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The electric field and the hole and electron concentrations are found for
reverse biased junctions in which one side is either intrinsic (I) or so weakly
doped that the space charge of the carriers cannot be neglected. The analysis
takes account of space charge, drift, diffusion and non linear recombination.
A number of figures tllustrate the penetration of the electric field into a PIN
structure with increasing bias for various lengths of the I region. For the
Junction between a highly doped and a weakly doped region, the reverse cur-
rent increases as the square root of the voltage at high voltages; and the space
charge in the weakly doped region approaches a constant value that depends
on the fized charge and the intrinsic carrier concentration.

The mathematics is greatly simplified by expressing lhe equations in
terms of the electric field and the sum of the hole and electron densities.

I. INTRODUCTION

Applications have been suggested for semiconductor structures having
both extrinsic and intrinsic regions. Examples are the “swept intrinsic”
structure, in which a region of high resistivity is set up by an electric
field that sweeps out the mobile carriers, and the analogue transistors,
where the intrinsic region is analogous to the vacuum in a vacuum tube.
However, the junction between an intrinsic region and an N or P region
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is considerably less well understood than the simple NP junction. Most
of the assumptions that make the NP case relatively simple to deal with
do not apply to junctions where one side is intrinsic. Specifically, the
space charge is that of the mobile carriers; thus the flow and electrostatic
problems cannot be separated as they can in PN junction under reverse
bias. The following sections analyze the N-intrinsic - P structure under
reverse bias.

For a given material with fairly highly doped extrinsic regions, the
problem is defined by the length of the intrinsic region and the applied
voltage. Taking the intrinsic region infinitely long gives the solution for
a simple N-intrinsic or P-intrinsic structure. The results are given and
plotted in terms of the electric field distribution. From this the potential,
space charge and carrier concentrations can be found; so also can the
current-voltage curve. The final section considers the case where the
middle layer contains some fixed charge but where the carrier charge
cannot be neglected.

Qualitative Discussion of an N-intrinsic-P Structure

Consider an N-intrinsie-P structure where the intrinsic, or /, region is
considerably wider than the zero bias, or built-in, space charge regions
at the junctions, so that there is normal intrinsic material between the
junctions. The field distribution at zero bias can be found exactly from
the zero-current analysis of Prim.' Throughout the intrinsic region, hole
and electron pairs are always being thermally generated and recombining
at a rate determined by the density and properties of the traps, or recom-
bination centers. Under zero bias the rates of generation and recombina-
tion are everywhere equal. Suppose now a reverse bias is applied causing
holes to flow to the right and electrons to the left. Some of the carriers
generated in the intrinsic region will be swept out before recombining.
This depletes the carrier concentration in the intrinsic region and hence
raises the resistivity. It also produces a space charge extending into the
intrinsic layer. The electrons are displaced to the left and the holes, to
the right. Thus the space charge opposes the penetration of the field
into the intrinsic region; that is, the negative charge of the electrons on
the left and positive charge of the holes on the right gives a field
distribution with a minimum somewhere in the interior of the intrinsic
region and maxima at the NI and IP junctions. If holes and electrons
had equal mobilities, the field distribution would be symmetrical with a
minimum in the center of the intrinsic region. Likewise, the total carrier

1R, C. Prim, B. 8. T. J., 32, p. 665, May, 1953.
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concentration (holes plus electrons) would be symmetrical with a maxi-
mum in the center. As the applied bias is increased the hole and electron
distributions are further displaced relative to one another and the space
charge increases. I'inally, at high enough biases, so many of the carriers
are swept out immediately after being generated that few carriers are
left in the intrinsic region. Now the space charge decreases with increas-
ing bias until there is negligible space charge, and a relatively large and
constant electric field extends through the intrinsie region from junction
to junction. This may happen at biases that are still much too low to
appreciably affect the high fields right at the junction or in the extrinsic
layers, which remain approximately as they were for zero bias.

The current will increase with voltage until the total number of
carriers in the intrinsic region becomes small compared to its normal
value. After that, there is negligible further increase of current with
voltage. All the carriers generated in the intrinsic region are being swept
out before recombining. In general, the current will saturate while the
minimum field in the intrinsic region is still small compared to the
average field.

Comparison with the NP Siructure

The analysis is more difficult than in a simple reverse-biased NP
structure. In the NP case there is a well defined space charge region in
which carrier concentration is negligible compared to the fixed charge of
the chemical impurities; so the field and potential distributions are easily
found from the known distribution of fixed charge. Outside of the space
charge region are the diffusion regions in which the minority carrier con-
centration rises from a low value at the edge of the space charge region
to its normal value deep in the extrinsic region. However, there is no
space charge in this region because the majority carrier concentration,
by a very small percentage variation, can compensate for the large per-
centage variation in minority carrier density. The minority carriers flow
by diffusion. Since the disturbance in carrier density is small compared to
the majority density, the recomhination follows a simple linear law
(being directly proportional to the excess of minority carriers). Thus
the minority carrier distribution is found by solving the simple diffusion
equation with linear recombination.

None of these simplifications extend to the NIP or NT or IP structure.
There is, in the intrinsic region, no fixed charge; hence the space charge
is that of the carriers. There is no majority carrier concentration to
maintain electrical neutrality outside of a limited space charge region.
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It is necessary to take account of (1) space charge, (2) carrier drift, (3)
carrier diffusion and (4) recombination according to a nonlinear bi-
molecular law. Of these four, only space charge and recombination are
never simultaneously important in practical cases. Nevertheless certain
simplifications can be made if the problem is formulated so as to take
advantage of them. The field and carrier distributions in the intrinsie
region are found by joining two solutions: one solution is for charge
neutrality; the other, which we shall call the no-recombination solution
is for the case where the recombination rate is negligible compared to the
rate of thermal generation of hole electron pairs. We shall show that in
practical cases the ranges of validity of the two solutions overlap; that
is, wherever recombination is important, we have charge neutrality.

Prim’s Zero-Current Approximation

Prim* derived the field distribution in a reverse biased NIP structure
on the assumption that the hole and electron currents are negligibly small
differences between their drift and diffusion terms, as in the zero-bias
case. He showed that the average diffusion current is large compared
to the average current. However, as it turns out, this is misleading.
Throughout almost all of the intrinsic region (where the voltage drop
occurs in practical cases) the diffusion current is comparable to or
smaller than the total current. The larger average diffusion current comes
from the extremely large diffusion current in the small regions of high
space charge at the junctions. Prim’s analysis, in effect, neglects the space
charge of the carriers generated in the intrinsic region. These may be
neglected in calculating the field distribution if the intrinsic region is
sufficiently narrow or the reverse bias sufficiently high. In the appendix
we derive the limits within which Prim’s calculation of the field and
potential will be valid. The range will increase with both the Debye
length and the diffusion length in the intrinsic material. However, in
cases of practical interest the zero-current approximation may lead to
serious errors in the field distribution and give a misleading idea of the
penetration of the field into the intrinsic region. The present, more
general analysis, reduces to Prim’s near the junctions where the zero-
current assumption remains valid. The zero current approximation was,
of course, not intended to give the hole and electron distributions in the
intrinsic region or to evaluate the effects of interacting drift, diffusion
and recombination.

