Helix Waveguide

By S. P. MORGAN and J. A. YOUNG
(Manuseript received July 23, 1956)

Helixz waveguide, composed of closely wound turns of insulated copper
wire covered with a lossy jacket, shows great promise for use as a communi-
cation medium. The properties of this type of waveguide have been investi-
gated using the sheath heliz model. Modes whose wall currents follow the
highly conducting helix have attenuation constants which are essentially
the same as for copper pipe. The other modes have very large attenuation
constants which depend wpon the helix pitch angle and the elecirical proper-
ties of the jacket. Approximate formulas are given for the propagation con-
stants of the lossy modes. The circular electric mode important for long-
distance communication has low loss for zero-pitch helices. The propagation
constants of some of the lossy modes in helix waveguide of zero pitch have
been calculated numerically, as functions of the jacket parameters and the
guide size, in regions where the approximate formulas are no longer valid.
Under certain conditions the attenuation constant of a particular mode may
pass through a maximum as the jacket conductivity is varied.

GLOSSARY OF SYMBOLS

a Inner radius of waveguide

h = B8 — i Complex phase constant,

n Angular mode index

P Denotes pum or pun’ according to context
Pnm m zero of J.(x)

Pam’ mt zero of J,/(x)

0z Right-handed cylindrical coordinates
a Attenuation constant

8 Phase constant

Bo = 2m/No = w(me)'® Free-space phase constant
€ Permittivity of interior medium

€ Permittivity of exterior medium

E’ E/Eg

a/we
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Ao Free-space wavelength

Ae = 2ma/p Cutoff wavelength

Ho Permeability of interior and exterior media

v = Mo/Ae = Pho/2ma Cutoff ratio
(El -1+ p2 _ ?:En)uz

E+um ——
€ — 1€
I Electric Hertz vector
m* Magnetic Hertz vector
T Conduetivity of exterior medium
v Pitch angle of helix
w Angular frequency
et Harmonic time dependence assumed throughout
Ja(x) Bessel function of the first kind
Ja'(x) dJ . (z)/dx
H.”(z) Hankel function of the second kind

H,? () dH,? (x)/dx
MKS rationalized units are employed throughout. Superscripts ¢ and e
are used to indicate the interior and exterior regions.

I. INTRODUCTION AND SUMMARY

Propagation of the lowest circular electric mode (TEx) in cylindrical
pipe waveguide holds great promise for low-loss long distance communi-
cation.” * For example, the TEq mode has a theoretical heat loss of 2
db/mile in waveguide of diameter 6 inches at a frequency of 5.5 kme/s,
and the loss decreases with increasing frequency. Increased transmission
bandwidth, reduced delay distortion, and reduced waveguide size for a
given attenuation are factors favoring use of the highest practical fre-
quency of operation. An increased number of freely propagating modes
and smaller mechanical tolerances are the associated penalties. Any
deviation of the waveguide from a straight circular cylinder gives rise to
signal distortions because of mode conversion-reconversion effects.

One solution to mode conversion-reconversion problems is to obtain a
waveguide having the desired low attenuation properties of the TEy
mode in metallic cylindrical waveguide and very large attenuation for
all other modes, the unwanted modes." * The low loss of the circular
electric modes in ordinary round guide is the result of having only cir-

18, E. Miller, B.3.T.J., 33, pp. 1209-1265, 1954,

1S E. Miller and A. C. Beck, Proe. LR.E., 41, pp. 348-358, 1953.
3 8. E. Miller, Proc. I.R.E., 40, pp. 1104-1113, 1952.



HELIX WAVEGUIDE 1349

cumferential current flow at the boundary wall. All other modes in round
guide have a longitudinal current present at the wall. Thus the desired
attenuation properties can be obtained by providing a highly conducting
circumferential path and a resistive longitudinal path for the wall cur-
rents. This is done in the spaced-disk line by sandwiching lossy layers
between coaxially arranged annular copper disks.* Another possibility
which has been suggested is a helix having a small pitch.

Helix waveguide, formed by winding insulated wire on a removable
mandrel and coating the helix with lossy material, has been made at the
Holmdel Radio Research Laboratory. Wires of various cross sections
and sizes have been used to wind helices varying from 7% to 5 inches in
diameter, which have been tested at frequencies from 9 to 60 kme/s.
Pitch angles of from nearly 0° (wire in a plane perpendicular to the axis
of propagation) to 90° (wire parallel to the axis of propagation) have
been used. The helices having the highest attenuation for the unwanted
modes while maintaining low loss for the TEy, mode are those wound
with the smallest pitch from insulated wire of diameter 10 to 3 mils
(American Wire Gauge Nos. 30 to 40). The high attenuation properties
for unwanted modes also depend markedly on the electrical properties
of the jacket surrounding the helix.

In this paper the normal modes of helix waveguide are determined
using the sheath helix approximation, a mathematical model in which
the helical winding is replaced by an anisotropic conducting sheath. A
brief formulation of the boundary value problem leads to an equation
which determines the propagation constants of modes in the helix guide.
Since the equation is not easy to solve numerically, approximations are
presented which show the effects of the pitch angle, the diameter, the
conductivity and dielectric constant of the jacket, and the wavelength,
when the conductivity of the jacket is sufficiently high.

By proper choice of the pitch angle and, in some instances, of the
polarization, a helix waveguide can be made to propagate any mode of
ordinary round guide, with an attenuation constant which should be
essentially the same as in solid copper pipe. The pitch is chosen so that
the wall currents associated with the desired mode follow the direction
of the conducting wires. The losses to the other modes are in general
much higher, and are determined by both the pitch angle and the jacket
material.

Special attention is given in the present work to the limiting case of a
helix of zero pitch, since the attenuation constant of the TEy mode will
be smallest when the pitch angle is as small as possible. To explore the

1 Reference 3, p. 1111.
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region where the approximate formulas for the propagation constants
of the lossy modes break down, some numerical results have been ob-
tained for helices of zero pitch using an IBM 650 magnetic drum calcu-
lator. Tables and curves are given showing the propagation constants of
various modes in such a waveguide, as functions of the electrical proper-
ties of the jacket and for three different ratios of radius/wavelength. In
many cases it is found that the attenuation constant of a given mode
passes through a maximum as the jacket conductivity is varied, the
other parameters remaining fixed. The numerical calculations indicate
that it is possible to get unwanted mode attenuations several hundred
to several hundred thousand times greater than the TEq attenuation
for the size waveguide that looks most promising for low-loss communi-
cation.
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Fig. 1 — Schematic diagrams of the helical sheath and the helical sheath de-
veloped, showing the unit vectors and the periodicity.
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II. SHEATH HELIX BOUNDARY VALUE PROBLEM

Ordinary cylindrical waveguide consists of a circular eylinder of radius
a, infinite length, and zero (or very small) conductivity, imbedded in an
infinite* homogeneous conducting medium. The sheath helix waveguide
has the same configuration plus the additional property that at radius a
dividing the two media, there is an anisotropic conducting sheath which
conducts perfectly in the helical direction and does not conduct in the
perpendicular direction. The attenuation and phase constants are deter-
mined by solving Maxwell’s equations in cylindrical coordinates and
matching the electric and magnetic fields at the wall of the guide.

