2| -16| —3| —-3| -2 -1 2 1
0.885 to0.896 | 1 |27 | 5 2| =16 —4| —3| —1| -1 0 1
3 /0.806 to0.899-| 1 |28 | 5 2| =17 | —4| —3| 1 0 0| -1
0.809" t0 0.904 | 1 || 20| 4 3| 18| —4| —3| —2 0 0| -1
0.904 to1.000 | 1 (30| 4 2| 18| —4| —3| -1 0 0| -1 -
0.850 to0.857 | 2 |28 | 3 2 2| -14| —-3| -3 0 1
0.857 to0.860 | 2 || 28 | 3 2 3 -15| —3| —3| —1 1 1
0.869 to 0.885 | 2 || 28 | 4 2 3| -15| —a| —3| -2 1 1
1]0.885 to0.806 | 2 |28 | 5 2 3| 16| —4| —2| -2 41 1
0.806 to 0.890-| 2 |20 | 5 2 2| 16| —4| =2| 1| 1| <1
0.809" to 0.804 | 2 |[30| 4 3 1 -16]| —4| =3| =1| -1 | -1
0.904 to1.000 | 2 [ 31| 4 2 1| -16] —4| 2| =1 -1 | =1 | =
0.850 to0.857 | 2 [ 28 | 3 2 3 3| -13| —4 0 0| -1
0.857 to 0.860 | 2 || 28| 3 2 4 2| 13| —4| —1
0.869 to 0.885 | 2 || 28| 4 2 4 2| 14| —4| -2
5(0.885 to0.806 | 2 [[28| 5 2 1 1| —14| =3 —2| —2
0.806 to0.8097| 2 [[20 | 5 2 3 1| —14| =8| —1| -1 | —2 | -2
0.809- t0 0.904 | 2 [[30 | 4 2 3 1| —14| —af 1] =1 | —2
0.904 to 1.000 | 2 |[31 | 4 1 3 1| -14| —3| -1| =1 | —2| -2
0.850 to0.857 | 2 || 28| 3 3 3 3 1| -11] -2 0| -1 -1
0.857 to0.860 | 2 || 28 | 3 3 4 2 1|-11| —3 0 0o -1
0.860 to0.885 | 2 || 28 | 4 3 4 2 0| -11| —14 0 0| -1
6]0.885 to0.806 | 2 | 28| 5 3 14 1 0| -10| —4| =2 0| -1
0.806 to 0.800-| 2 |[20 | 5 3 3 1 0| -10| —-3| —2| -2 | -1
0.899~ to 0.904 | 2 || 30 | 4 1 2 1 0| -1| —3]| -2 2
0.004 to1.000 | 2 [ 31| 4 3 2 1 0|-10| —-3| -2 | —2| —2
0.850 to 0.857 | 3 | 28 | 4 3 3 4 2 1 3 3 2 2
0.857 to 0.860 | 4 [/ 20 | 4 3 4 2 2 1 2 3 2 1
0.860 to 0.885 | 4 || 20| & 3 1 2 1 1 1 3 2 1
11 [0.885 to 0.806 | 4 |20 | 6 3 4 1 1 2 1 1 2 1
0.806 to 0.809-| 4 |30 | 6 3 3 1 1 2 2 1 0 1
0.800- to 0,904 | 4 |31 | 5 4 2 1 1 2 2 1 0 2
0.904 to1.000| 4 |32 5 3 2 1 1 2 2 1
0.850 to0.856 [ 1 |30 | 2 | —23| —1 1| —-1| -3 1 2 -1 <1 1
0.856 to0.857 | 1 30| 2 | —23 0 of —1| -3 2 2 2| -2 | -1
0.857 to0.869 | 1 30| 2 | —23 1| =1 —2| -2 1 2 o -1 ]| -1
0.869 to0.881 | 1 |30 | 3 | —23 0| -1| —3| -2 1 2 1| -1 | -1
, |0.881 to0.885 [ 1 (30| 3 | —22| —1| —1| —3| -2 0 2 2| -1 | -1
“0.885 to0.806 [ 1 |30 | 4 | -22| —2| —2| —3 0 0| -1 2 1] -1
0.806 to0.809-| 1 |[31 | 4 | 23| —3| —2| —2 0 1| =1 ] =1 1 1
0.800" to 0.904 | 1 |[32| 3 | -23| —3| —2| —2| -1 1 0] —1 1 1
0.904 to0.012-| 1 |33 |3 | —2¢4 —3| —2| -2 0 1 0| -1 | -1 1
0.912-to 1.000 | 1 (|34 | 3 | =25 —3| —2| -1 0 1 0| —-2| -1
0.850 to 0.856 | 1 || 30| 3 2 —20 0| —2| -2 0 1 1| -1
0.856 to 0.857 | 1 |30 | 3 2 —19| -1 | —2| —2 1 1 0| =1 |-
0.857 to0.869 | 1 |30 | 3 2 —18| —2| —2| -2 0 1 1| =1 =1
[0.869 to0.881 | 1 (30 4 2 —18 | —3| =3| —2| -1 2 1 0| -1
0.881 to0.885 | 1 [ 30| 4 3, —-19| —3| -3 —2| -2 2 2 0| -1
30.885 too.s06 | 1 |30 5 3, =10 —5| =3| 1| -1 0 1 0 1
lo.seﬁ to 0.8997| 1 |31 | 5 3 -2 —5| =3[ <1 0 0| -1 0 1
|0.899- to 0.004 | 1 |32 | 4 4 -2 —4| -3| -2 0 0 0 1
(0,004 to0.0127 1 | 33| 4 3| —-22| —1| =3[ 1 0 0 0| -1
|0.912* t0 1,000 | 1 | 34| 4 2 -2 | -4 2| 1| o] o 1| 1|21
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TaBLE IV C— Continued

