Group Testing To Eliminate Efficiently All Defectives in a Binomial Sample

By MILTON SOBEL and PHYLLIS A. GROLL

(Manuscript received November 13, 1958)

In group-testing, a set of x units is taken from a total starting set of N units, and the x units ($1 \le x \le N$) are tested simultaneously as a group with one of two possible outcomes: either all x units are good or at least one defective unit is present (we don't know how many or which ones). Under this type of testing, the problem is to find the best integer x for the first test and to find a rule for choosing the best subsequent test-groups (which may depend on results already observed), in order to minimize the expected total number of group-tests required to classify each of the N units as good or defective. It is assumed that the N units can be treated like independent binomial chance variables with a common, known probability p of any one being defective; the case of unknown p and several generalizations of the problem are also considered.

I. SUMMARY

A finite number, N, of units are to be tested in groups. A "group-test" is a simultaneous test on x units (x to be chosen so that $1 \le x \le N$) with only two possible outcomes: "success," indicating that all x units are good; and "failure," indicating that at least one of the x units is defective (we don't know how many or which ones). The problem is to define a simple and efficient procedure (or an optimal procedure) for separating all the defective units from the good units — efficiency being defined in the sense of minimizing the expected number of group-tests required. Each unit is assumed to represent an independent observation from a binomial population with a common known a priori probability, q, of being good and p = 1 - q of being defective. (The case of q unknown is briefly treated in Section X.)

A procedure (or decision rule), R_1 , which describes a mode of action for any given value of q, is proposed and compared with several other procedures applicable to the same problem. The procedure R_1 is simple

in the sense that at any time, t, the experimenter must separate the units not yet proven to be good or defective into only two sets; units within either of these two sets need not be distinguishable. If it is given that the identification of units within the group being tested is economically impractical or impossible, then the procedure R_1 is conjectured to be optimal for all values of q.

Explicit instructions for carrying out R_1 are given for N=1(1)16 for all q and for N=17(1)100 for the particular values $q=0.90,\,0.95$ and 0.99. Exact formulae for the expected number of group-tests required under R_1 are given in Table IV B for all q and for N=1(1)12; numerical results for $q=0.90,\,0.95$ and 0.99 are given in Tables V A, V B and V C for N=1(1)100. Other numerical comparisons are made in Tables II A and II B. [Tables II through VIII appear at the end of this paper.]

Another procedure, R_2 , which is simpler to compute and compares favorably with R_1 , is defined in Appendix A in terms of information theory concepts.

Several different directions for generalization of the problem and corresponding generalizations of the procedure R_1 are considered in Section XI. Industrial applications are mentioned, in addition to the known application to blood testing.

II. INTRODUCTION

A problem which has hitherto been considered only in connection with blood-testing applications^{1,2,3} can be shown to have industrial applications, and these have focused interest on a more general treatment of the problem. During World War II, a great saving was accomplished in the field of blood testing by pooling a fixed number of blood samples and testing the pooled sample for some particular disease. If the disease was not present, then several people were passed by a single test; if the disease was present, then there was enough blood remaining in each blood sample to test each one separately. The amount of time, money and effort saved by such a procedure depends on how rare the disease is in the population of people being tested. In this application, the total number of people to be tested was regarded as unknown and very large.

The goal of the problem treated here is the same — namely, to separate the defective units from the good units with a minimal (or approximately minimal) number of group-tests. This problem differs from the blood-testing problem in the following respects:

i. The population size N (number of people to be tested) is known at the outset.

- ii. The number of units in each group-test (pooled blood sample) is not necessarily constant.
- iii. If a group-test fails (the disease is present) we do not necessarily test each item separately.

In practice, the simplicity of the procedure deserves some consideration. The proposed procedure R_1 defined in Section III, after having been computed and described explicitly in advance of any experimentation, is in some sense no more complicated than the blood-testing procedure described above; this is explained in Section V.

Some typical industrial applications are:

- 1. It is desired to remove all "leakers" from a set of N devices. One chemical apparatus is available and the devices are tested by putting x of them (where $1 \le x \le N$) in a bell jar and testing whether any of the gas used in constructing the devices has leaked out into the bell jar. It is assumed that the presence of gas in the bell jar indicates only that there is at least one leaker and that the amount of gas gives no indication of the number of leakers. The *a priori* probability, q, of a unit being good is given by the records of similar units tested in the past.
- 2. Paper capacitors are tested at most n at a time, and each test indicates by the presence or absence of a current whether or not there is at least one defective present. For given n and q and given cost of unit manufacture, should the operator throw away a whole set of n units if it contains at least one defective? If not, how should he proceed to sort out the defective units to minimize the expected number of tests required? If the cost of a group-test and the cost of producing a unit are known, a related problem is to find a procedure which minimizes the total cost (including testing costs) of producing a good unit.
- 3. Christmas tree lighting problem. A batch of n light bulbs is electrically arranged in series and tested by applying a voltage across the whole batch or any subset thereof. If this is to be done on a routine basis, what procedure should be used to minimize the expected number of tests required to remove all the defective light bulbs, assuming the value of q is given?
- 4. A test indicates whether or not there is at least one good unit present in a batch of n, without indicating which ones or how many are good. Given q, what procedure should be used to remove the good units? This dual problem, which is useful in salvaging good components on a routine basis, is mathematically equivalent to those above, if the definitions of good and defective are interchanged.

A procedure R_1 is defined to solve the above problems, and is compared with several other procedures for the same problem. A procedure R_2 ,

based on maximizing the information in each group-test, is defined in Appendix A. Another procedure, R_3 , which does not allow any recombination, is defined in Appendix B. Two "halving procedures," which can be carried out without knowing the true value of q, are defined in Appendix C. Procedures R_7 and R_6 are the best procedures that can be obtained by the methods of Dorfman¹ and Sterrett,³ respectively, for small population sizes. For N=4, 8 and 12 and various q values, Table II A gives a numerical comparison of the expected number of group-tests required for all these procedures.

Different directions of generalization, some of which are discussed in

Section XI, are the following:

1. Two (or more) different kinds of units with (say) known probabilities q_1 , q_2 of a unit being good are present, and the two different kinds can be put into the same test group.

2. Two (or more) experimenters may be working on a single set of N units by carrying out simultaneous, parallel group-tests and cooperating in such a way as to minimize the time required to accomplish the task.

3. The restriction is sometimes applied (particularly in blood-testing) that any one unit can be included in at most k group-tests; here the goal is to minimize the expected number of group-tests subject to this restriction. For k=2 the proposed procedure is necessarily based on the method of Dorfman; i.e., if a group-test fails, then the units therein are all tested individually.

4. Various generalizations appear if it is assumed that each test on x units gives three (or more) different possible results. For example, a test could indicate that either (a) all are good or (b) all are defective or (c) there are at least one good unit and at least one defective present.

5. A unit can be defective in either of two ways (e.g., electrical or mechanical) with the two *a priori* probabilities of being defective assumed to be independent but not necessarily equal. If there are two different tests corresponding to the two types of defectives, then, in addition to deciding the next test-group size, it may be necessary to decide which test to use next.

6. For positive continuous chance variables with a known distribution (like weight) the following problem is analogous. It is desired to separate N units into two groups according as the weight per unit is less than or greater than a constant (say, unity). Any number of units can be included in a single weighing. The problem is to accomplish the separation in a minimal number of weighings, assuming that the individual weights are independent observations from the common known distribution.

Many of these generalizations will be omitted from this paper and treated separately.

III. THE PROCEDURE R_1

The procedure R_1 is defined implicitly by a pair of recursion formulae and boundary conditions, but first we shall need some definitions and preliminary results. The units proven to be good and the units proven to be defective are never used in subsequent tests. Aside from such units, this procedure requires that at every stage the remaining units be separated into at most two sets. For one set of size $m \ge 0$, which we call the defective set, it is known that it contains at least one defective unit; for the other set of size $n - m \ge 0$, which we call the binomial set, our a posteriori knowledge is, so to speak, in the original binomial state; i.e., given the past history of testing, the units in the binomial set act like independent binomial chance variables with a common probability p of being defective. For the defective set, the conditional probability that Y, the number of defectives present, equals y is

$$\Pr\{Y = y \mid Y \ge 1\} = \frac{\binom{m}{y} p^y q^{m-y}}{1 - q^m} \qquad (y = 1, 2, \dots, m).$$
 (1)

If X denotes the number of defectives present in a subset of size x randomly chosen from the defective set, then

$$\Pr\left\{X = 0 \mid Y \ge 1\right\} = \sum_{y=1}^{m-x} \frac{\binom{m}{y} p^y q^{m-y}}{1 - q^m} \frac{\binom{m-y}{x}}{\binom{m}{x}} = \frac{q^x (1 - q^{m-x})}{1 - q^m}. \quad (2)$$

Before defining the procedure it is convenient to prove a lemma in a more general setting. Let $T(r_i)$ $(i=1,2,\cdots,t)$ denote a test on n units $(1 \le r_i \le n)$ such that there are only two mutually exclusive possible outcomes: a "failure," indicating that there are at reast r_i defectives present, and a "success," indicating that at most $r_i - 1$ of the units in the test are defective. In Lemma 1 we consider any integers r_i , r_0 with $1 \le r_i \le n(i=0,1,2,\cdots,t)$, but the most important application is the case $r_0 = r_1 = \cdots = r_t = 1$. Let α be any set of units, and let $\alpha_i(i=1,2,\cdots,t)$ denote sets not necessarily disjoint from one another but such that each is disjoint from α ; the case t=1 is the one used for procedure R_1 . At the outset, all units are independently and binomially distributed with a common probability p of being defective.

Lemma 1: If a test $T(r_i)$ on $\alpha + \alpha_i$ produces a failure for $(i = 1, 2, \dots, t)$ and another test $T(r_0)$ on α also produces a failure, then for $r_0 \geq \max r_i$ the conditional distribution associated with all the units in the sets $\alpha_i(i = 1, 2, \dots, t)$, given both conditions above, is exactly the same as the original binomial distribution.

Proof: Let A and B_i denote the chance number of defectives present in α and α_i , respectively. For the jth set α_j the conditional probability P of interest is

$$P = \Pr\{B_i \le b \mid A + B_i \ge r_i (i = 1, 2, \dots, t), A \ge r_0\}.$$
(3)

Since $r_0 \ge \max r_i (i = 1, 2, \dots, t)$, the condition $A \ge r_0$ implies that $A + B_i \ge r_i$, and hence

$$P = \Pr\{B_i \le b \mid A \ge r_0\}. \tag{4}$$

Since \mathfrak{G}_j and \mathfrak{A} are disjoint, it follows that B_j and A are independent and hence, from (4),

$$P = \Pr\{B_i \le b\},\tag{5}$$

which proves the lemma.

Let $G_1(m, n; q) = G_1(m, n)$ denote the expected number of grouptests remaining to be performed if the defective set is presently of size m, the binomial set is presently of size n - m, the a priori probability of a good unit is the known constant q and the procedure R_1 is used. For the special case m = 0 we use the symbol $H_1(n; q) = H_1(n)$. The values of m and n vary as the procedure is carried out; at the outset, m = 0 and n = N. It will also be convenient to refer to the G-situation or G(m, n)-situation if m > 1 and to the H-situation or H(n)-situation if m = 0.

Recursion Formulae Defining Procedure R₁

If x denotes the size of the very next group-test, then we write for any situation with m=0

$$H_1(n) = 1 + \min_{1 \le x \le n} \{ q^x H_1(n-x) + (1-q^x) G_1(x,n) \}, \quad (6)$$

and, with the help of (2) and Lemma 1, we write for $n \geq m \geq 2$

$$G_{1}(m,n) = 1 + \min_{1 \le x \le m-1} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{1}(m - x, n - x) + \left(\frac{1 - q^{x}}{1 - q^{m}} \right) G_{1}(x, n) \right\}.$$

$$(7)$$

The boundary conditions state that for all q

$$H_1(0) = 0$$
 and $G_1(1, n) = H_1(n - 1)$ for $n = 1, 2, \cdots$. (8)

In (6) and (7) the constant 1 represents the very next group-test of size x and the expression in braces is the conditional expected number of additional group-tests given x. It follows from (6) and (8) that $H_1(1) = 1$ for all q.

Remark 1: To justify writing $G_1(x, n)$ in (7) we make use of Lemma 1 with t = 2, $r_2 = 0$, $r_1 = r_0 = 1$; we take $\alpha + \alpha_1$ as the defective set of size m and α as a subset of size x < m. Then, by Lemma 1, if the subset α of size x is shown to contain at least one defective, the α posteriori distribution associated with the m - x units in B_1 is exactly binomial. These are then mixed or recombined with the n - m "binomial units," giving a total of n - x binomial units, and this justifies the expression $G_1(x, n)$ in (7).

Remark 2: These two recursion formulae, together with the boundary conditions, allow one to compute successively for any q the functions $G_1(2, 2)$, $H_1(2)$, $G_1(2, 3)$, $G_1(3, 3)$, $H_1(3)$, $G_1(2, 4)$, $G_1(3, 4)$, $G_1(4, 4)$, $H_1(4)$, \cdots to any desired value of m and n.

Remark 3: The integer x which accomplishes the minimization in (6) and (7) for each situation characterized by the integers m and n is particularly important, since this is the size of the next test to be run according to the procedure R_1 . These integers $x = x_H(n; q)$ and $x = x_G(m, n; q)$ implicitly define the procedure R_1 . An illustration of how the procedure R_1 is to be carried out is given in Section IV.

Remark 4: If m > 1, then it is assumed in (7) that a subset of size x with $1 \le x < m$ will be taken from the defective set without mixing it with units from the binomial set. It follows from (6), (7) and (8) that any lack of optimality can only arise from this "no mixing" assumption. This assumption was used in the derivation of the algorithm (7) (see Remark 1 above). It will be noted in Section XIII that, when all the units are individually identified, then by dropping this assumption, an improvement to the procedure R_1 for high values of q can be found. A specific example of a modification and improvement of the procedure R_1 , which drops the "no mixing" assumption at the expense of more complication will be more thoroughly discussed in a separate paper.

IV. ILLUSTRATION OF THE PROCEDURE R_1

Suppose we start with N = 12 units and it is given that q = 0.98. Referring to the column headed $H_1(12)$ in Fig. 3, we find that the first

test-group is of size x = 12; i.e., we start by testing all 12 units. If a success occurs, the experiment is over; if a failure occurs, then according to the column headed $G_1(12, n)$ of Fig. 4 the next test group is of size x = 4 chosen at random from the 12. Similarly, we continue along one of the sample paths shown in Fig. 1. The complete "tree" is not shown here, but testing continues in a similar manner and the specific details can be obtained from Figs. 3 and 4, which appear at the end of this paper.

Fig. 1—Initial part of the tree for procedure R_1 for q=0.98 and starting with an H(12)-situation.

It is obvious that the above procedure terminates in a finite number of steps. In fact, it can be shown for procedure R_1 (proof is omitted) that the maximum number M(n) [M(m,n)] for any H-situation [G-situation] occurs when q is close to unity and the n unanalyzed units are all defective. It follows easily that

$$M(n) = (n+1) [1 + \alpha(n)] + 1 - 2^{1+\alpha(n)},$$

$$M(m,n) = \alpha(m) + n [1 + \alpha(n-1)] + 1 - 2^{1+\alpha(n-1)}, (m > 1)$$
(10)

where $\alpha(z)$, for any positive integer z, is defined by

$$2^{\alpha(z)} \le z < 2^{1+\alpha(z)}. (11)$$

For the example above, $\alpha(12) = 3$ and M(12) = 37; it is interesting to note that the constant term in $H_1(n)$ expressed in powers of q in Table IV B is also the length of the longest "chain" (that is, 37 for n = 12) in the "tree" used for the interval of q-values ending at unity. Although the maximum number is so large, the expected number of tests is only 2.07. This is explained partly by the fact that the procedure terminates after one group-test with probability 0.7847. A table of such probabilities for the number of tests T required when q = 0.98 and N = 12 is given below:

T	1	2	3	4	5	6	7	8	9	10-37
Proba- bility	0.7847	0	0	0	0.0801	0.1124	0.0003	0.0016	0.0134	0.0075

If we assign the probability 0.0075 to T=10, we obtain an estimate of $H_1(12)$ (namely, 2.070) which is a lower bound. The exact value, 2.073, can be obtained from the formula for $H_1(12)$ in Table IV B. Similarly, an estimate of the standard deviation is computed to be $\sigma \cong 2.1$, and this also is easily shown to be a lower bound.

It is interesting to note that, if the starting number N is exactly a power of 2 and q is large, the procedure R_1 starts off the same as a "halving" procedure. Such a procedure R_4 is defined in Appendix C for any N, and it has the property that it can be carried out without knowing the true value of q. To compare the means and standard deviations of R_1 and R_4 , we consider the case N=6, where M=14 for both R_1 and R_4 . For any q>0.844, the expectation under R_1 can be put in the form

$$E(T;R_1) = 1(q^6) + 4(3pq^5) + 5(3pq^5 + 2p^2q^4) + 6(2p^2q^4)$$

$$+ 7(7p^2q^4 + 2p^3q^3) + 8(4p^2q^4 + 5p^3q^3) + 9(8p^3q^3 + 3p^4q^2)$$

$$+ 10(5p^3q^3 + 5p^4q^2) + 11(3p^4q^2 + 2p^5q)$$

$$+ 12(3p^4q^2 + p^5q) + 13(p^4q^2 + 2p^5q) + 14(p^5q + p^6),$$

$$(12)$$

where, for each term, the expression in parentheses is the probability that T takes on the value of the associated integer coefficient. For any q the corresponding expression under R_4 is

$$E(T;R_4) = 1(q^6) + 4(3pq^5) + 5(3pq^5 + 2p^2q^4) + 6(p^2q^4 + p^3q^3)$$

$$+ 7(7p^2q^4) + 8(5p^2q^4 + 5p^3q^3) + 9(6p^3q^3 + 2p^4q^2)$$

$$+ 10(7p^3q^3 + 4p^4q^2) + 11(p^3q^3 + 4p^4q^2 + p^5q)$$

$$+ 12(4p^4q^2 + 2p^5q) + 13(p^4q^2 + 2p^5q) + 14(p^5q + p^6).$$
(13)

The procedure R_1 is better than R_4 (at least for q > 0.844) since

$$E(T;R_4) - E(T;R_1) = 2p^2q^4 + 5p^3q^3 + 4p^4q^2 + p^5q \ge 0.$$
 (14)

[The fact that each term in (14) is positive indicates that R_1 is better than R_4 , even if we know how many defectives are actually present among the N units.] Some numerical comparisons of means and standard deviations are given in Table I. The maximum difference for N=6 between $E(T;R_4)$ and $E(T;R_1)$ occurs at q=0.844, and is equal to 0.0379. For N=6, the procedure R_1 appears to have a variance smaller than

Table I — Comparison of Procedures R_1 and R_4 for N=6

	q = 0.85	q = 0.90	q = 0.95	q = 0.98	q = 0.99
$E(T; R_1) \\ E(T; R_4)$	3.8118	2.9434	2.0092	1.4133	1.2083
	3.8472	2.9605	2.0136	1.4141	1.2085
$\sigma(T; R_1)$ $\sigma(T; R_4)$	2.536	2.269	1.762	1.179	0.850
	2.593	2.304	1.776	1.183	0.851

that of R_4 for all q < 1. A more complete comparison of $E(T; R_1)$ with that of several other procedures is given in Table II A.

V. THE SIMPLICITY OF R_1

It will be shown in this section that, for any given q and any situation G(m, n), the appropriate x [i.e., the integer which accomplishes the minimization in (7)] does not depend on n. A somewhat simpler method of computing x is given and a new function of m alone is introduced to replace $G_1(m, n)$ in the definition of the procedure R_1 . For any m and any pair of integers (x, x + 1) both possible under R_1 , there is always a single dividing point $q_g(x) = q_g(x, x + 1; m)$ that separates the interval for x from the interval for x + 1. (This property was observed for $m \le n \le 16$ and is treated as a conjecture for all m and n in Section VII.)

According to Remark 4 in Section III, the procedure R_1 for m > 1 is to "break down" the defective set. This "breaking down" is continued until a single unit is established to be defective and removed. Instead of randomizing the order of the units in the defective group again and again before each test group is selected, it will be convenient to assume,

without affecting the properties of the procedure R_1 , that the order is randomized only once at the outset.† Units or groups of units removed later are then to be taken in that order. If the *i*th unit (in that order) is the first defective unit, then the "breaking down" mentioned above leads to an H-situation with n-i binomial units, and the converse also holds true.‡

It is convenient to introduce $F_1(m, q) = F_1(m)$ defined as the expected number of group-tests required to "break down" a defective set of size m and for the first time reach an H-situation when q is given and the procedure R_1 is used. Then $F_1(m)$ clearly does not depend on n and the above argument permits us to write

$$G_1(m,n) = F_1(m) + \left(\frac{p}{1-q^m}\right) \sum_{i=1}^m q^{i-1} H_1(n-i).$$
 (15)

For algebraic simplicity we let

$$G_1^*(m,n) = \left(\frac{1-q^m}{1-q}\right)G_1(m,n) \text{ and } F_1^*(m) = \left(\frac{1-q^m}{1-q}\right)F_1(m).$$
 (16)

Then (7) and (15) take on the simpler forms

$$G_1^*(m,n) = \sum_{i=1}^m q^{i-1} + \min_{\substack{1 \le x \le m-1}} \{ q^x G_1^*(m-x,n-x) + G_1^*(x,n) \},$$
(17)

$$G_1^*(m,n) = F_1^*(m) + \sum_{i=1}^m q^{i-1} H_1(n-i).$$
 (18)

Substituting (18) in (17), the three summations cancel and the result is

$$F_1^*(m) = \sum_{i=1}^m q^{i-1} + \min_{1 \le x \le m-1} \{ q^x F_1^*(m-x) + F_1^*(x) \}, \tag{19}$$

which does not depend on n. The boundary condition, $F_1^*(1) = 0$ for all q, also does not depend on n. It is clear from this derivation that (19), which does not depend on n, must define the same integer values $x = x_q(m; q)$ as (17) or (7). This proves the following theorem.

[†] It should be pointed out that even this single randomization at the outset can be disregarded in carrying out the procedure R_1 if there is no doubt about the assumption of independent chance variables or if the units are already well-mixed in the process of delivery to the experimenter.

[‡] It follows from the above that, for any procedure which "breaks down" the defective set in the above-mentioned manner (including a method of testing units from the defective set one at a time until a defective unit is found), the expected number of good units eliminated between a G(m,n)-situation and the next H-situation is $q/p - mq^m/(1 - q^m)$, and the number of defective units eliminated is always exactly one.

Theorem 1: For any G-situation with $n \ge m > 1$ and any q, the size of the next test group, defined implicitly by (7), does not depend on n.

This result simplifies the explicit instructions needed to describe the procedure. Thus the two diagrams, Figs. 3 and 4, describe the procedure R_1 for all values of q and for any $N \leq 16$.

Equations (15) and (16) can also be substituted in (6), yielding

$$H_{1}(n) = 1 + \min_{1 \leq x \leq n} \left\{ q^{x} H_{1}(n-x) + (1-q) \left[F_{1}^{*}(x) + \sum_{i=1}^{x} q^{i-1} H_{1}(n-i) \right] \right\},$$
 (20)

which, together with (19), gives a pair of "one-dimensional" recursion formulae for defining R_1 instead of the "two-dimensional" set, (6) and (7).

Remark 5: It should be pointed that, if one were to ask for a procedure that "breaks down" the defective set in as small an expected number of group tests as possible, then one would write (19) as one of the basic recursion formulae defining the procedure. This shows that R_1 "breaks down" the defective set and returns to an H-situation in a minimal number of tests.

VI. SOME PROPERTIES OF R_1 FOR q CLOSE TO UNITY

For any G-situation with m > 1, consider the effect of increasing q. It is easy to see by an induction argument that $G_1(m, n)$ is a strictly decreasing function of q. The function $H_1(n)$ is also strictly decreasing unless the value of q is such that the procedure R_1 tests all units one at a time, in which case $H_1(n)$ is constant. The "tree" remains the same in an interval as q increases, and changes only when it becomes more efficient under R_1 to increase the size of some test group in the "tree"; i.e., if we proceed down the "tree" along any path, the first change encountered, if any, will be an increase in some test group size. It therefore seems reasonable to expect (in both G- and H-situations) that the largest value of x assigned by R_1 (say, x_{\max}) occurs in an interval of q-values ending at unity. This unproved assertion that under R_1 large values of x are associated with large values of x is an immediate consequence of Conjectures 1 and 2 stated in Section 7.

For fixed m > 1, let the integers $\alpha(m)$ and $\beta(m)$

$$[\alpha(m) \ge 1, \qquad 0 \le \beta(m) < 2^{\alpha(m)}]$$

be defined by

$$m = 2^{\alpha(m)} + \beta(m). \tag{20a}$$

Under the assumption that R_1 assigns x_{max} in an interval of q values ending at unity, it will be shown for any G-situation that in this interval the value of $x = x_{\text{max}}$ is given by

$$x_{\text{max}} = \begin{cases} 2^{\alpha(m)-1} & \text{for} & 2^{\alpha(m)} \le m \le 3 \cdot 2^{\alpha(m)-1} \\ m - 2^{\alpha(m)} & \text{for} & 3 \cdot 2^{\alpha(m-1)} \le m < 2^{\alpha(m)+1}. \end{cases}$$
(21)

As a corollary it then follows that, under R_1 (G-situation),

$$\frac{m}{3} \le x_{\text{max}} \le \frac{m}{2}. \tag{22}$$

Also in the above-mentioned interval we have

$$F_1^*(m) = \alpha(m) \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left[\frac{1 - q^{2\beta(m)}}{1 - q} \right]. \tag{23}$$

Proof of (21), (22) and (23): In (19), since $x \le m-1$ and $m-x \le m-1$, we can use the induction hypothesis (23) to obtain

$$F_{1}^{*}(m) - \sum_{i=1}^{m} q^{i-1} = \min_{1 \le x \le m-1} \left\{ q^{x} \alpha(m-x) \left(\frac{1-q^{m-x}}{1-q} \right) + q^{m-2\beta(m-x)} \left(\frac{1-q^{2\beta(m-x)}}{1-q} \right) + \alpha(x) \left(\frac{1-q^{x}}{1-q} \right) + q^{x-2\beta(x)} \left(\frac{1-q^{2\beta(x)}}{1-q} \right) \right\}.$$

$$(24)$$

For q close to unity, the right side of (24) is equivalent to minimizing

$$Q(x) = [x\alpha(x) + 2\beta(x)] + [(m-x)\alpha(m-x) + 2\beta(m-x)].$$
 (25)

For the moment, let us utilize the symmetry of Q(x) for $2 \le x \le m-2$ and limit our considerations to $x \le m/2$ and $m \ge 4$.

Let [m/2] denote the largest integer less than or equal to m/2. For $x = [m/2], [m/2] - 1, \dots$, we consider Q(x + 1) - Q(x) and distinguish several cases according as

a.
$$\alpha(x-1) = \alpha(x) = \alpha(m-x) \le \alpha(m-x+1);$$

b. $\alpha(x-1) + 1 = \alpha(x) = \alpha(m-x) \le \alpha(m-x+1);$
c. $\alpha(x-1) = \alpha(x) = \alpha(m-x-1)$
 $= \alpha(m-x) - 1 = \alpha(m-x+1) - 1;$ (26)
d. $\alpha(x-1) + 1 = \alpha(x) = \alpha(m-x-1)$
 $= \alpha(m-x) - 1 = \alpha(m-x+1) - 1;$

e.
$$m \ge 2x + 1$$
 and $\alpha(x) < \alpha(m - x - 1)$.

Using the fact that, for any integer y > 1,

$$y[\alpha(y) - \alpha(y-1)] + 2[\beta(y) - \beta(y-1)] = 2, \tag{27}$$

we obtain for all the cases in (26) the result,

$$Q(x+1) - Q(x) = \alpha(x) - \alpha(m-x) \le 0.$$
 (28)

In particular, the value is zero only when (26a) holds and $\alpha(x) = \alpha(m-x)$. Hence, Q(x) is a nonincreasing function of the integer x for $1 \le x \le m/2$ and is constant for $x_0 \le x \le m-x_0$, where x_0 is defined by

$$\alpha(x_0-1)+1=\alpha(x_0)=\alpha(m-x_0-1)$$

 \mathbf{or}

$$\alpha(x_0) = \alpha(m - x_0 - 1) = \alpha(m - x_0) - 1,$$

whichever gives the maximum. These imply that

$$x_0 = 2^{\alpha(x_0)} \le m - x_0 - 1 < 2^{\alpha(x_0)+1} = 2x_0$$

or

$$(30)$$

$$x_0 < m - x_0 = 2^{\alpha(x_0) + 1} \le 2x_0.$$

Both lead to the same results; namely,

$$\frac{m}{3} \le x_0 < \frac{m}{2} \,. \tag{31}$$

(29)

It follows that

$$\frac{m}{3} \le x_{\text{max}} \le \frac{2m}{3}$$

and, from (29), for any integer x with $x_0 \le x \le m - x_0$, the values of $\alpha(x)$ and $\alpha(m-x)$ can differ by at most unity.