The helix of radius a and pitch angle ¢ = tan™" s/2wa is shown in the
upper part of Fig. 1. The developed helix as viewed from the inside when
cut by a plane of constant # and unrolled is shown in the lower part of
the illustration. A new set of unit vectors E,, and ¢, parallel and perpen-
dicular respectively to the helix direction is introduced. These are re-
lated to ¢, , e, and e. by

e X Egi =e,
€ = e:siny + e cos ¢
e, = e:COSY — epsiny

The boundary conditions at » = a are

Eul- = EIIG =0
E_I_" — .E_,_‘
H' = Hf

where the superseript 7 refers to the interior region, 0 < r < a, and the
superseript e refers to the exterior region, ¢ = r £ «. An equivalent set
of boundary conditions in terms of the original unit vectors is

EStany + E =0
Eftany + E =0
Ef=Ef
H. tany + Hy' = H. tany + Hy'

(1)

We are looking for solutions which are similar to the modes of or-

* The assumption of an infinite external medium is made to simplify the mathe-
maties. The results will be the same as for a finite conducting jacket which is thick
enough so that the fields at its outer surface are negligible.
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dinary waveguide, i.e., “fast” modes as contrasted with the well-known
“slow” modes used in traveling-wave tubes.” ® To solve the problem we
follow the procedure set up by Stratton’ for the ordinary cylindrical
waveguide boundary problem. The fields E and H are derived from an
clectric Hertz vectorII and a magnetic Hertz vector II* by

E‘=GX$XfI—’iwy§Xﬁ* @)
H= (¢ + iwy X I + v X v XII*
where
ﬁ = éz]:[z
fi* = @
and, assuming a time dependence exp (iwf),
]I;i — E an(Jﬂ(g,lr)e—l'hz—inG
]];s = E anan(z)(fzr)e—ihz—inB
- )
n¥ = 3 b Ta(gr)e ™
L . s
H:re = E b,-.’H,.m)(fz'r)G—‘m-m’

fl=—00

In these expressions

hﬂ _ wQ.unfn — B

_;'22 = w2ﬂn€o(6’ - 'iE”) - h2
¢ — i = ¢/ey — tio/we

where the interior region is assumed to have permittivity e and perme-
ability uo , while the exterior region has permittivity e, permeability po ,
and conductivity o. The superseripts 7 and e refer to the interior and ex-
terior regions respettively, and the a’s and b’s are amplitude coefficients.

s J. R. Pierce, Proc. I.LR.E., 35, pp. 111-123, 1947.

s 8. Sensiper, Electromagnetic Wave Propagation on Helical Conductors, Se.D.
thesis, M.I.T., 1951. In Appendix B of this reference, Sensiper shows that when
the interior and exterior media are the same, only slow waves will exist except in
special cases. Fast guided waves become possible if the conductivity of the exterior
medium is sufficiently high.

7], A. Stratton, Electromagnetic Theory, MeGraw-Hill, New York, 1941, pp.
524-527. Note that Stratton uses the time dependence exp (—iwt).
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Attention is restricted to waves traveling in the positive z-direction,
which are represented by the factor exp (—7hz), where h (=8 — ia) is
the complex phase constant. However it is necessary to consider both
right and left circularly polarized waves; this accounts for the use of
both positive and negative values of n.

Substitution of (2), (3), and (4) into the boundary conditions (1)
leads to the following set of equations:

[3'12 tan 1,!/ —_ %—L:I J,.(Z'la)a..‘ + 'iw,uog’lJn'(ha)bn" =0

[;f fan y — ’%‘] H P a)an® + ot o (6a)bs? = 0
()’ — HTH P (Ga)a, = 0 (5)

—twettd ((a)a,’ + [;,2 tan ¢ — %"] Ja(t1a)b,}

+ (0 + twe)iH @ (f20)a,” — [ & tan g — ’%n] H," (t2a)b,* = 0

If the conductivity of the exterior region is infinite, it is possible to
satisfy the boundary conditions with only one of the amplitude coeffi-
cients different from zero; for example

bu‘l=ane=bnc=0 an‘=an°=bu.=0
@' # 0 or bt %0
Ja(f1a) = 0 Ja'(5a) =0

The first case corresponds to TM modes and the second to TE modes
in a perfectly conducting circular guide. Linearly polarized modes may
be represented as combinations of terms in a,’ and a_,%, or b,* and b_,".

If the exterior region is not perfectly conducting, one can still find
solutions having the fields confined to the interior region by properly
choosing the angle of the perfectly conducting helical sheath. For exam-
ple, it is easy to verify that equations (5) are satisfied under the follow-
ing conditions:

a' =a ' =b"=0

ba' # 0
hn
tan ¥ = tfa

Ji'(fa) =0
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If n = 0, these conditions correspond to circularly polarized TE.n
waves, in which the wall currents follow the direction of the conducting
sheath. If n = 0, then ¢ = 0, and one has TE,,, modes with circum-
ferential currents only.

The equations can also be satisfied with

bni = a"e = bn’ =

a. # 0
¢ = 90°
J,.(_ha.) = 0

corresponding to the TM.., modes (either circularly or linearly polarized)
of a perfectly conducting pipe, which are associated with longitudinal
wall currents only.

In the general case when the jacket is not perfectly conducting and
the helix pitch angle is not restricted to special values, it is necessary to
solve (5) simultaneously for the field amplitudes. The equations admit a
nontrivial solution if and only if the determinant of the coefficients of
the a’s and b’s vanishes. The transcendental equation which results from
equating the determinant of the coefficients to zero is

m\ J.ha) . J.J(m)]
s [(r 1teny — ﬁ) Ty M T 6)
hn 2 Hn(z)(f (1) ’ -1 Hn(z)’(; a)
=h [(g—z tan ¢ — @) H_—_‘f,” (g':a) — cuzuam(e — g€) H*—-n(z, (;2';) ]

The solution of this equation determines the propagation constant h
and therefore the attenuation and phase constants a and 8. When th
has been obtained, it is a straightforward matter to determine the a and
b coefficients from equations (5) and the electric and magnetic fields
from (2), (3), and (4).

It is well known® that the only pure TE or TM modes that can exist
in a circular waveguide with walls of finite conductivity are the circularly
symmetric TEq, and TMo, modes. The other modes are all mixed modes
whose fields are not transverse with respect to either the electric or the
magnetic vector. In general the modes of helix waveguide are also mixed
modes, and no entirely satisfactory scheme for labeling them has been
proposed. In the present paper we shall call the modes TE,, or TM.n
according to the limits which they approach as the jacket conductivity
becomes infinite, even though they are no longer transverse and their

8 Reference 7, p. 526.
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field patterns may be quite different when the jacket is lossy. This sys-
tem is not completely unambiguous, because as will appear in Section
IV the mode designations thus obtained are not always unique. However
it is a satisfactory way to identify the modes so long as the jacket con-
ductivity is high enough for the loss to be treated as a perturbation.
Approximations derived on this basis are presented in the next section.

III. APPROXIMATE EXPRESSIONS FOR PROPAGATION CONSTANTS

If the jacket were perfectly conducting, the helix waveguide modes
would be the same as in an ideal circular waveguide, with propagation
constants given by

th = 1Bam = 1(20/N)(1 — )
where
y = kn/kc = p)\o/21ra
p = m" zero of J.(x) for TM,,, mode, or m* zero of J,/(z) for TE, .

mode

If the jacket conductivity is sufficiently large, approximate solutions
of (6) may be found by replacing H,” (:a) and H,® (f,a) with their
asymptotic expressions, and expanding J,(fa) or J,/(f1a) in a Taylor
series near a particular zero. This calculation is carried out in the ap-
pendix. The propagation constant may be written in the form

th = a + i(ﬁnm + Aﬂ)
where to first order the perturbation terms are
TM.,. modes

e £y 1
@+ 188 = o TR T F ety (7a)
TE, .. modes
a . E4m Fpt [tany — n(1 — )Y/ pﬂz
(43 + T'AJ‘S = a(l — Vg)”Z pg —n 1+ tanzw (7b)
and

E + 7:71 — (E’ _ ierf)*llﬁ
”

€ = ¢e/e, ¢ = o/we

The approximations made in deriving (7) are discussed in the appen-
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dix. In practice, the range of validity of these expressions is usually
limited by the criterion

_ 241/2
M—Ia+mﬂl<<1 (8)

The numerical calculations described in Section IV indicate that the
approximations are good so long as the left-hand side of (8) is less than
about 0.1, and that they break down a little sooner for TE modes than
for TM modes.

Inspection of (7) reveals three cases of particular interest, namely
Y = 0%y = tan"" n(l — v)*/py, and ¢ = 90°. These cases, which were
mentioned in Section II and are discussed again below, correspond to
preferential propagation of certain modes, in which the wall currents
follow the direction of the conducting helix. The preferred modes have
zero attenuation in the present treatment because the helical sheath is
assumed to be perfectly conducting. In practical helices wound from
insulated copper wire the loss should be only slightly greater than in
round copper pipe of the same diameter. The slight increase (of magni-
tude 10 per cent to 30 per cent) is due to the slightly nonuniform cur-
rent distribution in the wires, an effect that can be kept small by keeping
the gaps between the wires of the helix small. In general the attenuation
constants of modes whose wall currents do not follow the helix are orders
" of magnitude larger than the attenuation constants of the preferred
modes.