* Ibid.
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Outline of the Following Sections

Sections IT through V deal with the ideal case of equal hole and elec-
tron mobilities. Here the problem is somewhat simplified and the physics
easier to visualize because of the resulting symmetry. In Section VI,
the general case of arbitrary mobilities is solved by an extension of the
methods developed for solving the ideal case. The technique is to deal
not with the hole and electron flow densities but with two linear com-
binations of hole and electron flow densities that have a simple form.

Section IT deals with the basic relations and in particular the formula
for recombination in an intrinsic region for large disturbances in carrier
density. The nature and range of validity of the various approximations
are discussed. Section III derives the field distribution in regions where
recombination is small compared to pair generation. Section IV treats
the recombination region and the smooth joining of the recombination
and no-recombination solutions. Section V considers the role of diffusion
in current flow and the situation at the junctions where the field and
carrier concentration abruptly become large. The change in form of
the solution near the junctions is shown to be represented by a basic in-
stability in the governing differential equation. Section VI extends the
results to the general case of unequal mobilities. Section VII deals with
the still more general case where there is some fixed charge in the “in-
trinsic’” region. If the density of excess chemical impurities is small com-
pared to the intrinsic carrier density, the solution remains unchanged in
the range where recombination is important. In the no-recombination
region the solution is given by a simple first order differentiatial equation
which can be solved in closed form in the range where the carrier flow is
by drift. The fixed charge may have a dominant effect on the space
charge even when the excess density of chemical impurities is small com-
pared to the density n; of electrons in intrinsic material. Consider, for
example, a junction between an extrinsic P region and a weakly doped
n region having an excess density N = Ng — N, of donors. In the limit,
as the reverse bias is increased and the space charge penetrates many
diffusion lengths into the n region, the field distribution becomes linear,
corresponding to a constant charge density equal to

3N + V/N* + 8 nlg¥/L{

where L; is the diffusion length in the weakly doped n type region and £
is the Debye length for intrinsic material. For germanium at room tem-
perature £/L; is the order of 107°. Thus, in this example, a donor density
as low as 10" em™ will have an appreciable effect on the space charge.
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II. BASIC RELATIONS

The problem can be stated in terms of the hole density p, the electron
density n, and the electric field £ and their derivatives. Let the distance
2 be measured in the direction from N to P. The field will be taken as
positive when a hole tends to drift in the 42 direction. The field in-
creases in going in the 42 direction when the space charge is positive.
Poisson’s equation for intrinsic material is

op = e —n) (2.1)

where the constant a has the dimensions of volt cm and is given in terms
of the electronic charge ¢ and the dielectric constant x by

drg

K

a =

TFor germanium ¢ = 1,17 X 1077 volt em.
The hole and electron flow densities J, and J, are’

_ _pd _ g KT d
Jp = pEp Ddz—pp[ﬂ 7 dxtnp]
(2.2)
Jo = —b(,uEn—I—Dfdlb) - -bpn[E+’£i fnn]
dx q dx

where g and D = u kT/q are the hole mobility and diffusion constant re-
spectively, k is Boltzmann’s constant (8.63 X 10"° ev per °C) and 7 is
the absolute temperature. The ratio b of electron mobility to hole mo-
bility we take to be unity. This makes the problem symmetrical in n and
p and consequently easier to understand. Section VI will extend the re-
sults to the general case of arbitrary b.

Charge and Particle Flow

For some purposes it helps to express the flow not in terms of J, and
J, but rather in terms of the current density I and the flow density
J = J, + J, of particles, or carriers. The current density I = q(Jp, —
J.). Each carrier, hole or electron, gives a positive contribution to
J if it goes in the +z direction and a negative contribution if it goes in
the —z direction. In other words, J is the net flow of carriers regardless
of their charge sign. The current I is constant throughout the intrinsic

2 See, for example, Electrons and Holes in Semiconductors, by W. Shockley.
D. Van Nostrand Co., New York, 1950.
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region. Particle flow is away from the center of the intrinsic region.
Carriers are generated in the intrinsic region and flow out at the two ends,
the electrons going out on the N side and holes on the P side. Thus J is
positive near the /P junction and negative near the N7 junction.

From the definitions of I and J and equations (2.2)

Leubp+m DL —w
g dz

g (2.3)
J=pE(p—ﬂ)—Dd—x-(P+n)

It is convenient to express the equations in terms of ¥ and a dimen-
sionless variable

n-+p

27’!.,;

(2.4)

which measures how “swept” the region is. In normal intrinsic material
s = 1. In a completely swept region s = 0; at the junctions with highly
extrinsic material s 3> 1. Using Poisson’s equation to express p — n in
terms of E, equations (2.3) become

gD &°E

I=O'SE'_'-&—'G?

= i [@ — 2n.-Ds] 2

T dz| 2a

where ¢ = 2 p n,q is the conductivity of intrinsic material. The particle
flow J is thus seen to be the gradient of a flow potential that depends
only on E and s.

Equations (2.5) can be written in the form

2 2}

I=¢ I:sE — g 5} (2.6)
2

J = D2n.-% [g—lz - s] (2.7

where £ = 4/kT/2an.q is the Debye length in intrinsic material and

EI=21/“L‘;E=1/_{%@ (2.8)

is a field characteristic of the material and temperature. Specifically E,
is 4/2 times the field required to give a voltage drop kT/g in a Debye
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length. For germanium at room temperature £ = 6.8 10~° ¢cm and E; =
383 volts per cm.

Both I and J are the sum of a drift term and a diffusion term. For
charge neutrality, where p — 7 is small compared to p + n, both charge
diffusion and particle drift can be neglected. We shall see later that,
except right at the junctions, charge diffusion is negligible.

The Equations of Continuity
The two equations of continuity are
dJ, _ dJn _

dz dx

where g is the rate of pair generation and r the rate of recombination. In
terms of I and J, these become

ﬁ =0 (2.10)
dx

g-—r (2.9

or I = constant and

a7 |
— = 2(g — 2.11
1. = 2 -1 (2.11)
which says that the gradient of particle flow is equal to the net rate of
particle generation, that is, twice the net rate of pair generation.

To complete the statement of the problem it remains to express g and

7 in terms of n and p.