For any x with $x_0 \le x \le m - x_0$ we consider two cases according as $|\alpha(x) - \alpha(m - x)|$ is zero or unity. Let the expression in braces in (24) be denoted $C_1^*(x)$. For integers x with $x_0 \le x \le m - x_0$ the number of terms in $C_1^*(x)$ is constant and the expression $C_1^*(x)$ is to be minimized by making more powers of q larger.

Case 1. We can write

$$C_1^*(x) = \alpha(x) \left[\frac{1 - q^m}{1 - q} \right] + q^{m - 2\beta(m - x)} \left[\frac{1 - q^{2\beta(m - x)}}{1 - q} \right] + q^{x - 2\beta(x)} \left[\frac{1 - q^{2\beta(x)}}{1 - q} \right],$$
(32)

and the problem is to find the x which minimizes $C_1^*(x)$ for large values of q (i.e., to find x_{max}). Since $\alpha(x) = \alpha(m-x)$, $\beta(m-x) - \beta(x) = m-2x$ and, using the fact that $x_{\text{max}} \ge m/3$, we consider only integers $x \ge m/3$ and obtain

$$m - x \ge 2(m - 2x) = 2[\beta(m - x) - \beta(x)],$$
 (33)

and hence

$$m - 2\beta(m - x) \ge x - 2\beta(x). \tag{34}$$

It follows that the last term in (32) has lower powers of q than the previous term and that (32) is minimized by setting $\beta(x) = 0$, i.e., by taking x_{max} to be a power of 2. To complete the proof of (21) and (23), we note that

$$m = x + (m - x) = 2^{\alpha(x)} + 2^{\alpha(m-x)} + \beta(m - x)$$

= $2^{\alpha(x)+1} + \beta(m - x)$, (35)

so that $\alpha(m) = \alpha(x) + 1$, $\beta(m) = \beta(m - x)$ and, since $x = x_{\text{max}}$ is a power of 2, we have

$$x_{\text{max}} = 2^{\alpha(m)-1}.$$
 (36)

Since, by (35), $\beta(m) = \beta(m-x) < \frac{1}{2}2^{\alpha(m)}$, then (36) holds for $2^{\alpha(m)} \le m < 3[2^{\alpha(m)-1}]$. Substituting these values of $\alpha(x)$, $\beta(x)$, $\alpha(m-x)$ and $\beta(m-x)$ into (32) and using (24) gives

$$F_1^*(m) = \alpha(m) \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left(\frac{1 - q^{2\beta(m)}}{1 - q} \right), \tag{37}$$

which completes the induction for Case 1. Conversely, if $2^{\alpha(m)} \leq m < 3$ $[2^{\alpha(m)-1}]$ then $x_0 = 2^{\alpha(m)-1}$ and, for any x with $x_0 \leq x \leq m - x_0$, we have $\alpha(x) = \alpha(m-x)$. Hence (32) is minimized for $x_{\max} = x_0 = 2^{\alpha(m)-1}$ by the above argument.

$$m = x + (m - x) = 3[2^{\alpha(x)}] + \beta(x),$$

 $\alpha(m) = \alpha(x) + 1 \text{ and } \beta(m) = 2^{\alpha(x)} + \beta(x) = x. \text{ It follows that}$
 $x = x_{\text{max}} = m - 2^{\alpha(m)}.$ (38)

In the latter alternative, it can be concluded that $x = 2^{\alpha(m)} > m/2$. In the latter alternative (or in both alternatives), we now compare the values of $C_1^*(x)$, computed from (24), for the two arguments,

$$x_1 = 2^{\alpha(m)} > m/2$$
 and $x_2 = m - 2^{\alpha(m)} < m/2$.

Using the general result that $\beta(m^*) < m^*/2$ for any positive integer m^* and the implied result that $\alpha(m-2^{\alpha(m)}) = \alpha(m)-1$, it is easy to show (the details are omitted) that $C_1^*(x_2) < C_1^*(x_1)$ for 0 < q < 1. Hence, for either alternative, we obtain the same result, (38). As a corollary, (22) holds. In this case $C_1^*(x)$, after algebraic simplification, is given by

$$C_1^*(x) = [\alpha(m) - 1] \left(\frac{1 - q^m}{1 - q} \right) + q^{m - 2\beta(m)} \left[\frac{1 - q^{2\beta(m)}}{1 - q} \right], \quad (39)$$

which, using (24), again gives the result (23). The fact that (23) holds for m=2, 3 and 4 is easily shown and the details are omitted. This completes the proof of (23).

It is also possible to get expressions for $G_1^*(m, m)$, $G_1^*(m, n)$ and $H_1(n)$ for large values of q using (23) and the fact that, for any positive n and sufficiently large values of q (depending on n),

$$H_1(n) = 1 + (1 - q^n)G_1(n, n) = 1 + pG_1^*(n, n).$$
 (40)

Then, by (18), we obtain for large values of q

$$G_1^*(m,m) = m - 1 + qF_1^*(m) + p \sum_{j=2}^m F_1^*(j),$$
 (41)

$$G_{1}^{*}(m, n) = n - 1 - (n - m - 1)q^{m} + F_{1}^{*}(m) + p(1 - q^{m}) \sum_{j=2}^{n-m-1} F_{1}^{*}(j) + p \sum_{j=n-m}^{n-1} F_{1}^{*}(j),$$
(42)

$$H_1(n) = q + np + pF_1^*(n) + p^2 \sum_{j=2}^{n-1} F_1^*(j),$$
 (43)

where (42) is to be used only for m < n and the summation from a to b is taken to be zero for b < a. Using these and (23), the last equation (i.e., the equation for the last q-interval which ends at unity) can be obtained independently and more simply for $F_1^*(m)$, $G_1^*(m, n)$ and $H_1(n)$.

It is clear from the results above that, as q approaches unity,

$$\lim H_1(n) = 1 \tag{43a}$$

and that, for q in an interval ending at unity, we have $x_H(n; q) = n$. Here $x_H(n; q)$ is the size of the next test group when the procedure R_1 is used for an H(n)-situation with a priori probability q of a unit being good. In an H-situation the probability that there are no defectives present approaches unity as q approaches unity. In a G-situation with m>1, the probability that there is exactly one defective in the defective set and none in the binomial set approaches unity as q approaches unity. Defining $x_G(m; q)$ in a similar manner, it was shown above that $x_G(m; q) = x_{\max}$ [as given in (21)] in an interval ending at unity, and it follows from (23), (41) and (42) [or (23) and (15)] that, as q approaches unity,

$$\lim F_1(m) = \alpha(m) + 2 \frac{\beta(m)}{m}$$
 $(m > 1), (43b)$

 $\lim G_1(m, n) =$

$$\begin{cases} 1 + \lim F_1(m) = 1 + \alpha(m) + 2\frac{\beta(m)}{m} & (\text{for } n > m) \\ 1 - \frac{1}{m} + \alpha(m) + 2\frac{\beta(m)}{m} & (\text{for } n = m). \end{cases}$$
(43c)

It is interesting to note that the result (43c) depends on m but not on n.

VII. CONJECTURED PROPERTIES OF R1

In this section we shall state some properties which appear to hold for procedure R_1 based on numerical calculations for $N \leq 16$ but have not been proved for all N.

1. For any G-situation with fixed m > 1, if $x_G(m; q)$ denotes the size of the next test group under R_1 , then $x_G(m; q)$ is a nondecreasing step function of q with step size unity. That is, for any pair $q \le q^+ \le 1$,

$$x_G(m;q) \le x_G(m;q^+) \tag{44}$$

and, for sufficiently small $\epsilon > 0$,

$$x_G(m; q + \epsilon) \le x_G(m; q) + 1. \tag{45}$$

Also for fixed q the value of $x_g(m+1;q)$ is either the same or one greater than $x_g(m;q)$; i. e.

$$x_G(m;q) \le x_G(m+1;q) \le x_G(m;q) + 1.$$
 (46)

If the dividing point between x and x + 1 for any G-situation under R_1 [denoted by $q_G(x; m)$] is shown to exist (and be unique), then the three properties (44), (45) and (46) are equivalent to the two properties that, for any m > 1,

$$q_G(x; m) \ge q_G(x; m+1) \text{ for } 1 \le x < x_{\text{max}},$$
 (47)

$$q_g(x; m) < q_g(x+1; m) \text{ for } 1 \le x < x_{\text{max}} - 1.$$
 (48)

The assumption used in Section VI that the largest x-values are associated with the largest q-values is a simple consequence of (44).

2. For any *H*-situtation, we can define $x_H(n; q)$ similar to $x_G(m; q)$ and the property corresponding to (44) still holds: that, for $q \le q^+ \le 1$ and all positive integers n,

$$x_H(n;q) \le x_H(n;q^+).$$
 (49)

We can also define $q_H(x; n)$ similar to $q_G(x; m)$ with the understanding that, if x does not appear under $H_1(n)$ in Fig. 3, then the interval for x is assumed to have length zero but the endpoints still exist, and, in fact, $q_H(x-1, n)$ will then be equal to $q_H(x; n)$. Then (49) is equivalent to the property that for all $x \ge 1$ and all positive integers n

$$q_H(x; n) \le q_H(x+1; n).$$
 (50)

- 3. If the experimental situation is such that it is impossible or economically impractical to identify or keep separate the individual units in any test group, then, after each test on a batch of x units, the disposition of the x units must be made on a batch basis. In such a situation it is conjectured that the procedure R_1 is the optimal procedure for all values of q.
- 4. There are various patterns existing in Table II B both within a column and across columns, none of which have been proved. For example, if $q = q_a(x; m)$ is the dividing point between x and x + 1, then the first entry in the appropriate column is $1 q^{2x} q^{2x+1}$, and the last entry, for $m = \infty$, is $1 q^x q^{x+1}$. In the first column, the entry can be written as $1 q q^2 + q^m$ for all m. In the second column of Table II B the pattern shown is to replace the highest power of q (say, q^h) by q^{h-2} or by $q^{h+2} + q^{h+3}$, depending on whether m is odd or even. Thus the pattern displays a cycle of 2. In the third column one can similarly find a pattern with a cycle of 3, starting with $m \ge 9$. If a general rule for all these patterns were proved then it might be easier to find the dividing points for higher values of m. The conjecture in this case lies in the fact that these patterns exist and can be mathematically established.

VIII. CHARACTER OF R_1 FOR SMALL VALUES OF q

For the procedure R_1 it will now be shown that, when

$$q < q_0 = \frac{1}{2}(\sqrt{5} - 1) = 0.618$$

(to three decimal places), then, for both G- and H-situations with any

positive integers $m \leq n$, the units are all tested one at a time. Of course, if we start with the H-situation and test units one at a time, then a G-situation never arises, but in the induction proof that follows it must first be shown for the G-situation and then for the H-situation. This property that units are tested one at a time was recently shown to hold for the optimal procedure (without specifying what the optimal procedure is or whether it exists). Simple formulae for $H_1(n)$, $G_1(m, n)$ and $F_1(m)$ are obtained for $q \leq q_0$.

Theorem 2: For procedure R_1 with $1 \leq m \leq n$ and $0 \leq q < q_0$,

$$x_G(m;q) = x_H(n;q) = 1,$$
 (51)

$$H_1(n) = n, (52)$$

$$G_1(m,n) = n - \frac{pq^{m-1}}{1 - q^m},$$
 (53)

$$F_1(m) = \frac{q}{p} + \frac{1 - q^{m-1} - mq^m}{1 - q^m}.$$
 (54)

[Remarks: The last term in (53) results from the possibility of saving one test if the defective set of size m contains exactly one defective unit that is discovered inferentially by showing that all the other m-1 units are good. It is interesting to note that (54) can be obtained by summing the series

$$F_1(m) = \frac{p}{1 - q^m} \left(1 + 2q + 3q^2 + \dots + (m - 1)q^{m-2} + (m - 1)q^{m-1} \right).$$
(55)

In the proof below, (54) is shown first and then (52); the proof of these contain the result (51). Then (53) follows from (15), (52) and (54)].

Proof: The proof of (54) is by induction. The result holds for m=1, since F(1)=0. Assuming (54) holds for arguments less than m, we can use (19) with (16) to obtain

$$F_{1}^{*}(m) = \frac{1 - q^{m}}{p} + \min_{1 \le x \le m-1} \left\{ q^{x} \left[\frac{1 - q^{m-x-1} - (m-x-1)pq^{m-x}}{p^{2}} \right] + \frac{1 - q^{x-1} - (x-1)pq^{x}}{p^{2}} \right\} = \left[\frac{1 - q^{m-1} - (m-1)pq^{m}}{p^{2}} \right] + \frac{1 - q^{m}}{p} + \frac{1}{p} \min_{1 \le x \le m-1} \left\{ x(q^{m} - q^{x}) - pq^{x-1} \right\}.$$
 (56)

To prove part of (51) it is now shown that the minimum of the expression above in braces [say, $f_0(x)$] is attained at x = 1. Since this is obvious for m = 2, it is now assumed that $m \ge 3$. Then

$$f_0(x) - f_0(1) = (x - 1)q^m + 1 - xq^x - pq^{x-1},$$
 (57)

and it suffices to show that, for $q \leq q_0$ and $x = 2, 3, \dots, m-1$,

$$f_1(x) = 1 - xq^x - pq^{x-1} \ge 0.$$
 (58)

Similarly, it suffices to show that, for $q \leq q_0$ and $x = 3, 4, \dots, m-1$,

$$f_2(x) = \frac{f_1(x) - f_1(2)}{q} = 1 + q - xq^{x-1} - pq^{x-2} \ge 0.$$
 (59)

More generally, if it suffices to show that, for $q \le q_0$ and x = y + 1, $y + 2, \dots, m - 1$,

$$f_{y}(x) = 1 + (y - 1)q - xq^{x-y+1} - pq^{x-y} \ge 0,$$
 (60)

then it also suffices to show that, for $q \le q_0$ and x = y + 2, y + 3, \cdots , m - 1,

$$f_{y+1}(x) = \frac{f_y(x) - f_y(y+1)}{q} = 1 + yq - xq^{x-y} - pq^{x-y-1} \ge 0.$$
 (61)

Setting y = m - 3 in (61), it suffices to show that, for $q \le q_0$ and x = m - 1 (we can now replace x by m - 1),

$$1 + (m-4)q - (m-2)q^2 = 1 - q - q^2 + (m-3)pq \ge 0.$$
 (62)

Since q_0 is the root of $1 - q - q^2$ and $m \ge 3$, the inequality (62) is proved and the minimum of (56) is attained at x = 1. Setting x = 1 in (56) gives the bracketed expression in (56) and proves the result (54).

To prove (52), we substitute (54) in (20) to obtain

$$H_{1}(n) = 1 + \min_{1 \le x \le n} \left\{ q^{x}(n-x) - pq^{x-1} + p \sum_{i=1}^{x} iq^{i-1} + p \sum_{i=1}^{x} (n-i)q^{i-1} \right\}$$

$$= n + 1 - \max_{1 \le x \le n} \left\{ xq^{x} + pq^{x-1} \right\},$$
(63)

where the value of q^{x-1} for q=0 and x=1 is taken to be unity.

To prove the rest of (51), it is now shown that the maximum of the expression above in braces [say, h(x)] is attained at x = 1 for $q \le q_0$.

Then, for $q \leq q_0$ and $x \geq 1$,

$$h(x) - h(x+1) = xpq^{x} - 2q^{x} + q^{x-1}$$

= $q^{x-1}[1 - q - q^{2} + (x-1)pq] \ge 0.$ (64)

Clearly, the maximum of h(x) is attained at x = 1 not only for $0 < q \le q_0$ but also for q = 0. Setting x = 1 in (63) gives $H_1(n) = n$, and this completes the proof of (52). The fact that the minimum is attained only at x = 1 for $q < q_0$ in both (56) and (63) proves (51) and shows that, under R_1 with $q < q_0$, units are tested one at a time.

IX. CONSTRUCTION OF TABLES FOR R_1

Figs. 3 and 4 describe the procedure R_1 for n=2(1)16 and $m \leq n$ in the form of two diagrams that are easy to use in a practical situation. Tables III A and III B give the polynomials, the roots of which are the dividing points in Figs. 3 and 4. Table IV A gives the polynomial equation for $F_1^*(m)$ for m=2(1)16. Tables IV B and IV C give the polynomial equations for $H_1(n)$ and $G_1^*(m,n)$, respectively, for n=2(1)12 and $2 \leq m \leq n$. These can be obtained from (6), (7) and (8), or from (18), (19) and (20) and the boundary conditions, $H_1(0) = F_1^*(1) = 0$. For the sake of brevity, Table IV C has been reduced so that it gives the results only for $q \geq 0.85$, and only for pairs m,n which can arise starting from an H(n)-situation with $n \leq 12$.

Having computed $H_1(n)$ and $F_1^*(m)$ for $2 \le m \le n \le 12$, we can make the procedure R_1 explicit for $12 \le n \le 16$ by a different method, which will now be explained. Let $H_1(n \mid x)$ denote the value of $H_1(n)$ if (i.e., for those q-values for which) the next sample size is x; let $F_1^*(m \mid x)$ be defined similarly. Then (20) can be written as

$$H_{1}(n \mid x) - H_{1}(n-1) = 1 + pF_{1}^{*}(x)$$

$$- \sum_{i=1}^{x-1} q^{i}[H_{1}(n-i) - H_{1}(n-i-1)].$$
(65)

Writing a similar equation for $H_1(n \mid y)$ for y > x and subtracting gives

$$H_{1}(n \mid x) - H_{1}(n \mid y) = -p[F_{1}^{*}(y) - F_{1}^{*}(x)] + \sum_{j=x}^{y-1} q^{j}[H_{1}(n-j) - H_{1}(n-j-1)].$$
(66)

If $4 \le x < y \le 16$ and $12 < n \le 16$, then the right member of (66) involves *H*-function arguments only up to 12. In particular, for y = x + 1 we set the right member of (66) equal to zero and obtain a poly-

nomial whose root (between zero and one) is the dividing point, $q_H(x, n)$, between x and x + 1. Table II A shows that, for n > 12 and x < 4, the pattern for the dividing points is well stabilized; for example, the value of $q_H(1, n) = 0.618$ (to three decimal places) is shown to hold for all n in Section VIII. By considering various pairs x, y (most often of the type x, x + 1) in (66) it is possible to determine the procedure R_1 for the H(n)-situation for $12 < n \le 16$, without explicitly computing the formula for $H_1(n)$.

Similarly, we can do the same for the G-situation by using

$$F_1^*(m \mid x) - F_1^*(m \mid y) = F_1^*(y) - F_1^*(x) + q^y F_1^*(m - y) - q^x F_1^*(m - x),$$
(67)

but in this case (according to Section VI) we need only consider values y = x + 1 up to and including m/2.

Table II A gives a numerical comparison for N=4, 8 and 12 of R_1 and several other procedures, two of which are based on the work of Dorfman¹ and Sterrett; the others are defined in the Appendices to this paper. Table II B gives a brief numerical comparison of $H_1(n)$ and $H_3(n)$ (corresponding to procedure R_3 defined in Appendix B) for large values of n [viz., n=10(10)100] and q=0.90, 0.95 and 0.99; these entries were computed on the IBM-704.

Tables V A, V B and V C give the numerical values of $H_1(n)$ and $G_1(m, n)$ as well as the values of $x_0(m; q)$ and $x_H(n; q)$ for q = 0.90, 0.95 0.99 for $2 \le n \le 100$, and for appropriate values of m; these entries were computed on the IBM-704. For q = 0.90 the value of x is always at most 9 and hence, if we start with an H-situation, there is no need to consider values of m > 9; similarly, for q = 0.95 we disregard values of m > 19. For q = 0.99 we should consider all values of m up to and including m = 100 but many of these were omitted for the sake of brevity. It is interesting to note that $G_1(m, n)$ is strictly monotonic in the second argument (and hence also in the argument n - m) for fixed m, but it is curious and difficult to explain why it is not monotonic in the first argument for fixed n.

x. a suggested procedure for the case of unknown q

It is reasonable to expect that a knowledge of good procedures for the case of known q will suggest good procedures for the case of unknown q. From this point of view we consider modifications of the basic procedure R_1 that make it adaptable when q is unknown. It is suggested that after each test we form a new estimate of q and that the procedure R_1 be

used with the estimated value in place of the true value. At the outset we can start with an estimate based on past experience or we can start by testing one unit at a time. A thorough investigation of the relative merit of this procedure has not been carried out. Some discussion on the maximum likelihood method of estimating q is given below.

Let d and s denote the number of units proven defective and proven good, respectively, so that at any stage of experimentation we have

$$N = d + s + m + (n - m) = d + s + n, (68)$$

where N is the total number of units at the outset, m is the size of the defective set (which is known to contain at least one defective) and n-m is the size of the binomial set. The likelihood L of the observed result (68) is given by

$$L = {\binom{N-n}{d}} p^d q^{N-n-d} (1-q^m). {(69)}$$

Then it is easily shown that

$$\frac{d}{dq}(\log L) = -\frac{d}{dp}(\log L) = -\frac{1}{pq} \left[d - (N-n)p + \frac{mpq^m}{1-q^m} \right].$$
 (70)

Setting the latter equal to zero, we find that, for $m \neq 0$, the maximum likelihood estimate \hat{q} of q is the root of

$$(N - n + m)(1 - \hat{q}^m)(1 - \hat{q}) - d(1 - \hat{q}^m) - m(1 - \hat{q}) = 0 \quad (71)$$

or, equivalently,

$$s - d \sum_{i=1}^{m} \hat{q}^{i} - (m+s)\hat{q}^{m} = 0$$
 (72)

and, for m=0, we have $\hat{q}=s/(d+s)$, the usual estimate. For s=0 and $m+d\geq 1$, we get $\hat{q}=0$ and, for s=1, it is easily seen, using the Descartes Rule of Signs, that (72) has exactly one root \hat{q} (allowing multiplicities) in the unit interval and hence \hat{q} is uniquely defined. The remaining case, s=m=d=0, can only occur at the outset when there is no observations on which to base an estimate. It is interesting to note that the same result (71) or (72) can also be obtained by computing the conditional expected proportion of defectives among the N units, given the observed s, d, m and n, and setting it equal to 1-q. The equation thus obtained is the same as (71), and its root is \hat{q} .

The above method of getting an estimate is being suggested in connection with procedure R_1 , but it can also be used in connection with

the procedures R_2 and R_4 (see Appendices) without any change. For procedures R_3 and R_5 we can have several defective sets and several binomial sets at any one time, and (71) then becomes

$$d + (1 - \hat{q}) \left[\sum_{i=1}^{I} \frac{m_i}{1 - \hat{q}^{m_i}} - \left(N - \sum_{j=1}^{J} n_j' \right) \right] = 0, \quad (73)$$

where m_1 , m_2 , \cdots , m_I are the sizes of the defective sets, n_1' , n_2' , \cdots , n_{J}' are the sizes of the binomial sets, and

$$N = d + s + \sum_{i=1}^{I} m_i + \sum_{j=1}^{J} n_j'.$$
 (74)

If the number of tests carried out is large (and hence N-n must be large), the maximum likelihood estimate is approximately normally distributed with expectation equal to the true value of q and variance given by

$$\sigma^2(\hat{q}) \cong \left[E \left(\frac{d \log L}{dq} \right)^2 \right]^{-1},$$
 (75)

where m and n in (69) are to be regarded as chance variables. Taking expectation first for fixed m and n and then with respect to m and n, gives

$$\sigma^{2}(\hat{q}) \cong \left[E\left(\frac{N-n}{pq}\right) + E\left(\frac{mq^{m-1}}{1-q^{m}}\right)^{2} \right]^{-1}. \tag{76}$$

Since $mpq^{m-1} < 1 - q^m$ for all m and all q < 1, and since the expectation of a square is nonnegative, for asymptotically large N - n

$$\frac{p^2q}{p+q[N-E(n)]} \le \sigma^2(\hat{q}) \le \frac{pq}{N-E(n)}. \tag{77}$$

In particular, if we continue to test until a fixed proportion $\theta > 0$ of the N units are determined to be good or bad (i.e., until $n/N = 1 - \theta$, approximately) then, for asymptotically large N (so that $N\theta$ is also large), we obtain

$$\frac{p^2q}{N\theta p + q} \le \sigma^2(\hat{q}) \le \frac{pq}{N\theta}. \tag{78}$$

For $\theta = 1$ and large N, the two bounds are essentially equal and the common value is the same as for ordinary binomial sampling. In general, at any stage of experimentation it appears to be conservative to estimate $\sigma^2(\hat{q})$ in the same way as for ordinary binomial sampling based on N - n observations, using the value of n that is actually realized at that time.

In regard to the procedure, if the size of the very first test group is based on past experience, the question arises as to whether this past experience should also enter into the second, third and other early estimates of q. If it does not enter, then in the early tests we may find sudden jumps from testing very small numbers to testing very large numbers and *vice versa*, both of which are undesirable. This makes it useful to find a method to continue to use past experience until the estimate of q (without using past experience) is stabilized. In the absence of past experience, this same feature may make it desirable to test several units one at a time before starting to use any group-testing procedure.

XI. SOME GENERALIZATIONS OF R_1

Returning to the case of known probabilities q, we consider some generalizations of the same basic problem and, in each case, the appropriate generalization of the procedure R_1 . The appropriate formulae will be given, but only a few simple computations will be carried out.

1. Two (or more) different kinds of units with known probabilities (say, $q_1 \leq q_2$) of a good unit are present and both can be put into the same test group.

Let $H_{11}(n_1, n_2)$ denote the expected number of tests required under the proposed procedure R_{11} if there are n_i units of type i with $q = q_i (i = 1, 2)$ and the binomial chance variables associated with the units are mutually independent. Let $G_{11}(m_1, m_2; n_1, n_2)$ denote the expected number of tests required under R_{11} if there is a defective set containing m_1 units of type 1 and m_2 units of type 2 (known to contain at least one defective among the $m_1 + m_2$ units) and a binomial set containing $n_1 - m_1 \ge 0$ of type 1 and $n_2 - m_2 \ge 0$ of type 2. The recursion formulae corresponding to (6), (7) and (8) are

$$H_{11}(n_1, n_2) = 1 + \min \{ q_1^x q_2^y H_{11}(n_1 - x, n_2 - y) + (1 - q_1^x q_2^y) G_{11}(x, y; n_1, n_2) \},$$
(79)

where the minimum is over pairs (x, y) with $0 \le x \le n_1$, $0 \le y \le n_2$ and $x + y \ge 1$, and

$$G_{11}(m_1, m_2; n_1, n_2) = 1 + \min \left\{ \left(\frac{q_1^x q_2^y - q_1^{m_1} q_2^{m_2}}{1 - q_1^{m_1} q_2^{m_2}} \right) + \left(\frac{1 - q_1^x q_2^y}{1 - q_1^{m_1} q_2^{m_2}} \right) G_{11}(x, y; n_1, n_2) \right\},$$

$$(80)$$

where the minimum is over pairs (x, y) with $0 \le x \le m_1$, $0 \le y \le m_2$ and $1 \le x + y \le m_1 + m_2 - 1$. The boundary conditions state that, for all $q_1 \le q_2$,

$$G_{11}(1, 0; n_1, n_2) = H_{11}(n_1 - 1, n_2)$$
 for all $n_1 \ge 1, n_2 \ge 0$, (81)

$$G_{11}(0, 1; n_1, n_2) = H_{11}(n_1, n_2 - 1)$$
 for all $n_1 \ge 0, n_2 \ge 1$, (82)

$$G_{11}(m_1, 0; n_1, 0) = G_1(m_1, n_1; q_1);$$

$$G_{11}(0, m_2; 0, n_2) = G_1(m_2, n_2; q_2),$$
(83)

$$H_{11}(n_1, 0) = H_1(n_1; q_1); \qquad H_{11}(0, n_2) = H_1(n_2; q_2),$$
 (84)

where the right-hand member of each equality in (83) and (84) refers to the basic procedure R_1 defined by (6), (7) and (8).

It is clear that $H_{11}(1, 0) = H_{11}(0, 1) = 1$ and $H_{11}(0, 0) = 0$. It follows from (80) that, for $q_1 \le q_2$,

$$G_{11}(1,1;1,1) = \frac{2 - q_2 - q_1 q_2}{1 - q_1 q_2}, \tag{85}$$

and the rule is to test first the unit of type 2. Using this result, we can compute

$$H_{11}(1, 1) = 1 + \min(1, 2 - q_2 - q_1 q_2),$$
 (86)

and the rule is to test either unit separately if $1-q_2-q_1q_2>0$ and to test both simultaneously if $1-q_2-q_1q_2\leq 0$. The latter inequality is a direct generalization of the inequality $1-q-q^2\leq 0$, which played a prominent role in the basic procedure R_1 . We state (without proof) that, if $q_1\leq q_2<\frac{1}{2}\left(\sqrt{5}-1\right)=0.618$ (to three decimals), all testing is carried out one unit at a time.