¥ =0°

The circular electric (TEo,) modes have attenuation constants sub-
stantially the same as in solid copper pipe. The additional TEon loss if
the pitch angle is not quite zero is proportional to tan® . This added loss
can be made very small by using fine wire for winding the helix.

The losses for the unwanted modes can be made large by a proper
choice of jacket material. When y = 0, equations (7) yield

TM, .. modes
g _Ettm
a + A8 = all = (9a)
TE,,, modes
- 241/2 2
ating = L T (i (9b)
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It may be of interest to compare the attenuation constants given by
(9) with the results obtained by calculating the power dissipated in the
walls of a pipe® which has different resistances in the circumferential and
longitudinal directions. If the wall resistance for cireumferential currents
is represented by R, and for longitudinal currents by R, , the expressions
for « are

TM.,,,, modes

a = R.
(/&) Pa(l — )1

TE.,.. modes

_ R¢’ + Rn/p)’(1L =)
= (m/m)uza(l — v?.)lf! pz —

The results for ordinary metallic pipe are obtained by setting
Ry = R. = R = (wpo/20)""

[f Ry = 0, the expressions above agree with (9), inasmuch as
£ = R(eo/m)"* when the jacket conductivity is large.

¢ = tan n(l — ) /pr,n =0

For this value of y the circularly polarized TE,,, mode which varies as
exp(—inf) has low attenuation. (We assume n s 0, since the case
n = 0 has been treated above.) One of the properties of helix waveguide
is the difference in propagation between right and left circularly polarized
TE,,, modes. By properly designing the helix angle for the frequency,
mode, and size of guide, the loss to one of the polarizations can be made
very low. If the jacket is lossy enough the attenuation of the other
polarization should be quite high. Thus only one of the circularly polar-
ized modes should be propagated through a long pipe. Such a helix has
features analogous to the optical properties of levulose and dextrose
solutions, which distinguish between left and right circularly polarized
light.

Let «, be the attenuation constant of the mode which varies as
exp(—inf), and a_, the attenuation constant of the mode which varies

?8. A. Schelkunoff, Electromagnetic Waves, van Nostrand, New York, 1943,
pp. 385-387.
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as exp (+inf). Then from (7b), for any pitch angle ¢,

_E P o [tany + a1 — )"/ pl’

G Tapt — w2 (1 — e 1 + tan®y¢
S P v [tan ¢ — n(1 — #)"*/po)’

" apt— nt(l =) 1 + tan®y

g np v tan ¢
ap* — n*l 4+ tan’ ¢
The mode which varies as exp( —in8) has lower loss if ¢ and n have the

same sign.
The TM,,. attenuation constants are independent of polarization and

are given by (7a).
¥y = 90°
These “helices,” with wires parallel to the axis of the waveguide,

should propagate TM,, modes with losses approximately the same as
in copper pipe. For the TE,, modes, (7b) gives

TE,. modes

a_p, — Gy =

2 2

a+mﬁ=a(1” P (¢4 in)

—_ 1;2)1!2 pE —_ n2

IV. NUMERICAL SOLUTIONS FOR ZERO-PITCH HELICES

The main interest in helix waveguide is for small pitch angles where
the TEq attenuation is very low. The propagation constants of various
lossy modes in helix guides of zero pitch have been calculated by solving
the characteristic equation (6) numerically. These calculations will now
be described.

Equation (6) is first simplified by setting ¢ = 0 and replacing the
Hankel functions with their asymptotic expressions. The condition for
validity of the asymptotic expressions, namely

| faa | > | (4n* — 1)/8]

is well satisfied in all cases to be treated here. Equation (6) may then be
rearranged in the dimensionless form

Fatia) = (t0)’ [(nha)' ], (i) — (Bua)(10)" " (51a)]
— ()" [(nha)’ + (Bua)2(¢ — i€ ) ()1 (f1a) Ju(1a)  (10)
=0
There is no difference between the propagation constants of right and
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left, circularly polarized waves when ¢ = 0. Using the relationships
fa = [(a) + (Ba)’ (¢ —i” — 1]"’,  Impa < 0
ha = [(Boa)* — (£10)]"*, Imha <0

it is clear that F.(1e) is an even function of {1a, involving the parame-
ters foa (= 2ma/\), €, €, and n.

When specific values have been assigned to Ba, ¢, and €, roots of
(10) can be found numerically by the straightforward procedure of
evaluating F,({1a¢) at a regular network of points in the plane of the
complex variable {ia, plotting the families of curves Re F, = 0 and
Im F, = 0, and reading off the values of {;a corresponding to the inter-
sections of curves of the two families.

The procedure just outlined has been applied to the cases n = 0 and
n = 1. When n = 0 one can take out of Fy({1a) the factor Jo' (f1a), whose
roots correspond to the TE, modes; the roots of the other factor are
the TMop-limit modes. When n = 1 the function Fi(f1a) does not factor,
and its roots correspond to both TE,,-limit and TM;.-limit modes. If
the jacket conductivity is high it is easy to identify the various limit
modes, and a given mode can be traced continuously if the conductivity
is decreased in sufficently small steps.

The numerical calculations were set up, more or less arbitrarily, to
cover the region 0 £ Re f1e = 10, —10 = Im te = 10, for each set
of parameter values. A few plots of Re F, and Im F, made it apparent
that for propagating modes the roots in this region are all in the first
quadrant and usually near the real axis. The entire process of solution
was then programmed by Mrs. F. M. Laurent for automatic execution
on an IBM 650 magnetic drum calculator. The caleulator first evaluated
F.({1a) at a network of points spaced half a unit apart in both directions,
then examined the sign changes of Re F, and Im #, around each ele-
mentary square. If it appeared that a particular square might contain
a root of I, , the values of F, at the four corner points were fitted by an
interpolating cubic polynomial'® which was then solved. If the cubic
had a root inside the given square, this was recorded as an approximate
root of I, . The normalized propagation constant tha = aa + i8a was
also recorded for each root.

The calculated roots 1@ and the normalized propagation constants
are summarized in Tables I(a) to I(f), which relate to the following cases:

Table I(a) — foa = 29.554, ¢ = 4, ¢ variable
Table I(b) — Boa = 29.554, ¢ = 100, ¢ variable
Table I(c) — Boa = 29.554, ¢ = ¢, both variable
10 A, N. Lowan and H. E, Salzer, Jour. Math. and Phys., 23, p. 157, 1944.
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Table I(d) — Boa = 12.930, ¢ = 4, ¢ variable
Table I(e) — Boa = 12.930, ¢ = €, both variable
Table I(f) — foa = 6.465, ¢ = 4, ¢ variable

The three values of Bya correspond to waveguides of diameter 2 inches,
Zinch, and 7% inch at A = 5.4 mm. The jacket materials (mostly carbon-
loaded resins) which have been tested to date show a range of relative
permittivities roughly from 4 to 100. There is some indication that the
permittivity of a carbon-loaded resin increases as its conduct1v1ty in-
creases; this suggested consnderatmn of the case ¢ = ¢

The tables cover the range from ¢ = 1000 down to ¢ = 1 at small
enough intervals so that the general course of each mode can be followed.
It is worth notmg that at 5.4 mm a resistivity (1/e) of 1 ohm cm cor-
responds to € = 32. Copper at this frequency has an ¢ of approxi-
mately 2 X 107.

In general the tables include the modes derived from Fo(f1a) whose
limits are TMg, , TMos , and TMgg , and the modes derived from F1({1a)
whose limits are TEy , TMy;, TE, TM;2, and TE;; (except that in
the %-inch guide TMgy, TMiz, and TEy; are cut off). Some results are
given for the TMy;-limit mode, namely those which satisfy the arbitrary
criterion Re e = 10; but these results are incomplete because for large
¢’ the corresponding root of F;(f1a) approaches 10.173. Furthermore for
small values of € the attenuation constants of a few of the TM-limit
modes become quite large and the corresponding values of {ia move far
away from the origin. Since our object was to make a general survey
rather than to investigate any particular mode exhaustively, we did not
attempt to pursue these modes outside the region originally proposed
for study.