1959

G1* (m,n)
n | om g-interval x |[—
1le| @ | @ | ¢ | & | & 7 | e @ | g0 |a¢
12 0.850 to 0.856 | 2 |[31| 3 2 2| -16| —3| -3 0| 1
0.856 to0.857 | 2 |[31| 3 2 3| —17 -3 -3 1 1 -1 0| -1
0.857 to0.869 | 2 |31 | 3 2 4 -18| -3 -3 0 1 0 0}-1
0.860 to0.881 | 2 |[31 | 4 2 4(—-18| —&6| -3 -1 1 1
4 0.881 to0.885 | 2 || 31 | 4 3 3| —18| —5| -3 -2 1 2
0.885 to0.896 | 2 [[31 | 5 3 3| —19| -5 -2 -2 -1 2
0.896 to 0.899-| 2 || 32| 5 3 2| -19| =5 -2 -1] -1
0.899- to 0.904 | 2 |33 | 4 4 1|-19| —5| —3| —-1| -1 0 1
0.004 to0.912 2 (34| 4 3 1|-19| —=5| —2| =1 -1 0| -1
0.912- to 1.000 | 2 35| 4 2 1|-10| —4| =2 =1 1| 1| =1 |-1
0.850 to 0.856 | 2 | 31| 3 3 3 4 1|-14| —2| o| -1 | -1 1
0.856 to 0.857 | 2 || 31| 3 3 4 3 1] -4 -1 0| -2 -1
0.857 to0.869 | 2 |31 3 3 5 2 1| —14 -2 0 -1 -1
0.809 to0.881 | 2 |31 | 4 3 5 2 0] —14 -3 0| -1 -1
6 0.881 to0.885 | 2 (31| 4 4 4 2 0| —14 —4 0 0| -1
0.885 to0.806 | 2 |31 | & 4 4 1 0| —13 —4| =2 0| -1
0.806 to 0.809°| 2 || 32| 5 4 3 1 0| —13 -3 -2 -21] -1
0.809~ to 0.904 | 2 (33 | 4 5 2 1 o|-14| —-3| -2 | -2
0.004 to0.9127 2 [ 34| 4 4 2 1 o|-13| —3| —2| —2| -2
0.912- to 1.000 | 2 |35 | 4 3 2 1 1| -13| -8 -2 | -3 | —2|-1
0.850 to 0.856 | 2 || 31| 3 3 3 4 2 1| =9 =2 | 1| -1
0.856 to 0.857 | 2 || 31| 3 3 4 3 2 1| -8 —2| —2| 1|1
0.857 to0.869 | 3 || 31 | 4 3 5 2 1 ol 9| —2| -1 | -1 |1
0.860 to0.881 ( 3 |31 | & 3 & 2 0 0| -10| -2 -1 -1 | -1
; 0881 to0.8% | 3 |31 | 5 4 4 2 0 0| -1 -2 o —-1]|-1
0.885 to0.896 | 3 |31 | 6 4 4 1 0 1| =11 —4 0| -1]|-1
0.806 to 0.899-| 3 |32 | 6 4 3 1 0 1(—-10| —4 -2 -1 | -1
0.809 t0 0.904 | 3 || 33| & 5 2 1 0 0| -10| —4 -2 0| -1
0.904 t00.9127| 3 |34 | 5 4 2 1 0 1| —-10| —4 -2 | =2 | -1
0.912- to 1.000 | 3 || 35 | & 3 2 1 1 1|-10| —4| —3| -2 |2
0.850 to 0.856 | 4 |32 | 4 3 3 4 2 1 3| 3 2 2| 3
0.856 to 0.857 | 4 |32 | 4 3 4 3 2 1 4| 3 1 2| 2
0.857 to0.860 | 4 |32 | 4 3 5 2 2 1 3| 3 2 2| 2
0.869 to0.881 | 4 || 32| & 3 5 2 1 1 2 3 2 2 2
1p |0-881 t00.885 | 4 |32 | 5 4 4 2 1 1 1| 3 3 2| 2
0.885 to 0.806 | 4 | 32| 6 4 4 1 1 2 1| 1 3 2| 2
0.806 to 0.899~| 4 |33 | 6 4 3 1 1 2 2 1 1 2 2
0.809- to 0.904 | 4 | 34| 5 5 2 2 1 1 2| 1 1 2] 1
|D.904 to0.012- 4 |35 | 5 4 2 2 1 2 2 1 1 0 1
|0.912* to 1.000 | 4 |36 | 5 3 2 2 2 2 2 1
The exponential symbols 4, — indicate only the relative magnitude of two

different roots that are equal to three decimal places (ie, a” < a*).