Generation and Recombination

The direct generation and recombination of holes and electrons follows
the mass action law, in which ¢ — r is proportional to ni — np. The con-
stant of proportionality can be defined in terms of a lifetime r as fol-
lows: Let 8p = dn < n; be a small disturbance in carrier density. Then

defining 7(g — r) = —dn, we see that the proportionality constant in
the mass action law is (2n.r) . So
2
ng — np
—-_r = —— 2,12
g=7 2n ( )

and the generation rate

un
=5, (2.13)

is independent of carrier concentration.
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In actual semiconducting materials, recombination is not direct.
Rather it occurs through a trap, or recombination center. The statistics
of indirect recombination has been treated by Shockley and Read® for a
recombination center having an arbitrary energy level &, somewhere in
the energy gap. At any temperature the trap level can be expressed by
the values n; and p; which n and p would have if, at that temperature,
the Fermi level were at the trap level. Shockley and Read showed that,
at a given temperature, the lifetime for small disturbances in carrier
density is a maximum in intrinsic material. It drops to limiting values
a0 and 7, in highly extrinsic n and p material, respectively. The formula
for ¢ — r in terms of n and p is

2
ni —np

= (2.14
g r(n + ) + T(p + p1) )
For our purposes it is more convenient to define the lifetime = not by
(g — r) = —dén K n;, but rather as the proportionality factor in the
mass action law. Then 7 is not necessarily constant independent of carrier

density. From (2.12) and (2.14)

_ mln + m) + r0lp + p)

2]?,.'

(2.15)

We shall be interested in the lifetime in the region where n and p are
equal to or less than n; . 7 decreases as n and p decrease; that is, r is less
in a swept region than in normal intrinsic material. Let r = 7; for n =
p = n;and r = roforn = p = 0. The total range of variation of r is by
a factor of

To D1t + Mt

Let the energy levels be measured relative to the intrinsic level, and
define a level & by

& = kT In A/ 7=
Tpo

Then if & = &, M7 = Pi7no . Now eq. (2.16) becomes

Ty k() f_no) (St - Sn)
o= 14 2( o -} /‘[ﬂo sech o (2.17)

Thus the variation in 7 increases as the ratio of 7, to 7, deviates from
unity and as the trap level moves away from the level &; .

3 W. Shockley and W. T. Read, Jr., Phys. Rev., 87, p. 835, 1952.
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The data of Burton, Hull, Morin, and Severien* shows that a typical
value of the ratio of 7,0 and 7, is about 10. This means that the varia-
tion in r with carrier concentration will be less than 10 per cent provided
&, is about 4kT from &, . In what follows we shall assume that this is so.
Then we have the mass action law (2.12) with = a constant, which could
be measured by one of the standard techniques involving small dis-
turbances in carrier density. The general case of variable r is considered
briefly at the end of Section IV.

Outline of the Solution

To conclude this section, we discuss briefly the form of the equations
and the solution in different parts of the intrinsic region. First consider
(2.6) for the current in the ideal case of equal mobilities. In Sections II1
and V weshall show that throughout almost all of the intrinsic region the
current flows mainly by pure drift so we can take I = osE. The reason
for this is as follows. The quantity £°is so small that the diffusion term
remains negligible unless the second derivative of £ becomes large — so
large in fact that the E versus z curve bends sharply upward and both
the drift and diffusion terms become large compared to the current 7.
This is the situation at the junction where I is the small difference be-
tween large drift and diffusion terms. Thus (2.6) has two limiting forms:

(1) Except at the junctions the current is almost pure drift so I =
osl is a good approximation. In Section III we derive an upper limit
for the error introduced by this approximation and show how the
approximate solution can be corrected to take account of the diffusion
term.

(2) At the junction, the drift term becomes important and the
current rapidly becomes a small difference between its drift and diffusion
terms and the solution approaches the zero current solution, for which
sE = £'d’E/dx*. In Section V we derive an approximate solution that
joins onto the I = osE solution near the junction and then turns con-
tinously and rapidly into the zero current solution. We shall call this the
junction solution.

The abrupt change in the solution from (1) to (2) near the junction
is shown to be related to a basic instability in the differential equation.
This makes it impractical to solve the equations on a machine.

When the applied bias is large compared to the built-in voltage drop,
the junction region will be of relatively little interest so the I = ask
solution can be used throughout.

In the region where I = o¢sE there are two overlapping regions in
which the equations assume a simple form. These are the following:

4 Burton, Hull, Morin and Severiens, J. Phys. Chem., 67, p. 853, 1953.
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The No-Recombination Solution

Here recombination is small compared to generation, r < g. This will
be so in at least part of the intrinsic region for reverse biases of more
than a few kT/gq. The E versus z curve turns out to be given by a
simple, cubic algebraic equation.

The Recombination, or Charge Neuirality, Solution

Here n — p is small compared to n + p, so the particle flow is by dif-
fusion. We shall find that the s versus x curve is given by a third degree
elliptic integral. As we move away from the center of the intrinsic
region and toward the junctions, recombination becomes small com-
pared to generation and the recombination solution goes into the no-
recombination solution. In the region where both solutions hold, the
solution has the simple form s = I/¢cF8 = A — 2* where A is a constant
that must be less than 3 and the unit of length is twice the diffusion
length.

As the bias on an NIP structure is increased and the space charge
penetrates through the intrinsic region, the region where the recombina-
tion is important will shrink and eventually disappear.

Fig. 1 is a schematic plot of the field distribution for the case where
the applied bias is large compared to the built-in potential drop but not
large enough to sweep all the carriers out of the intrinsic region. As the
voltage is increased, the drop in field in the intrinsic region will become
less and finally the field distribution will be almost flat from junction to
junction. Only half of the intrinsic region is shown in Fig. 1. For equal
mobilities the field distribution will be symmetrical about the center
z; of the intrinsic region.

The illustration shows the recombination solution (1), which holds
near the center of the intrinsic region and overlaps (2), the no-recom-
bination solution. The junction solution (3) joins continuously onto the
no-recombination solution at the point xy and rapidly breaks away and
approaches the zero-current solution at the junction. The figure is sche-
matic and has not been drawn to scale. In most cases of interest, the low
fields in the recombination region will be much lower and the junction
solution will hold over a smaller fraction of the intrinsic region.

It is convenient to take x = 0 not at the center x; of the intrinsie
region but at the minimum on the no-recombination solution. As the
applied bias increases, r; approaches zero.

Unequal Mobilities

In the general case of unequal mobilities, it is no longer so that I is
pure drift except at the junctions. However we can define a linear com-
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X —

Fig. 1 — Schematic of the field distribution and the three overlapping solutions.

bination of J, and J, which has the same form as I in (2.6) and in
which the diffusion term is negligible except near the junction. As we
show in section VI, the effect of unequal mobilities is (1) to introduce
some asymmetry into the curve in the region where the curvature is
upward and (2) to displace the curve toward the NI junction (for the
case where the electrons have the higher mobility). Thus the field is
higher on the side where the carrier mobility is lower, as would be ex-
pected.