The results of the IBM calculations are recorded in Table I to three
decimal places. Since the roots {1a were obtained by cubic interpolation
in a square of side 0.5, the last place is not entirely reliable; but spot
checks on a few of the roots by successive approximations indicate that
it is probably not off by more than one or two units. The propagation
constants of some of the relatively low-loss modes (especially TE;, and
TEy; , whose wall currents are largely circumferential) were caleulated
from the approximate formulas,* as noted in the tables. The attenuation

(Text continued on page 1375)

* The formulas used were (A9) and (A10) of the appendix, which are slightly
more accurate than (7) of the text.



54 MM (Bia = 29.554)

4 AND €’ VARIABLE

TABLE I(a) — 2-1NcH GUIDE AT )\

!

WITH €

iii.iiiiiiii.iiiiiiiiiiiiiiiiiiiiiiiiiii-iixllllixlx-l
1) = [=]=) =t <H =H = 1) 1D 1D LD )
SRR R R B ELR L PR AR PR R R e PR R R R e P
o | TESRBRRSIRNES | SSEHACEARIRNARR | AASREIRRITIBER | FBRIIIIIIFILER
DHSHDH (o JorYorRarNarNe o] o0 o0 [=r] [o2) = YarRarforfa Yo R o N =)
2 | SRIAXIRRIAKR | KANAAIAZINRANR | KRR L IR LEKGREY | SRRRIRSAIKRIKST
§ |ttt | bbb | bbbt | bbb
%9794846629 RO~ OD O HUO = O~ OB HD HOr— O Hr =D N v 00
Do =H o0 <H [=]
SER3ZE3G8RY | 23522573E883F | I35ZBERBRIJLT | 3888335333588
OO0 rim [=I=]=l=]=]==]=f=f==F=1= OO0 OO OOoOOO
R S RSN RN
%4928375318 I~V NI~ 00N WOOLMOFINWHOMAN HOMOHTHNDOCOSOW
I~I=I=I~d0 oML [i=] =) NI=FNO
BESEEERARTS | ASITIRREBITRR | SSRRIRUIERRBE | [BEIZERASIR=S
OOl = CICI DD =H =H [=l=l=lelelelalel=]=Y=}=)=) OO0 OOCOOO OO0 OO
1]
2| FHtttttttd4 | Attt bbbt | bbbt bR | bbb
uwy HoOoNDOIHDHOH=H OOHO == OULN=H D = I~ VD HMINMWO~D D = HIDOMH O~ QW00
o O W= D=L w [ ] (=] =N =) SO o) -
FOSISRRRIRRT | RANSSISLESISER | ShRIR0RNNIERNE (ARRTS8RARYNISS
CIII I I 0N =H LD =00 VWDV HHHHHHDM COWLOWWWWW~E=I=~O L R s B o o W Mo Wt W ot (e o |
(=Y =] (=T N NOD =H
s cSBRSRRIIR/IS® sOREERIIRERP™~ | SRESIZBIR/E2X~ s OREIRIF/IESP™
e SN~ S SN~ =1~ B
— = — Ll
Q
-
Q
=
..m <] 3 S =
El= S = 5
= H = 2

1361



TasLe I(a) — Continued

Limit Mode ¢’ fia aa + ifa

TM]! <« 3 . 832 29 . 3051
1000 3.652 4+ 0.197i 0.024 4+ 29.328i

250 3.457 + 0.4401 0.052 + 29.3551

100 2.978 + 0.8801 0.089 + 29.417i

90 2.821 + 1.2151 0.116 + 29.445i

80 2.945 + 1.4761 0.148 4 29.444i

64 3.146 + 1.868i 0.200 + 29.4461

40 3.728 + 2.564i 0.325 + 29.432i

25 4.659 + 3.1751 0.504 + 29.361i

16 5.921 + 3.727i 0.756 + 29.204i

10 7.613 4 4.1351 1.090 + 28.8751

8 8.487 + 4.153i 1.231 + 28.6391

TE,: 0 5.331 29.069i
1000 0.0008 + 29.070i*
250 0.0016 + 29.071i*
100 0.0026 + 29.0721*
64 0.0033 + 29.072i*
40 0.0042 + 29.073i*
25 0.0055 + 29.074i*
10 0.0092 4 29.0751*

4 5.297 + 0.072i 0.013 + 29.076i

1 5.322 + 0.096i 0.018 + 29.071i

TM;2 ] 7.016 28.7101
1000 6.918 4+ 0.099i 0.024 + 28.733i

250 6.821 4+ 0.203i 0.048 + 28.757i

100 6.701 + 0.330i 0.077 + 28.786i

90 6.683 + 0.349i 0.081 + 28.791i

80 6.660 + 0.372i 0.086 -+ 28.7961

64 6.612 + 0.410i 0.096 + 28.808i

40 6.475 + 0.5351 0.120 + 28.841i

25 6.253 + 0.6551 0.142 4 28.8931

16 5.965 + 0.682i 0.141 + 28.954i

10 5.719 + 0.590i 0.116 + 29.002i

8 5.641 + 0.5411 0.105 -+ 29.016i

4 5.471 + 0.4191 0.079 -+ 29.0471

1 5.317 + 0.347i 0.063 + 29.0741

TE:s 0 8.536 28.2051
1000 0.0003 -+ 28.295i*
250 0.0006 4 28.295i*
100 0.0010 4 28.296i*
64 0.0012 4 28.296i*
40 0.0016 + 28.296i*
25 0.0020 + 28.296i*
10 0.0034 4 28.297i*
4 0.0050 + 28.296i*
1 0.0058 + 28.295i*

TM,3 @0 10.173 27.748i1
100 9.963 4+ 0.219i 0.078 + 27.8251

90 9.952 4 0.231i 0.083 4 27.829i

80 9.938 + 0.2461 0.088 + 27.834i

64 0.911 + 0.277i 0.098 4 27.845i

40 9.840 + 0.3561 0.126 - 27.870i

25 0.746 + 0.460i 0.161 + 27.9051

16 9.625 + 0.591i 0.204 -+ 27.9501

10 9.433 + 0.7571 0.255 + 28.020i

8 9.305 4 0.837i 0.278 + 28.065i

4 8.836 + 0.898i 0.281 4 28.218i

1 8.485 + 0.781i 0.234 - 28.322i

* Approximate formula.
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TABLE I(b) — 2-1N¢H GUIDE AT Ay = 5.4 Mm (Bya = 20.554)

HELIX WAVEGUIDE

with € = 100 AND €' VARIABLE

Limit Mode e’ fa aa + ifa
TMe, w0 2.405 29.4561
1000 2.178 4+ 0.3911 0.029 4 29.4761
250 2.291 4+ 0.8851 0.069 + 29.479i
100 2.677 4 1.0621 0.097 -+ 29.452i
80 2.764 + 1.0471 0.098 < 29.4431
64 2.834 4+ 1.0191 0.098 -+ 29.4361
40 2.928 4 0.9501 0.004 + 29.424i
25 2.973 + 0.8931 0.090 + 29.4181
10 3.004 + 0.831i 0.085 + 29.4131
4 3.013 + 0.8061 0.083 -+ 29.411i
1 3.016 + 0.7931 0.081 <+ 29.411i
TMs w 5.520 29.0341
1000 5.406 4 0.133i 0.025 + 29.0561
250 5.339 + 0.298i 0.055 4+ 29.0691
100 5.372 + 0.4731 0.087 + 29.0661
80 5.398 + 0.5081 0.094 -+ 29.062i
64 5.429 + 0.5351 0.100 -+ 29.0561
40 5.492 + 0.5661 0.107 -+ 29.0451
25 5.540 4+ 0.5731 0.109 4+ 29.0361
10 5.589 + 0.5691 0.109 4 29.0271
4 5.608 4 0.5631 0.109 + 29.023i
1 5.617 + 0.5601 0.108 <+ 29.021i
T™ 03 @0 8.654 28,2501
1000 8.581 + 0.082 0.025 + 28.281i
250 8.537 + 0.1791 0.054 -+ 28.2951
100 8.548 + 0.2791 0.084 - 28.292i
80 8.5661 4+ 0.3001 0.091 - 28.2801
G4 8.575 + 0.317i 0.096 - 28.285i
40 8.606 4+ 0.3391 0.103 + 28.276i
25 8.630 4 0.3481 0.106 <+ 28.268i
10 8.658 4 0.3521 0.108 4 28.260i
4 8.669 + 0.352i 0.108 <+ 28.257i
1 8.675 + 0.351i 0.108 + 28.255i
TEn 0 1.841 29.4971
1000 1.719 4+ 0.2361 0.014 -+ 29.5051
250 1.871 + 0.5041 0.032 + 29.4991
100 2.132 4 0.484 0.035 -+ 29.481i
80 2.161 + 0.4511 0.033 - 29.4701
64 2.178 + 0.4201 0.031 4+ 29.477i
40 2.191 + 0.372i 0.028 + 29.4751
25 2.192 4+ 0.343i 0.026 + 29.4751
10 2.190 + 0.316i 0.023 + 20.4751
4 2.188 + 0.306i 0.023 —+ 29.4751
1 2.187 + 0.3011 0.022 + 29.4751
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TasLe I(b) — Continued