2. Two (or more) experimenters may be working on a single set of N units by carrying out simultaneous, parallel group-tests and cooperating in such a way as to minimize the time required to accomplish the task.

It is clear that no saving can be effected in the expected total number of tests by having more than one experimenter. However, if the simultaneous tests are regarded as a stage, each of which lasts the same amount of time, then minimizing the expected number of stages is equivalent to minimizing the expected time required to accomplish the task. These remarks indicate that there may be some conflict in these two aims of reducing the expected time and the expected total number of tests. For this reason, it should be stated that our primary emphasis in this problem is to reduce the expected time.

Let m and m' denote the sizes of defective sets and let $n-(m+m')\geq 0$ denote the size of the binomial set. Let $H_{12}(n)$ denote the expected number of stages required for m=m'=0 by the proposed procedure R_{12} . Let $G_{12}(m,m',n)$ denote the expected number of stages required by R_{12} if we have two defective sets of size m, m' and one binomial set of size $m-m-m'\geq 0$. Let $G_{12}(m,0,n)$ and $G_{12}(0,m,n)$ be denoted by $G_{12}(m,n)$, so that $G_{12}(0,n)=H_{12}(n)$. The recursion formulae for R_{12} are

$$H_{12}(n) = 1 + \min_{\substack{x,y \ge 1 \\ x+y \le n}} [q^{x+y}H_{12}(n-x-y) + q^{x}(1-q^{y})G_{12}(y,n-x)$$

$$+ q^{y}(1-q^{x})G_{12}(x,n-y) + (1-q^{x})(1-q^{y}) G_{12}(x,y,n)],$$

$$G_{12}(m,m',n) = 1 + \min_{\substack{1 \le x \le m-1 \\ 1 \le y \le m'-1}} \left\{ \left(\frac{q^{x}-q^{y}}{1-q^{m}} \right) \left(\frac{q^{y}-q^{m'}}{1-q^{m'}} \right) \right.$$

$$\cdot G_{12}(m-x,m'-y,n-x-y)$$

$$+ \left(\frac{q^{x}-q^{m}}{1-q^{m}} \right) \left(\frac{1-q^{y}}{1-q^{m'}} \right) G_{12}(m-x,y,n-x)$$

$$+ \left(\frac{1-q^{x}}{1-q^{m}} \right) \left(\frac{q^{y}-q^{m'}}{1-q^{m'}} \right) G_{12}(x,m'-y,n-y)$$

$$+ \left(\frac{1-q^{x}}{1-q^{m}} \right) \left(\frac{1-q^{y}}{1-q^{m'}} \right) G_{12}(x,y,n) \right\}$$

$$(87)$$

and

$$G_{12}(m,n) = 1 + \min \left\{ \min_{\substack{x, y \ge 1 \\ x+y \le m}} G_{12}(x,y), \min_{\substack{1 \le x \le m-1 \\ 1 \le y \le n-m}} G_{12}''(x,y) \right\}, \quad (89)$$

where $G_{12}'(x, y)$ and $G_{12}''(x, y)$ are defined by

$$G_{12}'(x,y) = \left(\frac{q^{x+y} - q^m}{1 - q^m}\right) G_{12}(m - x - y, n - x - y)$$

$$+ \frac{q^x (1 - q^y)}{1 - q^m} G_{12}(y, n - x)$$

$$+ \frac{q^y (1 - q^x)}{1 - q^m} G_{12}(x, n - y)$$

$$+ \frac{(1 - q^x)(1 - q^y)}{1 - q^m} G_{12}(x, y, n)$$
(90)

and

$$G_{12}''(x, y) = \frac{q^{y}(q^{x} - q^{m})}{1 - q^{m}} G_{12}(m - x, n - x - y)$$

$$+ \frac{q^{y}(1 - q^{x})}{1 - q^{m}} G_{12}(x, n - y)$$

$$+ \frac{(1 - q^{y})(q^{x} - q^{m})}{1 - q^{m}} G_{12}(m - x, y, n - x)$$

$$+ \frac{(1 - q^{y})(1 - q^{x})}{1 - q^{m}} G_{12}(x, y, n).$$
(91)

The boundary conditions state that, for all q,

$$G_{12}(m, 1, n) = G_{12}(1, m, n) = G_{12}(m, n - 1)$$

for $0 \le m \le n - 1$. (92)

$$G_{12}(1,n) = H_{12}(n-1) \text{ for } n \ge 1,$$
 (93)

$$H_{12}(0) = 0. (94)$$

It is easy to see that $H_{12}(1) = G_{12}(2, 2) = H_{12}(2) = 1$ and $G_{12}(3, 4) = G_{12}(4, 4) = 2$ for all q.

Remark 6: The extra complication in (89) insures that, for $n \ge 2$, one experimenter will not be idle while another is carrying out a test.

Remark 7: It is conjectured that in (89) the possibility x + y = m can be omitted, with the exception of the single case m = n = 2 (and m' = 0).

Remark 8: It is also conjectured that G_{12}'' , which is needed for the cases n > m = 2, can be disregarded when m > 2; i.e., that G_{12}' always gives a smaller minimum for m > 2.

Remark 9: It is conjectured that, at any stage in which $m = m' \ge 2$ or in which we have both m = m' = 0 and n even, the two test group sizes, x and y, will be equal. If either m or m' = 0, it is conjectured that the two test group sizes will differ by at most unity.

Further calculations yield

 $G_{12}(2,3) = rac{2+q}{1+q}$ for all q $Test Group Sizes <math>rac{x}{y}$ $rac{y}{1D \ 1B}$, (95) $G_{12}(3,3) = rac{2+2q+q^2}{1+q+q^2}$ for all q $1D \ 1D$, (96)

$$G_{12}(2,4) = \begin{cases} 2 & \text{for } 0 \le q < 0.682 & 1D \ 1B, \\ \frac{3+q-q^3}{1+q} & \text{for } 0.682 \le q \le 1.000 \ 1D \ 2B, \end{cases}$$
(97)

$$G_{12}(2, 2, 4) = \frac{2 + 4q + q^2}{(1 + q)^2}$$
 for all q 1D 1D', (98)

$$H_{12}(4) = \frac{1D \cdot 1D}{(1+q)^2}, \text{ for an } q \text{ 1D } 1D, (98)$$

$$H_{12}(4) = \begin{cases} 2 & \text{for } 0 \le q < 0.691 & 1B \cdot 1B, \\ 3 - 3q^2 + 2q^3 - q^4 & \text{for } 0.691 \le q \le 1.000 \cdot 2B \cdot 2B, \end{cases}$$

$$(99)$$

where 1B indicates that 1 unit is taken from the binomial set to form one of the two test-groups and D, D' denote different defective sets.

It is interesting to compare the above result for $H_{12}(4)$ for $q \ge 0.691$ with the procedure R_{12}^* of giving each experimenter two units to analyze independently of each other and without any mutual cooperation. Let T denote the total number of tests and S denote the number of stages required. Then, for $q \ge 0.691$ (letting T_1 , T_2 denote the number of tests in two independent experiments with n = 2 under R_1), it is easily shown that

$$E\{S \mid R_{12}^*\} = E\{\max(T_1, T_2) \mid R_1\} = 3 - q^2 - q^4,$$
 (100)

$$E\{T \mid R_{12}\} = 2H_{12}(4) - 2q - 2q^2 + 2q^3 - 2q^4.$$
 (101)

Hence we find that, for $q \ge 0.691$,

$$E\{S \mid R_{12}\} - E\{S \mid R_{12}^*\}$$

$$= H_{12}(4) - (3 - q^2 - q^4) = -2q^2(1 - q) \le 0,$$
(102)

$$E\{T \mid R_{12}\} - E\{T \mid R_{12}^*\}$$

$$= 6 - 2q - 2q^2 + 2q^3 - 2q^4 - 2H_1(2) = 2q^3(1 - q) \ge 0,$$
(103)

which illustrates the fact that R_{12} effects an improvement in the expected number of stages at the expense of a slight increase in the expected total number of tests.

3. In this generalization we apply the restriction that any one unit can be included in at most K group-tests. This is particularly appropriate in the blood testing application, where a single blood sample can be used in a small number K of blood tests and the patient does not want to be annoyed by having more than one blood sample taken.

In this problem there is again only one defective set but it is now denoted by a vector $\mathbf{m} = \{m_0, m_1, \dots, m_{K-1}\}$, where $m_j \ge 0$ is the num-

ber of units that have already been included in j group-tests. Similarly, the union of the binomial and defective sets is denoted by

$$\mathbf{n} = \{n_0, n_1, \cdots, n_{K-1}\}\$$

and the binomial set alone is the difference $\mathbf{n} - \mathbf{m}$. The symbol for the size of the next test group will be $\mathbf{x} = \{x_0, x_1, \cdots, x_{K-1}\}$, where x_j is the number of units taken from n_j in an H-situation (from m_j in a G-situation). The symbols x, m, n will be used for the sum of the components in the vectors $\mathbf{x}, \mathbf{m}, \mathbf{n}$, respectively. Let $G_{13}^K(\mathbf{m}; \mathbf{n})$ denote the expected number of group-tests required to remove all defective units if the defective set is \mathbf{m} and the binomial set is $\mathbf{n} - \mathbf{m}$. If m = 0, we denote this expectation by $H_{13}^K(\mathbf{n})$. For the special case in which \mathbf{n} has all except one component (say, n_j) equal to zero, we will drop the zeros and write $H_{13}^K(n_j)$, with a scalar argument. The recursion formulae for this procedure R_{13}^K are given by

$$H_{13}^{K}(\mathbf{m}) = 1 + \min_{\substack{\text{all } \mathbf{x} \text{ with} \\ 1 \leq x \leq n \text{ and} \\ 0 \leq x_{1} \leq n_{1} \\ (j=0,1,\dots,K-1)}} \{q^{x} H_{13}^{K}(\mathbf{n} - \mathbf{x}) + (1-q^{x}) G_{13}^{K}(\mathbf{x}; \mathbf{n})\},$$
(104)

$$G_{13}^{K}(\mathbf{m}; \mathbf{n}) = 1 + \min_{\substack{\text{all } \mathbf{x} \text{ with} \\ 1 \leq x \leq m-1 \\ 0 \leq x_{i} \leq m_{i} \\ (j = 0, \dots, K-1)}} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{13}^{K}(\mathbf{m} - \mathbf{x}; \mathbf{n} - \mathbf{x}) \right.$$

$$(105)$$

$$+\left(\frac{1-q^x}{1-q^m}\right)G_{13}^{K}(\mathbf{x}; \mathbf{n}),$$

where, as usual, m > 1. The boundary conditions state that, for all q, we have $H_{13}^{K}(\mathbf{O}) = 0$ and, for m = 1, we can write $G_{13}^{K}(\mathbf{m}; \mathbf{n}) = H_{13}^{K}(\mathbf{n} - \mathbf{m})$. It is easy to see that $H_{13}^{K}(\mathbf{n}) = 1$ for n = 1 and all q. Some further computations for n = 2 and n = 3 give, for any K:

$$\frac{q - \text{interval}}{H_{13}^{K}(2_{j})} = \frac{y - \text{value}}{H_{13}^{K}(2_{j})} = \begin{cases} H_{1}(2) & 0 \leq q \leq 1.000 & (\sec R_{1}) & 0 \leq j \leq K - 2 & (106) \\ 2 & 0 \leq q \leq 1.000 & (0, \dots, 0, 0, 1) & j = K - 1 \end{cases}$$

$$H_{13}^{K}(3_{j}) = \begin{cases} H_{1}(3) & 0 \leq q \leq 1.000 & (\sec R_{1}) & 0 \leq j \leq K - 3 \\ 3 & 0 \leq q \leq 0.618 & (0, \dots, 0, 1, 0) \\ 4 - q - q^{2} & 0.618 \leq q \leq 0.707 & (0, \dots, 0, 1, 0) \\ 4 - q^{2} - 2q^{3} & 0.707 \leq q \leq 1.000 & (0, \dots, 0, 3, 0) \\ 3 & 0 \leq q \leq 1.000 & (0, \dots, 0, 0, 1) & j = K - 1. \end{cases}$$

$$(107)$$

If K = 1, all units are tested individually. If K = 2, then, after a set of size m > 1 is shown to be defective, all the units in that set are tested individually; this is the procedure recommended by Dorfman.¹ A more thorough investigation for particular values of $K \ge 3$ will be given in a separate paper.

Under R_1 for any H(n)-situation the maximum number of additional tests $M^*(n)$ in which any particular unit will be included before experimentation is concluded (allowing a random reordering of units in the binomial and defective sets after every test) occurs when q is close to unity and the sample has all units defective. It is easily seen that, under R_1 ,

$$M^*(n) = M(n) - (n-1) = (n+1)\alpha(n) + 3 - 2^{1+\alpha(n)}, (108)$$

where $\alpha(n)$ and M(n) are defined by (10) and (11). Under R_{13}^{K} , let $j(\mathbf{n})$ denote the largest subscript associated with a nonzero component of \mathbf{n} . For $K \geq M^*(n) + j(\mathbf{n})$, the restriction that no unit should be included in more than K group-tests does not affect the procedure R_1 , and hence we have for procedure R_{13}^{K}

$$H_{13}^{\kappa}(\mathbf{n}) = H_1(n) \text{ for } 0 \le j(\mathbf{n}) \le K - M^*(n),$$
 (109)

which generalizes some results in (106) and (107) and shows that R_{13}^{K} is a generalization of R_1 .

Since units in the last component of the defective or the binomial sets cannot be tested in groups, we can remove at any time for individual testing all units in the last component of the binomial set and all but one of the units in the last component of the defective set without affecting the expected number of tests under $R_{13}^{\ \ \ \ \ \ \ \ }$. It is easy to show that this leads to the two reduction formulae

$$H_{13}^{K}(\mathbf{n}) = n_{K-1} + H_{13}^{K}(n_{0}, \dots, n_{K-2}, 0),$$

$$G_{13}^{K}(\mathbf{m}; \mathbf{n}) = n_{K-1} + \left(\frac{1 - q^{-1+m_{K-1}}}{1 - q^{m}}\right) H_{13}^{K}(n_{0}, \dots, n_{K-2}, 0)$$

$$+ q^{-1+m_{K-1}} \left(\frac{1 - q^{+1-m_{K-1}}}{1 - q^{m}}\right)$$

$$\cdot [G_{13}^{K}(m_{0}, \dots, m_{K-2}, 1; n_{0}, \dots n_{K-2}, 0) - 1],$$

$$(110)$$

which are useful in computations and for checking.

It is conjectured that, for m = 0 or m > 1, the procedure R_{13}^{κ} can always be carried out by putting in the next test-group only units that have been included in the same number of group tests (i.e., units in the same subset); the only possible exception to this is that, in any H-situa-

tion, if q is sufficiently close to unity, then R_{13}^{κ} will call for a test of all the remaining units; i.e., $\mathbf{x} = \mathbf{n}$.

Under the above conjecture, it is possible to carry out a simplification as in Section V and show, in direct analogy with (19), that

$$F_{13}^{*K}(\mathbf{m}) = \sum_{i=1}^{m} q^{i-1} + \min_{1 \le x \le m_i - 1} \{ q^x F_{13}^{*K}(\mathbf{m} - \mathbf{x}) + F_{13}^{*K}(\mathbf{x}) \}, \quad (112)$$

where **x** has x_i in the (i + 1)th position and zeros elsewhere (so that $x = x_i$), and i is defined as the subscript associated with the first non-zero component of **m**. The function $F_{13}{}^{K}(\mathbf{m})$ is defined as the expected number of group-tests required to reach the next H-situation, and then we define, as in Section V,

$$F_{13}^{\bullet K}(\mathbf{m}) = \left(\frac{1-q^m}{1-q}\right) F_{13}^{K}(\mathbf{m}).$$
 (113)

Hence under the above conjecture it is again seen that, for any G-situation with m > 1, the next test-group \mathbf{x} depends on \mathbf{m} but is independent of $\mathbf{n} - \mathbf{m}$.

It appears to be true (but has not been rigorously proved) that, in this case also, for $q < q_0 = 0.618$ (to three decimal places) all units are tested one at a time.

XII. AN ASYMPTOTIC FORMULA FOR $H_1(n)$

In this section we shall use results obtained by considering an information procedure R_2 , which is defined in Appendix A. The procedure R_2 appears to be a best test in the sense that it maximizes the information in the very next test but does not take into account the exact finite number of units present and the possible ways of distributing them among subsequent tests. It is therefore intuitively reasonable to expect that the procedure R_1 tends toward R_2 in the H-situation as $n \to \infty$ and also in the G-situation as $m \to \infty$. A more rigorous proof of this assertion would be desirable. It should also be pointed out that there is considerable numerical evidence in Tables IIIA and IIIB of the above assertion, which explains the reason for putting opposite $m = \infty$ and $n = \infty$ in these tables the polynomial equations

$$1 - q^x - q^{x+1} = 0$$
 $(x = 1, 2, \dots), (114)$

which are derived for procedure R_2 in Appendix A.

We shall now derive an asymptotic formula for $H_1(n)$ for large n based on the assumption that the above reasoning is correct. For large

values of n and fixed q, the expected number of tests required under procedure R_1 is approximately given by

$$H_1(n) \cong n \begin{pmatrix} \text{expected number of tests needed to reach} \\ \frac{\text{the next } H\text{-situation under } R_1}{\text{expected number of units analyzed between}} \end{pmatrix}.$$
 (115)

The ratio of n to the denominator in (115) is the approximate number of H-situations reached if we start with n units, and this is clearly to be multiplied by the expected number of tests required to proceed from one H-situation to the next. Let T and U denote the chance variables in the numerator and demoninator, respectively, of (115). For a fixed q we find from the limiting procedure R_2 that, for an H(n)-situation with n large, we will, under R_1 , "almost always" be using the same test-group size x, where x is that positive integer for which q^x is closer to one-half than is either q^{x-1} or q^{x+1} . Then, for this fixed integer x, which depends on the given q, we have

$$E\{U \mid R_1\} = xq^x + p \sum_{j=1}^x jq^{j-1} = \frac{1-q^x}{1-q},$$
 (116)

which is obtained by assuming a single randomization of the order of the units at the outset and considering the different possible positions of the first defective.

Since $F_1(x)$ is the expected number of tests required under R_1 to get from a G(m, n)-situation to the next H(n)-situation, we have

$$E\{T \mid R_1\} = q^x + (1 - q^x)[1 + F_1(x)] = 1 + pF_1^*(x), \quad (117)$$

where $F_1^*(x)$ is tabulated in Table IV A for x = 2(1)16 and all values of q. Hence, we obtain from (115), (116) and (117)

$$H_1(n) \cong \frac{np[1 + pF_1^*(x)]}{1 - q^x},$$
 (118)

where x is defined above in terms of q. This is the main result of this section; we now consider some special cases.

For values of q close to unity we can use (23) to replace $F_1^*(x)$ by an explicit expression. If we also replace $(1 - q^z)/(1 - q)$ by z for q close to unity, we obtain for q close to unity

$$H_1(n) \cong \frac{n}{r} \{1 + p[x\alpha(x) + 2\beta(x)]\},$$
 (119)

where $\alpha(x)$ and $\beta(x)$ are defined in (20a). If q approaches unity, x be-

comes large; if $\alpha(x) \geq 2$, then $2\beta(x) < 2^{\alpha(x)+1} \leq x\alpha(x)$ and, since $\alpha(x) \to \infty$, it follows that we can disregard $2\beta(x)$ in (119). For q close to unity and x large, the dividing points get closer and closer, and we obtain

$$0 \cong 1 - q^x - q^{x+1} \cong 1 - 2q^x, \tag{120}$$

so that $x \cong \left\lceil \log_2\left(\frac{1}{q}\right) \right\rceil^{-1}$. Also, from the definition of $\alpha(x)$,

$$2^{\alpha(x)} \le x \le 2 \cdot 2^{\alpha(x)},\tag{121}$$

so that

$$\log_2\left(\frac{x}{2}\right) \le \alpha(x) \le \log_2(x). \tag{122}$$

Using the upper value in (122) gives

$$H_1(n) \cong n \log_2\left(\frac{1}{q}\right) + np \log_2\left[\log_2\left(\frac{1}{q}\right)\right]^{-1}.$$
 (123)

It can be shown that the first term in (123) goes to zero faster than the second as q approaches unity, and hence we drop the first term and rewrite the second in the form

$$H_1(n) \cong -np \log_2 p. \tag{124}$$

In particular, if p = 1/n so that q = 1 - (1/n), we obtain from (124)

$$H_1(n) \cong \log_2 n. \tag{125}$$

In this case, we also have x = n = 1/p, and a better estimate is obtained by setting $q^x = e^{-1}$ in (23) and (118). Assuming that (23) is either equal to $F_1^*(x)$ or is a good approximation to it, we obtain

$$H_1(n) \cong \frac{n}{x} \left[\frac{1 + pF_1^*(x)}{1 - e^{-1}} \right] = \frac{n}{x} \left[1 + \alpha(x) + \frac{e^{2\beta(x)/x}}{e - 1} \right].$$
 (126)

For the case n = N = 100 and q = 0.99, we obtain 8.32 as the exact value from Table V C; $\log_2 100 = 6.64$, from (125); 7.79, from (119); and 8.20 from (126).

A rough lower bound on H(n) for any procedure can be easily obtained from information theory. The total information in n units is

$$-n(p\log_2 p + q\log_2 q),$$

and this is to be equated with the product of the expected number of tests H(n) and the average information obtained per group-test. Since

the maximum information per group-test (in bits) is unity, we obtain for any procedure

$$H(n) \ge -n(p \log_2 p + q \log_2 q).$$
 (127)

For n = N = 100 and q = 0.99, this gives 8.09 as a lower bound. Since a result better than 8.09 is impossible, the smallness of the difference 8.32 - 8.09 = 0.23 is an indication of how far R_1 can possibly be from an optimal solution. However, it should not be inferred that the lower bound (127) can be reached for any value of q (except possibly for $p = q = \frac{1}{2}$) by any procedure. In fact, for $q < \frac{1}{2}$ and q decreasing towards zero, it has been shown that an optimal procedure must have H(n) = n, whereas the right member of (127) approaches zero.

It has been pointed out to the authors by S. W. Roberts that a lower bound for G(m, n) for any procedure is easily shown to be

$$G(m,n) \geq \sum_{i=1}^{m} \frac{pq^{i-1}}{1-q^{m}} \left[\log_{2} \left(\frac{pq^{i-1}}{1-q^{m}} \right) + (n-i)(p \log_{2} p + q \log_{2} q) \right]$$

$$= \frac{1}{1-q^{m}} \left[q^{m} \log_{2} q^{m} + (1-q^{m}) \log_{2} (1-q^{m}) \right]$$

$$- \left(n + \frac{mq^{m}}{1-q^{m}} \right) (p \log_{2} p + q \log_{2} q).$$
(128)

XIII. LACK OF OPTIMALITY OF PROCEDURE R_1

To illustrate the fact that R_1 is not optimal in the general case when units are identifiable and "mixing" of units from the binomial and defective sets is allowed, we shall describe a method of obtaining an improvement on R_1 . It is sufficient to consider the case N=3, but the case N=4 is more typical, and we shall use the latter. Let R_0^* denote a procedure for N=4, part of which is described by Fig. 2 and the remaining part of which is arbitrary. (We can therefore also regard R_0^* as a set of procedures, with the common part shown in Fig. 2.) Let a_1 , a_2 , b_1 , b_2 denote individual units; it will be assumed that the a-units are distinguishable from the b-units. The part of Fig. 2 enclosed by dashed lines is different from R_1 , since it includes mixing; the rest of the procedure agrees with R_1 for q close to unity. For q close to unity and m=2, after the first two group-tests result in failure, we should act as if there was exactly one defective present until it is proved otherwise. Then, for q close to unity, the above procedure R_0^* terminates in one or two ad-

ditional tests with probability close to $\frac{1}{2}$ for each. More precisely, we obtain for the conditional expected number of additional tests required under R_0^* , given that the first two tests result in a failure,

$$G(2,4 \mid R_0^*) = \frac{pq^3}{1-q^2} + \frac{2pq^3}{1-q^2} + \frac{p^2f(q)}{1-q^2} = \frac{3q^3 + pf(q)}{1+q}, \quad (129)$$

where f(q) is a polynomial in q. In comparison, we have under R_1 for 0.707 < q < 1.000

$$G_1(2,4) = 1 + \frac{pH_1(3)}{1-q^2} + \frac{pqH_1(2)}{1-q^2}$$

$$= \frac{1}{1+q} (6 + 2q - 2q^2 - 2q^3).$$
(130)

For q approaching unity, the value in (129) approaches $\frac{3}{2}$, while that in (130) approaches 2. This proves that any finite continuation in Fig. 2 will be better than R_1 for q sufficiently close to unity. In a particular procedure to be discussed in a separate paper, the dividing point for the G(2, 4)-situation between "no-mixing" and "mixing" is

$$q = (1 + \sqrt{33})/8 = 0.843$$

(to three decimal places). The maximum improvement over R_1 for n=4 in the expected number of tests required for the H-situation is a decrease of 0.04. The price to be paid for this improvement will be an increase in the complexity of the procedure.

ACKNOWLEDGMENT

The authors wish to thank J. E. Clark of Bell Telephone Laboratories for bringing this problem to their attention. Grateful acknowledgment is also due to H. O. Pollak and E. N. Gilbert for suggesting the procedure R_3 and for supplying some numerical values for R_3 given in Table II B. Thanks are also due to S. W. Roberts, Jr., and R. B. Murphy of Bell Telephone Laboratories and I. R. Savage of the University of Minnesota for helpful comments made after reading the paper. We also wish to thank D. E. Carlson, Mrs. W. L. Mammel and D. E. Eastwood, for their help in setting up the program on the IBM-704 for the numerical computations pertaining to procedures R_1 and R_3 .

APPENDIX A

The Information Procedure

Another procedure which was investigated is based on choosing that value of x which maximizes the "amount of information" that the next test will give. The amount of information in a test with two outcomes is $p \log_2(1/p) + q \log_2(1/q)$ if p is the probability of either outcome. Hence, equating the information in an H-situation obtained by taking x and x + 1 in the next test gives

$$q^{x} \log_{2} q^{x} + (1 - q^{x}) \log_{2} (1 - q^{x})$$

$$= q^{x+1} \log_{2} q^{x+1} + (1 - q^{x+1}) \log_{2} (1 - q^{x+1}),$$
(131)

whose root will be used as a dividing point between x and x + 1. It is easy to verify that, for any integer x and any integer $n \ge x + 1$, the unique positive root of (131) is also the unique positive root of

$$1 - q^x - q^{x+1} = 0. (132)$$

It is interesting to note that the solution implicit in (132) is easily seen to be equivalent to finding that positive integer x (for fixed, known q) for which q^x is closer to $\frac{1}{2}$ than is either q^{x-1} or q^{x+1} . In fact, by (132), the right endpoint of the interval for x is such that q^x and q^{x+1} are centered about $\frac{1}{2}$ and the left endpoint of the interval for x is such that q^x and q^{x-1} are centered about $\frac{1}{2}$. Similarly, for the G-situation with m > 1, we equate

$$\left(\frac{q^x - q^m}{1 - q^m}\right) \log_2\left(\frac{q^x - q^m}{1 - q^m}\right) + \left(\frac{1 - q^x}{1 - q^m}\right) \log_2\left(\frac{1 - q^x}{1 - q^m}\right)$$
(133)

with the same expression, except that x is replaced by x + 1, and find

that, for any $n \ge m > 1$, the dividing point between x and x + 1 is the unique root in the interior of the unit interval (if it exists) of

$$1 - q^x - q^{x+1} + q^m = 0. (134)$$

If we remove the root q = 1 in (134), the dividing point is the unique positive root (if it exists) of

$$1 + q + q^{2} + \cdots + q^{x-1} - q^{x+1} - q^{x+2} - \cdots - q^{m-1} = 0.$$
 (135)

If the root does not exist for some m > 1, then x + 1 will never be used for that m. It should be noted that the left member of (134) is a strictly increasing function of x and, for $x \ge (m-1)/2$, m > 1 and any fixed q with $0 \le q < 1$, we have

$$1 - q^{x} - q^{x+1} + q^{m} \ge (1 - q^{(m-1)/2})(1 - q^{(m+1)/2}) > 0.$$
 (136)

It follows that the highest value of x for which a nondegenerate root exists is such that x+1 < (m+1)/2 and hence, under this procedure, we never take a test group of size greater than m/2. It is interesting to note that the dividing points for any G-situation do not depend on n.