III. THE NO-RECOMBINATION CASE

This section deals with the case where recombination can be neglected
in comparison with generation. This will be so where np is small com-
pared to n’.

The continuity equation for J now becomes

—gy =1 (3.1)
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Combining this with (2.7) gives

d (E ) 1
— == —8) = — 3.2
iz (Elﬂ °) = 3Lz 3.2)
where L’ = Dr is the diffusion length in intrinsic material.
Equation (3.2) can be immediately integrated. There are two con-
stants of integration, one of which can be made to vanish by choosing
x = 0 at the center of the intrinsic region, where the first derivatives of

E and s vanish. (£ is a minimum here and s a maximum). The solution
obtained by two integrations is

@-r@s

As we shall see later, the constant A is determined by the voltage drop
across the unit.

The exact procedure now would be to substitute s from (3.3) into (2.6).
The resulting second order differential equation could, in principle,
then be solved for E versus x. The exact solution, however, would be
quite difficult. We shall discuss it in Section V. Here we make the assump-
tion that throughout the intrinsic region the charge flow is mainly by
drift, so that we can neglect the diffusion term in (2.6) and take I =
osk, as discussed in Section IT. Later in this section we find an upper
limit on the error due to this assumption and show how the cubic can be
corrected to take account of the diffusion term.

Putting s = I/¢F in (3.3) gives a cubic equation

E\? I z \
(E)"E“(E>_A
(#) - (%) - G5) -4
E, B, \E/  \2L;

for E/E, as a function of /2L, . This equation contains two parameters
I and A. A determines the voltage and 7 is determined by the length
2L of the intrinsic region. The relation is as follows: Let the applied
voltage drop across each junction be at least a few k7T/q. Then the
minority earrier currents from the extrinsic regions will have reached
their saturation values. Call 7, the sum of the hole current from the
N region and the electron current from the P region. I, comes from pairs
generated in the extrinsic regions near the junctions. I, can be made
arbitrarily small by making the N and P regions sufficiently highly
doped (provided the diffusion length in the extrinsic material does not
decrease with doping faster than the majority carrier concentration in-

(3.4)
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creases). The current generated in the intrinsic region is gg per unit
volume. So the density of current from pairs generated in the intrinsic
layer is 2Lgg = gn:L/r. Hence

=1, + &
-

In what follows we shall assume that 7, is negligibly small compared to

I. Then
I=(@5)L_(W_‘Q £_.(LE L
T N L“ Li_ 2L| q L;

Thus I is L/L; times a characteristic current equal to (1) the diffusion
current produced by a gradient n;/L; or (2) the drift current produced by
a field that gives the voltage drop kT/q in two diffusion lengths in normal
intrinsic material. In germanium this characteristic current is about 5
milliamperes per cm”.

That the current I is proportional to L and independent of voltage
follows from the neglect of recombination. When recombination is small
compared to generation, then the current has reached its maximum, or
saturation, value. All the carriers generated in the intrinsic region are
swept out before recombining. It will sometimes be convenient to take
oI, as the unit of current. From the above and (2.8)

_+/2eL
SE T L) (3.5)

In germanium oF; is about 7 amperes per em®. In general we will be deal-
ing with currents that are small compared to this. For example, if L;
is 1 mm, we would have to sweep out an intrinsic region 3 meters long
in order to get a current this large. If we take E as the unit field, ¢E as
the unit current and 2L, as the unit length then the cubic becomes B —
I/E = — A.

For a given structure and temperature the field versus x curves form
a one parameter family. A determines both the field distribution and the
voltage. The voltage increases as A decreases. Fig. 2 is a plot of E/E,
versus z/2L; for L/2L; = 0.1 and several different values of 4. Fig. 3
is for I = 2L; and Fig. 4 for L/2L; = 3.

There is an upper limit on 4 but not lower limit. The reason is as
follows: As A increases, the minimum value of E (at z = 0) decreases
and the maximum value of s increases. So if A is too large, the maxi-
mum s will be so large that we cannot neglect recombination, which
becomes important when np approaches n., or s approaches 1. Fre-
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quently recombination can be neglected over parts of the intrinsic
region but not near the center, where the field is a minimum and the car-
rier concentration a maximum. Then (3.4) will represent the field dis-
tribution over that part of the region where recombination is unimpor-
tant. The correct solution will join onto the cubic as we move away
from the center of the intrinsic region, which will no longer be at the
x = 0 point on the cubic. In Section IV we solve the equations for the
recombination region and show how the solution approaches the cubic.
We will show that, as 4 increases, the distance from the center of the
intrinsic region to the x = 0 point on the cubic also increases. The
value A = 3 corresponds to an infinitely long intrinsic region. For a
larger A there exists no exact solution that could join onto the cubic
as recombination becomes negligible. In Figs. 3 and 4 the A = 2 curves
join onto recombination solutions at values of E which are too low to
show.

0,15
014 ,/
//
013 7
A=-0.01
0.2 = —
—
011 ——
0.10]
/]
0.09 v
0.08 /|
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E 0.07 //
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006 / /
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.05 > p
004 _._// //’
Oon I/
.03 "4
A=0.01 _,//
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Fig. 2 — Field Distributions for L = 0.2L; .
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As A decreases and becomes negative the cubic approaches the form

2
2 _ 2 2 f T
E = Ey + Ex (21“) (3.6)
where E, = —AE," is the minimum value of E*. This form of the solu-

tion will be valid when the minimum F is large compared to (I Ei/e).
As E, increases, the voltage increases and the curve becomes flatter.
This is because the increasing field sweeps the carriers out and reduces
the space charge; so the drop in field decreases.

If (3.4) for E/E, versus x/2L; is extended to indefinitely large values
of x/2L;, it approaches the straight line of slope 1 going through the
origin. Since I is always positive the curve is above this straight line at
2 = 0. If 4 is negative the curve is always above the straight line and
always concave upward. If A is positive, the curve crosses the straight
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Fig. 3 — Field Distributions for L = 2L;.
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line at E/E, = I/¢E:A and thereafter remains under it approaching it
from below. For positive A the curvature, which is upward near the ori-
gin, changes to downward at about 2/2L; = +/A.

The carrier concentrations n and p can be found from the E versus z
curves with the aid of Poisson’s equation p — n = 1/a dE/dx and the
definition s = (n 4+ p)/2n; with s = I/0E. These relations and (3.4)
give

p—n _ I 1

p+n L (1 N IE,’) 3.7)

205

From (3.4) and (3.7) we may distinguish the following two regions
on the cubic:

(1) When E°/E;® is smaller than I/¢FE; (which as we have seen is
usually smaller than unity), the £ versus x curve is concave upward, the
hole and electron concentrations are almost equal (charge neutrality)
and the particle flow is by diffusion.