TaBLE VA — ExpectEpD NUMBER OF TESTS REQUIRED AND SIZE 2 OF
THE NEXT SaMpLE To BE TAKEN FOorR ANY Gi(m,n) AND ANY
Hy(n) SrruaTion’ WHEN ProcEDURE R, 18 UsEp AnND ¢ = 0.90

Gi(m,n)
n Hy(n) x
m=2|m=3 |m=4|m=5|m=6|m=17 m=8 | m=29
: x=1 x=1 z=12 x =2 x =2 x=3 x =4 x =4

1 1.000] 1

2] 1.290 2 1.526

3 1.661 3 2.153| 2.439

4| 2.051] 4 2.485| 2.971| 3.056

5| 2.490[ 5 2.866] 3.325| 3.547| 3.637

6| 2.943| 6 3.282) 3.727| 3.925| 4.115| 4.148

7 3.414| 7 3.728) 4.157| 4.343| 4.512| 4.621| 4.628

8] 3.904/ 8 4.191) 4.613| 4.784| 4.943| 5.033| 5.100| 5.100

9 4.395 9 4.672| 5.085| 5.250, 5.396| 5.476| 5.528| 5.575| 5.543
10| 4.872) 6 5.163| 5.570| 5.728) 5.868| 5.938| 5.980 6.014] 6.021
11| 5.327) 6 5.646| 6.056| 6.210] 6.346| 6.411| 6.445] 6.470| 6.466
12 | 5.790[ 6 6.111| 6.528| 6.687) 6.821] 6.883| 6.914| 6.933| 6.922
13 | 6.261] 7 6.570| 6.993| 7.157| 7.294| 7.356| 7.385| 7.401| 7.385
14| 6.732| 7 7.037| 7.456| 7.623| 7.765 7.829| 7.857| 7.872 7.853
15| 7.213| 7 7.509] 7.925| 8.089| 8.232| 8.300 8.330| 8.345| 8.324
16 | 7.6956] 7 7.985| 8.400| 8.561| 8.702| 8.770| 8.802| 8.819| 8.798
17 | 8.161] 6 8.467| 8.878 9.038) 9.176| 9.242| 9.275 9.203| 9.273
18 | 8.629) 6 8.940) 9.354| 9.513| 9.651| 9.715| 9.746| 9.764| 9.746
19 | 9.100] 7 9.407| 9.825| 9.986| 10.124| 10.188] 10.218| 10.235| 10.217
20 | 9.572| 7 9.877| 10.294| 10.458| 10.596| 10.660| 10.690| 10.706] 10.687
21 | 10.044| 7 | 10.348| 10.764| 10.927( 11.068| 11.133| 11.163| 11.179| 11.159
22| 10.520] 7 | 10.820| 11.236| 11.398| 11.538| 11.605 11.635| 11.651| 11.632
23 | 10.996| 6 11.295| 11.709| 11.871| 12.010| 12.076| 12.108| 12.124| 12.105
24 [ 11.466| 6 | 11.770( 12.184| 12.345| 12.484| 12.549( 12.580| 12.597| 12.578
26 | 11,937 7 | 12.243| 12.658| 12.819( 12.957| 13.022| 13.052| 13.069| 13.051
26 | 12.408| 7 12.714| 13.130| 13.292| 13.430| 13.495| 13.525| 13.541| 13.522
27 | 12.881) 7 | 13.185| 13.601| 13.763| 13.902| 13.967| 13.997| 14.014| 13.994
28 | 13.353] 7 13.657| 14.073| 14.235| 14.374| 14.440( 14.470| 14.486| 14.467
29 | 13.827, 7 14.129| 14.545| 14.707| 14.846] 14.912| 14.943| 14.959| 14.939
30 | 14.301) 7 14.603| 15.018| 15.179| 15.319| 15.384| 15.415| 15.431| 15.412
31| 14.773] 7 15.077| 15.491| 15.653| 15.792| 15.857| 15.888| 15.004| 15.885
32 | 15.244| 7 15.549| 15.965| 16.126| 16.264| 16.329| 16.360| 16.377| 16.358
33 [ 15.717| 7 | 16.021| 16.437| 16.598| 16.737| 16.802| 16.833| 16.849| 16.830
34 | 16.189| 7 16.493| 16.909| 17.071| 17.210| 17.275| 17.305| 17.321| 17.302
35 | 16.661| 7 | 16.965 17.381| 17.543| 17.682| 17.747| 17.778| 17.794| 17.775
36 | 17.135] 7 17.438| 17.853| 18.015| 18.154| 18.219 18.250| 18.266| 18.247
37 | 17.608| 7 17.910| 18.326| 18.487| 18.626| 18.692 18.723| 18.739| 18.720
38 | 18.080( 7 | 18.384| 18.799| 18.960| 19.099| 19.164| 19.195| 19.212| 19.192
39 | 18.552( 7 | 18.856| 19.272| 19.433| 19.572| 19.637| 19.668| 19.684| 19.665
40 | 19,024 7 19.328] 19.744] 19.906| 20.044| 20.110| 20.140| 20.157| 20.137
41 | 19.497) 7 19.801) 20.216| 20.378| 20.517| 20.582| 20.613| 20.629| 20.610
42 | 19.969 7 | 20.273| 20.688| 20.850, 20.989| 21.055 21.085 21.102| 21.082
43 [ 20.442) 7 | 20.745| 21.161| 21.323| 21.462| 21.527| 21.558| 21.574| 21.555
[ 20.915) 7 | 21.218| 21.634| 21.795| 21.934| 21.999| 22.030| 22.047| 22.027
45 | 21.387| 7 | 21.691| 22.106| 22.268| 22.407| 22.472| 22.503| 22.519| 22.500
46 | 21.860{ 7 | 22.164| 22.579 22.740, 22.879| 22.945| 22.975| 22.992| 22.972
47 | 22.332| 7 | 22.636| 23.051| 23.213| 23.352| 23.417| 23.448| 23.464| 23.445
48 | 22.805 7 | 23.108| 23.524| 23.685| 23.825 23.890| 23.920| 23.937| 23.917
49 | 23.277) 7 || 23.581| 23.996| 24.158 24.297| 24.362 24.393| 24.409| 24.390
50 | 23.750| 7 | 24.053| 24.469 24.630F24.769 24.835 24.865 24.882| 24.862
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TasLE V A — Continued