These equations define a new procedure R_2 , which we shall also call the *information procedure*. For this, let $F_2(m)$ denote the expected number of group-tests required to "break up" a defective set of size m, i.e., to reach an H-situation. Let $F_2^*(m) = (1 - q^m)p^{-1}F_2(m)$. Then we can write as in (20), for any n and for the appropriate interval where the next test group is of size x,

$$F_2^*(m \mid x) = \sum_{i=1}^m q^{i-1} + q^x F_2^*(m-x) + F_2^*(x) \qquad (m > 1), \quad (137)$$

$$H_2(n \mid x) = 1 + q^x H_2(n - x) + p F_2^*(x) + p \sum_{i=1}^{x} q^{i-1} H_2(n - i).$$
 (138)

The boundary conditions state that $F_2^*(1) = H_2(0) = 0$ for all q. Those expressions for $F_2^*(m)$ which are used to generate expressions for $H_2(n)$ for $2 \le m \le n \le 12$ are given in Table VIII; the resulting expressions for $H_2(n)$ (with x-values) are given in Table VI. Table VII gives the dividing points for n = 1(1)100 and for m = 1(1)16, 20(5)100 for procedure R_2 .

It should be noted that the $F_2^*(m)$ as well as the $H_2(n)$ -function are not all continuous. At the point of discontinuity the x corresponding to the smaller expectation should be used.

It is interesting to observe in the numerical comparisons of Table III A

that the procedure R_2 compares quite favorably with the procedure R_1 . In addition, the fact that the dividing points are easier to compute makes it better for practical applications, since the dividing points for R_1 are only known exactly up to n = 16. It is also interesting to note that the limiting expressions in Table III A as $n \to \infty$ and in Table III B as $m \to \infty$ are the same as (132).

It is interesting to note that a succession of modifications $R_2^{(j)}(j=1,$ $(2, \ldots)$ of the information procedure, (R_2, α) are possible such that $(R_2^{(1)})$ R_2 and $R_2^{(j)} = R_1$ for $j \ge M(m,n)$. Here M(m,n), as defined in (10), is the maximum number of group-tests required if we start with a G(m,n)situation [where G(0,n) corresponds to H(n)]. Under the procedure $R_2^{(j)}$ we find and use that x which maximizes the ratio of the information expected from at most j group-tests to the conditional expected number of tests required given that we will stop after at most j group-tests. In the special case when there is no possibility of stopping before j tests, we can disregard the denominator and simply maximize the information. For the case j = 1 this is clearly equivalent to R_2 . For $j \ge M(m,n)$ the information expected from at most j tests is the same regardless of what x is used next and of what sample path is taken, since all units are then analyzed. Hence, the numerator above can be disregarded and the problem is to minimize the denominator or expected number of tests. Under the assumption of "no-mixing" of units from the binomial and defective sets, this gives the procedure R_1 .

For any H(n)-situation with $n \ge 4$ and $j \ge 2$, these procedures appear to eliminate the possibility of taking n-1 units in the next test-group. For example, if n=4, j=2 and q>0.618, then we will want to compare x=2 and x=3. For j=1, the dividing point between x=2 and x=3 is q=0.755. Since neither x=2 nor x=3 can result in termination after one test, we can disregard the denominator and compare for x=2 and x=3 the information expected from two group-tests. After simplification, the difference between the results expected after x=2 and x=3 can be written as

$$p^{2}q[(1+q)\log_{2}(1+q)-q\log_{2}q] \ge 0, \tag{139}$$

which shows that x=2 is preferable to x=3 for all q>0.618. The same result holds for all $j\geq 2$. Then we find that the dividing point between x=2 and x=4 for j=2 is the nondegenerate root between zero and unity of

$$(2 - 2q - q^4 - q^5 - 2q^7)q \log_2 q - (2 + q^6)$$

$$(1 - q^2) \log_2 (1 + q) - q^4 (1 - q^4) \log_2 p = 0,$$
(140)

which is 0.789 to three decimal places. For $j \ge 8 = M(0,4)$ the corresponding dividing point for $R_2^{(j)} = R_1$ is the root of $1 - q^2 - q^4 = 0$, or 0.786 to three decimal places. Curiously enough, the same result 0.786 is also the dividing point between x = 2 and x = 4 for j = 1.

For the special case x=1, we state without proof that, for any H(n)-situation, the dividing point between x=1 and x=2 is again $\frac{1}{2}(\sqrt{5}-1)=0.618$ to three decimal places.

Formulae for the expected number of tests under $R_2^{(j)}$ for 1 < j < M(m,n) have not been derived in this paper.

APPENDIX B

Definition of Procedure R₃

It may happen in some problems that recombination is undesirable or impossible, or it may be that we are interested in finding out just how much is saved by allowing recombinations. Both are good reasons for considering a procedure R_3 that is similar to R_1 except that recombinations are not allowed. This simply means that any two operationally formed sets cannot be combined to form a new set from which subsequent test-groups are to be taken. In procedure R_1 the possibility of mixing proper subsets of two different sets was never used, and the same will be true for R_3 . If both recombinations and mixing are not used, then, as the experiment continues, the operationally formed sets can only be broken down further into smaller and smaller sets, yielding a nested set of partitions; i.e., any two units separated at some stage remain separated in subsequent stages. It follows that any defective set present is not affected by the number or size or nature of other sets present. Hence, we define $G_3(m)$, with a single argument, as the conditional expected number of group-tests required to remove all the defectives from a set of size m which is known to have at least one defective.

The recursion formulae for R_3 are, for $n \ge 1$ and m > 1,

$$H_{3}(n) = 1 + \min_{1 \le x \le n} \{ q^{x} H_{3}(n - x) + (1 - q^{x}) [G_{3}(x) + H_{3}(n - x)] \},$$

$$G_{3}(m) = 1 + \min_{1 \le x \le m-1} \left\{ \left(\frac{q^{x} - q^{m}}{1 - q^{m}} \right) G_{3}(m - x) \right\}$$

$$(141)$$

$$+\left(\frac{1-q^x}{1-q^m}\right)[G_3(x) + H_3(n-x)]\Big\},$$

with boundary conditions $H_3(0) = G_3(1) = 0$ for all q. If we let $G_3^*(m)$ denote $(1 - q^m)p^{-1}G_3(m)$ and simplify, we obtain

$$H_3(n) = 1 + \min_{1 \le x \le n} \{ H_3(n - x) + pG_3^*(x) \}, \tag{143}$$

$$G_{3}^{*}(m) = \sum_{i=1}^{m} q^{i-1} + \min_{1 \le x \le m-1} \left\{ G_{3}^{*}(x) + q^{x} G_{3}^{*}(m-x) + H_{3}(n-x) \left(\sum_{i=1}^{x} q^{i-1} \right) \right\},$$

$$(144)$$

with boundary conditions $H_3(0) = G_3*(1) = 0$ for all q.

Numerical comparisons of the results for R_1 and R_3 are given in Tables II A and II B.

APPENDIX C

Definition of Two Halving Procedures

Two "halving" procedures R_4 and R_5 are defined below, the principal purpose being to compare the results on the expected number of tests required with comparable results for R_1 and R_3 . The procedure R_4 allows recombinations exactly as in R_1 , while R_5 is the same as R_4 except that recombinations are not allowed. Both R_4 and R_5 are of particular interest, since they can be carried out without knowing the true value of q.

The procedure R_4 is carried out like R_1 except that, if the defective set is of size m > 1, the next test group is a subset of size $m' = \lfloor m/2 \rfloor$ (i.e., the largest integer contained in m/2) randomly selected from the defective set and, if m = 0 or 1, the entire binomial set is used in the next test-group. In particular, we start with all N units in the first test-group. The recursion formulae for R_4 are

$$H_4(n) = q^n + (1 - q^n)[1 + G_4(n, n)] = 1 + (1 - q^n)G_4(n, n), \quad (145)$$

$$G_4(m,n) = 1 + \left(\frac{1-q^{m'}}{1-q^m}\right)G_4(m',n) + q^{m'}\left(\frac{1-q^{m-m'}}{1-q^m}\right)G_4(m-m',n-m') \qquad (m>1),$$
(146)

with the same boundary conditions as in R_1 . If we let $F_4(m)$ denote the expected number of tests required to break up a defective set of size m, it can be shown as in the case of R_1 that

$$G_4(m,n) = F_4(m) + \left(\frac{p}{1-q^m}\right) \sum_{i=1}^m q^{i-1} H_4(n-i).$$
 (147)

If we let

$$G_4^*(m,n) = \left(\frac{1-q^m}{1-q}\right)G_4(m,n)$$
 and $F_4^*(m) = \left(\frac{1-q^m}{1-q}\right)F_4(m)$, (148)

the recursion formulae for R_4 reduce to

$$F_4^*(m) = \sum_{i=1}^m q^{i-1} + F_4^*(m') + q^{m'} F_4^*(m-m') \qquad (m > 1), \quad (149)$$

$$H_4(n) = 1 + pG_4*(m, n)$$

$$= 1 + p\{F_4^*(n) + \sum_{i=1}^n q^{i-1}H_4(n-i)\},$$
 (150)

with boundary conditions $F_4^*(1) = H_4(0) = 0$ for all q. For $n \leq 5$, the results are the same as those for R_1 , if we take q close to unity in the formulae for R_1 . The results for $H_4(n)$ for n = 6(1)12 are, for all q:

$$H_4(6) = 14 - 9q - 2q^2 - q^3 - q^5,$$

$$H_4(7) = 17 - 11q - 3q^2 - q^3 + q^4 - 2q^5,$$

$$H_4(8) = 21 - 14q - 4q^2 - q^3 + q^4 - 2q^5, (151)$$

$$H_4(9) = 25 - 18q - 4q^2 - q^3 + q^4 - 2q^5 + q^7 - q^9,$$

$$H_4(10) = 29 - 22q - 4q^2 + q^4 - 3q^5 + q^7 - q^9$$

$$H_4(11) = 33 - 26q - 4q^2 + q^3 - 4q^5 + 2q^6 + q^7 - q^8 - q^9$$

$$H_4(12) = 37 - 29q - 4q^2$$
 $-4q^5 + 2q^6 + q^7 - q^8 - q^9$

The recursion formulae for the halving procedure R_5 , which continues to separate sets into smaller and smaller subdivision, are

$$H_{5}(n) = 1 + (1 - q^{n})G_{5}(n), \tag{152}$$

$$G_{5}(m) = 1 + \left(\frac{1 - q^{m'}}{1 - q^{m}}\right) [G_{5}(m') + H_{4}(m - m')] + q^{m'} \left(\frac{1 - q^{m-m'}}{1 - q^{m}}\right) G_{5}(m - m') \quad (m > 1),$$
(153)

where m' is defined as above. Here it was not necessary to use a double argument with G because there is no recombination allowed. The bound-

ary condition is $G_5(1) = 0$ for all q. If we define $G_4^*(m)$ as in (153) and use (152), the recursion formulae reduce to

$$H_5(n) = 1 + pG_5^*(n), (154)$$

$$G_{5}^{*}(m) = \sum_{i=1}^{m'} q^{i-1} + \sum_{i=1}^{m} q^{i-1} + G_{5}^{*}(m') + G_{5}^{*}(m - m') \qquad (m > 1),$$
(155)

with the boundary condition $G_5^*(1) = 0$ for all q. For $n \leq 3$, the results are the same as for R_1 if we take q close to unity in the formulae for R_1 . The results for $H_5(n)$ for n = 4(1)12 are:

APPENDIX D

Known Procedures

An attempt has been made to put the Dorfman procedure and the Sterrett procedure³ in the best form that is comparable with the other procedures treated here. For each of N = 4, 8 and 12, we have found the division into equal (or approximately equal) subsets such that the Dorfman plan of testing defective sets one at a time gives the smallest possible expected number of tests required. It should not be inferred that these results would be the same if a straightforward application of the tables published by Dorfman and Sterrett, respectively, were made, since their tables are only concerned with very large N. In the Dorfman plan we use a common test-group size for binomial sets and, for defective sets, the units are all tested one at a time. In the Sterrett plan, there is a common test group size for binomial sets at the outset and, for defective sets, the units are tested one at a time only until a defective unit is found. Then the remaining units, from that defective set only, are pooled and tested. This is continued until that particular defective set is completely analyzed before we start with other sets. We have also assumed that

logical inference would be used whenever possible in the Dorfman and Sterrett procedures.

For the Dorfman procedure R_7 , if the common group size is c, then, for any binomial set of size n (where $n \leq c$), we obtain

$$H_7(n) = q^n + (1 - q^n) \left(n + 1 - \frac{pq^{n-1}}{1 - q^n} \right)$$

$$= n + 1 - q^{n-1} - (n-1)q^n.$$
(157)

For example, for N=12 and q=0.90, we find that $c_1=c_2=c_3=4$ gives the best results and, using (157), with c=4, we obtain

$$H_7(12) = 3H_7(4) = 3(5 - q^3 - 3q^4) = 6.908.$$
 (158)

For the Sterrett procedure R_6 , if the group size at the outset is c, then, for each binomial set of size n (where $n \leq c$), we obtain

$$H_{6}(n) = q^{n} + p[2 + H_{6}(n-1)] + qp[3 + H_{6}(n-2)] + \dots + q^{n-2}p[n + H_{6}(1)] + q^{n-1}pn = q^{n} + npq^{n-1} + p\sum_{i=2}^{n} iq^{i-2} + p\sum_{i=1}^{n-1} q^{i-1}H_{6}(n-i),$$
(159)

with boundary condition $H_6(1) = 1$ for all q. It can be verified (we omit the details) that the solution of this system is given by

$$H_6(n) = (2n-1) - (n-1)q - \sum_{i=2}^{n} q^i.$$
 (160)

For example, for N = 12 and q = 0.90, we find that $c_1 = c_2 = c_3 = 4$ gives the best results and, using (160), with c = 4, we obtain

$$H_6(12) = 3H_6(4) = 6.315.$$
 (161)

APPENDIX E

Cost Considerations

In this Appendix we introduce another procedure R_8 , which brings into play the cost of throwing away a good unit and balances it against the cost of conducting another group-test. It is interesting to note that R_8 was the solution given when the problem was first brought to the authors' attention in a practical application.

For procedure R_8 we divide all the N units into approximately equal subsets of size x', where x' is the nearest positive integer to the solution in x of

$$(1-p)^x = \frac{1}{2},\tag{162}$$

where p is the known a priori probability of a unit being defective. It is assumed here that $p \ll \frac{1}{2}$. Each subgroup is tested either simultaneously or in sequence, and good subgroups are removed. Assuming x' > 1, subsets shown to contain at least one defective are pooled. Since the same number of defectives has now been put into a pooled set of approximate size N/2, it follows that the probability of drawing a defective from the pooled set is approximately double the original a priori probability p. Then the pooled subset is again divided into approximately equal subsets of size x'', where x'' is the nearest positive integer to the solution of

$$(1-2p)^x = \frac{1}{2}. (163)$$

The process is repeated (say) a total of t times. If tp gets larger than $\frac{1}{2}$, x is taken to be unity and the units would then be tested one at a time. However, it may be more economical to stop the procedure before tp reaches $\frac{1}{2}$ and scrap the pooled defective subgroup. The amount of saving may be substantial if the cost of manufacturing a unit, say c_0 , is small compared to the cost of each group-test, say c_1 .

Suppose, for example, that we start with N=8 units and q is given to be 0.90. The approximate solution of (162) is x'=7 but, since this leaves a subset of size 1, we make our first test on all 8 units. If the test is a success we are through; otherwise we look for a solution of (163) and find that x''=3. The 8 units are divided into subsets of size 3, 3 and 2, and each is tested. Good subsets are removed. We purposely avoid the next stage which requires testing one at a time. Hence, any of these three sets of size 3, 3, and 2 that proves to contain at least one defective is scrapped.

Let T denote the number of tests required in the above example and let D denote the total number of scrapped units (i.e., good units and defectives that are discarded). Then, for this procedure R_8 with N=8 and q=0.90, we obtain

$$E\{T \mid R_8\} = 4 - 3q^8 = 2.709, \tag{164}$$

$$E\{D \mid R_8\} = 8 - 2q^2 - 6q^3 = 2.006.$$
 (165)

If we define the expected loss $E\{L \mid R_i\}$ for any procedure R_i by

$$E\{L \mid R_i\} = c_0 E\{D \mid R_i\} + c_1 E\{T \mid R_i\}, \qquad (166)$$

we find for procedures R_1 and R_8 , respectively,

$$E\{L \mid R_1\} = 0.800 \ c_0 + 3.904 \ c_1 \,, \tag{167}$$

$$E\{L \mid R_8\} = 2.006 \ c_0 + 2.709 \ c_1 \ . \tag{168}$$

A comparison of these two expressions shows that R_8 will be more economical in this case if the ratio

$$\frac{c_1}{c_0} \ge \frac{2.006 - 0.800}{3.904 - 2.709} = 1.009 = 1$$
, approximately. (169)

Hence, R_8 is more economical in this case if the total cost of a single test is greater than the total cost of manufacturing a single unit.

Similarly, it can be shown that it would be more economical to stop after the first test (and scrap all 8 units if there is at least one defective present) when the ratio of the two costs in (169) is greater than 1.492 (or approximately 1.5).

REFERENCES

- 1. Dorfman, R., The Detection of Defective Members of Large Populations, Ann. Math. Stat., 14, 1943, p. 436.
- Feller, W., An Introduction to Probability Theory and Its Applications, 2nd edition, John Wiley & Sons, New York, 1951, p. 189.
 Sterrett, A., On the Detection of Defective Members of Large Populations, Ann. Math. Stat., 28, 1957, p. 1033.
- 4. Ungar, P., The Cut-Off Point for Group Testing, to be published.

Fig. 3 — Diagram showing number of observations to be taken in any H-situation for n=1 through 16 — for procedure R_1 .

Fig. 4 — Diagram showing number of observations to be taken in any G-situation for m=2 through 16 and any $n\geqq m$ — for procedure R_1 .

Table II A — Comparison of the Expected Number of Group-Tests Required for Different Procedures for $N=4,\,8,\,12$ and Selected Values of q

Procedure			-	ç	7			
	0.00	0.50	0.75	0.90	0.95	0.98	0.99	1.00
$\begin{array}{c} R_1 \\ \text{(Proposed Procedure)} \end{array}$	4.000 8.000 12.000		6.619	$2.051 \\ 3.904 \\ 5.790$			$1.110 \\ 1.308 \\ 1.543$	1.000 1.000 1.000
R_2 (Information Procedure)	4.000 8.000 12.000		6.663	4.141	$1.538 \\ 2.500 \\ 3.599$		$1.110 \\ 1.308 \\ 1.544$	1.000 1.000 1.000
$\begin{array}{c} R_3 \\ \text{(Proposed without Recombinations)} \end{array}$	4.000 8.000 12.000	8.000	$3.375 \\ 6.719 \\ 10.062$		$1.576 \\ 2.631 \\ 3.851$	1.236 1.680 2.209	1.119 1.345 1.617	1.000 1.000 1.000
R_4 (Halving with Recombinations)		12.875			$1.538 \\ 2.500 \\ 3.620$		1.110 1.308 1.544	1.000 1.000 1.000
$\begin{array}{c} R_5 \\ \text{(Halving without Recombinations)} \end{array}$		11.309			$1.578 \\ 2.678 \\ 3.900$	$1.236 \\ 1.700 \\ 2.229$	$1.119 \\ 1.355 \\ 1.627$	1.000 1.000 1.000
R_{6} (Sterrett)	4.000 8.000 12.000	$\begin{array}{c} 4.000 \\ 8.000 \\ 12.000 \end{array}$		$2.105 \\ 4.210 \\ 6.315$	$1.576 \\ 3.151 \\ 4.333$	$1.236 \\ 1.807 \\ 2.973$	1.119 1.412 1.852	1.000 1.000 1.000
(Dorfman) R_7	$4.000 \\ 8.000 \\ 12.000$	8.000		2.303 4.605 6.908	$1.699 \\ 3.398 \\ 5.097$	$1.292 \\ 2.176 \\ 3.334$	$1.148 \\ 1.609 \\ 2.354$	1.000 1.000 1.000

Table II B — Comparison of $H_1(n)$ and $H_3(n)$ for Three Values of q and Larger n-Values

11	q =	0.90	q =	0.95	q =	0.99
74	$H_1(n)$	$H_3(n)$	$H_1(n)$	$H_3(n)$	$H_1(n)$	$H_3(n)$
10	4.872	5.101	3.039	3.242	1.425	1.481
20	9.572	10.155	5.940	6.456	2.051	2.221
30	14.301	15.209	8.791	9.626	2.738	3.057
40	19.024	20.260	11.671	12.798	3.478	3.943
5 0	23.750	25.361	14.555	16.009	4.243	4.853
60	28.475	30.415	17.438	19.246	5.026	5.792
70	33.200	35.469	20.316	22.415	5.830	6.754
80	37.925	40.520	23.197	25.591	6.647	7.717
90	42.650	45.621	26.078	28.781	7.477	8.683
100	47.375	50.675	28.959	32.019	8.230	9.687

Each polynomial shown with its unique real root in the unit interval 0 < q < 1; these roots determining the region where the next Table III A — To Be Used with Procedure R_1 in Any H(n) Situation with $n \le 16$ or n Very Large

test group is of size x. The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$).

	ible " "	0.707 0.786 0.817 0.884 0.884 0.896 0.896 0.991 0.912 0.912 0.937 0.937	1.000
	(maximum possible $x < n$) and $x = n$	t column 1 $^{2}q^{5}$ $^{2}q^{7}$ $^{2}q^{7}$ $^{2}q^{7}$ $^{2}q^{9}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$ $^{2}q^{10}$	
	s II	0.922 0.912- 0.908	0.912
ween:	x = 7 and $x =$	$1-q^3-q^3$ $1-q^2-q^3$ $1-q^7-q^4$	$0.899^{-1} 1-q^7-q^8$
int bety		0.912- 0.889- 0.883 0.893	0.899-
The unique real root in the unit interval of the polynomial shown is the dividing point between:	x = 6 and x = 7	0.857 0.899 0.897 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.899 0.891 0.999	$0.881 \left 1 - q^6 - q^7 \right $
omial s		0.889 0.881 0.879 0.888 0.888	0.881
nit interval of the poly	x = 5 and x = 6	$ \begin{pmatrix} 0.857 \\ 0.840 \\ -q^6 - q^8 & 0.856 \\ 1 - q^6 - q^7 \\ 1 - q^4 - q^6 \\ 1 - q^4 - q^6 \\ 2 + 4 \operatorname{and} x = 6) * \\ 0.857 \\ 1 - q + q^5 - q^7 - q^1 \\ 0.857 \\ 1 - q + q^5 - q^7 - q^1 \\ 0.857 \\ 1 - q + q^5 - q^4 - q^5 - q^{12} \\ 0.853 \\ 1 - q + q^5 - q^4 - q^5 - q^{11} \\ 0.853 \\ 1 - q + q^2 - q^4 - q^5 - q^{11} \\ 0.863 \\ 1 - q^2 - q^4 - q^5 - q^{11} \\ 0.860 \\ 1 - q^2 - q^4 $	$ 0.857 1-q^5-q^6$
n the u	- 2	0.857 11-q ⁴ -q ⁶ 10.857 10.857 10.857 10.857 10.857	0.857
ique real root i	x = 4 and x = 5	$ \begin{vmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$	$0.755 \left 1 - q^3 - q^4 \right 0.819 \left 1 - q^4 - q^5 \right $
The un	and 4	7 0.819 8 0.812 9 0.824 1 0.819 1 0.819 1 0.819 1 0.819 1 0.819	$q^4 0.819$
	x = 3 and $x = 4$	$\begin{array}{c} 1 - q^3 - q \\ 1 - q - q^3 - q \\ 1 - q - q^3 - q \\ 1 - q^3 - q^3 - q \\ 1 - q^3 -$	$1 - q^3 - q$
	x = 2 and $x = 3$	(see last c (see	∞ $ 1-q-q^2$ 0.618 $ 1-q^2-q^3$ 0.755
	and 2	0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618	0.618
	x = 1 and $x = 2$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$1 - q - q^2$
	*	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8

* The interval for x = 5 vanishes for n = 12.

Table III B — To Be Used with Procedure R_1 in Any G(m,n) Situation with $2 \le m \le n \le 16$ or m Very Large

Each polynomial shown with its unique real root in the unit interval 0 < q < 1; these roots determining the region where the next test group (taken from the defective set) is of size x. The exponential symbols +, - indicate only the relative magnitude of two or three different roots that are equal to three decimal places (i.e., $a^- < a^+$ or $a^- < a < a^+$).