(2) When E3/E.® is greater than I/¢E,, in general there is space
charge and the particle flow, like the charge flow, is by drift. The curve
is concave downward for positive A.

Figure 6, which we will discuss in Section IV, shows the field and car-
rier distributions for L = 2L, and A = 0.665 plotted on a logarithmic
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2 /
1.2—A;/ //
0.8 o /’
0.4
2
o 3
0 04 08 12 16 20 2.4 28 32
X/2Ly

Fig. 4 — Field Distributions for L = 6L; .
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scale to show the behavior at low values of field and carrier density.
In the region of no-recombination the field distribution is indistinguish-
able from that for A = 2, which is plotted in Fig. 3 on a linear scale. In
the region where recombination is important the solution is found from
the assumption of charge neutrality as will be discussed in Section IV.
The cubic and charge neutrality solutions are each shown dashed outside
of their respective ranges of validity. For A = 0.665 the half length of
the intrinsic region is 2.098 X 2L, . Thus the length of the intrinsic re-
gion is more than twice the effective length 2L in which current is
generated. The effective length will be discussed in more detail in Section
IV and it will be shown that the effective length 2L of current generation
is equal to the twice the distance from the 1P junction to the minimum on
the cubic. As explained earlier, it is convenient to take z = 0 at the mini-
mum on the cubic.

Intrinsic-Extrinsic Junetion Under Large Bias

Consider the limiting case of an intrinsic-extrinsic junction as the
bias is increased and the space charge penetrates many diffusion lengths
into the intrinsic material. Then the field distribution approaches the
straight line E/E; = z/2L;. This, by Poisson’s equation, means that
there is a constant charge density of N; where

2al; L;
Thus in the limit, the field in the intrinsic region approaches that in a
completely swept extrinsic region having a fixed charge density of N;.
In germanium at room temperature N; is about 4.10° em™. As the
field approaches the limiting form, the voltage V approaches EL/AL; .
Thus the limiting form of the current voltage curve is

L .2 1/-"_
O'El _L.' 2E1L

So in the limit the current varies as the square root of the voltage. Typical
values for germanium at room temperature are ¢f; = 7 amps em ™,

S/L,' = 10_3 and 2E1L.‘ = 50 volts.

Equivalent Generation Length for an Intrinsic-Extrinsic Junction

It should be noted that for an IP structure the current is the same as
for an NIP structure with an infinite I region, or at least an I region
that is long compared to the distance of penetration of the space charge.
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Thus the equivalent length of current generation is 2L even though the
current is actually being generated in an effective length L. The reason
is that for an N1P structure the holes entering the right hand half of the
I region were generated in the left hand side. For an IP structure the
holes entering the space charge regions from the left were injected at the
external left hand contact to the I region.

Applied Voltage

In all cases the voltage can be found from the area under the E versus
x curve. In Figs. 2 to 4 the area under the curves gives the voltage ac-
curately; recombination becomes important only where the field is so
low as to have a negligible effect on the total voltage drop.

Correction of the Cubic

To conclude this section we consider the error introduced by using the
assumption I = e¢sli. For simplicity take F; as the unit field, 2L; as
the unit length and oF; as the unit current. Then the cubic becomes
E* — I/E = a* — A. The corresponding exact solution is B* — § =
2* — A where the relation between s and E is given by equation (2.6)
which in dimensionless form is

2 d'E
o

where £° is of the order of 107°.
Let 6F and é&s represent the difference between the cubic and the cor-
rect solution at a given x. Assume that §F and its second derivative are
small compared to F and its second derivative respectively. Then 85 =
2F8E and on the correct solution sE — I = (2E* + I/E)SE. So (3.8)

becomes

—sE—1 (3.8)

2 2
P () oE (3.9)
E 2B + I) da?

To obtain a first approximation to 6E/E we use the cubic to evaluate
d’E/da". Tt is convenient to express the results in terms of a dimension-
less variable z = E/I'® or if E and I are measured in conventional units
z = E(¢/E’D)". Then (3.9) becomes

8E _1(Le\"( =z Y z \' 21 =2
() () *(@) e e

when the lengths are in conventional units.
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The first term has a maximum value of 0.35 (L;&/L)" at z = 0.6
and the second term a maximum value of 0.18 at z = 0.5 and z = L.

The dashed curve in Fig. 2 for A = .01 is the corrected cubic. For
the other curves in Fig. 2, the correction is smaller. For the curves in
Figs. 3 and 4 the correction is too small to show.

Limits on the Solution

We now show that 8E as derived above is not only a first approxima-
tion but also upper limit on the correction necessary to take account of
charge diffusion. That is, an exact solution to (3.8) lies between the cubic
and the corrected cubic.

Consider the region where the second derivative of E is positive so
that the perturbed curve lies above the cubic as in Fig. 2. On the cubic
we have sE — I = 0. As we move upward from the cubic and toward the
dashed curve, sE — I increases. The value of sk — I on the dashed curve
just equals the value of £° d’E/dx* on the cubic. However, the dashed
curve has a smaller second derivative than the cubic. Thus in moving
upward from the cubic toward the dashed curve sE — I increases from
zero and £ d*E/da’, which is positive, decreases; on the dashed curve
sk — T is actually greater. Therefore there is a curve lying just under
the dashed curve where the two sides of (3.8) are equal. The same argu-
ment applied to the region where the second derivative is negative shows
that the equation is satisfied by a curve lying just above the first per-
turbation of the cubic. Where the curvature changes sign, the cubic is
correct.

It should be emphasized again that the neglect of the diffusion term
in the current is justified only for the ideal case of equal hole and electron
mobilities. For unequal mobilities both drift and diffusion will be im-
portant in current flow. However, as we will discuss in section 5, we can
simplify the problem of unequal mobilities by defining a fictitious current
that has the same form as I in (2.6) and (3.8).

IV. RECOMBINATION

As discussed in Section III, when the voltage for a given current is re-
duced, s increases and near z = 0 becomes comparable to unity. Then
recombination becomes important and the cubic solution breaks down,
or rather joins onto a solution that takes account of recombination.
When recombination is important the center x; of the intrinsic region is
no longer at the = = 0 point on the cubic but to the left of it. That is, if
we want the same current with continually decreasing voltage, we even-
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tually get to the point where a longer intrinsic region is required. Finally
for a given current we reach a minimum voltage which corresponds to an
infinite length of intrinsic region. Another way of saying this is that,
when recombination becomes important, the length L defined in terms of
the current by I = ¢gg2L = ¢n,/rL is no longer the half length of the
intrinsic region.