Limit Mode e’ hia aa + ifa
TMi, @ 3.832 29.3051
1000 3.663 4 0.2041 0.026 -+ 29.327i
250 3.579 4+ 0.4851 0.059 + 29.341i
100 3.715 + 0.788i 0.100 + 29.331i
80 3.787 + 0.826i 0.107 + 29.322i
64 3.856 + 0.8431 0.111 + 29.314i
40 3.969 + 0.8361 0.113 4+ 29.299i
25 4.043 + 0.8171 0.113 + 29.288i
10 4.100 4 0.777i 0.109 + 29.279i
4 4.119 + 0.75% 0.107 + 29.276i
1 4,128 + 0.749i 0.106 + 29.274i
1000 0.0008 + 29.070i*
250 0.0018 + 29.071i*
100 . 0.0028 + 29.071i*
64 0.0032 + 29.070i*
40 0.0034 + 29.070i*
25 0.0035 + 29.070i*
10 0.0036 + 29.070i*
4 0.0036 + 29.070i*
1 0.0036 + 29.069i*
TM; = © 7.016 28.710i
1000 6.923 + 0.103i 0.025 + 28.732i
250 6.868 + 0.226i 0.054 + 28.746i
100 6.885 + 0.3551 0.085 + 28.743i
80 6.902 4 0.381i 0.092 -+ 28.7401
64 6.922 4 0.4031 0.097 -+ 28.735i
40 6.965 + 0.4291 0.104 -+ 28.725i
25 7.000 + 0.4401 0.107 + 28.717i
10 7.037 4 0.4431 0.109 <4 28.7081
4 7.051 4 0.441i 0.108 + 28.704i
1 7.058 + 0.440i 0.108 + 28.703i
TEuw 0 8.536 28. 2951
1000 0.0003 + 28.295i*
250 0.0007 + 28.295i*
100 0.0010 + 28.295i*
64 0.0012 + 28.295i*
40 0.0013 + 28.295i*
25 0.0013 + 28.295i*
10 0.0013 + 28.295i*
4 0.0013 + 28.295i*
1 0.0013 + 28.295i*

* Approximate formula.
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TasLE I{e) — 2-iNcH GUIDE AT A\

54 mm (Bua = 29.554)

WITH € = €

Limit Mode e and e’ hia aa + ifa
TMn © 2.405 29.4561
1000 2.338 4+ 0.341i 0.027 4 29.464i
250 2.418 4+ 0.7071 0.058 -+ 29.4641
100 2.677 + 1.0621 0.097 + 29.452i
64 2,925 4 1.2261 0.122 + 29,4351
40 3.309 + 1.3241 0.149 + 29.399i
32 '3.540 + 1.299i 0.156 + 29.371i
25 3.787 + 1.162i 0.150 + 29.334i
16 3.946 4 0.8001 0.108 + 29.3011
12 3.950 4+ 0.6471 0.087 + 29.2961
10 3.946 + 0.573i 0.077 + 29.2951
4 3.905 4 0.344i 0.046 + 29.2971
2 3.869 + 0.252i 0.033 + 29.301i
1 3.820 + 0.185i 0.024 + 29.307i
TM s o0 5.520 29.0341
1000 5.469 + 0.1361 0.026 + 29.044i
250 5.423 4 0.2821 0.053 4 29.054i
100 5.372 4+ 0.473i 0.087 + 29.0661
64 5.337 4+ 0.624i 0.115 4+ 29.0751
40 5.294 4+ 0.874i 0.159 -+ 29.0901
32 5.279 4+ 1.061i 0.193 + 29.0991
25 5.319 4 1.367i 0.250 —+ 29.1051
16 5.852 4+ 1.969i 0.397 + 29.039i
12 6.472 4+ 2.178i 0.487 4+ 28,9231
10 7.026 + 2.1981 0.536 + 28,7961
TM o3 © 8.654 28. 2591
1000 8.620 4 0.0851 0.026 —+ 28.26%
250 8.587 + 0.173i 0.052 + 28.280i
100 8.548 + 0.2791 0.084 <+ 28,2921
64 8.521 + 0.355i 0.107 4 28.302i
40 8.483 + 0.461i 0.138 - 28.3151
32 8.458 4 0.526i 0.157 -+ 28.323i
25 8.425 + 0.611i 0.182 - 28.335i
16 8.330 + 0.824i 0.242 + 28.3691
12 8.206 + 1.037i 0.300 4 28.413i
10 8.034 + 1.2401 0.350 -+ 28.471i
4 7.200 + 0.6931 0.174 - 28.6731
2 7.098 4 0.483i 0.120 - 28.6941
1 6.998 + 0.349i 0.085 - 28.716i1
TEu w 1 841 29 .4971
1000 1.810 4 0.190i 0.012 - 29,499
250 1.911 + 0.3841 0.025 - 29.4951
100 2.132 4 0.484i 0.035 -+ 29.4811
64 2.270 + 0.4531 0.035 - 29.4701
40 2.365 + 0.366i 0.029 + 29.462i
32 2.389 4+ 0.324i 0.026 -+ 29.450i
25 2.406 + 0.281i 0.023 -+ 29.457i
16 2.420 + 0.219i 0.018 -+ 29.456i
12 2.424 + 0.187i 0.015 -+ 29.4551
10 2.424 + 0.169i 0.014 + 29.4551
4 2.418 + 0.106i 0.009 -+ 29.4551
2 2.409 + 0.078i 0.006 -+ 29.456i
1 2.394 + 0.056i 0.005 + 29.457i
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TazsLe I(c)—Continued

Limit Mode € and " tia aa -+ 18a

TMu ] 3.832 29,3051
1000 3.750 + 0.203i 0.026 + 29.3151

250 3.714 4 0.4391 0.056 + 29.323i

100 3.715 4 0.7881 0.100 4 29.331i

64 3.797 4+ 1.0701 \ 0.130 + 29.3201

40 4.080 4 1.4001 0.195 + 29.305i

32 4.276 4+ 1.5501 0.226 + 29.2851

25 4.586 + 1.661i . 0.260 4 29.245i

16 5.359 4 1.579i 0.291 4+ 29.1091

12 5.587 + 1.0431 0.201 4 29.041i

10 5.560 + 0.8591 0.164 + 29.040i

4 5.471 4 0.419 0.079 -+ 29.047i

2 5.438 + 0.2491 0.047 + 29.051i

1 5.444 + 0.1311 0.025 + 29.0491

TE. hed 5.331 29.0691
1000 0.0009 4 29.070i*
250 0.0018 + 29.070i*
100 0.0028 + 29.071i*