	, ×	[2]	-21
	= x p	0.0	0.9
	= 7 an	$q^{14}-q^{1}$	q^7-q^8
	" 	1 1	100
	#	0.94	0.89
:u	x = 5 and $x = 6$ $x = 6$ and $x = 7$ $x = 7$ and $x = 8$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.857 \left \begin{array}{c c} 1-q^5-q^6 \end{array} \right \begin{array}{c c} 0.881 \left 1-q^6-q^7 \end{array} \left \begin{array}{c c} 0.899 \end{array} \right 1-q^7-q^8 \end{array} \left \begin{array}{c c} 0.912^- \end{array} \right $
The unique real root in the unit interval of the polynomial shown is the dividing point between:	9 =	0.936	0.881
g poin	and x	-q ¹¹ -q ¹⁰	q^6
dividing	# = 5	0.922 0.912- $1-q^{10}-q^{11}$ 0.936 0.899- $1-q^3-q^{10}$ 0.930 0.888+ $1-q^3-q^{10}$ 0.922	$1-q^5-$
ı is the	ll N	0.922 0.912- 0.899-	0.857
shown	and x	$^{1}-q^{12}$	
nomial	x = 4 and $x = 5$	$\begin{array}{c} 0.899 \\ 0.881 \\ 0.857 \\ 0.857 \\ 0.845 \\ 0.838 \\ 1 - q^a - q^a \\ 0.838 \\ 1 - q^a - q^a \\ 0.838 \\ 1 - q^a - q^a \\ 0.839 \\ 0.839 \\ 1 - q^a - q^a \\ 0.839 \\ 0.839 \\ 1 - q^a - q^a \\ 0.839 \\$	$0.819 \left 1-q^4-q^5 \right $
e poly		0.899- 0.881 0.887 0.867 0.867 0.887 0.888 1- 0.832 1- 0.832 1- 0.832	19 1-
of th	4	0.899- 0.857 0.857 0.857 0.846 0.838 0.838 0.838	8.0
nterval	x = 3 and $x =$	q^{12} q^{14}	
unit i	= 3 ar	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	₹.
in the	ĸ	5 - 5 - 1 - 1 - 1 - 5 - 5 - 5 - 5 - 5 -	$-q^{3}-q$
eal root		$ \begin{vmatrix} -q^4 - q^5 \\ 1 - q^4 - q^5 \\ 1 - q^2 - q^4 \\ 1 - q^2 - q^6 - q^7 \\ 1 - q^2 - q^6 - q^7 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^3 - q^9 \\ 1 - q^3 - q^6 - q^2 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^9 \\ 1 - q^3 - q^6 - q^1 - q^1 \\ 1 - q^3 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 - q^1 - q^1 \\ 1 - q^4 - q^6 - q^1 $	$0.755 \mid 1-q^3-q^4$
ique r	3	$- \frac{1}{q^{13}} \frac{1}{(1 - q^{13})^2}$	
The un	x = 2 and $x = 3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	= 2 a:	$-q^{7}$ $-$	
	×	0. 755 0. 682 0. 683 0. 683 1. $q^4 - q^5$ 0. 683 1. $q^4 - q^4$ 0. 683 1. $q^4 - q^4$ 0. 684 1. $q^3 - q^4$ 0. 684 1. $q^3 - q^4$ 0. 685 1. $q^3 - q^5 - q^4$ 0. 689 1. $q^3 - q^5 - q^4$ 0. 689 1. $q^3 - q^5 - q^4$ 0. 619 1. $q^3 - q^5 - q^4 - q^4$ 0. 619 1. $q^3 - q^5 - q^7 - q^4$ 0. 619 1. $q^3 - q^5 - q^7 - q^4$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618 1. $q^3 - q^5 - q^7 - q^9 - q^{19}$ 0. 618	$q^2 - q^3$
		7.755 7.682 7.682 7.683	$.618^{-}$ $1-q^2-q^3$
	. 2	0.755 0.682 0.682 0.652 1.0637 1.0637 1.0628	0.618
	x = 1 and x = 2		
	= 1 aı	q^3 $q^3 - q^4$	٠.
	ĸ	$ \begin{vmatrix} 1 - q^2 - q^3 \\ 1 - q^2 - q^3 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 - q^5 \\ 0 - q^3 - q^4 - q^4 - q^5 \\ 1 - q^2 - q^3 - q^4 - q^5 - q^5 \\ 1 - q^2 - q^3 - q^4 - q^3 \\ 1 - q^2 - q^3 - q^4 - q^6 \\ 1 - q^2 - q^3 - q^4 - q^1 \\ 1 - q^2 - q^3 - q^4 - q^1 \\ 1 - q^2 - q^3 - q^4 - q^2 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 - q^4 \\ 1 - q^2 - q^3 - q^4 \\ 1 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 - q^4 - q^4 - q^4 - q^4 - q^4 \\ 1 - q^4 -$	∞ $1-q-q^2$
*		2 5 4 4 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8

Table IV A — Formulae for $F_1^*(m)$ for Procedure R_1 and Values of the Next Test-Group Size x for m=2(1)16

	q-i	nterval	x	1	q	q^2	q^3	q^4	q^5	q^6	q^7	q^8	q^9	q^{10}	q^{11}	q^{12}	q13	q^{14}	q^{15}	
$F_1^*(2)$	0.000	to 1.000	1	1	1	_	_	_	_											
$F_1^*(3)$	0.000	to 1.000	1	1	2	2			_					_						
$F_1^*(4)$	0.000 0.755	to 0.755 to 1.000	1 2	1 2	$\frac{2}{2}$	3 2	3 2					_								
$F_1^*(5)$	0.000 0.682	to 0.682 to 1.000	$\frac{1}{2}$	$\frac{1}{2}$	2 2	$\frac{3}{2}$	4 3	3												
$F_1^*(6)$	0.000 0.652 0.755	to 0.652 to 0.755 to 1.000	1 2 2	$\frac{1}{2}$	2 2 2	3 2 3	4 3 3	5 4 3	5 4 3											
F ₁ *(7)	0.000 0.637 0.682 0.857	to 0.637 to 0.682 to 0.857 to 1.000	$\frac{1}{2}$	1 2 2 2	2 2 2 3	3 2 3 3	$\frac{4}{3}$	5 4 3 3	6 5 4 3	6 5 4 3										
F ₁ *(8)	0.000 0.629 0.652 0.755 0.819 0.899	to 0.629 to 0.652 to 0.755 to 0.819 to 0.899 to 1.000	1 2 2 2 3 4	1 2 2 2 2 3	2 2 2 2 3 3	3233333	4 3 3 3 3 3 3	5 4 3 4 3 3	6 5 4 4 3 3	7 6 5 4 4 3	7 6 5 4 4 3									
$F_1^*(9)$	0.000 0.624 0.637 0.682 0.803 0.881	to 0.624 to 0.637 to 0.682 to 0.803 to 0.881 to 1.000	1 2 2 2 3 4	1 2 2 2 2 3	2 2 2 3 3	9 2 3 3 3 3 3	4 3 3 3 3 3	5 4 3 4 3 3	-654443	7 6 5 4 4 3	-8 7 6 5 4 4	8 7 6 5 4 4								
$F_1^*(10)$	0.000 0.622 0.629 0.652 0.755 0.782 0.857	to 0.622 to 0.629 to 0.652 to 0.755 to 0.782 to 0.857 to 1.000	1 2 2 2 2 3 4	1 2 2 2 2 2 3	2 2 2 2 3 3	3 2 3 3 3 3 3 3 3	4 3 3 3 3 3 3 3 3	5 4 3 4 4 3 3	6 5 4 4 4 4 3	6 5 4 5 4	8 7 6 5 4 4	9 8 7 6 5 4	9 8 7 6 5 4							
$F_1*(11)$	0.000 0.620 0.624 0.637 0.682 0.779 0.819 0.857	to 0.620 to 0.624 to 0.637 to 0.682 to 0.779 to 0.819 to 0.857 to 1.000	1 2 2 2 2 3 4	1 2 2 2 2 2 2 2 3	2 2 2 2 3 3 3	3233333333	4 3 3 3 3 3 3 3 3	-54344343	6 5 4 4 4 4 4 4 4	$\begin{bmatrix} 6 \\ 5 \\ 4 \\ 5 \\ 4 \\ 4 \end{bmatrix}$	87655444	9 8 7 6 5 4 4	10 9 8 7 6 5 4	10 9 8 7 6 5 5 4						
$F_1^*(12)$		to 0.619 to 0.622 to 0.629 to 0.652 to 0.755 to 0.768 to 0.803 to 0.846 ⁺ to 0.899 ⁻ to 1.000	1 2 2 2 2 2 3 3 4 4	2 2 2 2 2 2 2 2	222223333333	32333333333	3 3	5 4 3 4 4 4 3 4 3 4	4 4 4 4 4 4 4	6 5 4 5 4 4 4 4	6 5 5 5 4 4	8 7 6 5 6 5 4	8 7 6 6 5 5 4	11 10 9 8 7 6 6 5 4	11 10 9 8 7 6 6 5 4					

[†] These equations are not needed to compute $H_1(n)$ -formulae if the experiment starts with a "pure binomial" set of any size N (i.e., if m=0 at the outset).

	q-interval	x	1	q	q^2	q^3	q^4	q^5	<i>q</i> 6	q^7	q^8	<i>q</i> 9	q^{10}	q^{11}	q12	q13	q14	q^{15}	
F ₁ *(13)	0.000 to 0.619 0.619 to 0.620 0.620 to 0.624 0.624 to 0.637 0.637 to 0.682 0.682 to 0.767 0.767 to 0.782 0.782 to 0.834 0.834 to 0.881 0.881 to 0.922 0.922 to 1.000	1 2 2 2 2 2 3 3 4 4 5		2 2 2 2 2 3 3 3 3 3 3 3	3233333333333	4 3 3 3 3 3 3 3 4	5 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 6 5 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	87 65 55 54 44 44	$ \begin{array}{c} -988765565544444 \end{array} $	10 9 8 7 6 6 6 5 5 4 4	11 10 9 8 7 6 6 5 4 4	12 11 10 9 8 7 6 6 5 5	12 11 10 9 8 7 6 6 5 5				† † † † † † † †
F ₁ *(14)	0.000 to 0.619 ⁻ 0.619 ⁻ to 0.619 ⁺ 0.619 ⁺ to 0.622 0.622 to 0.629 0.629 to 0.652 0.652 to 0.755 0.755 to 0.762 ⁺ 0.762 ⁺ to 0.779 0.779 to 0.819 0.819 to 0.834 0.834 to 0.857 0.857 to 0.912 ⁻ 0.912 ⁻ to 0.936 0.936 to 1.000	1 2 2 2 2 2 2 2 3 3 3 4 4 4 5 6	1 2 2 2 2 2 2 3 3 3 3 3	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	3 2 3 3 3 3 3 3 3 3 3 3 4	4 3 3 3 3 3 3 3 3 4 4	5 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4	6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 6 5 4 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8765555444444444444444444444444444444444	-987656655544444	10 9 8 7 6 6 6 6 5 5 5 4 4 4	11 10 9 8 7 6 7 6 5 5 4 4	12 11 10 9 8 7 7 6 6 5 5 4 4	13 12 11 10 9 8 7 7 6 6 6 5 4	13 12 11 10 9 8 7 7 6 6 6 5 5			† † † † † † † † †
F ₁ *(15)	0.000 to 0.618 ⁴ 0.618 ⁺ to 0.619 0.619 to 0.620 0.620 to 0.624 0.624 to 0.637 0.637 to 0.682 0.762 to 0.768 0.768 to 0.803 0.803 to 0.832 0.832 to 0.857 0.857 to 0.899 0.899 to 0.930 0.930 to 0.946 0.946 to 1.000	1 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 5 6 7	1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	2222222333333334	3 2 3 3 3 3 3 3 3 3 3 4 4	4 3 3 3 3 3 3 3 3 3 4 4 4 4	5 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4	6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 6 5 4 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4	8 7 6 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4	987656655544444	10 9 8 7 6 6 6 6 5 5 5 5 4 4 4	11 10 9 8 7 6 7 6 6 5 5 5 4 4 4	12 11 10 9 8 7 7 7 6 6 5 5 5 4 4	13 12 11 10 9 8 7 7 6 6 5 5 5 4 4	14 13 12 11 10 9 8 7 7 6 6 5 5 5	$ \begin{array}{c} 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 5 \\ 5 \\ 4 \\ \end{array} $		† † † † † † † † †
F ₁ *(16)	0.000 to 0.618 ⁻ 0.618 ⁻ to 0.619 ⁻ 0.619 ⁻ to 0.629 0.629 to 0.629 0.629 to 0.755 0.755 to 0.759 0.767 to 0.782 0.829 to 0.829 0.829 to 0.846 ⁺ 0.846 ⁺ to 0.888 ⁺ 0.888 ⁺ to 0.922 0.922 to 0.941 0.941 to 0.953 0.953 to 1.000	1 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 5 6 6 7 8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	222222223333333444	3 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4	4 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4	5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 6 5 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4	8 7 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4	9 8 7 6 6 6 6 6 5 5 5 5 4 4 4 4 4	$\begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 5 \\ 5 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \end{array}$	11 10 9 8 7 6 7 7 6 6 5 5 5 5 4 4 4	12 11 10 9 8 7 7 7 6 6 5 5 5 4 4 4	13 12 11 10 9 8 7 7 6 6 5 5 5 4 4	14 13 12 11 10 9 8 8 7 7 6 6 5 5 5 4 4	$\frac{13}{12}$	14 13 12 11	† † † † † † † † † † † † † † † † † † †

The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$).

Table IV B — Formulae for $H_1(n)$ and Values of the Next Sample Size x for Any H-situation Expressed as Functions of q for n=2(1)12 When the Procedure R_1 Is Used.

The integer shown below q^y opposite $H_1(n)$ is the coefficient of q^y in the polynomial formula for $H_1(n)$.

	q-interval	x	1	q ,	q ²	q^3	<i>q</i> ⁴	<i>q</i> 5	q ⁶	q7 	q8 	q9	q10	q11	q15
$H_1(2)$	0.000 to 0.618 0.618 to 1.000	$\frac{1}{2}$	$\frac{2}{3}$	-1	-1										
$H_1(3)$	0.000 to 0.618 0.618 to 0.707 0.707 to 1.000	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	3 5 5	$-3 \\ -2$		$^{1}_{-1}$									
$H_1(4)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.786 0.786 to 1.000	1 2 2 4	4 7 7 8	$-5 \\ -4 \\ -4$	-1	-1	1								
$H_1(5)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.817 0.817 to 1.000	1 2 2 3 3 5	5 9 9 10 11	$ \begin{array}{r r} -7 \\ -6 \\ -5 \\ -6 \\ \end{array} $	$\begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}$	$ \begin{array}{r} -1 \\ -2 \\ -1 \end{array} $	1 1 0	-1							
$H_1(6)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.817 0.817 to 0.844 0.844 to 1.000	1 2 2 3 3 3 6	6 11 11 11 12 13 14	$ \begin{array}{r r} -9 \\ -8 \\ -6 \\ -7 \\ -9 \\ \end{array} $	$\begin{vmatrix} 1 \\ -2 \\ -3 \\ -2 \end{vmatrix}$	$\begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$	$\begin{array}{c c} 2 \\ 1 \\ 0 \end{array}$	$-1 \\ 0 \\ 1 \\ -1$	$\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$						
$H_1(7)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.817 0.817 to 0.819 0.819 to 0.844 0.844 to 0.869 0.869 to 1.000	1 2 2 3 3 3 4 4 7	7 13 13 13 14 15 16 17		$\begin{vmatrix} 2 \\ -3 \\ -4 \\ -3 \\ -3 \\ -1 \end{vmatrix}$	$\begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \\ -2 \\ -1 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 0 \end{vmatrix}$	1					
$H_1(8)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.812 0.812 to 0.817 0.817 to 0.819 0.819 to 0.844 0.844 to 0.869 0.869 to 0.885 0.885 to 0.899 0.899 to 1.000	1 2 2 3 3 4 4 4 4 4 4 8 8	8 15 15 16 17 18 19 20 20 20 21	$ \begin{array}{c} -13 \\ -12 \\ -8 \\ -9 \\ -10 \\ -14 \\ -16 \\ -15 \\ -14 \\ -16 \\ -15 \\ -14 \end{array} $	$egin{array}{c} & 3 & -4 \ 3 & -5 \ -2 \ 4 & -3 \ -2 \ 4 & -2 \ \end{array}$	$\begin{bmatrix} -4 \\ -2 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$	3 3 3 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -2 & -1 \\ 0 & -1 \\ -1 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ -2 & -1 \\ -1 & 1 \end{bmatrix}$	$\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$	1 1				

Table IV B — Continued

	I Al	1111	1 V	ъ-		1000	nue	<u></u>	1			1			
	q-interval	x	1	q	q^2	q^3	q4	<i>q</i> ⁵	<i>q</i> ⁶	<i>q</i> ⁷	q8	<i>q</i> 9	q10	q11	q^{12}
$H_1(9)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.812 0.812 to 0.817 0.817 to 0.819 0.819 to 0.824 0.824 to 0.844 0.844 to 0.857 0.857 to 0.869 0.869 to 0.885 0.896 to 0.899 0.899 to 1.000	1 2 3 3 3 3 4 4 5 5 9	9 17 17 18 19 20 21 22 23 23 23 23 24 25	$\begin{array}{c} -15 \\ -14 \\ -9 \\ -10 \\ -12 \\ -14 \\ -16 \\ -17 \\ -19 \\ -18 \\ -17 \\ -17 \\ -19 \\ \end{array}$	$ \begin{array}{r} -6 \\ -5 \\ -4 \\ -3 \\ -3 \\ -1 \\ -1 \end{array} $	$ \begin{array}{r} -4 \\ -5 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ \end{array} $	$ \begin{array}{c} 3 \\ 4 \\ 4 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \end{array} $	$\begin{array}{c} -2 \\ -3 \\ -1 \\ -1 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$	$egin{array}{c} 1 \\ -2 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array}$	$\begin{matrix} 0 \\ -1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{matrix}$	$ \begin{array}{c} -1 \\ 1 \\ 0 \\ 1 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ -1 \\ -1 \\ 0 \end{array} $	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$			
$H_1(10)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.812 0.812 to 0.817 0.817 to 0.819 0.819 to 0.824 0.824 to 0.840 0.840 to 0.844 0.844 to 0.857 0.857 to 0.869 0.869 to 0.895 0.885 to 0.896 0.896 to 0.899- 0.904 to 1.000	1 2 2 3 3 3 3 4 4 5 5 5 5 5 6 10	10 19 19 19 20 21 22 24 25 26 26 26 26 27 28	-17 -16 -10 -11 -13 -15 -18 -20 -20 -22 -21 -20 -21 -23 -23	$^{-7}_{-6}$	$\begin{array}{c} -5 \\ -6 \\ -2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1$	$\begin{array}{c} 4\\ 5\\ 5\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\end{array}$	$\begin{array}{c} -3 \\ -4 \\ -2 \\ -2 \\ -2 \\ -4 \\ -2 \\ -3 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$	$\begin{array}{c} 2\\ 3\\ -2\\ 0\\ 0\\ 0\\ 0\\ -1\\ -1\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1\end{array}$	$\begin{array}{c} -1 \\ -2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{array}$	$\begin{array}{c} 1\\ -1\\ -1\\ -1\\ \end{array}$ $\begin{array}{c} -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1 \end{array}$	-1 1 1 -1 -1 -1 1 2		
$H_1(11)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.812 0.812 to 0.817 0.817 to 0.819 0.819 to 0.824 0.824 to 0.840 0.840 to 0.844 0.844 to 0.856 0.856 to 0.857 0.857 to 0.869 0.869 to 0.881 0.881 to 0.885 0.885 to 0.896 0.896 to 0.896 0.896 to 0.899 0.899 to 0.904 0.904 to 0.912 0.912 to 1.000	1 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 1 1	11 21 21 22 23 24 27 28 29 29 29 29 29 29 30 31 32 33	-19 -18 -11 -12 -14 -16 -21 -23 -23 -25 -25 -24 -24 -24 -23 -25 -27	76 -7 -8 -7 -6 -4 -3 -1 -1 -1 -2 -2 0 -1 -2	$\begin{array}{c} -6 \\ -7 \\ -2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ -2 \\ -1 \\ -1 \end{array}$	5 6 6 4 3 2 3 3 2 1 0 -2 -2 -2 -1 -1 -1	$\begin{array}{r} -4 \\ -5 \\ -3 \\ -3 \\ -5 \\ -2 \\ -2 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \end{array}$	$egin{array}{c} 3 \\ 4 \\ -2 \\ 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$	$ \begin{array}{r} -22 \\ -33 \\ 31 \\ 11 \\ 11 \\ 12 \\ 33 \\ 22 \\ 1 \\ 00 \\ -1 \\ 00 \\ 0 \end{array} $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ -1 \\ -1 \end{array}$	$\begin{array}{c} 0 \\ -1 \\ -2 \\ -1 \end{array}$ $\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	$ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 2 \\ 0 \end{array} $	1 -1 1 1 1 1	

Table IV B — Continued

	<i>q</i> -interval	x	1	q	q^2	q^3	q4	q^5	q^6	q^7	q 8	<i>q</i> 9	q^{10}	q^{11}	q12
$H_1(12)$	0.000 to 0.618 0.618 to 0.707 0.707 to 0.755 0.755 to 0.786 0.786 to 0.812 0.812 to 0.817 0.817 to 0.819 0.819 to 0.844 0.824 to 0.844 0.844 to 0.856 0.856 to 0.857 0.857 to 0.869 0.881 to 0.881 0.881 to 0.885 0.885 to 0.896 0.896 to 0.899 0.899 to 0.904 0.904 to 0.912	1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6	12 23 23 23 24 25 26 30 31 31 32 32 32 32 32 32 32 33 34 35	$\begin{array}{c} -21 \\ -20 \\ -12 \\ -13 \\ -15 \\ -17 \\ -24 \\ -26 \\ -28 \\ -28 \\ -28 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\ -27 \\ -26 \\ -27 \\$		$ \begin{bmatrix} -8 \\ -22 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 0 \\ 0 \\ -1 \\ -3 \\ -2 \\ \end{bmatrix} $	$\begin{array}{c} -67753244320-3-22-1-1-1 \end{array}$	$\begin{array}{c} -5 \\ -6 \\ -4 \\ -3 \\ -3 \\ -3 \\ -4 \\ -2 \\ -11 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$	$\begin{array}{c} 4 \\ 5 \\ -2 \\ 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ \end{array}$	$\begin{array}{c} -3 \\ -4 \\ 4 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ 0 \end{array}$	$ \begin{array}{r} 3 \\ -1 \\ -2 \\ -2 \\ 1 \\ 1 \\ 1 \\ 0 \end{array} $	$\begin{bmatrix} -2 \\ -2 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	0 1 2 1 1 1 -1 -1 -1 -1 -2 -2 -2	$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	-1 1 -1 -1 1 1
	0.912 ⁻ to 0.912 ⁺ 0.912 ⁺ to 0.919 0.919 to 1.000	7 7 12	35 36 37			$ \begin{array}{r r} -2 \\ -1 \\ -1 \end{array} $	$-1 \\ -1 \\ 0$	$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$	0 0	0 0 0	$-1 \\ -1 \\ -1$	$\begin{vmatrix} 0 \\ -1 \\ -1 \end{vmatrix}$	0	1 0	1

The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$).

Table IV C — Formulae for $G_1^*(m, n)$ and the Values of the Next Sample Size x for Certain G-Situations Expressed as Functions of q for n=2(1)12 and $q \ge 0.850$ When Procedure R_1 is Used

The integer shown below q^y opposite $G_1^*(m,n)$ is the coefficient of q^y in the polynomial formula for $G_1^*(m,n)$.

n	m	<i>q</i> -interval	x						G_1^*	(m,n)					
	""	q-intervar		1	q	q ²	q ³	q ⁴	<i>q</i> ⁵	q ⁶	q ⁷	q8	<i>q</i> 9	q10	q^1
2	2	0.850 to 1.000) 1	2	1										
3	2 3	0.850 to 1.000 0.850 to 1.000		4 4	1 2	-1 1									
4	2 4	0.850 to 1.000 0.850 to 1.000		6 7	2 3	-2 1	-2								
5	2 3 5	0.850 to 1.000 0.850 to 1.000 0.850 to 1.000	1	9 9 10	2 3 3	-4 1 1	-2 -3 1	-1 -2 1							
6	2 3 6	0.850 to 1.000 0.850 to 1.000 0.850 to 1.000) 1	12 12 13	2 3 3	$\begin{bmatrix} -6 \\ 1 \\ 2 \end{bmatrix}$	$ \begin{array}{c c} -2 \\ -4 \\ 2 \end{array} $	-1 -2 1	-1 -2						
7	2 3 4	0.850 to 1.000 0.850 to 1.000 0.850 to 1.000	1	15 15 16	2 3 3	$\begin{bmatrix} -8 \\ 2 \\ 2 \end{bmatrix}$	$ \begin{array}{c c} -2 \\ -6 \\ 1 \end{array} $	-1 -3 -5	-1 -2 -3	-1 -1 -2					
	7	0.850 to 0.857 0.857 to 1.000		16 16	3 4	3	2 2	1 1	1	1					
8	2	0.850 to 0.869 0.869 to 1.000		18 18	2 3	-11 -11	$-2 \\ -2$	-1 -1	-1 -2	-1 -1	1				_
	3	0.850 to 0.869 0.869 to 1.000		18 18	3	2 2	-9 -9	-3 -3	-1 -2	-1 -1	-1				
	4	0.850 to 0.869 0.869 to 1.000		19 19	3 4	2 2	1 1	-7 -7	-3 -4	$-2 \\ -2$	-1				
	8	0.850 to 0.869 0.869 to 0.899 0.899 to 1.000	- 3	19 19 20	4 5 5	3 3 3	2 2 2	1 1 1	1 0	1	2 1				
9	2	0.850 to 0.869 0.869 to 0.885 0.885 to 0.899 0.899 to 1.000	1 1	21 21 21 22	2 3 4 3	-14 -14 -14 -14	$ \begin{array}{r} -2 \\ -2 \\ -2 \\ -2 \\ \end{array} $	-1 -1 -2 -2	$ \begin{array}{rrr} -1 \\ -2 \\ -2 \\ -2 \end{array} $	-1 -1 0 -1	1 0 0	1 1 -1			
	3	0.850 to 0.869 0.869 to 0.885 0.885 to 0.899 0.899 ⁻ to 1.000	1	21 21 21 22	3 4 5 4	2 2 2 2	-12 -12 -12 -12		$ \begin{array}{r} -1 \\ -2 \\ -2 \\ -2 \end{array} $	$ \begin{array}{r} -2 \\ -2 \\ -1 \\ -2 \end{array} $	$0 \\ -1 \\ -1 \\ -1$	1 1 -1			
	4	0.850 to 0.869 0.869 to 0.885 0.885 to 0.899 0.899 ⁻ to 1.000		22 22 22 23	3 4 5 4	2 2 2 2	1 1 1 1	-9 -9 -10 -10	-3 -4 -4 -4	$ \begin{array}{r} -2 \\ -2 \\ -1 \\ -2 \end{array} $	-1 -1 -1	-2 -1			

									G_1^*	m,n)					
n	m	q-interval	x	1	q	q^2	<i>q</i> ³	q^4	<i>q</i> ⁵	q^6	q^7	q^8	q^9	q^{10}	<i>q</i> ¹¹
9		0.850 to 0.869	2	22	3	2	2	2	-7	-4	-1				
9		0.869 to 0.885	2	22	4	2	2	2	-8	-4	-2				
	5	0.885 to 0.899	2	22	5	2	2	1	-8	-3	-2	-2			
		0.899 ⁻ to 1.000	2	23	4	2	2	1	-8	-4	-2	-1			
		0.850 to 0.869	3	22	4	3	2	2	2	1	2	2			
		0.869 to 0.881	3	22	5	3	2	2	1	1	1	2			
	9	0.881 to 0.885	4	23	5	3	2	2	0	0	1	2			
		0.885 to 0.899-	4	23	6	3	2	1	0	1	1				
		0.899 ⁻ to 1.000	4	24	5	3	2	1	0	0	1	1			
10		0.850 to 0.857	1	24	2	-17	-2	0	-1	-1	1	1	-1		
		0.857 to 0.869	1	24	2	-17	-1	-1	-1	-1	0	1			
	2	0.869 to 0.885	1	24	3	-17	-2	-1	-2	-1	0	1	1		
	2	0.885 to 0.896	1	24	4	-17	-2	-2	-2	0	0	-1	1		
		0.896 to 0.899-	1	25	4	-17	-3	-2	-2	0	1	-1	-1		
		0.899 ⁻ to 1.000	1	26	3	-17	-3	-2	-2	-1	1	0	-1		
		0.850 to 0.857	1	24	3	2	-15	-1	-2	-2	1	1			
		0.857 to 0.869	1	24	3	2	-14	-2	-2	-2	0	1	1		
	3	0.869 to 0.885	1	24	4	2	-14	-2	-3	-2	-1	1 -1	1 1		
		0.885 to 0.896	1	24	5	2 2	-14 - 15	$-3 \\ -3$	-3 -3	$-1 \\ -1$	-1 0	-1 -1	-1		1
		0.896 to 0.899 ⁻ 0.899 ⁻ to 1.000	1 1	25 26	5 4	2	-15	$-3 \\ -3$	-3 -3	$-1 \\ -2$	0	0	-1		
		0.850 to 0.857	2	25	3	2	1	-11	-3	-2			1		
		0.857 to 0.869	2	25	3	2 2	2 2	$-12 \\ -12$	$-3 \\ -4$	$ \begin{array}{c c} -2 \\ -2 \end{array} $	$-1 \\ -2$	0	1 1		
	4	0.869 to 0.885 0.885 to 0.896	2 2	25 25	5	2	2	-12 -13	-4	$-2 \\ -1$	$-2 \\ -2$	-2	1		
		0.896 to 0.899	2	26	5	2	1	-13	-4	-1	-1	-2	-1		
		0.899 ⁻ to 1.000	2	27	4	2	1	-13	-4	-2	-1	-1	-1		
		0.850 to 0.857	2	25	3	2	2	3	-10	-4	0	0	-1		
		0.857 to 0.869	2	25	3	2	3	2	-10	-4	-1				
		0.869 to 0.885	2	25	4	2	3	2	-11	-4	-2				
	5	0.885 to 0.896	2	25	5	2	3	1	-11	-3	-2	-2			
		0.896 to 0.899	2	26	5	2	2	1	-11	-3	-1	-2	$-2 \\ -2$		
		0.899 ⁻ to 1.000	2	27	4	2	2	1	-11	-4	-1	-1	-2		
		0.850 to 0.857	2	25	3	3	2	3	1	-8	-2	-1	-1		
		0.857 to 0.869	2	25	3	3	3	2 2	0	$-8 \\ -8$	$-3 \\ -4$	-1 -1			
	6	0.869 to 0.885	2 2	25 25	5	3	3	1	0	-8 -7	-4	-3			
		0.885 to 0.896 0.896 to 0.899	2	26	5	3	2	1	0	-7	-3	-3	-2		
		0.899 ⁻ to 1.000	2	27	4	3	2	1	0	-8	-3	-2	-2		
		0.850 to 0.857	3	25	4	3	2	3	2	1	3	3	2		
		0.857 to 0.869	4	26	4	3	3	2	1	ı	2	2	2		1
		0.869 to 0.885	4	26	5	3	3	2	0	1	1	2	2		1
	10	0.885 to 0.896	4	26	6	3	3	1	0	2	1	0	2		
		0.896 to 0.899	4	27	6	3	2	1	0	2	2				
		0.899 ⁻ to 1.000	4	28	5	3	2	1	0	1	2	1			
11		0.850 to 0.857	1	27	2	-20	-1	0	-1	-2	1	2	-1	-1	
		0.857 to 0.869	1	27	2	-20	0	-1	-1	-2	0	2	0	-1	
		0.869 to 0.885	1	27	3	-20	-1	-1	-2	-2	0	2	1	-1	
	2	0.885 to 0.896	1	27	4	-20	-2	$\begin{vmatrix} -2 \\ -2 \end{vmatrix}$	$\begin{vmatrix} -2 \\ -2 \end{vmatrix}$	0	0	-1 -1	1 -1	1 1	
		0.896 to 0.899		28	4	-20 20	-3 -3	-2 -2	-2 -2	-1	1	0	-1 -1	1	
		0.899 ⁻ to 0.904 0.904 to 1.000	1 1	29 30	3	-20 -21	-3 -3	-2 -2	-2 -2	0	1	0	-1 -1	-1	
	1	0.001 10 1.000	1	1 30	1	1	1	1	1 -	1	-	1	1	1	