Equivalent Generation Length

We shall continue to define L by I = gn;/7L. Thus L is an equivalent,
or effective, half length of current generation and not the half length of
the intrinsic region. By definition L is the length such that the amount
of generation alone in the length L is equal to the net amount of genera-
tion (generation minus recombination) in the total half length of the
intrinsic region. Hence

i=["G-na (1)

where z; is at the center of the intrinsic region and x, at the /P junction.
We shall for the most part deal with reverse biases of at least a few k7/q,
in which case recombination is negligible at the junctions. Then the exact
solution becomes the no-recombination solution before reaching the junc-
tions. We shall continue to take = 0 at the point dl//dx = ds/dx = 0
on the no-recombination solution which the exact solution approaches
as recombination becomes negligible.

Simplifying Assumptions

The general differential equation with recombination will be the
same as for no-recombination except that ¢ — r replaces g. From (3.1)

and (3.2)
& (B ) ! ( 'r)
@ (EE — 8] = 2L,-2 1 Z] (4.2)

From (2.12) and (2.13) and Poisson’s equation

t'_—@_(ﬂ;—i_p)z_(7’:_?})2:8‘!“0(5_8__(1_}2)2 (43)
g n: \ 2n (2n,) “\E, dx )

The following analysis will be based on the assumption of charge neu-
trality. That is we neglect terms in p — n in comparison with those in
p -+ n. In particular this means:

(1) The charge flows by drift so I = osE. This is the same assumption
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made in the no-recombination case. It will be an even better approxima-
tion in the recombination region, where the second derivative of E is less.

(2) The particle flow is by diffusion. That is, E*/E,* can be neglected
in comparison with s.

(3) The ratio of recombination rate r to generation rate g is propor-
tional to g — r; that isg — r = g(1 — §°).

All of these mmphfymg assumptions can be justified by substituting
the resulting solution into the original expressions and showing that the
neglected terms are small when recombination is important. If the
solution is substituted into (4.3) and (2.6) the neglected terms will
turn out to be negligible —and therefore assumptions (1) and (3),
justified — when s* is large compared to £/L; . Assumption (2) follows
from (1) and the fact that 7/¢E is small compared to unity.

Assumptions (2) and (3) may also be justified by the discussion fol-
lowing (3.7) in the following way: Where recombination is important s
must be near unity. So the cubic will begin to break down when s =
I/oE becomes near to unity, or when E approaches I/¢. However, if
E is approximately I/c then oE*/IE,* is approximately (I/ oFy)?, which,
as we saw in the Section III, is small compared to unity in practical
cases. Thus recombination becomes important and the solution joins
onto the cubic in the range where E*/E,® is small compared to I/cE .
In this range the particle flow is by diffusion and p — n is small compared
to p + n. As we move toward the center of the intrinsic region s increases
and F and dE/dz decrease. Therefore, since assumptions (2) and (3)
are good where the solution joins onto the cubic, they are good through-
out the region where recombination is important.

The Recombination Solution

The differential equation (4.2) now takes the form

d’s (1 -8
et~ 2L¢ (4
The solution for s in the recombination range is seen to be the same for
all values of the current. When s has been found E is found from £ =
I/os.
For small disturbances in normal carrier concentration, s is only
slightly different from unity and (4.4) takes the familiar form

1 —3s
L3

d2
@(l—s)=
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which says that the disturbance in carrier concentration varies expo-
nentially as z/L; .
Equation (4.4) can be integrated once to give

ds 2 1 3_ 3
(a;) =I?(80—S—su 38) (4.5)

where g is the value of s at the center of the intrinsic region where s is a
maxinmum.

As recombination becomes unimportant, s* becomes small compared
to unity and (4.5) approaches the form

(%)2 = L_15 [s“ (1 - %02) - S] (4.6)

and the solution joins onto the no-recombination solution.

Joining onto the Cubic.

We have seen that the solution joins onto the no recombination solu-
tion, in the region where particle flow is by diffusion so that the no
recombination solution has the form s = A — (x/2L,)*. This is readily
transformed to the form (4.6) with

A = s (1 - S—g) 4.7

Thus the one arbitrary parameter s, in the recombination solution
determines the parameter 4 in the cubic that the recombination solution
approaches. Since the maximum value of s; under reverse bias is unity,
the maximum value of A is . Negative values of A correspond to solu-
tions where recombination is always negligible.

The s versus x Curve

To find s versus x we integrate (4.5). There is one constant of integra-
tion, which is fixed by the choice of x = 0. We have taken x = 0 at the
point where dE/dx = ds/dx = 0 on the cubie. To make the recombina-
tion solution join the cubic we choose the constant of integration so that
the recombination solution extrapolates to s = 0 at (z/2L;)* = A. Then

T = B[ ds
Z__L.-_\/A_T-/; V3(s) — 8) — (s — &%)

(4.8)

which can be expressed in terms of elliptic integrals.
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Fig. 5 — Variation of s = p/n: = m/n; in the range where recombination is
important.

Deep in an infinitely long intrinsic region the carrier densities ap-
proach their normal values n = p = n;, or s = 1. Putting s = 1in
(4.8), we find that as s approaches s, = 1, x becomes infinite. This will
be the solution for a simple intrinsic-extrinsie junction. Fig. 5 is a plot
of s versus @ for various values of s, . The dashed curves represent the
corresponding no-recombination solution s = A — (x/2L:)%

The IP Junction

It remains to find the position of the 7P boundary. We now show that
if recombination is unimportant at the junction, so that the solution
joins onto a no-recombination solution, then the position of the junction
is at ¥ = L where L is the effective length of current generation and
x = 0 is the point where dE/dx = ds/dx = 0 on the no-recombination
solution (which of course will not be valid at x = 0). The proof is as
follows: From the definition (4.1) of L and (4.2)

_["a- _ .2[””&2 B _
L=["a-rpd =21 F(gm—s)d

_orz| d O _
= 2L1 I:d_ﬂ] (E—lz S):szp

If the boundary comes where recombination is negligible so that
(E/E)’ — s = (x/2L.)" — A, then (4.9) gives x, = L. Physically

(4.9)
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this means that the amount of recombination in the interval from
x = 0toz = L is just equal to the excess amount of generation in the
interval from the center of the intrinsic region to x = 0.

It the applied reverse bias is less than a few k7 /¢ then recombination is
important even at the junction and there is no joining onto a no-recom-
bination solution. In this case (4.9) says that for a given choice of cur-
rent (and hence of L) the boundary comes where

ds L

Ezxample. Fig. 6, which we discussed briefly in Seetion III, is a plot
of the field and carrier distributions for L = 2L; and sy = 0.95, for which
A = 0.665. The hole and electron densities were found from (3.7) and
p + n = 2n;s where s is found from Fig. 5. When s approaches s, (4.8)
for x versus s takes the simple form

T —x; S — 8
2L,‘ 1 — s?

(4.11)

This will be accurate when s, — s is small compared to 1/s, — 8. We
have used (4.11) to evaluate the s versus x curve beyond the range of
the s, = 0.95 curve in Fig. 5.