Gi(m,m)

Hy(n) x

m =2 m=3 m =4 m =35 m =06 m=17 m =8 m=9

z=1 x =1 r=12 x =12 x=12 x=3 x =4 x =4
24999 7 | 24.526| 24.941| 25.103| 25.242| 25.307| 25.338| 25.354| 25.335
24 695 7 | 24.998| 25.414| 25.575| 25.714| 25.780| 25.810( 25.827| 25.807
25 167 7 | 25.471| 25.886| 26.048| 26.187| 26.252 26.283| 26.209| 26.280
95.640| 7 | 25.943| 26.359| 26.521| 26.660| 26.725| 26.755| 26.772| 26.752
26.112| 7 | 26.416| 26.831| 26.993| 27.132| 27.197| 27.228| 27.244| 27.225
926.585] 7 | 26.888| 27.304| 27.465| 27.605| 27.670| 27.700| 27.717| 27.697
97.057 7 | 27.361| 27.776| 27.938| 28.077| 28.142| 28.173| 28.189 28.170
97 5300 7 | 27.833! 28.249| 28.410( 28.550| 28.615| 28.645| 28.662) 28.643
28.002| 7 98.306) 28.721| 28.883| 29.022| 20.087| 29.118| 20.134| 29.115
28 475 7 |l 28.779| 29.194| 29.356| 20.405( 20.560| 29.590| 29.607| 29.588
28047 7 | 29.251| 20.666| 29.828| 29.967| 30.032| 30.063| 30.079| 30.060
29 4200 7 | 29.723 30.139| 30.301| 30.440| 30.505| 30.535| 30.552| 30.533
29.892| 7 | 30.196| 30.611| 30.773| 30.912| 30.977| 31.008| 31.024) 31.005
30.365 7 | 30.668| 31.084| 31.246| 31.385| 31.450 31.480| 31.497| 31.478
30.837| 7 | 31.141| 31.556| 31.718| 31.857| 31.922| 31.953| 31.969) 31.950
31.310 7 | 31.614| 32.029] 32.191| 32.330| 32.395| 32.425| 32.442| 32.423
31.782 7 | 32.086| 32.502| 32.663| 32.802| 32.867| 32.898| 32.914| 32.805
32.955 7 | 32.559| 32.974| 33.136] 33.275| 33.340| 33.370| 33.387| 33.368
32.727) 7 33.031| 33.446| 33.608| 33.747| 33.812| 33.843| 33.859| 33.840
33 9000 7 | 33.504| 33.010| 34.081| 34.220| 34.285| 34.316| 34.332| 34.313
23.672| 7 | 33.976) 34.302| 34.553| 34.692| 34.757| 34.788| 34.804| 34.785
34 145 7 | 34.449| 34.864| 35.026| 35.165| 35.230| 35.261| 35.277| 35,258
34.617| 7 | 34.921| 35.337) 35.498 35.637| 35.702| 35.733| 35.749| 35.730
35.000 7 | 35.394| 35.800| 35.971| 36.110| 36.175| 36.206| 36.222| 36.203
35.562| 7 | 35.866| 36.282| 36.443| 36.582| 36.647| 36.678| 36.694| 36.675
36.035| 7 || 36.339| 36.754| 36.916| 37.055| 37.120| 37.151| 37.167| 37.148
236.507| 7 | 36.811| 37.227| 37.388| 37.527| 37.502| 37.623| 37.639| 37.620
36.9800 7 | 37.284| 37.699| 37.861| 38.000| 38.065| 38.096| 38.112 38.093
37.453| 7 | 37.756) 38.172| 38.333| 38.472| 38.537| 38.568| 38.584| 38.565
37 925 7 || 38.229| 38.644| 38.806| 38.045| 30.010| 39.041| 39.057| 39.038
38.308) 7 | 38.701) 39.117| 39.278| 39.417| 39.482 39.513| 39.530| 39.510
38870 7 | 39.174| 39.580| 30.751| 39.890| 39.955| 39.986| 40.002| 39.983
39 343 7 | 39.646| 40.062 40.223| 40.362| 40.427| 40.458| 40.475| 40.455
39 815 7 | 40.119| 40.534| 40.696| 40.835| 40.900| 40.931| 40.947| 40.928
40.288] 7 | 40.591| 41.007) 41.168| 41.307| 41.373| 41.403| 41.420| 41.400
40.760 7 | 41.064| 41.479| 41.641| 41.780| 41.845| 41.876 41.802| 41.873
41.233] 7 || 41.536) 41.952| 42.113| 42.252| 42.318| 42.348| 42.365| 42.345
41.705] 7 | 42.009| 42.424| 42.586| 42.725| 42.790| 42.821| 42.837| 42.818
42.178| 7 | 42.481| 42.807| 43.058| 43.197| 43.263| 43.293| 43.310| 43.290
42,6500 7 | 42.954| 43.369| 43.531| 43.670| 43.735| 43.766| 43.782 43.763
43.123 7 | 43.426| 43.842| 44.003| 44.142| 44 208| 44.238| 44.255 44.235
43,595 7 | 43.890 44.314| 44.476| 44.615) 44.680] 44.711| 44.727| 44.708
44.068] 7 | 44.371 44.787| 44.948| 45.087| 45.153| 45.183| 45.200| 45.180
44 510 7 | 44.844) 45.259) 45.421| 45.560) 45.625) 45.656) 45.672| 45.653
15.013] 7 | 45.316| 45.732) 45.893| 46.032| 46.098| 46.128) 46.145| 46.125
45 485 7 || 45.789| 46.204| 46.366| 46.505) 46.570| 46.601) 46.617| 46.598
45.058 7 || 46.261| 46.677| 46.838| 46.978| 47.043| 47.073| 47.090| 47.070
46.430] 7 | 46.734| 47.149| 47.311| 47.450| 47.515| 47.546( 47.562| 47.543
16.903] 7 | 47.208| 47.622| 47.784| 47.923| 47.988| 48.018| 48.035 48.016
47.375] 7 | 47.679| 48.004| 48.256| 48.395| 48.460| 48.491| 48.507| 48.488
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TaBLE VI— ExprcTEDp NUMBER OF TESTS REQUIRED FOR PROCEDURE R