Table IV C — Continued

_	_	1	1	1						a.cu				_	
n	m	q-interval	x						G ₁ *	(m,n)					
		- q-intervar		1	q	q^2	q ³	q ⁴	q ⁵	q 6	q ⁷	q^8	q 9	q^{10}	q11
11		0.850 to 0.857 0.857 to 0.869	1	27 27	3	2 2	-17 -16	-1 -2	-2 -2	-2 -2	1 0	1	0	-1 -1	
		0.869 to 0.885	1	27	4	2	-16	-3	-3	-2	-1	2	1		
		0.885 to 0.896	1	27	5	2	-16	-4	-3	-1	-1	0	1		
	3	0.896 to 0.899 0.899 to 0.904	1 1	28 29	5 4	3	-17 -18	$\begin{vmatrix} -4 \\ -4 \end{vmatrix}$	-3 -3	-1 -2	0	0	$\begin{vmatrix} -1 \\ -1 \end{vmatrix}$	١,	
		0.904 to 1.000	1	30	4	2	-18	-4	-3	-1	0	0	-1	1 -1	
		0.850 to 0.857	2	28	3	2	2	-14	-3	-3	0	1			
		0.857 to 0.869 0.869 to 0.885	2 2	28 28	3 4	2 2	3	-15	-3	-3	-1	1	1		
	4	0.885 to 0.896	2	28	5	2	3 3	-15 -16	-4 -4	-3 -2	$\begin{vmatrix} -2 \\ -2 \end{vmatrix}$	1 -1	1 1		
	1	0.896 to 0.899	2	29	5	2	2	-16	-4	-2	-1	-1	-1		
		0.899 ⁻ to 0.904	2	30	4	3	1	-16	-4	-3	-1	-1	-1	1	
		0.904 to 1.000	2	31	4	2	1	-16	-4	-2	-1	-1	-1	-1	
		0.850 to 0.857	2 2	28	3	2	3	3	-13	-4	0	0	-1		
		0.857 to 0.869 0.869 to 0.885	2	28	3 4	2 2	4	2 2	-13 -14	-4 -4	$\begin{vmatrix} -1 \\ -2 \end{vmatrix}$				
	5	0.885 to 0.896	2	28	5	2	4	1	-14	-3	-2	-2			
		0.896 to 0.899	2	29	5	2	3	1	-14	-3	-1	-1	-2	-2	
		0.899 ⁻ to 0.904	2	30	4	2	3	1	-14	-4	-1	-1	-2		
		0.904 to 1.000	2	31	4	1	3	1	-14	-3	-1	-1	-2	-2	
		0.850 to 0.857	2	28	3	3	3	3	1	-11	-2	0	-1	-1	
		0.857 to 0.869	2 2	28	3	3	4	2	1	-11	-3	0	0	-1	
	6	0.869 to 0.885 0.885 to 0.896	2	28 28	5	3	4 4	2 1	0	-11 -10	$\begin{vmatrix} -4 \\ -4 \end{vmatrix}$	$\begin{vmatrix} 0 \\ -2 \end{vmatrix}$	0	-1 -1	
		0.896 to 0.899	2	29	5	3	3	1	0	-10	-3	$-\frac{2}{-2}$	-2	-1 -1	
		0.899- to 0.904	2	30	4	4	2	1	0	-11	-3	-2	2	_	
		0.904 to 1.000	2	31	4	3	2	1	0	-10	-3	-2	-2	-2	
		0.850 to 0.857	3	28	4	3	3	4	2	1	3	3	2	2	
		0.857 to 0.869 0.869 to 0.885	4	29 29	4 5	3	4 4	2 2	2	1	2	3	2	1	
	11	0.885 to 0.896	4	29	6	3	4	1	1	1 2	1 1	3	2 2	1 1	
		0.896 to 0.899	4	30	6	3	3	1	1	2	2	1	ő	i	
		0.899- to 0.904	4	31	5	4	2	1	1	2	2	1	0	2	
		0.904 to 1.000	4	32	5	3	2	1	1	2	2	1			
12		0.850 to 0.856 0.856 to 0.857	1	30 30	2 2	-23 -23	-1 0	1 0	-1 -1	-3 -3	1 2	2 2	$-1 \\ 2$	$-1 \\ -2$	1 -1
		0.857 to 0.869	1	30	2	-23	1	-1	-2	-3 -2	1	2	ő	$-2 \\ -1$	-1
		0.869 to 0.881	1	30	3	-23	0	-1	-3	-2	1	2	1	-1	-1
	2	0.881 to 0.885	1	30	3	-22	-1	-1	-3	-2	0	2	2	-1	-1
		0.885 to 0.896 0.896 to 0.899	1 1	30	4	$-22 \\ -23$	$\begin{bmatrix} -2 \\ -3 \end{bmatrix}$	$-2 \\ -2$	$-3 \\ -2$	0	0	-1	2	1	-1
		0.899 to 0.904	1	32	3	-23 -23	-3	$-2 \\ -2$	-2 -2	0 -1	1 1	-1 0	$-1 \\ -1$	1 1	1
		0.904 to 0.912-	1	33	3	-24	-3	$-\frac{1}{2}$	-2	0	1	0	-1	-1	1
		0.912- to 1.000	1	34	3	-25	-3	-2	-1	0	1	0	-2	-1	
		0.850 to 0.856	1	30	3	2	-20	0	-2	-2	0	1	1	-1	
		0.856 to 0.857 0.857 to 0.869	1 1	30	3	2 2	-19	-1	-2	-2	1	1	0	-1	-1
		0.857 to 0.869 0.869 to 0.881	1	30 30	3 4	2	$-18 \\ -18$	$-2 \\ -3$	$-2 \\ -3$	$-2 \\ -2$	0 -1	1 2	1 1	-1 0	-1 -1
		0.881 to 0.885	1	30	4	3	-19	-3	-3 -3	$-2 \\ -2$	-1 -2	2	2	0	-1 -1
	3	0.885 to 0.896	1	30	5	3	-19	-5	-3	-1	-1	0	1	0	1
		0.896 to 0.899	1	31	5	3	-20	-5	-3	-1	0	0	-1	0	1
		0.899 ⁻ to 0.904 0.904 to 0.912 ⁻	1 1	32	4	4 3	$ \begin{array}{c c} -22 \\ -22 \end{array} $	$-4 \\ -4$	-3 -3	$-2 \\ -1$	0	0	0	1 -1	
		0.912 to 1.000	1	34	4	2	-22 -22	-4 -4	-3 -2	-1 -1	0	0	-1	-1 -1	-1
- 1			1		1	-		-	- 1	-			*	•	1

Table IV C — Continued

				1	AD.	LE I	, 0	- 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aca							
					G1*(m,n)												
n	m	q-interval	x	1	q	q^2	q ³	q ⁴	q ⁵	<i>q</i> ⁶	q^7	<i>q</i> 8	<i>q</i> ⁹	q10	q11		
12	4	0.850 to 0.856 0.856 to 0.857 0.857 to 0.869 0.869 to 0.881 0.881 to 0.885 0.885 to 0.896 0.896 to 0.899- 0.899 to 0.904 0.904 to 0.912- 0.912- to 1.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 31 31 31 31 31 32 33 34 35	3 3 4 4 5 5 4 4	2 2 2 2 3 3 3 4 4 3	2 3 4 4 3 3 2 1 1	-16 -17 -18 -18 -18 -19 -19 -19 -19	-3 -3 -5 -5 -5 -5 -5 -5 -4	-3 -3 -3 -3 -2 -2 -2 -2	0 1 0 -1 -2 -2 -1 -1 -1	1 1 1 1 -1 -1 -1 -1	$ \begin{array}{cccc} -1 & & & \\ 0 & & & \\ 1 & & & \\ 2 & & & \\ 0 & & & \\ 0 & & & \\ -1 & & & \\ \end{array} $	0 0 1 -1 -1	-1 -1		
	6	0.850 to 0.856 0.856 to 0.857 0.857 to 0.869 0.869 to 0.881 0.881 to 0.885 0.895 to 0.896 0.896 to 0.899 0.890 to 0.904 0.904 to 0.912 0.912 to 1.000	2 2 2 2 2 2 2 2 2 2 2 2 2	31 31 31 31 31 31 32 33 34 35	3 3 4 4 5 5 4 4 4	3 3 3 4 4 4 5 4 3	3 4 5 5 4 4 4 3 2 2 2 2	4 3 2 2 2 1 1 1 1	1 1 1 0 0 0 0 0 0	-14 -14 -14 -14 -13 -13 -14 -13	$ \begin{array}{rrr} -2 \\ -1 \\ -2 \\ -3 \\ -4 \\ -4 \\ -3 \\ -3 \\ -3 \\ -3 \end{array} $	0 0 0 0 0 -2 -2 -2 -2 -2	$ \begin{array}{c c} -1 \\ -2 \\ -1 \\ -1 \\ 0 \\ 0 \\ -2 \\ -2 \\ -2 \\ -3 \\ \end{array} $	$ \begin{array}{rrr} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -2 \end{array} $			
	7	0.850 to 0.856 0.856 to 0.857 0.857 to 0.869 0.869 to 0.881 0.881 to 0.885 0.885 to 0.896 0.896 to 0.904 0.899 to 0.904 0.904 to 0.912- 0.912- to 1.000	2 2 3 3 3 3 3 3 3 3	31 31 31 31 31 31 32 33 34 35	3 3 4 5 6 6 5 5 5	3 3 3 4 4 4 5 4 3	3 4 5 5 4 4 4 3 2 2 2	4 3 2 2 2 1 1 1 1	2 2 1 0 0 0 0 0 0	1 1 0 0 0 1 1 1 0	-9 -8 -9 -10 -11 -11 -10 -10 -10	$\begin{array}{c c} -2 \\ -2 \\ -2 \\ -2 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \end{array}$	$\begin{array}{c c} -1 \\ -2 \\ -1 \\ -1 \\ 0 \\ 0 \\ -2 \\ -2 \\ -2 \\ -3 \end{array}$	$ \begin{array}{cccc} -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ -1 & & & \\ 0 & & & \\ -2 & & & \\ -2 & & & \\ \end{array} $	$\begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $		
	12	0.850 to 0.856 0.856 to 0.857 0.857 to 0.869 0.869 to 0.881 0.881 to 0.885 0.885 to 0.896 0.896 to 0.904 0.904 to 0.912- 0.912- to 1.000	4 4 4 4 4 4 4 4 4	32 32 32 32 32 32 32 33 34 35 36	4 4 4 5 5 6 6 5 5 5	3 3 3 4 4 4 4 5 4 3	3 4 5 5 4 4 4 3 2 2 2 2 2	4 3 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 1 1 1 1 1 1 1 2	1 1 1 1 1 2 2 1 2 2	3 4 3 2 1 1 2 2 2 2 2 2	3 3 3 3 1 1 1 1	2 1 2 2 3 3 1 1	2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 1 1		

The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$).

Table V A — Expected Number of Tests Required and Size x of the Next Sample To Be Taken for Any $G_1(m,n)$ and Any $H_1(n)$ Situation When Procedure R_1 is Used and q=0.90

							m,n)	———	<u>q – 0.</u>	
11	$H_1(n)$	x	m = 2 $x = 1$	m = 3 $x = 1$	m = 4 $x = 2$	m = 5 $x = 2$		m = 7 $x = 3$	m = 8 $x = 4$	$ \begin{array}{c} m = 9 \\ x = 4 \end{array} $
1 2 3 4 5 6 7 8 9	1.000 1.290 1.661 2.051 2.490 2.943 3.414 3.904 4.395 4.872	1 2 3 4 5 6 7 8 9 6	1.526 2.153 2.485 2.866 3.282 3.728 4.191 4.672 5.163	2.439 2.971 3.325 3.727 4.157 4.613 5.085 5.570	3.056 3.547 3.925 4.343 4.784 5.250 5.728	3.637 4.115 4.512 4.943 5.396 5.868	4.148 4.621 5.033 5.476 5.938	4.628 5.100 5.528 5.980	5.100 5.575 6.014	5.543 6.021
11 12 13 14 15 16 17 18 19 20	5.327 5.790 6.261 6.732 7.213 7.695 8.161 8.629 9.100 9.572	6 6 7 7 7 6 6 7	5.646 6.111 6.570 7.037 7.509 7.985 8.467 8.940 9.407 9.877	6.056 6.528 6.993 7.456 7.925 8.400 8.878 9.354 9.825 10.294	6.210 6.687 7.157 7.623 8.089 8.561 9.038 9.513 9.986 10.458	6.346 6.821 7.294 7.765 8.232 8.702 9.176 9.651 10.124 10.596	6.411 6.883 7.356 7.829 8.300 8.770 9.242 9.715 10.188 10.660	$\begin{array}{c} 6.445 \\ 6.914 \\ 7.385 \\ 7.857 \\ 8.330 \\ 8.802 \\ 9.275 \\ 9.746 \\ 10.218 \\ 10.690 \end{array}$	6.470 6.933 7.401 7.872 8.345 8.819 9.293 9.764 10.235 10.706	6.466 6.922 7.385 7.853 8.324 8.798 9.273 9.746 10.217 10.687
21 22 23 24 25 26 27 28 29 30	10.044 10.520 10.996 11.466 11.937 12.408 12.881 13.353 13.827 14.301	7 7 6 6 7 7 7 7	10.348 10.820 11.295 11.770 12.243 12.714 13.185 13.657 14.129 14.603	10.764 11.236 11.709 12.184 12.658 13.130 13.601 14.073 14.545 15.018	10.927 11.398 11.871 12.345 12.819 13.292 13.763 14.235 14.707 15.179	11.068 11.538 12.010 12.484 12.957 13.430 13.902 14.374 14.846 15.319	11.133 11.605 12.076 12.549 13.022 13.495 13.967 14.440 14.912 15.384	11.163 11.635 12.108 12.580 13.052 13.525 13.997 14.470 14.943 15.415	11.179 11.651 12.124 12.597 13.069 13.541 14.014 14.486 14.959 15.431	11.159 11.632 12.105 12.578 13.051 13.522 13.994 14.467 14.939 15.412
31 32 33 34 35 36 37 38 39 40	14.773 15.244 15.717 16.189 16.661 17.135 17.608 18.080 18.552 19.024	7 7 7 7 7 7 7	15.077 15.549 16.021 16.493 16.965 17.438 17.910 18.384 18.856 19.328	15.491 15.965 16.437 16.909 17.381 17.853 18.326 18.799 19.272 19.744	15.653 16.126 16.598 17.071 17.543 18.015 18.487 18.960 19.433 19.906	15.792 16.264 16.737 17.210 17.682 18.154 18.626 19.099 19.572 20.044	15.857 16.329 16.802 17.275 17.747 18.219 18.692 19.164 19.637 20.110	15.888 16.360 16.833 17.305 17.778 18.250 18.723 19.195 19.668 20.140	15.904 16.377 16.849 17.321 17.794 18.266 18.739 19.212 19.684 20.157	15.885 16.358 16.830 17.302 17.775 18.247 18.720 19.192 19.665 20.137
41 42 43 44 45 46 47 48 49 50	19.497 19.969 20.442 20.915 21.387 21.860 22.332 22.805 23.277 23.750	7 7 7 7 7 7 7	19.801 20.273 20.745 21.218 21.691 22.164 22.636 23.108 23.581 24.053	$\begin{array}{c} 20.216 \\ 20.688 \\ 21.161 \\ 21.634 \\ 22.106 \\ 22.579 \\ 23.051 \\ 23.524 \\ 23.996 \\ 24.469 \end{array}$	20.378 20.850 21.323 21.795 22.268 22.740 23.213 23.685 24.158 24.630	20.517 20.989 21.462 21.934 22.407 22.879 23.352 23.825 24.297 24.769	20.582 21.055 21.527 21.999 22.472 22.945 23.417 23.890 24.362 24.835	20.613 21.085 21.558 22.030 22.503 22.975 23.448 23.920 24.393 24.865	20.629 21.102 21.574 22.047 22.519 22.992 23.464 23.937 24.409 24.882	$\begin{array}{c} 20.610 \\ 21.082 \\ 21.555 \\ 22.027 \\ 22.500 \\ 22.972 \\ 23.445 \\ 23.917 \\ 24.390 \\ 24.862 \end{array}$

Table V A — Continued

						$G_1(n)$	n,n)			
n	$H_1(n)$	x	m = 2 $x = 1$	m = 3 $x = 1$	m = 4 $x = 2$	m = 5 $x = 2$	m = 6 $x = 2$	m = 7 $x = 3$	m = 8 $x = 4$	m = 9 $x = 4$
51 52 53 54 55 56 57 58	24.222 24.695 25.167 25.640 26.112 26.585 27.057 27.530 28.002	7 7 7 7 7 7 7	24.526 24.998 25.471 25.943 26.416 26.888 27.361 27.833 28.306	24.941 25.414 25.886 26.359 26.831 27.304 27.776 28.249 28.721 29.194	25.103 25.575 26.048 26.521 26.993 27.465 27.938 28.410 28.883 29.356	25.242 25.714 26.187 26.660 27.132 27.605 28.077 28.550 29.022 29.495	25.307 25.780 26.252 26.725 27.197 27.670 28.142 28.615 29.087 29.560	25.338 25.810 26.283 26.755 27.228 27.700 28.173 28.645 29.118 29.590	25.354 25.827 26.299 26.772 27.244 27.717 28.189 28.662 29.134 29.607	25.335 25.807 26.280 26.752 27.225 27.697 28.170 28.643 29.115 29.588
60 61 62 63 64 65 66 67 68 69 70	28.475 28.947 29.420 29.892 30.365 30.837 31.310 31.782 32.255 32.727 33.200	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	28.779 29.251 29.723 30.196 30.668 31.141 31.614 32.086 32.559 33.031 33.504	29.194 29.666 30.139 30.611 31.084 31.556 32.029 32.502 32.974 33.446 33.919	29.828 30.301 30.773 31.246 31.718 32.191 32.663 33.136 33.608 34.081	29.967 30.440 30.912 31.385 31.857 32.330 32.802 33.275 33.747 34.220	30.032 30.505 30.977 31.450 31.922 32.395	30.063 30.535 31.008 31.480 31.953 32.425 32.898 33.370 33.843 34.316	30.079 30.552 31.024 31.497 31.969 32.442 32.914 33.387 33.859 34.332	30.060 30.533 31.005 31.478 31.950 32.423 32.895 33.368 33.840 34.313
71 72 73 74 75 76 77 78 79 80	33.672 34.145 34.617 35.090 35.562 36.035 36.507 36.980 37.453 37.925	7 7 7 7 7 7 7 7	33.976 34.449 34.921 35.394 35.866 36.339 36.811 37.284 37.756 38.229	34.392 34.864 35.337 35.809 36.282 36.754 37.227 37.699 38.172 38.644	38.333	34.692 35.165 35.637 36.110 36.582 37.055 37.527 38.000 38.472 38.945	35.230 35.702 36.175 36.647 37.120 37.592 38.065 38.537	34.788 35.261 35.733 36.206 36.678 37.151 37.623 38.096 38.568 39.041		34.785 35.258 35.730 36.203 36.675 37.148 37.620 38.093 38.565 39.038
81 82 83 84 85 86 87 88 89	38.398 38.870 39.343 39.815 40.288 40.760 41.233 41.705 42.178 42.650	7 7 7 7 7 7 7 7	38.701 39.174 39.646 40.119 40.591 41.064 41.536 42.009 42.481 42.954	39.117 39.589 40.062 40.534 41.007 41.479 41.952 42.424 42.897 43.369	40.223 40.696 41.168 41.641 42.113 42.586 43.058	$\begin{array}{c} 41.780 \\ 42.252 \\ 42.725 \end{array}$	39.955 2 40.427 5 40.900 41.373 0 41.845 2 42.318 6 42.790 43.263	39.513 39.986 40.458 40.931 41.403 41.876 42.348 42.821 43.293 43.766	40.002 40.475 40.947 41.420 41.892 42.365 42.837 43.310	40.455 40.928 41.400 41.873 42.345 42.818 43.290
91 92 93 94 95 96 97 98 99	43.123 43.595 44.068 44.540 45.013 45.485 45.958 46.430 46.903 47.375	7 7 7 7 7 7 7 7	43.426 43.899 44.371 44.844 45.316 45.789 46.261 46.734 47.206 47.679	44.787 45.259 45.732 46.204 46.677 47.149 47.622	44.476 44.948 45.421 45.893 46.366 46.838 947.311 247.784	44.618 45.087 45.560 46.032 46.508 46.978 47.450 47.928	44.680 7 45.153 9 45.625 2 46.098 5 46.570 8 47.043 9 47.515 8 47.988	44.711 45.183 45.656 46.128 46.601 47.073 47.546 48.018	44.727 45.200 645.672 846.145 46.617 847.090 647.562 848.035	44.708 45.180 45.653 46.125 46.598 47.070 47.543 48.016

Table V B—Expected Number of Tests Required and Size x of the Next Sample to be Taken for Any G(m,n) and Any $H_1(n)$ Situation when Procedure R_1 is Used and q=0.95

1	8 12		65	26 01 01 78 39 39 07 67 67
	# #		7.465 7.757	8.026 8.301 8.578 8.858 9.139 9.707 9.993 10.280
	- × ×			
	# # # # # # # # # # # # # # # # # # #		7.214 7.504 7.772	8.046 8.323 8.603 8.884 9.167 9.451 10.024 10.311
	8 27			8.065 8.345 8.626 8.626 8.909 9.194 9.480 9.766 9.766 10.053 10.341 10.629 10.629 10.629 10.629
	# #		6.961 7.251 7.516 7.788	8.065 8.345 8.626 8.909 9.194 9.480 9.766 10.053 10.341
	16 m 7 x	1		88888888888
	н п		6.704 6.993 7.255 7.524 7.800	. 079 . 361 . 644 . 929 . 215 . 501 . 788 . 076 . 364
	15 17 3	1		8 .097 8 .090 8 .079 8 .089 8 .381 8 .382 8 .374 8 .361 8 8 .669 8 .659 8 .644 8 .929 8 .924 9 .232 9 .215 9 9 .819 9 .806 9 .788 9 9 .819 9 .806 9 .788 9 9 .810 .0710 .094 10 .076 11 10 .633 10 .652 10 .652 10 .652 10
	11 11		6.443 6.732 6.990 7.257 7.530	.090 .374 .945 .945 .945 .094 .094
	# #			88888666000
	= 14 = 6		6.179 6.467 6.721 6.985 7.256 7.532 7.813	.097 .382 .382 .956 .956 .243 .531 .531 .107 .395
	# ×			888866600
	= 13		5.913 6.201 6.451 6.712 6.979 7.253 7.815	110 690 690 690 690
	# **			888889999
	= 12		5.643 5.932 6.178 6.435 6.699 6.971 7.247 7.528	102 391 679 968 257 257 545 833 121 408
	# 18			88889999555
	11 = 4		5.368 5.657 5.899 6.152 6.413 6.681 7.234 7.518	8.096 8.102 8.386 8.391 8.675 8.679 8.964 8.968 9.253 9.257 9.542 9.545 9.829 9.833 10.11710.1211 10.40310.4081
n,n)	# # #			0.00
G1(m,n)	10 4 =	5.082	5.373 5.850 6.116 6.382 6.653 6.930 7.211 7.498	8.078 8.369 8.659 8.949 8.949 9.238 9.526 9.526 10.10010 10.386 10.386
	# # x	5.0	7776665777	888866655
	6.4	4.780 5.074	5.306 5.550 5.804 6.066 6.334 6.608 6.888 7.173 7.461	17 7.985 8.044 8.078 8.06 8.277 8.336 8.369 8.18 8.568 8.627 8.659 8.19 9.146 9.205 9.238 9.149 9.205 9.238 9.100 9.718 9.779 9.813 9.10.286 10.349 10.349 10.349 10.571 10.634 10.671 10.
	# # # # # # # # # # # # # # # # # # #	4.7.0	0.0000000000000000000000000000000000000	8888866666
	∞ 4	4.455 4.753 4.978	5.218 5.467 5.726 5.991 6.262 6.540 6.822 7.109 7.398	985 277 568 858 858 146 432 718 002 286 571
	# #	4.4.4.	0.00.00.00.00.00.00.00.00.00.00.00.00.0	7.88.88.25.90.00.00.00.00.00.00.00.00.00.00.00.00.
	1- m	50 57 57 08	52 52 52 52 53 53 54 54 55 55	7.947 8.240 8.531 8.820 9.107 9.392 9.676 9.959 110.243 10.530
	# #	4.150 4.457 4.675 4.908	5.153 5.409 5.939 6.214 6.494 6.779 7.067 7.358	7.947 8.240 8.531 8.820 9.107 9.392 9.676 9.959 0.243
	9 7			
	# #	3.810 4.130 4.341 4.568 4.808	5.059 5.318 5.583 5.855 6.133 6.416 6.702 6.992 7.285	7.876 8.169 8.460 8.747 9.033 9.316 9.598 10.167
	20.01			148 30 30 31 34 11 11
	# # x	3.409 3.749 3.953 4.175 4.655	4.909 5.171 5.171 5.716 5.997 6.281 6.569 6.861 7.155	7.748 8.330 8.330 8.616 8.899 9.181 9.464 9.748
	4.61	8883588		
	# # # # # # # # # # # # # # # # # # #	2.898 3.268 3.462 3.679 4.148	4.656 4.923 5.196 5.474 5.756 6.042 6.332 6.626 7.219	7.516 7.808 8.095 8.095 8.659 8.941 9.225 9.510 9.796
	2			
	# #	2.385 2.988 2.998 3.206 3.430 4.164	4.427 4.955 4.975 5.254 5.258 5.826 6.118 6.414 6.710	7.305 7.595 7.595 7.879 8.159 8.723 9.008 9.293 9.581
	2 " "			88888804408
		1.513 2.076 2.246 2.244 2.657 2.893 3.134 3.379	3.907 4.180 4.180 5.025 5.025 5.316 5.906 6.203	6.798 7.083 7.363 7.643 7.926 8.210 8.494 8.781 9.069 9.358
	# # #	19946919888		88888888888888888888888888888888888888
			3.315111 3.594121 3.878132 4.16614 4.45815 5.05117 5.64819 5.64819	220 12 2. 499 12 2. 699 12 2. 064 13 3. 648 13 6. 633 13 921 14 2. 210 14 3. 500 14
	$H_1(n)$	1.000 1.148 1.340 1.538 1.771 2.009 2.252 2.499 2.767 3.039	88844477777	6.220 6.499 6.780 7.064 7.348 7.921 8.210 8.500 8.791
-		10847001	111 112 113 114 114 115 116 118 118 118 118 118 118 118 118 118	320 22 25 25 25 25 25 25 25 25 25 25 25 25
1		-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table V B—Continued