It is seen that the recombination solution in Fig. 6 joins the cubie
in the range where n and p are still almost equal.

Variable Lifetime.

Finally consider the general case where the variation in = with car-
rier density cannot be neglected. Then, with n = p = n;s, (2.15) be-
comes 7 = 7o 4 (7: — 7o)sand L, in (4.4) is replaced by D71l + (r:/7 —
1)s] where 7;/7o is given by (2.17). The more general form of (4.4) can
be solved graphically after one integration. The solution will join onto a
cubic if (ri/7y — 1)s becomes small compared to unity before space
charge becomes important. This will be so if (7;/70 — 1)"*I/cE, is small
compared to unity.

V. THE JUNCTION SOLUTION

In this section we consider the solution near the junctions, where
the assumption I = sk breaks down. We shall deal with reverse biases
of at least a few £7'/q so that recombination is negligible at the junctions.
The junetion solution will therefore join onto the no-recombination
solution. We shall use the cubic solution in the no recombination region.

Again it is convenient to use dimensionless variables with E; as the
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Fig. 6 — Field and carrier distributions for L = 2L; and 4 = 0.665 (so = 0.95).

unit field, 2L as unit length and ¢E; as unit current. Then on the cubic
s = I/E, and E* — I/E = ©© — A. The current is related to L by
I = +/22L where the dimensionless £ is of the order of 107 for ger-
manium at room temperature. Substituting the exact no-recombination
solution E* — s = 2° — A into the solution (2.6), or (3.8), for the current
gives the second order differential equation

‘B 1
il weon-1] 6
for E as a function of z. The two boundary conditions are as follows: At
x = 0, dE/dx = 0 by symmetry. At the IP junction the carrier concen-
tration must rise and approach that in the normal P material. For a
strongly extrinsic P region the normal hole concentration P is large
compared to both n; and the electron concentration. Thus s must in-
crease and approach P/2n; 3> 1 as we approach the P region. Clearly
the cubic cannot satisfy this requirement. On the cubic the maximum
value of s comes at 2 = 0 and is less than unity. As we approach the junc-
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tion E increases so s = I/E must decrease. Thus the correct solution
must break away from the cubic near the junction.

Instability of the Solution

Equation (5.1) has two limiting forms and makes a rather abrupt
transition between them. Over most of the intrinsic region, the quantity
in brackets [Es — I] = [E(E* — 2° + A) — 1] almost vanishes. It differs
from zero just enough that when multiplied by the very large factor
£’ &~ 10° it gives the correct second derivative of £. In Section III we
derived an upper limit on the small deviation 8 from the cubic required
to satisfy the differential equation. If £ deviates from the cubic by more
than this small amount, then the second derivative of E becomes too
large. This increases the deviation from the cubie, which further in-
creases the second derivative and so on. E and s rapidly approach
infinity in a short distance. This, of course, is the required behavior at
the junction. The rapid increase in s makes it possible for s to approach
P/2n.~ .

In Section IIT we showed that there is a solution to the differential
equation that lies within a small interval éE from the cubic. Suppose we
try to solve (5.1) graphically or on a machine starting at * = 0. There
are two boundary conditions: By symmetry dff/dz = 0 at « = 0. We
choose for E(0) a value somewhere in the interval 6£(0). The resulting
solution will not long remain in the interval §E(z). In fact there is only
one choice of E(0) for which the solution remains close to the cubic
from & = 0 to = . For any other E(0) the solution would remain
close to the cubic for a certain distance and then abruptly become un-
stable and both £ and s approach infinity. E(0) must be so chosen that
the solution becomes unstable and ¥ and s become large at the junction.
However it is impractical to set E(0) on a machine with sufficient ac-
curacy to insure that the solution will remain stable for a reasonable
distance. A more practical procedure is to find a solution which holds
near the junction and joins the cubic to a solution in the adjacent
extrinsic region.

Zero Bias

It may be helpful to approach the junction solution by reviewing the
simple case of an TP junction under zero bias. Both charge and particle
flow vanish. The vanishing of particle flow means that in the intrinsic
region * — s is constant, (2.7). Since £ = 0 and s = 1 in the normal
intrinsic material, it follows that E* — s = 1. With I = 0 the equation
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for current becomes

dPE_sE_E+E
d® gr L2

(5.2)

This can be integrated at once. The boundary conditions are dfi/dx = 0
when £ = 0 and B = E; at @ = L; the field E; at the TP junction will
be determined by joining the solutions for the I and P regions. The
solution can best be expressed by parametric equations giving x and the
potential V as functions of E.

1 _£fsjﬂ_,£[ h~1_E_ W2 | (53)
TEr e ENV1I B2 eseh D2 T V2 )

V V_S[E_—_._dE _.B_k_T'[' h—l&_ ']h—lﬂ] 54
i=V=2| Jrrma s g | s s g 64

where we have used the relation between dimensionless quantities
£ = +/2kT/q, which follows from (2.8) with £, = 1. It will be more
convenient to express voltages in terms of £7'/¢ rather than in terms of
the unit voltage 2FL; ; then the ratio ¢V/kT is independent of the
units. For convenience we take the voltage as increasing in going toward
the IP junction with ¥ = 0 in the normal P material. The voltage V;
at the junction is found by joining solutions.

On the P side, let the excess acceptor density be P. Adding the term
—aP to the right hand side of Poisson’s (2.1), and proceeding as before
we have, instead of (2.5)

d (E qV) _
(_L'E(E?_S_SPA_?T- =J =0

where s, = P/2n;. We shall assume that the P region is strongly ex-
trinsic so that n << p. Then s = s, in the normal p material, where
E =V = 0. Hence

S (LA
E —s=s (kT 1) (5.5)
In the intrinsic material the corresponding solution is B —s=—1.

Since both B and s are continuous at the junction, ¢V,;/kT = 1 — 1/s,
where 1/s, can be neglected. Thus £ ;= s8; = spexp [—(¢V,/kT)] =
sp/e where e = 2.72 is the base of the natural logarithms.

Knowing E; we can find the field and potential distributions in the
intrinsic material from (5.3) and (5.4).
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Reverse Bias

Now in the intrinsic region, E* — s = 2° — A. Let E, be the value
of I/ at the junction as given by the cubic, and let s, = I/E, be the
corresponding value of s. Then at the junction 22 — 4 = E* — s,. In
the P material equation (5.5) will still be a good approximation near
the junction, where the additional terms arising from the flow will be
negligible. Joining the solutions for the I and P regions and neglecting
s, in comparison with s, gives

qV.?' Ec2

ot t S,

Again using s; = s, exp [— (¢V,;/kT)] we have
Ef = E + sy exp [—(1 + E.'/s,)] (5.6)

In most practical cases E,’ will be small compared to s, = P/2n; so
I7; will be the same as for zero bias.