G4 0.0035 + 29.071i*
40 0.0044 + 29.071i*
25 0.0055 + 29.072i*

10 0.0087 4 29.073i*

4 5.297 4+ 0.0721 0.013 + 29.076i

2 5.272 + 0.108i 0.020 + 29.080i

1 5.198 + 0.132i 0.023 + 29.094i

TM]z o 7.016 28.7101
1000 6.971 4+ 0.1071 0.026 + 28.721i

250 6.931 4+ 0.217i 0.052 + 28.731i

100 6.885 + 0.3551 0.085 + 28.743i

64 6.852 + 0.4571 0.109 + 28.753i

40 6.801 + 0.610i 0.144 + 28.768i

32 6.768 + 0.708i 0.167 -+ 28.778i

25 6.720 + 0.850i 0.198 + 28.793i

16 6.562 4 1.3591 0.309 -+ 28.850i

12 6.869 + 2.0051 0.499 + 28.825i

10 7.322 4+ 2.374i 0.605 -+ 28.737i

TE:s w© 8.536 28.2951
1000 0.0003 + 28.295i*
250 0.0007 + 28.205i*
100 0.0010 -+ 28.295i*
64 0.0013 + 28.295i*

40 0.0016 + 28.295i*

25 0.0021 + 28.295i*

10 0.0032 + 28.296i*

4 0.0050 + 28.296i*

1 0.0094 + 28.205i*

TM,; 3 10.173 27.748i
25 9.981 + 0.497i 0.178 -+ 27.823i1

16 9.910 4 0.6521 0.232 <+ 27.852i

12 0.841 + 0.785i 0.277 -+ 27.880i

10 0.776 + 0.8931 0.313 4+ 27.9071

4 8.836 + 0.898i 0.281 4 28.2181

2 8.656 + 0.5961 0.183 + 28.2651

l 1 8.523 + 0.409i ‘ 0.123 - 28.302i

* Approximate formula.



HELIX WAVEGUIDE

Tasre I(d)—3%-incH GUIDE AT A = 5.4 MM (Byz = 12.930)
WITH ¢ = 4 AND ¢’ VARIABLE

1367

Limit Mode e’ ha aa + 18a
TMq w 2.405 12.704i
1000 2.286 + 0.140i 0.025 -+ 12.727i
250 2.183 4+ 0.324i 0.056 + 12.749i
100 2.113 + 0.595i 0.008 + 12.771i
64 2.114 + 0.800i 0.132 + 12.782i
40 2.185 + 1.072i 0.183 4+ 12.790i
25 2.377 + 1.369i 0.255 + 12.786i
10 3.212 4 1.609i 0.431 + 12.647i
6.4 3.604 + 1.440i 0.426 + 12.482i
4.0 3.765 + 1.029i 0.312 + 12.416i
2.5 3.700 + 0.853i 0.254 + 12.421i
; 1.0 3.624 4 0.733i 0.214 + 12.435
TMoz w 5.520 11.692i
1000 5.468 + 0.054i 0.025 + 11.717i
250 5.416 + 0.111i ! 0.051 -+ 11.742i
100 5.356 + 0.183i 0.083 + 11.770i
64 5.317 + 0.235i 0.106 -+ 11.789i
40 5.266 4+ 0.308i 0.137 - 11.814i
25 5.206 + 0.410i ’ 0.180 -+ 11.844i
10 5.073 + 0.772i 0.328 -+ 11.923i
6.4 5.005 4+ 1.137i g 0.485 -+ 11.948i
4.0 5.486 4 1.420i ; 0.664 -+ 11.814i
2.5 | 5.818 + 1.379i | 0.680 -+ 11.650i
i 1.0 6.041 + 1.188i 0.624 4+ 11.511i
TM g { v | 8.654 9.607i
1000 8.620 + 0.034i ‘ 0.030 + 9.637i
250 8.587 + 0.069i J 0.061 + 9.667i
100 8.550 - 0.111i - 0.098 + 9.701i
64 8.525 + 0.141i l 0.124 + 9.723i
40 8.404 -+ 0.183i ‘ 0.160 + 9.752i
25 8.459 + 0.230i 0.207 + 9.7851
10 8.393 -+ 0.411i 0.350 + 9.851i
6.4 8.386 + 0.532i 0.452 + 9.866i
4.0 8.426 + 0.668i 0.571 + 9.847i
2.5 8.515 + 0.769i 0.660 + 9.784
1.0 8.676 + 0.824i 0.741 + 9.851i
TL,, @ 1.841 12.798i
1000 1.767 + 0.074i 0.010 + 12.809i
250 1.717 + 0.191i 0.026 + 12.817i
100 1.706 + 0.368i 0.049 -+ 12.822i
64 1.734 + 0.500i 0.068 + 12.823i
40 1.857 + 0.656i 0.095 + 12.813i
25 2.126 + 0.773i 0.129 4+ 12.778i
10 2.436 + 0.411i 0.079 + 12.706i
6.4 2.413 + 0.316i 0.060 + 12.707i
4.0 2.386 + 0.262i 0.049 + 12.711i
2.5 2.364 + 0.234i 0.043 + 12.714i
1.0 2.341 + 0.212i 0.039 -+ 12.718i
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Tasie I(d) — Continued

Limit Mode e’ Hia aa + ifa

TMn 0 3.832 12.349i
1000 3.750 + 0.081i 0.025 - 12.3751

250 3.676 + 0.171i 0.051 - 12.398i

100 3.588 + 0.290i 0.084 + 12.4261

64 3.530 + 0.382i 0.108 + 12.4451

40 3.447 + 0.516i 0.143 + 12.4741

25 3.329 + 0.757i 0.201 4 12.5191

10 3.749 - 1.664i 0.499 - 12.496i

6.4 4.275 + 1.7501 0.606 + 12.343i

4.0 4.701 4+ 1.553i 0.600 + 12.160i

2.5 4.843 + 1.274i 0.511 + 12.067i

1.0 4.844 + 1.031i 0.415 + 12.040i

TEu 0 5.331 11.780i
1000 0.0007 + 11.780i*

250 0.0015 + 11.781i*

100 0.0024 + 11.782i*

64 0.0030 + 11.782i*

40 0.0039 + 11.783i*

25 0.0051 + 11.784i*

10 0.0085 + 11.785i*

4 0.0125 4 11.784i*

1 0.0146 -+ 11.781i*

TMa 0 7.016 10.861i
1000 6.972 4 0.0431 0.027 4 10.889i

250 6.930 4+ 0.0871 0.055 <+ 10.917i

100 6.883 4 0.141i 0.088 4 10.947i

64 6.853 + 0.179i 0.112 + 10.967i

40 6.814 + 0.233i 0.144 -4 10.992i

25 6.769 - 0.3051 0.187 4 11.023i

10 6.679 4 0.5411 0.326 - 11.090i

6.4 6.670 -4 0.7181 0.431 -+ 11.109i

4.0 6.755 4+ 0.9351 0.570 + 11.080i

2.5 6.942 4 1.061i 0.671 + 10.981i

1.0 7.193 + 1.054i 0.700 + 10.819i

TE;s ] 8.536 9.712i
1000 0.0002 + 9.712i*
250 0.0005 + 9.712i*
100 0.0008 + 9.712i*
64 0.0010 4 9.713i*
40 0.0012 4 9.713i*
25 0.0016 4+ 9.713i*
10 0.0027 + 9.713i*
4 0.0040 + 9.713i*
1 0.0048 + 9.712i*

TM;; o0 10.173 7.980i
10 9.949 4 0.340i 0.409 - 8.2761

6.4 9.943 + 0.436i 0.523 4 8.2931

4.0 9.970 + 0.5431 0.655 4 8.277i

* Approximate formula.