		ro488808980	F480%F648E	0941073810
	= 19 = 8	10.855 11.144 11.433 11.723 12.012 12.300 12.588 12.588 13.163	737 024 312 600 888 177 177 754 042 331	16.619 16.906 17.194 17.481 17.769 18.057 18.345 18.633 18.633 18.921 19.210
	# 8	22222222	13.7 14.0 14.0 15.7 15.7 16.0	16. 17. 17. 18. 18. 18. 19.
	8 8	.887 10 855 .176 11.144 .465 11.143 .755 11.723 .044 12.012 .620 12.58 .907 12.876 .194 13.163	768 056 344 632 920 208 497 786 074 362	350 337 301 301 377 365 365 365
	# x 	10.887 11.176 11.465 11.755 12.044 12.332 12.620 12.907 13.194	13.768 14.345 14.632 14.632 14.920 15.208 15.497 15.786 16.074	900000000000000000000000000000000000000
	8 8	917 1 206 1 495 1 785 1 073 1 648 1 648 1 510 1	798 13 768 .08514.056 .373 14.34 .66114.632 .950 14.920 .238 15.208 .527 15.497 .815 15.786 .104 16.074	79 18 18 18 18 18 17 11 18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
	11 11	1924 1927 1927 1927 1927 1927 1927 1927 1927	25.00.00.00.00.00.00.00.00.00.00.00.00.00	9997814999
	# 8	940 10. 229 11. 518 11. 807 11. 095 12. 883 12. 670 12. 957 12. 245 13.	820 13. 108 14. 108 14. 396 14. 684 14. 972 14. 261 15. 549 15. 126 16.	35112
	= 16	10.940 10.917 11.229 11.206 11.807 11.785 12.095 12.073 12.670 12.648 12.670 12.648 12.957 12.935 13.245 13.223 13.532 13.510	820 108 144 145 145 145 145 145 145 145 145 145	200 200 200 200 200 200 200 200 200 200
	# 8	2222222	13. 820 14. 108 14. 396 14. 396 14. 972 14. 972 14. 972 15. 26 15. 549 15. 838 15. 838 16. 126 16. 126 16. 413	16 17 17 18 18 19 19 19
	= 15	$\begin{array}{c} 976 \\ 10. 982 \\ 11. 26911. 26911. 25911. 25911. 24811. 22911. 206111. 176 \\ 55011. 55711. 25911. 25911. 24811. 22911. 206111. 176 \\ 83911. 84511. 84311. 83511. 83511. 80711. 78511 . 755 \\ 112812. 13312. 13112. 12312. 11212. 09512. 07312. 364 \\ 11712. 42212. 41912. 41112. 40012. 38312. 36112. 33 \\ 70612. 71012. 70712. 69812. 68712. 67012. 64812. 630 \\ 99412. 99912. 99512. 98612. 97512. 95712. 93712. 907 \\ 28213. 28713. 28713. 28313. 27413. 26213. 24513. 23313. 194 \\ 57013. 57513. 57513. 56213. 55013. 53213. 51013. 481 \\ \end{array}$	13.863 13.859 13.850 13.838 14.126 14.439 14.435 14.426 14.414 14.702 14.726 14.702 15.013 15.013 15.203 15	719 007 007 2295 583 871 159 447 735 023 311
	" " "	22222222	13. 14. 14. 15. 15. 16.	16. 17. 17. 18. 18. 19.
	14	971 10. 259 11. 835 11. 123 12. 411 12. 698 12. 986 12. 274 13.	850 13 138 14 426 14 714 14 003 14 003 14 579 15 867 15 155 16 443 16	30 118 106 106 171 147 147 147 135
	# = x	10.971 11.259 11.547 11.835 12.123 12.411 12.698 12.986 13.274	81.47.000000.4	0.777.3 7.77.3 7.77.3 7.77.3 9.00.0 9.00.0
	13	980 10. 267 111. 555 111. 843 111. 131 12. 707 12. 283 13. 571 13.	23212211	39 1 151 151 151 151 151 151 151 151 151 1
		10.980 11.267 11.555 11.843 12.131 12.419 12.707 12.995 13.283	8.14.7.0000000000000000000000000000000000	20.00.00.00.00.00.00.00.00.00.00.00.00.0
	# *	982 10. 269 11. 845 11. 845 11. 422 12. 710 12. 999 12. 287 13.	863 13. 859 13. 151 14. 147 14. 439 14. 435 14. 726 14. 728 14. 728 15. 014 15. 011 15. 878 15. 878 15. 878 15. 878 16. 451 16. 451 16.	2 16 117 118 118 118 118 118 118
	= 12	986 266 267 71 71 71 71 72 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	86 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	74 03 118 118 118 118 118 118 118 118 118 11
	u x	13.22.22.23.23.23.23.23.23.23.23.23.23.23	13. 14. 15. 15. 16.	16 17 17 17 17 18 18 18 19 19
	11 4	976 10. 982 10. 980 263 11. 269 11. 267 550 11. 557 11. 555 839 11. 845 11. 843 128 12. 133 12. 131 417 12. 422 12. 419 706 12. 710 12. 70 994 12. 999 12. 995 282 13. 287 13. 283 570 13. 575	858 146 134 434 721 008 296 584 872 161 1449	738 026 314 314 602 890 178 753 041 329
(u,	# x	13.22.22.23.23.23.23.23.23.23.23.23.23.23	13. 858 13. 859 13. 859 13. 859 13. 859 13. 859 14. 126 14. 126 14. 126 14. 126 14. 126 14. 126 14. 126 14. 141 14. 141 14. 141 14. 721 14. 721 14. 721 14. 721 14. 702 14. 702 14. 141 15. 208 15. 301 15. 509 14. 501 15. 501 15. 501 15. 501 15. 571	16. 17. 17. 17. 18. 18. 19.
$G_1(m, n)$	10	$\begin{array}{c} 610 \\ 921 \\ 11. \\ 322 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\ 11. \\ 321 \\$	745 13. 807 13. 842 13. 858 032 14. 094 14. 129 14. 146 318 14. 380 14. 416 14. 434 605 14. 657 14. 703 14. 721 893 14. 955 14. 990 15. 008 182 15. 243 15. 278 15. 296 17. 15. 243 15. 243 16. 398 16. 398 16. 398 16. 332 16. 449	721 297 297 297 373 373 161 161 736 736 312
	# # x	10.9 11.2 12.1 12.1 12.6 13.2 13.2 13.2	6.6.3.4.4.4.6.6.6.6.9.9.9.9.9.9.9.9.9.9.9.9.9	16.7 17.8 17.8 18.4 19.0 19.0
	0 4	920 10 208 11 787 11 787 11 077 12 366 12 655 12 944 12 232 13	745 13.807 13.842 032 14.094 14.129 318 14.380 14.416 605 14.667 14.703 893 14.955 14.990 182 15.243 15.278 471 15.532 15.666 049 16.109 16.144 337 16.398 16.432	86 74 62 62 50 38 38 13 13 77
	11 11	10.920 11.208 11.497 11.787 12.077 12.366 12.655 12.944 13.232	\$ 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.15.2 8.14.8 8.14.8 9.9
	8 4 8 x	858 10. 146 11. 436 11. 726 11. 017 12. 306 12. 595 12. 172 13.	745 13. 032 14. 318 14. 318 14. 860 14. 889 14. 182 15. 471 15. 760 15. 049 16.	042007420079
	11 11	10.858 11.146 11.726 12.017 12.306 12.595 12.884 13.172	74 103 103 103 103 104 103 103 103 103 103 103 103 103 103 103	20.091 20.092 20.092 20.092 20.092
	u x	817 10. 106 11. 396 11. 687 11. 978 12. 268 12. 268 12. 268 12. 132 13.	704 13. 990 14. 277 14. 255 14. 853 14. 142 15. 720 15. 7009 16.	5 16 17 2 17 2 17 3 17 4 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18
	1	742 10.817 .032 11.106 .323 11.396 .905 11.978 .905 12.268 .771 12.845 .057 13.132 .343 13.418	704 990 277 277 565 853 142 431 720 009	587 116 123 123 123 123 123 123 123 123 123 123
	# x	12.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	13. 14. 14. 15. 15. 16.	16 17 17 17 18 18 18 18 19
	9 61	742 .032 .323 .614 .905 .195 .483 .771 .057	629 13. 203 14. 203 14. 203 14. 7490 14. 679 14. 667 15. 647 15. 224 16.	512 800 087 374 661 949 949 525 525 102
	# # x	1222222	13. 14. 14. 15. 15. 16.	16. 17. 17. 17. 17. 18. 18. 18.
	2.5	610 192 192 192 775 064 352 639 924 209	98 83 77 70 53 83 93 93 93	81 68 68 54 54 52 52 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54
	= x	10.6 10.9 11.1 11.4 11.7 112.0 12.3 12.9 13.2	47.08.992380	88877729
	4.2	. 160 10.374 10.610 10.742 10.817 10.858451 10.665 10.901 11.032 11.106 11.146743 10.957 11.192 11.323 11.306 11.48637 11.540 11.775 11.905 11.978 12.017899 12.116 11.252 12.28 12.306891 2.116 12.639 12.771 12.845 12.845469 12.686 12.924 13.057 13.132 13.172469 12.987 13.209 13.343 13.418 13.459	238888888888888888888888888888888888888	200 200 200 200 200 200 200 200 200 200
	11 11	. 374 . 665 . 957 . 249 . 540 . 829 . 116 . 401	2.2.2.4.1.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	1.4.00.2.2.2.8.1.4.7.
	* *	0.010.010.010.010.010.010.010.010.010.0	3 13 3 13 3 13 5 14 6 14 6 15 6 15 1 15	901211111111111111111111111111111111111
	1 3	10.160 10.451 10.743 11.036 11.327 11.899 12.184 12.469	90.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	22122222222222222222222222222222222222
	# ×		$\begin{array}{c} 531 \\ 13.043 \\ 13.258 \\ 14.256 \\ 14.456 \\ 14.457 \\ 15.457 \\$	115 116 116 117 117 118 118
	= 1	24.15 29.15 29.15 29.15 20.23 20.15 20.23 20.15 20.23 20	531 819 107 395 685 685 975 555 555 129	416 702 990 990 277 277 485 430 719 008
	# # #	9.6	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	15. 15. 16. 16. 17. 17.
	ĸ	221212121214	44444488888	884444444
	(n	084 15 9 649 1 657 1 6 9 649 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	1. 959 14 12. 531 13. 04311 2. 247 14 12. 819 13. 330 11 2. 256 14 13. 107 13. 618 11 2. 826 14 13. 395 13. 907 13. 116 14 13. 885 14. 196 13. 975 14. 485 13. 969 13 14. 265 14. 776 14. 268 13 14. 555 13. 696 13 14. 555 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	$\begin{array}{c} 5114.842 \\ 5215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 1315.702 \\ 16.215.130 \\ 17.215.130 $
	$H_1(n)$	0.0000000000000000000000000000000000000	11.2 12.2 12.2 13.1 13.4 13.4 14.2 13.4 14.2	14. 15. 15. 15. 17.
	2	31 9.0 32 9.3 33 9.0 34 9.3 35 10.3 36 10.3 37 10.3 38 11.0 40 11.0	45 111. 44 12. 45 13. 45 13. 46 13. 48 13. 50 14.	51 52 53 53 53 53 53 53 53 53 53 53 53 53 53

498 786 074 074 363 363 938 514 514 802 090	378 666 954 954 531 107 395 683 971	259 835 123 123 411 699 988 988 988 564 564	140 428 716 004 004 580 868 868 445 733
221. 221. 221. 221.	22222222222	227.55	888888888888
530 818 818 106 394 682 970 970 546 546	410 698 986 986 274 562 850 139 427 715	291 867 867 1155 443 731 019 307 883	171 460 748 036 324 612 900 188 176 476
221228282828282828282828282828282828282	22222222222222222222222222222222222222	22226.12 227.22 27.22 27.23	882222288.1 830.229232 830.23933
559 136 136 136 136 711 711 999 999 575 575 151	439 727 016 3304 592 880 168 168 168 1744 032	320 608 896 184 473 761 049 337 625 825	201 489 777 777 965 8641 641 929 528 528 794
22.2886.988.1288.1288.1388.1388.1388.1388.1388.13	22222222222222222222222222222222222222	2222553 226528 22725 2773 2773	2822 2822 2822 30.52 30.52 50.52 50.52
582 1158 1158 128 128 128 138 138 138 138 138 138 138 138 138 13	462 038 038 326 614 902 190 190 190 190 054 054	343 631 207 207 207 207 207 207 207 207 207 207	223 511 800 088 376 8376 664 952 240 816 816
19.5 20.1 20.1 20.1 21.3 21.5 21.5 21.8	222 222 223 223 224 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	222553 222553 222553 222553 222553 22553	282228822 282232822 30223293 802233 802233
599 1 175 2 175 2 175 2 175 2 175 1 192 2 192 2 192 2	480 768 920 920 920 920 784 784 784 784 784	360 649 837 801 801 801 801 801 801 801 801 801 801	241 529 817 105 394 682 682 970 970 258 343 834
19.5 19.5 19.5 20.1 20.7 221.3 221.9 221.9	22222222222222222222222222222222222222	222553 222553 222653 2773 2773 2776	30.229.328.528 30.239.339.339 30.2399.339
611 187 187 187 187 187 187 187 187 187 1	492 780 780 982 644 932 508 508 796 842 796 842 843 843 843 844 844 845 844 845 844 844 844 844 844	372 660 948 237 237 237 237 238 339 339 657 677	253 541 829 117 117 693 693 270 3846 846
19.6 19.8 19.8 20.1 20.7 22.2 22.2	22222333 2222333 254222333 254233	2255.9 225.9 225.9 227.3 27.3 27.6	28.52 28.52 28.52 28.52 30.52 30.52 30.53
619 1962 1962 1962 1963 1963 1963 1963 1963 1963 1963 1963	500 788 7788 7788 7788 778 778 778 778 77	381 669 245 245 245 233 821 109 397 285 397 397 685 245 397	262 2 838 2 126 2 126 2 702 2 278 3 854 3
19.6 19.9 19.9 20.1 20.1 20.1 20.1 20.1 20.1 20.1	22222222222222222222222222222222222222	222255 222255 22225 22225 2225 2225 22	8302222888898999999999999999999999999999
622 199 199 2487 775 639 639 215 215 215	503 791 791 791 791 792 793 793 793 793 793 793 793 793 793 793	384 672 960 248 248 2536 2536 111 400 689 277	265 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
119.6 119.6 119.9 120.1 120.1 120.1 120.2 120.2	22222222222222222222222222222222222222	22222555 22222655 2222265 22225 22225 225 25	28.28 28.28 28.28 28.28 30.28 30.28 30.28 30.28
617 1 194 2 194 2 194 2 770 2 058 2 058 2 346 2 634 2 922 2 210 2	498 7862 7862 3622 3622 6502 6502 5152 5152 6032 6012	879 667 667 879 879 879 879 879 879 879 875 875 875 875 875 875 875 875 875 875	260 548 836 124 124 700 700 276 38 852 38 852
19.6 19.9 20.1 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	22222222222222222222222222222222222222	227.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38	333299.288.58 330399.29.28
888 1772 1772 1772 1772 1652 2465 2753 2041 2329 2329 2329 2329 2329 2329 2329 232	481 769 2057 345 633 201 201 201 201 201 201 201 201 201 201	362 650 938 938 226 226 226 236 802 378 956 956 955	243 2 531 2 531 2 531 2 531 2 531 2 531 2 531 2 53 2 53
221.32 22.13 22.13 22.13 22.13	22.22.23.23.24.42.23.39.24.42.23.39.23.44.72.55.00.44.72.39.39.39.39.39.39.39.39.39.39.39.39.39.	7777666555	282 282 282 28 28 28 28 28 28 28 28 28 2
565 1 142 2 142 2 142 2 143 2 1718 2 206 2 206 2 207 2 207 2 207 2 207 2 207 2 207 2 207 2	446 7342 0222 3310 5982 5982 1752 4632 7512 039	327 25. 615 25. 903 25. 191 26. 479 26. 767 26. 055 27. 843 27.	208 496 784 072 360 224 648 224 362 512 380 380 380
201.58 201.28 201.28 201.28 201.28	22.22.23.05.24.1.22.23.33.05.24.1.22.23.33.33.33.33.33.33.33.33.33.33.33.	25.33 25.6.39 26.14 27.07 27.09 27.09 27.09 27.09	28.28 28.28 28.28 30.28 30.28 30.58 30.58
204 1 2 2 3 4 5 2 2 3 4 5 2 2 3 4 5 2 3 4 5 5 2 2 5 2 5 2 5 2 3 4 5 5 2 3 4 5 5 2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	885 673 673 673 673 673 673 673 673 673 673	266 2554 2554 2554 2554 265 265 265 265 265 265 265 265 265 265	147 435 723 0111 0112 587 587 163 33 451 33
	22222222222222222222222222222222222222	2525.28 2526.28 27.28 27.28 27.28 27.28 27.28	
25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7820884308 99999999999		90 30 30 30 30 30 30 30 30 30 30 30 30 30
9.464 9.753 9.041 0.330 0.618 0.906 1.194 1.481 1.769	2.345 2.633 2.921 3.209 3.498 3.786 4.074 4.362 4.938	5.226 5.514 5.514 5.802 5.378 5.378 5.954 7.242 7.531	S. 107 S. 395 S. 395 S. 683 S. 971 9. 259 9. 547 9. 835 9. 411
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25555555555555555555555555555555555555	282 25 282 25 282 25 282 26 282 27 27	82282888888888888888888888888888888888
9.390 9.679 9.967 9.256 9.544 9.831 1.119 1.407 1.695	2.270 2.559 2.847 3.135 3.712 4.000 4.288 4.576 4.864	5.152 5.440 5.728 5.016 5.304 5.304 5.592 5.880 7.168	3.033 3.321 3.609 3.897 3.897 3.473 3.473 3.761 3.337 3.337
25 25 25 25 25 25 25 25 25 25 25 25 25 2	85.885.885.885.885.885.885.885.885.885.	22225555 222266555555555555555555555555	33055558888
9.259 9.547 9.836 9.124 9.412 9.699 9.987 1.275 1.563	2.139 2.427 2.715 3.003 3.292 3.580 3.868 4.156 4.144	5.020 5.308 5.308 5.596 5.884 5.172 5.172 5.748 7.036 7.325	7.901 8.189 8.477 8.765 9.053 9.341 9.629 9.917
810555554 1019 1019 1019 1019 1019 1019 1019 101	208284282	82 25 25 25 25 25 25 25 25 25 25 25 25 25	42088648187 72888888888
).023).311).600).887).175).175 (1.038 (1.326 (1.614	1.902 2.190 2.478 2.767 3.055 3.344 3.632 3.920 4.207	1.783 5.071 5.359 5.359 5.935 5.224 5.224 5.512 5.800 7.088	7.664 7.952 8.240 8.528 8.528 8.816 9.104 9.393 9.681 9.969
8 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	75880087400 122222222222222222222222222222222222	25.55.55.55.55.55.55.55.55.55.55.55.55.5	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
.808 .097 .385 .672 .959 .247 .535 .535 .339	.687 .975 .263 .263 .552 .840 .129 .417 .704 .992	1.568 1.44 1.144 1.144 1.120 1.008 1.297 1.585 1.585 1.161	7.449 3.025 3.313 3.601 3.889 3.889 1.177 1.754
7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	868848888888888888888888888888888888888	623555555 6235555555 625555555 625555555 62555555 6255555 625555 62555 625 62	8844088440 222222222222222
3.297 3.585 3.873 3.160 3.1448 3.023 3.311 3.311 3.873 3.873	1.175 1.464 1.752 1.752 2.040 2.329 2.617 2.905 3.193 3.480	L. 056 L. 345 L. 633 L. 921 S. 209 S. 497 S. 785 S. 073 S. 650	5.938 7.226 7.514 7.802 8.090 8.378 8.954 9.530
20.00 20.00 20.00 20.00 20.00 20.00	######################################	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444444444444444444444444444444444444
72613 30013 58813 58813 16314 745114 74014 02814	892 14 892 14 181 14 175 13 175 13 193 15 190 14	485 773 061 349 349 637 1 926 1 502 1 790 078	366 654 942 230 1518 1518 1670 1670 1670 1670
7.0000000000 7.00000147.00	222.23 222.33 222.93 23.96 23.11	282222223 4.7.2222223 5.7.22223 5.0.32223 5.0.3223	288887777888888888888889999999999
62 17. 62 18. 63 18. 64 18. 65 19. 66 19. 67 19. 68 19.	20000000000000000000000000000000000000	08888888888888888888888888888888888888	00000000000000000000000000000000000000
			1 1

	m = 100 $x = 35$			
	m = 90 $x = 32$			
	m = 80 $x = 32$			
	m = 70 $x = 32$			
	m = 60 $x = 28$			
	m = 50 $x = 18$			
	m = 40 $x = 16$			
	$m = 30 \ n$ $x = 14$			
	m = 20 $x = 8$		5.773	5.871 5.928 5.928 6.046 6.107 6.232 6.236 6.296
$G_1(m,n)$	m = 10 $x = 4$	4.447	4,585 4,634 4,685 4,739 4,739 4,908 4,908 5,028 5,090	5.153 5.216 5.281 5.346 5.412 5.479 5.547 5.615
	m = 9 $x = 4$	4.237	4,433 4,483 4,536 4,591 4,704 4,762 4,822 4,884 4,946	5.009 5.073 5.204 5.271 5.339 5.407 5.543
	m = 8 $x = 4$	3.986 4.145 4.191	4.241 4.293 4.347 4.402 4.459 4.577 4.637 4.698	4.824 4.889 4.955 5.021 5.089 5.157 5.225 5.293 5.362
	m = 7 $x = 3$	3.798 3.974 4.018 4.066	4.117 4.171 4.226 4.282 4.340 4.399 4.458 4.580 4.643	4.708 4.773 4.839 4.907 4.975 5.043 5.111 5.179
	m = 6 $x = 2$	3.560 3.757 3.800 3.896	3.949 4.003 4.059 4.117 4.117 4.235 4.294 4.294 4.355 4.417	4. 546 4. 612 4. 612 4. 747 4. 815 4. 952 5. 020 5. 089
	m = 5 x = 2	3.240 3.468 3.510 3.556 3.603	3.708 3.708 3.821 3.879 3.998 4.057 4.119 4.181	4 4 312 4 4 447 4 4 515 4 4 583 4 7 19 4 7 88 4 8 56
	m = 4 $x = 2$	3.053 3.053 3.053 3.137 3.234 3.286	3.340 3.340 3.455 3.515 3.574 3.633 3.693 3.754 3.883	3.951 4.018 4.018 4.154 4.222 4.290 4.359 4.427 4.427
	m = 3 $x = 1$	22.343 22.776 22.922 22.922 244	3.030 3.030 3.148 3.266 3.326 3.326 3.326 3.326 3.326	3.647 3.715 3.715 3.851 3.919 3.987 4.056 4.125
	m = 2 $x = 1$	1.503 2.015 2.050 2.050 2.134 2.134 2.233 2.233 2.233	2.396 2.145 2.514 2.573 2.632 2.752 2.752 2.815 2.815	3.018 3.085 3.153 3.221 3.290 3.358 3.427 3.495
	e	10.845.95	11 12 13 14 15 16 17 18 19 20	22 22 24 25 27 28 28 27 28 28
	$H_1(n)$	1.000 1.030 1.070 1.110 1.159 1.258 1.366 1.425	1. 484 1. 543 1. 603 1. 662 1. 722 1. 782 1. 849 1. 984 2. 051	2.119 2.187 2.255 2.324 2.392 2.461 2.599 2.599
	2	10004001	111 122 133 144 147 170 190 190 190 190 190 190 190 190 190 19	222 222 222 232 232 232 232 232 232 232

		8.891
	8.211	8.293 8.361 8.430 8.499 8.569 8.639 8.710 8.782 8.782 8.782 8.782 8.782
7.486	7.570 7.635 7.701 7.767 7.835 7.903 7.972 8.042 8.112	8.325 8.325 8.325 8.470 8.543 8.616 8.690 8.763 8.763 8.763
6.763 6.824 6.887 6.950 7.014 7.080 7.146 7.213 7.231	7.418 7.487 7.557 7.628 7.699 7.770 7.842 7.915 7.915 8.060	8.134 8.207 8.281 8.356 8.430 8.505 8.565 8.656 8.732 8.808
6.492 6.558 6.625 6.692 6.761 6.830 6.900 6.970 7.041	7.183 7.255 7.255 7.400 7.474 7.547 7.621 7.695 7.770	7.920 7.996 8.072 8.148 8.225 8.301 8.378 8.532 8.532 8.609
5.821 5.890 6.028 6.028 6.170 6.241 6.314 6.387	6.534 6.609 6.609 6.684 6.760 6.335 6.911 7.063 7.139	7.292 7.369 7.446 7.523 7.600 7.677 7.755 7.910 7.989
5.681 5.749 5.749 5.888 5.959 6.030 6.102 6.175 6.248	6.396 6.472 6.547 6.622 6.698 6.774 6.850 6.926 7.002	7.155 7.232 7.309 7.386 7.464 7.541 7.619 7.619 7.775
5.499 5.568 5.568 5.708 5.778 5.850 5.922 6.069	6.218 6.294 6.369 6.445 6.520 6.520 6.672 6.748 6.825	6.978 7.132 7.209 7.287 7.287 7.364 7.442 7.520 7.598
5.386 5.455 5.524 5.524 5.665 5.737 5.810 5.883 6.033	6.108 6.183 6.259 6.334 6.410 6.486 6.562 6.638 6.715	6.868 6.945 7.100 7.177 7.255 7.333 7.411 7.489
5.227 5.296 5.365 5.436 5.507 5.579 5.652 5.726 5.801	5.952 6.027 6.103 6.178 6.254 6.330 6.406 6.483 6.559	6.713 6.790 6.867 6.945 7.100 7.178 7.256 7.334 7.413
5.064 5.064 5.133 5.204 5.204 5.276 5.348 5.422 5.497 5.647	5.723 5.723 5.798 5.950 6.025 6.102 6.178 6.254 6.331	6.485 6.562 6.563 6.717 6.794 6.872 6.950 7.028 7.107
4. 634 4. 704 4. 773 4. 844 4. 917 5. 140 5. 215 5. 290	5.366 5.441 5.517 5.593 5.669 5.745 5.821 5.898 6.052	6.129 6.206 6.283 6.361 6.361 6.516 6.594 6.763 6.751
4.332 4.401 4.471 4.543 4.616 4.690 4.765 4.840 4.840 4.991	5.066 5.142 5.218 5.218 5.294 5.370 5.529 5.529 5.529 5.539	5.830 5.987 6.062 6.140 6.218 6.296 6.375 6.453
3.703 3.773 3.842 3.915 3.989 4.064 4.139 4.214 4.289	4.440 4.516 4.592 4.668 4.744 4.821 4.897 4.974 5.051	5.205 5.282 5.380 5.438 5.515 5.594 5.672 5.750 5.829 5.908
32 32 33 33 33 40 40	122414948 204444444 204444444444444444444444444	52 52 53 54 55 55 56 60
2.807 2.877 2.952 3.027 3.101 3.176 3.252 3.327 3.402	3.554 3.630 3.706 3.706 3.859 3.935 4.012 4.012 4.243	4.321 4.398 4.476 4.554 4.632 4.711 4.789 4.868 4.947 5.026
32 33 33 34 35 40 40	44 44 45 45 46 48 49 49 50	52 52 53 54 53 55 56 56 57 60 60

Table V C — Continued

	100	35	[
	= 111	# *			
	90	32			881
	= 1	 			10.383 10.302 10.459 10.376 10.535 10.450 10.689 10.600 10.766 10.676 10.844 10.752 10.999 10.904 11.078 10.981
		32		221	328 328 328 328 328 328 328 328
	11	#		10.2	0000000000
	70 111	32 ;	09	9.641 9.714 9.786 9.859 9.933 10.007 10.081 10.156 10.231	7 10.456 10.537 10.522 10.458 10.383 10.302 8 10.617 10.697 10.601 10.536 10.459 10.376 9 10.698 10.777 10.690 10.613 10.535 10.450 10.698 10.777 10.759 10.691 10.612 10.525 10.941 11.017 10.998 10.348 10.765 10.600 10.941 11.017 10.998 10.327 10.844 10.752 11.022 11.098 11.078 11.006 10.999 10.999 11.104 11.179 11.158 11.085 10.999 10.991
	II	II	9.560	9.641 9.714 9.786 9.859 9.933 10.007 10.081 10.156 10.231	0.000.0
	09	28 x		9 750 9 747 9 697 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	58 113 113 113 113 113 113 113 113 113 11
	II	I	8.972 9.042 9.113 9.184 9.256 9.328 9.401 9.475 9.548	9.697 9.772 9.847 9.922 9.998 10.074 10.150 10.227 10.381	10.458 10.536 10.631 10.691 10.848 10.927 11.006 11.164
	50 111	18		9.750 9.747 9.697 9.828 9.824 9.772 9.906 9.900 9.847 9.984 9.977 9.922 10.06310.054 9.998 10.14210.13210.074 10.22010.209 10.150 10.299 10.287 10.227 10.378 10.365 10.304	10.522 10.458 10.601 10.536 10.680 10.613 10.759 10.691 10.839 10.770 10.998 10.927 11.078 11.006 11.158 11.085 11.238 11.164
	II	11	8.999 9.073 9.146 9.220 9.294 9.369 9.444 9.520 9.595	9.750 9.747 9.828 9.824 9.906 9.900 9.984 9.977 10.122010.103 10.22010.209 10.29110.387 10.37810.365	.537 10.522 617 10.601 697 10.603 777 10.759 837 10.918 017 10.998 098 11.078 179 11.158
	40 111	16 x		0884830888	3098777777
	11	II	8.987 9.062 9.137 9.213 9.289 9.365 9.442 9.518	9.750 9.828 9.906 9.984 10.063 10.142 10.220 10.299 10.378	10.456 10.537 10.617 10.537 10.617 10.698 10.777 10.860 10.937 10.941 11.022 11.098 11.104 11.104 11.186 11.260 11.186 11.260
	30 111	*		66677899	842211111111111111111111111111111111111
	II	= 14	8.884 8.961 9.038 9.116 9.270 9.348 9.504	9.661 9.740 9.819 9.819 9.977 10.057 10.136 10.216 10.296 10.296	10.456 10.537 10.617 10.698 10.941 11.022 11.104 11.186
		ĸ			2222222
	= 20	∞ ∥	8.687 8.765 8.842 8.920 8.999 9.077 9.156 9.234 9.333	9.472 9.551 9.631 9.711 9.791 9.872 9.952 10.033 10.113	10.275 10.357 10.438 10.520 10.601 10.683 10.765 10.847 10.929 11.011
	= 111	8	8888866666	9.472 9.551 9.631 9.711 9.791 9.872 9.952 10.033 10.113	10.275 10.357 10.438 10.520 10.601 10.683 10.765 10.847 11.011
$G_1(m,n)$	10	4	73488111881		
G1(1	= 111	# 	8.067 8.145 8.224 8.303 8.382 8.461 8.541 8.620 8.700	8.861 8.941 9.022 9.103 9.184 9.265 9.347 9.428 9.591	9.673 9.755 9.837 9.919 10.001 10.084 10.166 10.249 10.331 10.331
	6 =	4	7.931 8.010 8.088 8.167 8.247 8.326 8.406 8.485 8.565	8.726 8.807 8.888 8.969 9.050 9.131 9.212 9.294 9.375	9.539 9.621 9.703 9.785 9.867 9.950 10.032 10.115 10.198
	111	×	1-0000000000000		
	∞	4	555 333 330 330 550 550 550 550 550	8.551 8.632 8.713 8.794 8.875 8.956 9.037 9.119 9.201	9.364 9.446 9.446 9.528 9.611 9.693 9.775 9.858 9.941 10.024
	= 11	* *	7.755 7.833 7.912 7.991 8.070 8.150 8.310 8.330 8.390 8.470	888888888888	9.6 9.6 9.6 9.8 9.8 9.8
		8	646661111133	244585555 251285	
		11	7.646 7.724 7.803 7.883 7.962 8.041 8.121 8.201 8.282 8.362	8.443 8.524 8.605 8.686 8.767 8.848 8.930 9.011 9.093	9.257 9.339 9.421 9.503 9.586 9.668 9.751 9.834 9.917
	"	*			
	9 =	= 2	7.491 7.570 7.649 7.728 7.887 7.887 7.967 8.128 8.209	8.289 8.370 8.451 8.533 8.614 8.695 8.777 8.858 8.940 9.022	9.104 9.186 9.268 9.351 9.433 9.599 9.681 9.764 9.848
	111	н		ထဲထဲထဲထဲထဲထဲထဲထဲထဲထဲ	0000000000
	'n	2	.264 .343 .422 .501 .581 .661 .741 .821 .901	$\frac{63}{2}$	8.878 8.960 8.960 9.043 9.125 9.208 9.373 9.456 9.539 9.622
	#	8	7.264 7.343 7.422 7.501 7.581 7.661 7.741 7.741 7.821 7.901 7.982	8.063 8.144 8.225 8.307 8.388 8.469 8.551 8.633 8.796	8.878 8.960 9.043 9.125 9.290 9.373 9.456 9.539
	-4		I	0018427018	5762476896
	Ш	= 2	.909 .988 .988 .067 .146 .326 .386 .386 .386	. 709 . 790 . 871 . 953 . 034 . 115 . 115 . 197 . 279 . 361	525 607 689 772 854 937 020 103
	"	×	44444466	72000000000000000000000000000000000000	888888666
	33	= 1	5.611 5.690 5.769 5.849 7.009 7.170 7.250	.412 .493 .575 .656 .656 .737 .819 .901 .983	.229 .311 .393 .476 .559 .641 .724 .807 .807
	#	H	0000011111111	7777777733	888888888888888888888888888888888888888
	= 2	= 1	987 066 145 225 305 305 385 466 546 627	789 870 952 033 115 115 196 278 360 342 524	. 606 . 688 . 771 . 853 . 936 . 019 . 102 . 185 . 268 . 352
	: 111	*	6.	444444666	<u></u>
	ĸ		61 62 63 64 65 66 67 69 70	71 72 74 74 75 76 77 78 79 80	$\begin{array}{c} 828 \\ 888 \\ 888 \\ 888 \\ 890 \\ 890 \\ 800 \\$
		_	០%។។សំពីមិចម៉ាម៉ាម៉ា	1046701867	43542354355
	$H_1(n)$.105 .185 .265 .345 .425 .506 .506 .587 .667 .748 .830	. 911 . 992 . 074 . 155 . 319 . 401 . 483 . 565	5.729 5.812 5.895 5.977 7.060 7.143 7.227 7.310 7.393
	H		20202020202020	vv	99977777
	*		61 62 63 64 65 65 69 69 69 69	72 73 74 75 76 77 78 78 78	822 833 848 850 860 888 888 888 888
			-		