The integer below q¥ opposite H:(n) is the coefficient of g¥ in the polynomial
formula for Ha(n).

g-interval 1 P @ ||| ev g | 7| qd| g0 | q0|gn|g®
0.000 to0.618 | 1| 2
H:2) | o618 to1.000 | 2| 3] —1] —1
0.000 t00.618 | 1| 3
Ha3) | 0618 to0.755 | 2| 5 —3| —1] 1
0.755 to1.000 | 3 5 —2[ —1|—1
0.000 t00.618 | 1| 4
Haey | 0018 00755 | 2 7 =5 0 11
2 0.755 to0.819 | 3| 7| —3] —2[—2| 2
0.819 to1.000 | 4] 8 —4] —2|—1
0.000 to0.618 | 1| 5
0618 100755 | 2 9 —7| 1] of-1 1
Ha5) | 0755 to0.810 | 3| o —4| —3|—2 3/—1
0819 to0.857 | 4] 11| —7| —2|=1|-1/ 2
0857 to1.000 | 5 11| —7| —2| o 0/—1
0.000 t00.618 | 1| 6
0618 to0.755 | 2| 11| —of 2/—1| o 1]|-1
0755 to0.819 | 3| 11| —5| —4/—2 4/—1|-1
H.(6) | 0.819 to0.857 | 4] 14/—10] —2|—1|—1| 3|-1
0857 to0.881 | 5 14|—10] —2| 1|—1/-3 3
0,881 to0.885 | 6| 14|—10| =1 0|—1/—1
0.885 to1.000 | 6| 14| —o| —2/—1| 0/—1
0.000 to0.618 | 1| 7
0618 100755 | 2 13—11] 3]-2 1 o|-1 1
0755 to0.810 | 3 13| —6| —5|—2| 5—2(—2| 2
fay | 0819 00857 | 41713 —2~1|-1 4|11
: 0857 to0.881 | 5 17 —13| —2| 2|—2/—4| 5|—1
0881 to0.885 | 6| 17/—13] 0|—1|-1—1|-2| 3
0885 to0.899- | 6 17|—11| —3|—2 2/—2|-2| 3
0.809- to 1.000 | 7| 17|-11| —3|—1| 1|-2
0.000 t00.618 | 1| 8
0618 100755 | 2 15—13] 4/—3| 2[—1] o| 1]|-1
0755 to 0819 | 3| 15 —7| —6|—2| 6/—3—2/ 3[-1
0819 to9.857 | 4 20—16| —2(—1| o0 4|-2/—1
fas) | 0857 to 0881 | 52016 ~2 3-3 -5 711
2 0881 to0.885 | 6 20—16| 1|-2/—1—1|—3| 5/-1
0885 to 0.800- | 6| 20/—13| —4|—3| 4/—3|=3| 5/-1
0,890~ to 0.012 | 7 20/—13| —4|=1| 1|]-2| 0o|—2| 3
0012 to0.932 | 8 20—13| —4[—1| 1-2| 1| 0]-1
0032 to1.000 | 8 20/—14] —4[—1| 1/-2
0.000 t00.618 | 1| 9
0618 to0.755 | 2 17/—15| 5|—4| 3[—2| 1| o|-1] 1
0755 to 0819 | 3|17 —8| —7|—2| 7|—4|-2| 4|—1|-1
0819 to0.857 | 4)23—19] —2(=1| 1| 3|-2/—1|-1| 2
0857 to0.881 | 5| 23/—10] —2| 4/—4l—5 8§—2/-1
H.9) | 0881 to0.800 | 6 23{—19] 2|-3/—1|-1|—4] 7/-1|-1
0890 to 0.899- | 6| 23|—15| —5(—14| 6|—4/—4| 7[-1|—1
0899 to 0.912 | 7| 23/—15| —5|—1| 1|—2| 0|—3| 5—1
0012 to0. 022 | S 23/—15] —5(—1| 1|-2| 2/—1|—4| 4
0022 to0.038 | 9 24—16 —5(—1 1]—2| 1| 0/-1
0038 to 1000 | 9] 2518 —4-1] 1]-2| 0] 1] 0]-1
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g-interval x 1 g g | gt | g® q* g | g
0.000 to 0.618 1 10
0.618 to 0.755 2 19 6|—5 4[—3 0
0.755 to 0.819 3l 19 —8—2| 8 -5 -2
0.819 to 0.857 4] 26 —2|—1{ 2| 2 -1
0.857 to 0.881 a| 26 —2| 5|—5|—5 0
0.881 to 0.890 6| 26 3—4—1|—1 -2
H.(10) | 0.890 to 0.899- | 6/ 26 —6|—5 8|—5 —2
0.899~ to 0.912 7| 26 —6/—1/ 1|-2/ 0 7
0.912 to 0.922 8| 26 —6/—1| 1/—2| 3 —6
0.922 to 0.930 9{ 28 -5 -1 1|—-2| 1 —2
0.930 to 0.938 10| 28 —5—-1 1|—-1/ 1 -1
0.938 to 0.960 10/ 29 —4—1] 1|—1| 0 0
0.960 to 1.000 10/ 29 —4/ 0 1|-3] 0 0
0.000 to 0.618 1) 11
0.618 to 0.755 2( 21 7|—6| 5 —4 1 1
0.755 to 0.819 3l 21 —9/—2[ 9/—6 -3 -1
0.819 to 0.857 4 29 —2/—1f 3 1 -1 -1
0.857 to 0.881 5l 29 —2| 6|—6/—5 1 3
0.881 to 0.890 6l 29 4|—5|—1|—1 -2 —1
Ha(11) 0.890 to 0.899 6l 29 —7|—6| 10/ —6 -2 -1
: 0.899~ to 0.912 7l 29 —7—1 1/—-2 8
0.912 to 0.922 8 29 —7—1 1]—-2 —8 -1
0.922 to 0.930 9 32 —5/—1| 1—2 —3 -1
0.930 to 0.936 | 10| 32 —5—1| 1] 0 1 3 4
0.936 to 0.938 | 11] 32 —5 0 1]—2 —1
0.938 to 0.960 | 11f 33 —4 0] 1-2 0
0.960 to 1.000 11 33 —4 1| 0/—4 —1
0.000 to 0.618 112
0.618 to 0.755 2 23 8 =7 6/—5 2 1/—1
0.755 to 0.819 3] 23 —10—2| 10|—-7 —4 —1|—1
0.819 to 0.857 4 32 —2 =1 4] 0 0 -1
0.857 to 0.881 5| 32 -2 7-7|—5 2 5|—1
0.881 to 0.890 6 32 5—6/—1|—1 —1 —1
0.890 to 0.899~ | 6 32 —8|=7] 12|-7 —2 -1
H.(12) 0.899~ to 0.912 7| 32 —8—1] 1|-2 8 0/—1
: 0.912 to 0.922 8| 32 —8—1] 1|-2 -9 —1
0.922 to 0.930 9| 36 —5—1] 1|-2 —4/ -7 —1/—1
0.930 to 0.936 | 10| 36 —5—-1] 1 1 3|—2 7—1
0.936 to 0.938 | 11) 36 -5/ 1 0—-3 -2 2 -3 4
0.938 to 0.941 11 37 —4| 1f 0]—3 -1 1 -3/ 4
0,941 to 0.960 12} 37 —4 1| 0/-3 0 0
I 0.960 to 0.972 12 37i —4) 2/—1|-5 =1/ 0
1 0.972 to 1.000 12 3?l—29i —4 0 OI——I —1|-1
The exponential symbols 4, — indicate only the relative magnitude of two

different roots that are equal to three decimal places (i.e., a= < a*).



TasLE VII — TaE DIiviping PoINTS BETWEEN & AND 2 -+ 1 FOR THE
INFORMATION PROCEDURE R»
G-Situation