HELIX WAVEGUIDE 1369

TasLE I(e) — Z-incE GUIDE AT Ay = 5.4 MM (Ba = 12.930) wiTH
! I

€ = €

Limit Mode ¢ and ¢’ ha aa 4 ia
TMqg, 0 2.405 12,7041
1000 2.360 4+ 0.141i 0.026 -+ 12.714i
250 2.339 + 0.295i 0.054 - 12.720i
100 2.351 + 0.482i 0.089 —+ 12.724i
64 2.382 + 0.6081 0.114 4 12.7241
40 2.450 + 0.7661 0.148 4 12.7201
25 2.573 + 0.942i 0.191 < 12.708i
10 3.052 4 1.244i 0.301 + 12.630i
4 3.765 + 1.0291 0.312 4+ 12.416i
2 3.841 4+ 0.653i 0.203 -+ 12.366i
1 3.768 4+ 0.438i 0.133 + 12.378i
TMo2 © 5.520 11.692i
1000 5.497 4 0.058i 0.027 4 11.704i
250 5.475 4+ 0.118i 0.055 - 11.7151
100 5.451 + 0.1901 0.088 -+ 11.727i
64 5.435 + 0.241i 0.111 + 11.735i
40 5.416 + 0.3101 0.143 4 11.746i
25 5.393 + 0.402i 0.184 + 11.760i
10 5.338 + 0.701i 0.317 4 11.802i
4 5.486 + 1.420i 0.664 + 11.814i
2 6.380 + 1.780i 0.996 4 11.425i
1 6.901 4 1.0401 0.652 + 11.003i
1000 8.639 4+ 0.0371 0.033 + 9.62L
250 8.624 4+ 0.0741 0.067 + 9.6351
100 8.607 + 0.118i1 0.105 4+ 9.650i
64 8.596 + 0.148i 0.132 4 9.661i
40 8.581 + 0.189i 0.168 4+ 9.675i
25 8.563 + 0.241i 0.213 4+ 9.694i
10 §8.512 + 0.393i 0.344 4+ 9.747i
4 8.426 4+ 0.6681 0.571 4 9.847i
2 8.320 + 1.094i 0.910 4+ 9.999%
1 8.812 4 1.915i 1.721 + 9.806i
1000 1.810 + 0.072i 0.010 + 12.803i
250 1.807 + 0.161i 0.023 -+ 12.804i
100 1.833 4 0.2651 0.038 -+ 12.802i
64 1.870 4+ 0.330i 0.048 -+ 12.799i
40 1.939 4 0.401i 0.061 + 12.790i
25 2.047 4 0.4591 0.074 + 12.776i
10 2.205 4 0.414i 0.075 + 12.732i
4 2.386 + 0.262i 0.049 + 12.711i
2 2.389 4 0.186i 0.035 + 12.709i
1 2.369 + 0.1291 0.024 + 12.712i
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Fig. 2(a) and (b)
Fig. 2 — Plots of phase constant versus attenuation constant for modes in
various helix waveguides. Representative values of ¢’ are shown on the curves.
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HELIX WAVEGUIDE 1373
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constants calculated from the approximate formulas are given to four
decimal places, i.e., usually two significant figures.

The contents of Table I are displayed graphically in Figs. 2(a) through
(f), which show plots of Ba vs aa for all modes except TM;;. Repre-
sentative values of ¢ are indicated on the curves. Note that the scales
are different for the different guide sizes, and that the Sa-scale is com-
pressed in all cases. If aa and Ba were plotted on the same scale, the
curves would make an initial angle of 45° with the aa-axis when ¢ =
constant, or 22.5° when ¢ = ¢ .

Tigs. 3(a) to (f) show the normalized attenuation constants aa of
various modes plotted against ¢’ on a log-log scale. In Fig. 3(b) the
curves for all TM modes would be similar to the two shown, and in
Iig. 3(d) the TMy; curve is like TM;. . Although for some modes the
attenuation constant increases steadily as the conduectivity decreases
over the range of our calculations, in many cases the attenuation passes
through a maximum and then decreases as the conductivity is further
decreased. This phenomenon will be discussed in Section V.

It may be noticed that in some instances the limit modes are not
unique. For example, Tables I(a), with ¢ = 4, and I(c), with ¢ = ¢,
for the large guide have in common the case ¢ = 4, ¢ = 4. For this
case consider the circular magnetic mode corresponding to fHa =
3.905 + 0.3444. If ¢ is constant (= 4) while ¢ tends to infinity, this
mode approaches the TMy; mode in a perfectly conducting guide; but
if ¢ and ¢ tend to infinity while remaining equal to each other, the same
mode approaches TMy, in a perfectly conducting guide. Presumably the
TMg-limit mode in the former case coincides with the TMg-limit mode
in the latter case; but the value of {ia for this mode is outside the range
of our calculations at ¢ = ¢ = 4, A similar interchange occurs between
the TMy;-limit and TM;.-limit modes in the large guide, depending on
whether € is constant or ¢ tends to infinity with ¢ . There is no evidence
of any such phenomenon in the smaller guide of Tables I(d) and I(e);
but the fact that it ecan occur means that the limit-mode designations of
modes in a lossy waveguide are not entirely unambiguous. The phen-
omenon is not due to the presence of the helix, since a helix of zero pitch
has no effect on circular magnetic modes.

Finally it is of interest to compare the propagation constants given
by the approximate formula with those obtained by numerical solution
of the characteristic equation. A reasonably typical case is provided by
the TMg,-limit mode in a 2-inch guide at Ay = 5.4 mm with ¢ = 4, as
in Table I(a). Exact and approximate results for fa vs aa and aa vs €’
are plotted in Fig. 4. As the conductivity decreases, the attenuation con-
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stant first becomes larger, in all cases, than predicted by the approximate
formula. For still lower conductivities the attenuation constant may pass
through a maximum, as in the present example, and decrease again. The
existence of a maximum in the attenuation vs conductivity curve is not
indicated by the approximate formula.



1378 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1956

V. DISCUSSION OF RESULTS

The dimensionless results of Section IV may easily be scaled to any
desired operating wavelength, and the attenuation constants and guide
wavelengths expressed in conventional units. If A, is the free-space wave-
length in centimeters, then the guide diameter d in inches, the attenua-
tion constant « in db/meter, and the guide wavelength ), in centimeters
are given by the following formulas:

d;,, = 012532 (Boﬂ}‘(Ru)nm
S 5457.5 (aa)
pim (ﬁﬂa') ()\O)cm
- (BUG)(AD)cm
(Aﬂ)cm - (ﬁﬂ‘:)

Table II lists the guide diameters and the conversion factors for « and
)\, for the three values of fia used in Section 1V, at frequencies corre-
sponding to free-space wavelengths of 3.33 and 0.54 em. The table also
lists the number of propagating modes in a perfectly conducting guide
as a function of Ba (different polarizations are not counted separately).

When helix waveguide is used to reduce mode conversions, an im-
portant parameter is the ratio of the attenuation constant of any given
unwanted mode to the attenuation constant of the TEy mode. The
theoretical attenuation constants of the TEy, mode at Ay = 5.4 mm in
copper guides of various sizes are listed below:

Diameter aa adb/m
2" 277 X 107° 947 X 107
3" 1.50 X 10~° 1.17 X 107

X" 7.11 X 10° 1.11 X 107

TasLE II — CoNVERSION FACTORS FOR ATTENUATION CONSTANTS AND
GuipE WAVELENGTHS IN VARIOUS WAVEGUIDES

P M = 3.33 cm 2 = 0.54cm
rupa-
Poa gatcliug - -
modes | Diameter | g gb/meter | Moem | RIEANST |« db/meter| X em

29.554 227 12.33 55.5 aa| 98.41/Ba | 2.000 342 aa | 15.959/a
12.930 44 5.40 | 127 «a| 43.06/Ba | 0.875 782 aa | 6.982/Ba
6.465 12 2.70 | 253 «a| 21.53/Ba | 0.4375 | 1563 ca | 3.491/Ba
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Referring to the values of aq listed in Table I, we see that the un-
wanted mode attenuations can be made to exceed the TE,, attenuation
by factors of from several hundred to several hundred thousand in the
large helix guide. The attenuation ratios are somewhat smaller in the
smaller guide sizes.