962	1113	266	420	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10.083 10.190 10.364 10.497 11.094 11.267 11.341 11.318 11.244 11.156 11.058 10.962 10.166 10.273 10.447 10.580 11.176 11.349 11.422 11.399 11.393 11.233 11.233 11.335 11.035	10.664 111.259 11.431 11.503 11.479 11.403 11.313 111.213 111.113 10.747 11.342 11.514 11.585 11.560 11.483 11.393 11.291 11.189	1.369 11.	1.526 11.	1.684 11. 1.763 11.
411.156	3 11 313 1	4 11.472 1	511.6311	8 11.791 1 7 11.871
318 11.24	479 11. 40 560 11. 48	641 11.56 722 11.64	803 11. 72	966 11.88 048 11.96
1.341 11.	1.50311.	1.666 11.	1.830 11.	1.994 11. 2.077 12.
11.267	11.4311	11.5961	11.7611	11.927 12.010
11.094	11.259	11.425	11.591	11.758
10.497	10.664	10.831	10.998	11.166
10.190 10.364 10.273 10.447	10.530	$\frac{10.697}{01.781}$	10.865	11.033 11.118
10.190	10.356	10.524 10.607	10.691	10.860 10.944
10.083	10.250	10.417 10.501	10.585	10.753
9.931	10.098	10.265	10.433	10.602 10.686
9.706	9.873	10.040	10.208	10.377 10.462
9.353	520 604	688	856	109
5 9.057 9 9.141	9.225	1 9.392 5 9.477	9 9.561	8 9.73010. 3 9.81510.
-				99 9.108 100 9.193
				8.235 9 8.320 10

2(1)100	10	4	∞	14	16	18	28	32	32	32	35
0.99 And m = 2	6	4	o o	13	16	17	27	32	32	32	35
= 0.99 AN	8	4	∞	12	16	16	26	32	32	32	34
R ₁ FOR q	7	8	œ	11	16	16	25	32	32	32	33
Ркосерике	9	23	œ	10	16	16	24	32	32	32	32
x UNDER	ic	21	1	6	16	16	23	32	32	32	32
Values of the Next Test-Group Size x under Procedure \mathbf{R}_1 for $q=$	4	61	9	∞	16	16	22	32	32	32	32
ext Test-C	33	1	2	8	16	16	21	31	32	32	32
OF THE NE	2	1	4	× ×	16	16	20	30	32	32	32
VALUES	-		4	× ×	15	16	19	29	32	32	32
'		+0	10+	20+	30+	+0+	+09	+09	+02	+08	+06

Table VI— Expected Number of Tests Required for Procedure R_2 The integer below q^y opposite $H_2(n)$ is the coefficient of q^y in the polynomial formula for $H_2(n)$.

	q-interv	al	x	1	q	q^2	q^3	q^4	q^5	q^6	q^7	q^8	q^9	q^{10}	q11	q^{12}
$H_{2}(2)$		0.618	1 2	2 3	-1	-1										
H ₂ (3)	0.618 to 0	0.618 0.755 1.000	1 2 3	3 5 5	$-3 \\ -2$	-1 -1	1 -1									
$H_{2}(4)$	0.618 to 0 0.755 to 0	0.618 0.755 0.819 1.000	1 2 3 4	4 7 7 8	-5 -3 -4	$\begin{array}{c} 0 \\ -2 \\ -2 \end{array}$	$-\frac{1}{-2}$	$-\frac{1}{2}$								
$H_{2}(5)$	0.618 to 0 0.755 to 0 0.819 to 0	0.618 0.755 0.819 0.857 1.000	1 2 3 4 5	5 9 9 11 11	$ \begin{array}{r} -7 \\ -4 \\ -7 \\ -7 \end{array} $	$ \begin{array}{r} 1 \\ -3 \\ -2 \\ -2 \end{array} $	$ \begin{array}{c} 0 \\ -2 \\ -1 \\ 0 \end{array} $	$-1 \\ -1 \\ -1 \\ 0$	$-1 \\ -1 \\ 2 \\ -1$							
$H_{2}(6)$	0.618 to 0 0.755 to 0 0.819 to 0 0.857 to 0 0.881 to 0).618).755).819).857).881).885	1 2 3 4 5 6 6	6 11 11 14 14 14 14	-9 -5 -10 -10 -10 -9	$ \begin{array}{r} 2 \\ -4 \\ -2 \\ -1 \\ -2 \end{array} $	$ \begin{array}{r} -1 \\ -2 \\ -1 \\ 1 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 0 \\ 4 \\ -1 \\ -1 \\ -1 \\ 0 \end{array}$	$ \begin{array}{r} 1 \\ -1 \\ 3 \\ -3 \\ -1 \\ -1 \end{array} $	$-1 \\ -1 \\ -1 \\ 3$						
H ₂ (7)	0.618 to 0 0.755 to 0 0.819 to 0 0.857 to 0 0.881 to 0	0.618 0.755 0.819 0.857 0.881 0.885 0.899	1 2 3 4 5 6 6 7	17	-11 -6 -13 -13 -13 -11 -11	$ \begin{array}{r} 3 \\ -5 \\ -2 \\ -2 \\ 0 \\ -3 \\ -3 \end{array} $	$ \begin{array}{r} -2 \\ -2 \\ -1 \\ 2 \\ -1 \\ -2 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ 5 \\ -1 \\ -2 \\ -1 \\ 2 \\ 1 \end{array} $	$0 \\ -2 \\ 4 \\ -4 \\ -1 \\ -2 \\ -2$	$ \begin{array}{r} -1 \\ -2 \\ -1 \\ 5 \\ -2 \\ -2 \end{array} $	$\begin{array}{c} 1 \\ 2 \\ -1 \\ -1 \\ 3 \\ 3 \end{array}$					
$H_2(8)$	0.618 to 0 0.755 to 0 0.819 to 9 0.857 to 0 0.881 to 0 0.885 to 0 0.899 to 0 0.912 to 0).618).755).819).857).881).885).899).912).932	1 2 3 4 5 6 7 8	20 20 20 20	-7	$ \begin{array}{r} 4 \\ -6 \\ -2 \\ -2 \\ -1 \\ -4 \\ -4 \\ -4 \\ -4 \end{array} $	$ \begin{array}{r} -3 \\ -2 \\ -1 \\ 3 \\ -2 \\ -3 \\ -1 \\ -1 \\ -1 \end{array} $	$ \begin{array}{c} 2 \\ 6 \\ 0 \\ -3 \\ -1 \\ 4 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} -1 \\ -3 \\ 4 \\ -5 \\ -1 \\ -3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	$ \begin{array}{c} 0 \\ -2 \\ -2 \\ 7 \\ -3 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 3 \\ -1 \\ -1 \\ 5 \\ -2 \\ 0 \end{array} $	$ \begin{bmatrix} -1 \\ -1 \\ -1 \\ 3 \end{bmatrix} $				
$H_{2}(9)$	0.618 to 0 0.755 to 0 0.819 to 0 0.857 to 0 0.881 to 0 0.890 to 0 0.899 to 0 0.912 to 0 0.922 to 0).618).755).819).857).881).890).899).912).922).938	1 2 3 4 5 6 6 7 8 9	$\frac{23}{24}$		$ \begin{array}{r} 5 \\ -7 \\ -2 \\ -2 \\ -5 \\ -5 \\ -4 \end{array} $	$ \begin{array}{r} -4 \\ -2 \\ -1 \\ 4 \\ -3 \\ -4 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ \end{array} $	$\begin{array}{c} 3 \\ 7 \\ 1 \\ -4 \\ -1 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$ \begin{array}{r} -2 \\ -4 \\ 3 \\ -5 \\ -1 \\ -4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ \end{array} $	$ \begin{array}{c} 1 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 2 \\ 1 \\ 0 \end{array} $	$0 \\ 4 \\ -1 \\ -2 \\ 7 \\ 7 \\ -3 \\ -1 \\ 0 \\ 1$	$ \begin{array}{r} -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ \end{array} $	$-1 \\ 4$			

Table VI — Continued

	q-interval	x	1	q	q^2	q^3	q^4	<i>q</i> ⁵	q^6	<i>q</i> ⁷	<i>q</i> 8	<i>q</i> 9	q10	q^{11}	q^{12}
$H_{2}(10)$	0.000 to 0.618 0.618 to 0.755 0.755 to 0.819 0.819 to 0.857 0.857 to 0.881 0.881 to 0.890 0.890 to 0.899- 0.899- to 0.912 0.912 to 0.922 0.922 to 0.930 0.930 to 0.938 0.938 to 0.960 0.960 to 1.000	1 2 3 4 5 6 6 6 7 8 9 10 10	19 26 26 26 26 26 26 26 28 28 29	$\begin{array}{r} -17 \\ -9 \\ -22 \\ -22 \\ -17 \\ -17 \\ -17 \\ -20 \\ -20 \\ -22 \\ -22 \end{array}$	$ \begin{array}{r} 6 \\ -8 \\ -2 \\ -2 \\ 3 \\ -6 \\ -6 \\ -5 \\ -4 \\ -4 \\ \end{array} $		$ \begin{array}{r} 4 \\ 8 \\ 2 \\ -5 \\ -1 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{r} -3 \\ -5 \\ 2 \\ -5 \\ -1 \\ -5 \\ -2 \\ -2 \\ -1 \\ -1 \\ -3 \\ \end{array} $	$ \begin{array}{r} 2 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 3 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} -1 \\ 5 \\ -1 \\ -2 \\ 8 \\ 8 \\ -4 \\ -2 \\ 1 \\ -1 \\ 0 \\ 1 \end{array} $	$ \begin{bmatrix} -1 \\ 0 \\ -2 \\ -2 \\ -6 \\ -2 \\ -1 $	$ \begin{bmatrix} -2 \\ 3 \\ 0 \\ -1 \\ -1 \\ -1 \\ 7 \\ -3 \\ -1 $	$\begin{vmatrix} 2 \\ -1 \end{vmatrix}$		
H ₂ (11)	0.000 to 0.618 0.618 to 0.755 0.755 to 0.819 0.819 to 0.857 0.857 to 0.881 0.881 to 0.890 0.890 to 0.899- 0.899- to 0.912 0.912 to 0.932 0.930 to 0.936 0.936 to 0.938 0.938 to 0.960 0.960 to 1.000	1 2 3 4 5 6 6 7 8 9 10 11 11	29 29 29 29 29 29 32	$\begin{array}{c} -19 \\ -10 \\ -25 \\ -25 \\ -25 \\ -19 \\ -19 \\ -19 \\ -24 \\ -24 \\ -26 \\ -26 \end{array}$	$ \begin{array}{r} 7 \\ -9 \\ -2 \\ -2 \\ 4 \\ -7 \\ -7 \\ -7 \\ -5 \\ -5 \\ -4 \\ -4 \\ \end{array} $	$ \begin{array}{r} -6 \\ -2 \\ -1 \\ 6 \\ -5 \\ -6 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 1 \end{array} $	5 9 3 -6 -1 10 1 1 1 1 1 1 0	$\begin{array}{r} -4 \\ -6 \\ 1 \\ -5 \\ -1 \\ -6 \\ -2 \\ -2 \\ -2 \\ -2 \\ -4 \end{array}$	$ \begin{array}{r} -3 \\ -2 \\ -8 \\ -4 \\ -4 \\ 0 \\ 4 \\ 1 \\ 0 \\ 2 \end{array} $	$ \begin{array}{r} -2 \\ 6 \\ -1 \\ -2 \\ 8 \\ 8 \\ -4 \\ -3 \\ 2 \\ -2 \\ -1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -3 \\ -1 \\ 1 \\ -2 \\ -8 \\ -3 \\ 1 \\ -1 \\ 0 \\ -1 \end{array} $	$\begin{bmatrix} 0 \\ -2 \\ 4 \\ -1 \\ 0 \\ 0 \\ -2 \\ 10 \\ -5 \\ -1 \\ -1 \\ -1 \end{bmatrix}$	$ \begin{array}{r} -1 \\ 3 \\ -1 \\ -3 \\ 0 \\ 0 \\ -1 \\ -1 \\ 7 \\ 3 \end{array} $	$ \begin{array}{c} & 1 \\ & -1 \\ & 3 \\ & -1 \\ & -1 \\ & -1 \\ & 4 \end{array} $	
$H_{2}(12)$	0.000 to 0.618 0.618 to 0.755 0.755 to 0.819 0.819 to 0.857 0.857 to 0.881 0.881 to 0.890 0.890 to 0.899- 0.899- to 0.912 0.912 to 0.922 0.922 to 0.930 0.930 to 0.936 0.936 to 0.938 0.938 to 0.941 0.941 to 0.960 0.960 to 0.972 0.972 to 1.000	1 2 3 4 5 6 6 6 7 8 9 10 11 11 12 12 12	37	-21 -11 -28 -28 -28 -21 -21 -21 -28 -28 -30 -30 -30	$ \begin{array}{r} 8 \\ -10 \\ -2 \\ -2 \\ 5 \\ -8 \\ -8 \\ -5 \\ -5 \\ -5 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \end{array} $	$ \begin{array}{rrrr} -7 \\ -2 \\ -1 \\ 7 \\ -6 \\ -7 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 0 \end{array} $	$\begin{array}{c} 6\\10\\4\\-7\\-1\\12\\1\\1\\1\\1\\0\\0\\0\\-1\\0\end{array}$	$ \begin{array}{r} -7 \\ 0 \\ -5 \\ -1 \\ -7 \\ -2 \\ -2 \\ -2 \\ 1 \\ -3 \\ -3 \\ \end{array} $	$\begin{array}{c} 4 \\ -2 \\ -2 \\ 8 \\ -4 \\ -4 \\ 0 \\ 5 \\ 1 \\ -1 \\ 3 \\ 2 \\ 2 \\ 4 \\ 2 \end{array}$	$\begin{array}{c} -3 \\ 7 \\ -1 \\ -2 \\ 8 \\ 9 \\ -4 \\ -4 \\ 3 \\ -2 \\ -1 \\ -1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 2\\ -4\\ 0\\ 2\\ -1\\ -2\\ 8\\ -9\\ -4\\ 3\\ -2\\ -1\\ 0\\ -1\\ -1\\ -1 \end{array}$	$\begin{array}{c} -1 \\ -2 \\ 4 \\ -2 \\ 0 \\ -1 \\ -2 \\ 12 \\ -7 \\ -2 \\ 2 \\ 1 \\ 0 \\ 0 \\ -1 \end{array}$	$\begin{array}{c} 0 \\ 4 \\ -2 \\ -4 \\ -1 \\ 0 \\ 0 \\ -2 \\ 10 \\ -5 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 -1 -1 -1 -1 -1 4 4

The exponential symbols +, - indicate only the relative magnitude of two different roots that are equal to three decimal places (i.e., $a^- < a^+$).

Table VII — The Dividing Points Between x and x+1 for the Information Procedure R_2

G-Situation

x										
	4	6	7	8	9	11	12	13	14	16
1 2 3 4 5 6 7	0.7549	0.6518 0.8899	0.6369 0.8376	0.6289 0.8087 0.9378	0.6245 ⁻ 0.7913 0.9016	0.6204 0.7728 0.8631 0.9340	$\begin{array}{c} 0.6195^{-} \\ 0.7677 \\ 0.8524 \\ 0.9160 \\ 0.9723 \end{array}$	0.6189 0.7642 0.8446 0.9031 0.9528	0.6186 0.7617 0.8388 0.8935 0.9384 0.9796	0.6182 0.7586 0.8313 0.8806 0.9193 0.9529 0.9844
				G-	Situati	on				
				,,,						
								l I		x
10	20	30	40	50	60	70	80	90	100	
0.6219 0.7802 0.8786 0.9601	0.6181 0.7560 0.8241 0.8677 0.8999 0.9262 0.9490 0.9699 0.9900	0.6180 0.7549 0.8198 0.8587 0.8854 0.9056 0.9218 0.9355- 0.9474 0.9582 0.9776 0.9867	0.6180 0.7549 0.8193 0.8571 0.8823 0.9008 0.9150 0.9267 0.9364 0.9449 0.9524 0.9524 0.9593 0.9655+	0.6180 0.7549 0.8192 0.8568 0.8816 0.8993 0.9129 0.9236 0.9325+ 0.9400 0.9466 0.9524 0.9576	0.6180 0.7549 0.8192 0.8567 0.8814 0.8989 0.9121 0.9225 0.9380 0.9440 0.9493 0.9540	0.6180 0.7549 0.8192 0.8567 0.8813 0.8987 0.9118 0.9220 0.9302 0.9370 0.9428 0.9428 0.9522	0.6180 0.7549 0.8192 0.8567 0.8813 0.8987 0.9117 0.9218 0.9299 0.9365+ 0.9422 0.9470 0.9512	0.6180 0.7549 0.8192 0.8567 0.8813 0.8987 0.9116 0.9217 0.9297 0.9363 0.9418 0.9466 0.9507	0.6180 0.7549 0.8192 0.8567 0.8813 0.8987 0.9116 0.9216 0.9296 0.9362 0.9417 0.9463	1 2 3 4 5 6 7 8 9 10 11 12 13
46 445 444 43 42 41 41 41 41 41 41 41 41 41 41 41 41 41	0.9991 0.9982 0.9973 0.9964 0.9955 0.9945 0.9937 0.9919 0.9899 0.9889 0.9889 0.9886 0.9826 0.9812 0.9812 0.9773 0.9758 0.9773 0.9758 0.9779 0.9691 0.9690 0.9690 0.9690 0.9690 0.9690	0.9956 0.9989 0.9978 0.9956 0.9956 0.9944 0.9951 0.9910 0.9810 0.9810 0.9831 0.9820 0.9834 0.9820 0.9755 0.9758 0.9758 0.9754 0.9659	0.9714 0.970 0.9823 0.9874 0.9925 0.9975 0.9975 0.9975 0.9943 0.9984 0.9989 0.9883 0.9888 0.9852 0.9763 0.9782 0.9764 0.9619 0.9674 0.9674 0.9698 0.9654 0.9655 0.9850 0.9650 0.9674 0.9751 0.9698	0.9624 0.9668 0.9709 0.9747 0.9784 0.9854 0.9852 0.9985 0.9981 0.9962 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.987 0.9752 0.9776 0.9775 0.9775 0.9775 0.9750 0.9	0.9582 0.9620 0.9656 0.9659 0.9719 0.9718 0.9748 0.9802 0.9876 0.9892 0.9876 0.9992 0.9997 0.9998 0.9999 0.99989 0.9974 0.9940 0.9898 0.9876 0.9974 0.9940 0.9898 0.9876 0.9967 0.9974 0.9967 0.9967 0.9955 0.9746 0.9746 0.9678 0.9746 0.9746 0.9746 0.9599 0.9555 0.9555	0.9561 0.9568 0.9628 0.9688 0.9685- 0.9710 0.9757 0.9757 0.9779 0.9819 0.9886 0.9878 0.9882 0.9996 0.9995 0.9995 0.9995 0.9995 0.9976 0.9951 0.9951 0.9951 0.9951 0.9951 0.9959 0.9959 0.9959 0.9959	0.9549 0.9553 0.9613 0.9645+ 0.9665+ 0.9689 0.9711 0.9750+ 0.9780 0.9803 0.9819 0.9849 0.9883 0.9819 0.9981 0.9943 0.9944 0.9956 0.9969 0.9935- 0.9891 0.9949	0.9543 0.96543 0.9654 0.9664 0.9665 0.9676 0.9715 0.9780 0.9780 0.9780 0.9785 0.9809 0.9882 0.9882 0.9882 0.9882 0.9882 0.9883 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985	0.9539 0.9579 0.9579 0.9598 0.9636 0.9646 0.9667 0.9705 0.9737 0.9756 0.9779 0.9784 0.9838 0.9848 0.9858 0.9858 0.9985 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905	14 16 16 17 18 19 20 21 22 23 24 26 27 28 29 33 34 35 36 36 41 44 44 45 46 46 47 48 49
12 11 10 9 8 7 6 5 4 3 2	0.9417 0.9362 0.9297 0.9216 0.9116 0.8987 0.8813 0.8567 0.8192 0.7549 0.6180	0.9420 0.9364 0.9298 0.9217 0.9116 0.8987 0.8813 0.8567 0.8192 0.7549 0.6180	0.9424 0.9367 0.9300 0.9218 0.9117 0.8813 0.8567 0.8192 0.7549 0.6180	0.9433 0.9374 0.9305- 0.9222 0.9119 0.8813 0.8567 0.8192 0.7549 0.6180	0.9451 0.9388 0.9315+ 0.9229 0.9124 0.8991 0.8814 0.8567 0.8192 0.7549 0.6180	0.9489 0.9419 0.9340 0.9248 0.9137 0.8999 0.8818 0.8569 0.8192 0.7549 0.6180	0.9582 0.9498 0.9404 0.9298 0.9174 0.9024 0.8834 0.8576 0.8194 0.7549 0.6180	0.9872 0.9742 0.9608 0.9463 0.9303 0.9120 0.8898 0.8612 0.8209 0.7552 0.6180	0.9645 ⁻ 0.9276 0.8862 0.8346 0.7599 0.6184	0.682
	95	85	75	65	55	45	35	25	15	5

 $\begin{array}{c} {\rm Table\ VII-}Continued \\ {\rm \textit{H-}Situation} \end{array}$

x	q	x	q
1	0.6180	51	0.9866
2	0.7549	52	0.9869
$\frac{2}{3}$	0.8192	53	0.9871
4	0.8567	54	0.9874
5	0.8813	55	0.9876
	0.8987	56	0.9878
6		20	0.9880
7	0.9116	57	
8	0.9216	58	0.9882
9	0.9296	59	0.9884
10	0.9361	60	0.9886
11	0.9415	61	0.9888
12	0.9460	62	0.9890
13	0.9499	63	0.9891
14	0.9533	64	0.9893
15	0.9563	65	0.9895
16	0.9588	66	0.9896
17	0.9612	67	0.9898
18	0.9632	68	0.9899
19	0.9651	69	0.9901
20	0.9667	70	0.9902
21	0.9683	71	0.9904
22	0.9697	72	0.9905-
23	0.9709	73	0.9906
24	0.9709	74	0.9907
24 25	0.9721	75	0.9909
26 26	0.9732	76	0.9910
	0.9742	10	0.9911
27	0.9751	77 78	0.9911
28	0.9760	78	0.9912
29	0.9768	79	0.9913
30	0.9775+	80	0.9914
31	0.9782	81	0.9915+
32	0.9789	82	0.9916
33	0.9795+	83	0.9917
34	0.9801	84	0.9918
35	0.9807	85	0.9919
36	0.9812	86	0.9920
37	0.9817	87	0.9921
38	0.9822	88	0.9922
39	0.9826	89	0.9923
40	0.9830	90	0.9924
41	0.9834	91	0.9925
42	0.9838	92	0.9925+
43	0.9842	93	0.9926
44	0.9845+	94	0.9927
45	0.9849	95	0.9928
46	0.9852	96	0.9928
47	0.9855+	97	0.9929
48	0.9858	98	0.9930
	0.9861	99	0.9931
49			
49 50	0.9864	100	0.9931

The exponents + and - are to be used for rounding in the usual manner.

Table VIII — Polynomial Expressions for $F_2^*(m)$ for Procedure R_2

m	Coefficient of												g-interval	Next Test Group Size	
	1	q	q^2	q ³	q ⁴	<i>q</i> 5	q6	q ⁷	q8	q9 ——	q10	q11	0.000 / 7 / 1.000	1	
$egin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} \Big\}$	1 1 2 2 2 2	1 2 2 2 3	2 2 2 3 3	$\frac{2}{3}$	3 3 3	3 3							$\begin{array}{cccc} 0.000 & \leq q \leq 1.000 \\ 0.000 & \leq q \leq 1.000 \\ 0.755 & \leq q \leq 1.000 \\ 0.682 & < q \leq 1.000 \\ 0.652 & < q \leq 0.890 \\ 0.890 & < q \leq 1.000 \end{array}$	1 2 2 2 2 3	
$ \begin{array}{c} 7 \\ 8 \\ 9 \\ 10 \end{array} $	2 3 3 3	3 3 3 3 3	3333333	თ თ თ თ თ	333333	3 3 4	3 4 3 4	4 3 4 3	4 4	4			$\begin{array}{c} 0.838 \leq q \leq 1.000 \\ 0.809 < q < 0.938 \\ 0.938 \leq q \leq 1.000 \\ 0.902 \leq q \leq 1.000 \\ 0.879 < q \leq 0.960 \\ 0.960 < q \leq 1.000 \end{array}$	3 3 4 4 4 4	
$\frac{10}{11}$ $12 \left\{ \right.$	3 3 3	3 3 4	$\begin{vmatrix} 3 \\ 3 \\ 4 \end{vmatrix}$	4 4 3	$\begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$	3 3 4	$\begin{bmatrix} 3 \\ 4 \\ 4 \\ 3 \end{bmatrix}$	3 4 4 4	$\begin{bmatrix} 4\\3\\4\\4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 4 \\ 4 \\ 3 \end{bmatrix}$	4 4 4	4 4	$\begin{array}{c} 0.960 < q \le 1.000 \\ 0.934 \le q \le 1.000 \\ 0.916 < q \le 0.972 \\ 0.972 < q \le 1.000 \end{array}$	4 5 5 5 6	