m

4 6 7 8 9 11 12 13 | 14 16
1 | o0.7540 | 0.6518 | 0.6369 | 0.6289 | 0.62457| 0.6204 | 0.6195-| 0.6180 | 0.6186 | 0.6182
2 0°8899 | 0.8376 | 0.8087 | 0.7913 | 0.7728 | 0.7677 | 0.7642 | 0.7617 | 0.7586
3 1.9378 | 0.9016 | 0.8631 | 0.8524 | 0.8448 | 0.8388 | 0.8313
1 0.9310 | 0.9160 | 0.9031 | 0.8935~| 0.8806
5 0.9723 | 0.9528 | 0.0384 | 0.0193
6 0.9706 | 0.0520
7 0.0844
G-Situation
m
x
10 20 30 10 50 60 70 80 90 100
0.6219 | 0.6181 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6180 1
0.7802 | 0.7560 | 07549 | 0.7549 | 0.7540 | 0.7540 | 0.7549 | 0.7549 | 0.7549 | 0.7540 | 2
08786 | 0.8241 | 0.8198 | 0.8193 | 0.8192 | 0.8192 | 0.8192 | 0.8192 | 0.8192 | 0.8162 3
0.0601 | 0.8677 | 08587 | 0.8571 | 0.8568 | 0.8567 | 0.8567 | 0.8567 | 0.8567 | 0.8567 | 4
0°8900 | 0/8851 | 08823 | 08816 | 0.8814 | 0.8813 | 0.8813 | 0.8813 | 08813 5
0°9262 | 0.9056 | 0.0008 | 0.8003 | 0/8980 | 0.8987 | 0.8987 | 0.8087 | 0.8987 6
179400 | 0.0218 | 00150 | 0.0120 | 079121 | 0.9118 | 00117 | 0.0116 | 0.9116 7
0.9600 | 0.9355-| 0.9267 | 0.9236 | 0.9225-| 0.9220 | 0.0218 | 0.0217 | 0.9216 8
0°0900 | 0.0474 | 0.9364 | 0,9325+| 0.9308 | 0.9302 | 0.0299 | 0.9207 | 0.9206 9
09582 | 070149 | 079400 | 0.9380 | 0.9370 | 0.9385%| 0.0363 | 0.0362 | 10
00682 | 070524 | 09466 | 0.9440 | 010428 | 000422 | 0.0418 | 0.0417 | 11
0°0776 | 0°9593 | 00524 | 0.0493 | 0.0478 | 0.9470 | 0.0466 | 0.0463 | 12
0°0867 | 0°0635%| 09576 | 09540 | 0.9522 | 0.9512 | 0.0807 | 0.9504 | 13
I 00056 | 070714 | 0.9624 | 00582 | 0.0561 | 0.9549 | 0.0543 | 0.9539 | 14
46 | 0.9081 0.0770 | 0.9668 | 0.9620 | 0.0596 | 0.9583 | 0.9575-| 0.9570 | 15
45 | 0.9982 0.9823 | 09709 | 09656 | 0.0628 | 0.9613 | 0.0604 | 0.9508 | 16
41 | 0.0973 0.0871 | 09747 | 0.0689 | 0.0658 | 0.9610 | 09630 | 0.9623 | 17
43| 0,996 0.0025-| 09781 | 00710 | 0.00685- 0.0665¢| 0.9654 | 0.0646 | 18
12| 09955 0.9975-| 09820 | 09748 | 0.9710 | 00680 | 0.0676 | 0.9667 | 10
AL | 09946 | 0.9980 0.0854 | 09776 | 0.073¢ | 0.9711 | 0.9606 | 0.0687 | 20
40 | 0.6037 | 0.9978 0.0887 | 0.9802 | 0.0757 | 0.0731 | 0.9715-| 0.0705| 21
30 | 0.9928 | 0.9967 0.0920 | 09827 | 0.0770 | 0.0750¢| 0.0733 | 0.0721 | 22