The attenuation versus conductivity plots of Fig. 3 show that for
many of the modes there is a value of jacket conductivity, depending on
the mode, the value of B, and the jacket permittivity, which maximizes
the attenuation constant. Since one is accustomed to think of the at-
tenuation constant of a waveguide as an increasing function of frequency
for all sufficiently high frequencies (except for circular electric waves),
or as an increasing function of wall resistance, it is worth while to see
why one should really expect the attenuation constant to pass through
a maximum as the frequency is increased indefinitely in an ordinary
metallic guide, or as the wall resistance is increased at a fixed frequency.
The argument runs as follows:

Guided waves inside a cylindrical pipe may be expressed as bundles of
plane waves repeatedly reflected from the cylindrical boundary." The
angle which the wave normals make with the guide axis decreases as the
frequency increases farther above cutoff; and the complementary angle,
which is the angle of incidence of the waves upon the boundary, ap-
proaches 90°. If the walls are imperfectly conducting, the guided wave is
attenuated because the reflection coefficient of the component waves at
the boundary is less than unity. The theory of reflection at an imper-
fectly conducting surface shows that the reflection coefficient of a plane
wave polarized with its electric vector in the plane of incidence first
decreases with increasing angle of incidence, then passes through a deep
minimum, and finally increases to unity at strictly grazing incidence.”
For a metallic reflector, the angle of incidence corresponding to minimum
reflection is very near 90°. Inasmuch as all modes in circular guide except
for the circular electric family have a component of Z in the plane of
incidence (the plane 6§ = constant), one would expect the attenuation
constant of each mode to pass through a maximum at a sufficiently high
frequency. For example, the TMy mode in a 2-inch copper guide should
have maximum attenuation at a free-space wavelength in the neighbor-
hood of 0.1 mm (100 microns), assuming the dc value for the conductivity
of copper. To find the actual maximum, of course, would require the
solution of a transcendental equation as in Section IV.

The circular electric waves all have E normal to the plane of incidence.

11 Reference 9, pp. 411-412.
12 Reference 7, pp. 507-509.
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For this polarization the reflection coefficient increases steadily from its
value at normal incidence to unity at grazing incidence. Thus one has an
optical interpretation of the anomalous attenuation-frequency behavior
of circular electric waves.

If instead of varying the frequency one imagines the wall resistance
varied at a fixed frequency, he can easily convince himself that there
usually exists a finite value of resistance which maximizes the attenua-
tion constant of a given mode. An idealized illustrative example has been
worked out by Schelkunoff.”* He considers the propagation of transverse
magnetic waves between parallel resistance sheets, and shows that if the
sheets are far enough apart the attenuation constant increases from zero
to a maximum and then falls again to zero, as the wall resistance is made
to increase from zero to infinity. It may be instructive to consider that
maximum power is dissipated in the lossy walls when their impedance is
matched as well as possible to the wave impedance, looking normal to
the walls, of the fields inside the guide.

In conclusion we mention a couple of theoretical questions which are
suggested by the numerical results of Section IV.

(1) Limit modes. It has been seen that the limit which a given lossy
mode approaches as the jacket conductivity becomes infinite may not
be unique. Can rules be given for determining limit modes when the
manner in which | ¢ — i€¢" | approaches infinity is specified?

(2) Behavior of modes as ¢ — 0. It is known'* that the number of true
guided waves (i.e., exponentially propagating waves whose fields vanish
at large radial distances from the guide axis) possible in a cylindrical
waveguide is finite if the conductivity of the exterior medium is finite.
The number is enormously large if the exterior medium is a metal; but
the modes presumably disappear one by one as the conductivity is de-
creased. If the conductivity of the exterior medium is low enough and if
its permittivity is not less than the permittivity of the interior medium,
no true guided waves can exist. At what values of conductivity do the
first few modes appear in a guide of given size, and how do their propa-
gation constants behave at very low conductivities?

The complete theory of lossy-wall waveguide would appear to present
quite a challenge to the applied mathematician. Fortunately the en-
gineering usefulness of helix waveguide does not depend upon getting
immediate answers to such difficult analytical questions.

13 Reference 9, pp. 484-489,
1 (¢, M. Roe, The Theory of Acoustic and Electromagnetic Wave Guides and
Cavity Resonators, Ph.D. thesis, U. of Minn., 1947, Section 2.
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APPENDIX
APPROXIMATE SOLUTION OF THE CHARACTERISTIC EQUATION

The characteristic equation (6) of the helix guide may be written in
the dimensionless form

nha\® J,(f1a) 2 J (f1a)
(I‘ 1@ tan ¢ — ta) 7 T (6a) — (Boa) 7.(0) 1)
_ fa _ nha H,?(tza) s (QG)]
= tu [(f atany = e ) Ho ()~ P (€ e ) 7,9 ()

If | ¢ — ¢ | is sufficiently large, the right side of the equation is large
and either J,(ta) or J,/(f1a) is near zero. Let p denote a particular root
of J, or J,/; then to zero order,

fie =p
ha = Bana = Boa(l — ') (A2)
fa = Boa(e — ie" — 1 — )
where
v = p/Bea
Henceforth assume that
| faa | > | (4n® — 1)/8] (A3a)
and
|l |n] (A3b)
It is convenient to postulate both inequalities, even though the first is
more restrictive than the second unless [n| = 1or|n| = 2.

If (A3a) is satisfied, the Hankel functions may be replaced by the
first terms of their asymptotic expressions, and

% (fa) _
H,® (Q'za) -

Eq. (A1) becomes

_ nha\' Ju(ha) 2 Ja (10)
(;‘,a tan ¢ ) 7.0 — (Boa) T.(60)

= %“ [(ﬁ tan ¢ — 1;_11:1) + (Boa)’(¢' — ie )]
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It follows from (A3b), using the zero-order approximations (A2), that
| nha/aa | < | Boa(e — i€ )" |

so the characteristic equation finally takes the approximate form

nha\" J, (g'.a) o . (10)
(‘“‘" tan ¥ = ) Toca ~ 89 7 )

(A4)

Il

“ 9 [(g2a tan 9)° + (B’ — )]

Now let
hae =p + z, lz| K1

where z is a small complex number. The normalized propagation con-
stant becomes, to first order,

tha = [(510)" — (Boa)T"
= iBoa(l — ") — (1 — P
= aqa + 1(Buma + ABa)
where B, is the phase constant of the mode in a perfectly conducting

guide, and the perturbation terms are

aa 4 idBa = — (ﬁlﬁ% (A5)

Tor the TM,.,, mode, let p be the m® root of J, ; then from Taylor’s
series, to first order in x,

J"(j'lt],) = Jn(’P + 1‘) = $Jn'(P) (AB)

Substituting (A6) into (A4), neglecting the first term on the left side of
(A4), and replacing everything on the right side by its zero approxima-
tion according to (A2), one obtains

_ (Boa)* _ ipBoal(€ — i’ — 1 + ) tan® ¢ + (& — i)
x (¢ — 2’ — 1 4 )2

or

(& 4 in)

T = 2
fl-rZfwte ]
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1 — 2
[1 ¢ = 25] (A8)
(¢" — 7€)1
It follows from (A5) and (A7) that for TM modes,
o+ 188 = ST (A9)
a(l — »)"* l:l + {1 — ,—,,} tan® |j/]
€ —1€
where ¢ + 47 is given by (AR).
For the TE,,, mode, let p be the m* root of J,'; then

where

£+ =

2 2
260 = 3 + @) = B )
Equation (A4) yields

n(l — ;f’)”z]2 .
i'pzv [t&ﬂ v — T (& + in)

ST E==n

and, using (A5), we have for TE modes,

T =

a + A8
1 2 1/27]2 .
; ; [tanw—”(—")—- (& + in)
= G- = A = (410
P [1—}—{1— ; __y,,}tanzz,bjl
€ — e
where £ 4+ 75 is given by (A8).
In view of (A5), the condition that | x | << 1 is equivalent to
(1 _ y2)1f2
— | eaa + iA8a | K 1 (A11)

In all the numerical cases treated in the present paper, the approximate
formulas agree well with the exact ones provided that the left side of
(A11) is not greater than about 0.1.

A condition which is usually satisfied in practice, although not strietly
a consequence of the assumptions (A3) or (A11), is

[

EI — ‘I:E”

<1
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This final approximation leads to the simple equations (7a) and (7b) of
Section III, namely:

TM,.,. modes
o £+ i
a + AR = a(l — A1 + tan¥y]
TE,, modes
o (E4a) P [tany — n(l = )"/l
a + A8 = a(l — A7 (p* — n?) [1 + tan¥]
where

rey—1/2
)

g+ in = (¢ — de