38 | 0.0010 | 0.9956 0.9952 | 09852 | 0.9709 | 0.9769 | 0.9750-| 0.0737 | 23
37 | 0.9909 | 0.9944 0.0981 | 09876 | 0.0810 | 0,078 | 0.9765"| 0.0752 | 24
30 | 0.9809 | 0.9933 | 0.9986 0.0809 | 00838 | 0.0803 | 0.6780 | 0.0766 | 26
35 | 0.0880 | 0.0021 | 0.9972 0.0022 | 00856 | 0.9810 | 0.0705- 0.9779 | 20
34 | 0.9879 | 09910 | 0.9957 0.0044 | 09871 | 0.0834 | 0,980 | 0.0702 | 27
33 | 0.9869 | 09808 | 0.0943 0.9067 | 0.9892 | 00810 | 0.0822 | 0.0804 | 28
32 | 0.9858 | 0.0886 | 0.9928 0.0989 | 09909 | 0.0863 | 0.9835- 0.9816 | 20
31 | 0.0847 | 0.0873 | 0.9914 | 0.9981 0.0026 | 00877 | 0.0847 | 0.9827 [ 30
30 | 0.9836 | 0.9860 | 0.9889 | 0.9962 0.0043 | 00801 | 0.0850 | 0.0838 | 31
2008 0. 9847 | 0.0883 | 0.9943 0.9059 | 09904 | 0.9871 | 0.0848 | 32
28 | 0.0812 | 0.9831 | 0.9868 | 0.9924 0.0076 | 0.9918 | 0.0882 | 0.9858 | 33
27 | 0.0800 | 0.9820 | 0.9852 | 0.9004 0.9992 | 0.0031 | 0.0803 | 0.0868 | 34
26 | 0.078 | 00805+ 0.9835+| 0.9881 | 0.9974 0.0043 | 0.9004 | 0.0878 | 35
25 | 009773 | 0.0790 | 0.9818 | 0.0864 | 0.6947 "0056 | 0.9914 | 0.9887 | 36
21 | 09758 | 0.0775-| 0.9800 | 0.9843 | 0.9920 0.9969 | 0.9025-| 00806 | 37
23 | 0.0743 | 0)0758 | 0.0782 | 09822 | 0.9893 0.9981 | 0.9035%| 00906+ 38
25 | 0.0727 | 0.0741 | 0.0763 | 0.9800 | 0.0866 0.9994 | 0.9945*| 0.9914 | 39
21 | 0.0700 | 00722 | 0)9742 | 009776 | 0.9837 | 0.9961 0.0055%| 0.9922 | 40
20 | 0.9691 | 0,0702 | 0.0721 | 0.9752 | 0.9808 | 0.8921 0.0085+| 0.9031 | 41
19 | 0.0671 | 0.9681 | 0.0688 | 0.9727 | 0.9778 | 0.9881 0.00757| 0.9939 | 42
18 | 0.0619 | 0.0650 | 00674 | 0.9700 | 0.9746 | 0.9840 0.0985%| 0.9048 | 43
17 | 0.9626 | 0.9634 | 09648 | 0.0671 | 029713 | 0.0798 00005 0.0956 | 44
16 | 0.9600 | 0.9608 | 09619 | 0.9640 | 0-9678 | 00754 | 0.0935 0.0084 | 45
15 | 0°9572 | 0.9578 | 0.9588 | 0.9606 | 0.9640 | 09708 | 0 0860 0.0072 | 46
14 | 0.0541 | 0.9546 | 09554 | 0.9570 | 0.9599 | 0.0650 | 0.9802 0.0080 | 47
13 | 0.9505-| 0.9500 | 0.0516 | 0.9520 | 0.9555-| 0.9607 | 0.9733 0.9988 | 48
12 | 0.9464 | 0,0467 | 08473 | 0.9484 | 0.0508 | 0.9551 | 0.9660 0.9996 | 49
11 | 009417 | 09420 | 0.0421 | 009433 | 0.9451 | 0.9489 | 029582 | 0.9872 —_—
10 | 079362 | 0/9364 | 09357 | 0.0371 | 0.9388 | 0.0419 | 0.0408 | 0.9742

0.9207 | 0.9298 | 0.9300 | 0.9305-| 0.9315% 0.9340 | 0.9404 | 0.9608
0.9216 | 0.9217 | 0.9218 | 0.9222 | 0.9229 | 0.9248 | 0.9208 | 0.9463
0.9116 | 0.9116 | 0.9117 | 0.9119 | 0.9124 | 0.9137 | 0.9174 | 0.6303
0.8087 | 0.8087 | 0.8087 | 0.8988 | 0.8991 | 0.8899 | 0.8024 | 0.9120 | 0.9645~

8813 | 0.8813 | 0.8813 | 0.8813 | 0.8814 | 0.8818 | 0.8834 | 0.8808 | 0.9276
0.8567 | 0.8567 | 0.8567 | 0.8567 | 0.8567 | 0.8569 | 0.8576 | 0.8612 | 0.8862
0.8192 | 0.8192 | 0.8192 | 0.8192 | 0.8192 | 0.8192 | 0.8194 | 0.8209 | 0.8346
0.7540 | 0.7549 | 0.7549 | 0.7549 | 0.7549 | 0.7549 | 0.7549 | 0.7552 | 0.7599
0.6180 | 0.6180 | 0.6150 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6180 | 0.6184 | 0.6823

Ll R = i )
o
oo
=
s

95 85 75 65 55 45 35 25 15 5

m
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GROUP TESTING TO ELIMINATE DEFECTIVES

TasLE VII — Continued
H-Situation

2

al

x q x q

1 0.6180 51 0.9866
2 0.7549 52 0.0860
3 0.8192 53 0.0871
4 0.8567 54 0.9874
5 0.8813 b5 0.9876
] 0.8987 56 0.9878
7 0.9116 57 0.9880
8 0.9216 58 0.0882
9 0.9296 59 0.0884
10 0.9361 60 0.9886
11 0.9415~ 61 0.9888
12 0.9460 62 0.9890
13 0.94990 63 0.0891
14 0.9533 64 0.9803
15 0.9563 65 0.9895~
16 0.9588 66 0.0896
17 0.9612 67 0.9808
18 0.9632 68 0.9899
19 0.9651 69 0.9901
20 0.9667 70 0.9902
21 0.9683 71 0.9904
22 0.9697 72 0.9905~
23 0.9700 73 0.9906
24 0.9721 74 0.9507
25 0.9732 75 0.9909
26 0.9742 76 0.9910
27 0.9751 7 0.9911
28 0.9760 78 0.9912
29 0.9768 79 0.9013
30 0.9775+ 80 0.0914
31 0.9782 81 0.0015+
32 0.9780 82 0.0016
33 0.9705 83 0.9017
34 0.9801 84 0.09018
35 0.9807 85 0.9019
36 0.9812 86 0.9020
37 0.9817 87 0.9921
38 0.9822 88 0.9922
39 0.9826 89 0.9923
40 0.9830 90 0.9924
41 0.9834 91 0.9925~
42 0.9838 92 0.9925%
43 0.0842 93 0.9026
44 0.9845* 94 0,9927
45 0.9849 95 0.9928
46 0.9852 96 0.9028
47 0.9855* 97 0.9929
48 0.9858 98 0.9930
49 0.9861 99 0.9031
50 0.9864 100 0.9031

The exponents * and ~ are to be used for rounding in the usual manner.
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SSIONS FOR Fy*(m)

FOR PROCEDURE R.

\
4

TasLe VIII — PoLyNoMIAL IEXPRE
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