Junction Solulion

We now consider an approximate solution that joins smoothly onto
the cubic and has the required behavior at the junction. Let x =
be the point where this solution is to join the cubic. Then in (5.1) z*
must lie between a,° and L°. We can obtain two limiting forms of the
solution by giving x the two constant values, 2o and L respectively.
It will be best to take x = x; since in practical cases the 2° term is not
important except near the point where the junction solution joins the
cubic. In all cases the uncertainty due to taking 2* = constant can be
estimated by comparing the solutions for x = x) and x = L.

With 2* constant, (5.1) can easily be integrated. The two boundary
conditions are (a) £ = E;at x = L, where I, is given by (5.6), and (b)
to insure a smooth joining, the slope at x = 2, must be the same as that
of the cubic, namely

(@), = st e
dx Jo  2E, + I/E¢

The first integration of (5.1) with * = =, gives

i 2 dE 2 2 Lﬂ E2 E
(%) - (E). + 2 [Z — 2 (B — I/ — IE:I (5.8)

Ep

(5.7)

where (d7/dz) is given by (5.7) and E;* — I/E, = 2" — A. The E versus
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x curve can now be found from (5.8) and

E dE)—l
j;o (Ex‘ dE
E:‘ dE -1
L —z= L (Ea?) dE

In general we will be intrested in cases where the junction solution
holds over a length I — w, that is small compared to L, so we can take

= L in (5.7). It will also be valid to let Eo in (5.7) and (5.8) be the
value E. on the cubic at 2 = L. Putting E. = FE, in equation (5.6) then
gives I, in terms of E, and s, = P/2n;, where P is the majority carrier
concentration in the extrinsic region. In what follows we shall use these
appromma.tlons It will be convenient to express my = L in (5.7) in
terms of I using I = 4/2LL. We continue to use dimensionless quan-
tities with By, 2L; and oF; as the units of field, length and current re-
spectively, and 2L;F; as the unit of voltage. In general however we can
express voltages in terms of kT/q.

When E,° is either large or small compared to 7, the junction solution
takes a simple form and the field and potential distributions can be
found analytically. We next consider two approximations that hold in
those two cases respectively. Relatively good agreement between the
two solutions at E,® = I indicates that each solution may be used up to
this point.

Il

T — Ty

(5.9)

Case of E,' Large Compared to I
From (5.7) to (5.9)

z — 2 = /32 f [( ) (B - 0")2]_”2 df  (5.10)

This can be solved in the following two overlapping ranges where the
integrand has a simple form:
Range 1. Here E — Ej is small compared to 2Fo , so (5.10) becomes

£ . -1 2E,
T — X = —‘—_\/2—E0 sinh l:(L' Ey) ] (5.11)

Since E and E, are almost equal, we have for the voltage drop in this
range

V — Vo = Ey(z — x0) (5.12)

Range 2. Here E° — E;° is large compared to 2(LL/Ey)?, so (5.10)
gives
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dE_ _ +/2¢ 2B - E',-)
= 122 f y oo jon (ctnh i ctnh 7 (5.13)

From E;* > I it follows that Ranges 1 and 2 overlap. By joining the
two solutions in the overlap region, the solution in Range 2 can be
written as

_ &, [SESE—F
"EVRE T E+ K
Putting £ = F; in (5.14) gives the distance over which the junction

solution holds. In general we will be interested in cases where E; is
large compared to Xy so (5.14) becomes

L — Zo 3 —f’n22r_|

(5.14)

where I = 4/2&/I"* and as before z, = E,/I'. In conventional units
£L{ 2/3
I =2L ( La) (5.16)

Fig. 7 is a plot of (L — )/l versus z, . In germanium at room tempera-
ture £L; will be around 10™° ¢m. Thus the junction solution will hold
over a region that is small compared to L if L is large compared to
3 X 10~ em

Again it is convenient to use the relation £ = 4/2kT/q to express
the voltage in terms of £7/q.

Vi-V = f (‘”‘7)_1 ’%ﬂ tn (E2 - g‘;) (5.17)

By joining the two solutions in the overlap region, the voltage in Range
2 can be expressed as

V-V, = ’LT_r (2—f—°) (B — E) (5.18)

Setting V' = V;and E = E; in (5.18) gives the total voltage drop in
the region where the junction solution holds. Let AV be the difference
between V; — ¥, and the built in voltage drop at the junction. Then
substituting (5.6) with £, = K, into (5.18) and subtracting the built in

drop we have for AV,
. _kT[, Ey E
AV = p l:{ ' Sp:l (5.19)
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Fig. 7 — Variation of (L — x0)/¢ with zo .

I/E, is equal to the value of s on the cubic at # = L. For positive values
of A the maximum value of Eo/I is L/I = 1/4/2£ as can be seen from
the cubic. In germanium at room temperature £ is about 107" (for
2L; = unit length) so the reverse bias produces an additional voltage
drop in the junction region equal to about 7k7'/g. For negative values
of A the additional voltage drop near the junction would be higher.

Comparing (5.3) and (5.13) we see that the junction solution reduces
to the zero bias solution when E? is large compared to E," + 2. In this
case both solutions have the simple form

- (1 1
and
LT, E;

Case of E," Small Compared to I
Now from (5.7) and (5.8) withxp = L = I\/2& we have

().~ ()

dz /o I

("E)2 - i[zE* + (B — E)* (I_ + 1)
dx £ ! Y \2 " E

(5.22)
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Again there are two overlapping ranges where the solution has a simple
form:

Range 1. Here E* is small compared to 2I/E, . This will be so even
when £ becomes large compared to Ey . Setting ¢ = 2E,"/I and y =
Y — FEyin equation (5.22) and integrating gives
Eu }.E—Eo dy

€T —a = £ —

J \/"—'12 +

=2 /‘/E sinh™" (L — _E—O)
I 1

(5.23)

T (.32 {)

P ] S — ;
g f;ﬂ (Ve + (B — E)? — ) + 2BEo{e — )
Range 2. Here I is large compared to K, . It follows from £, <« [
that I7 is also large compared to ¢; . Setting ex® = 21/E, we have
_ Ej dF
L—s=+2 e B AEF e

=g /‘/E (c-sch_1 B esen fi)
! Ca Cu

Joining (5.21) and (5.23) where they overlap we have in range (2)

P — E {! ;Zi __E ('- 9
T —=a = L T n E,";; o + ‘\/Ei—;——]?') -J....(J)

Putting * = L and ¥ = I; in (5.26) gives the length L. — ay in which
the junction solution holds. If £; is large compared to ¢ , then

L — o) _ 2; ) k! = o=
7 = 1/§ {n o (5.27)

where as before zy = ,/1"* and [ is given by (5.16). Fig. 7 is a plot of
(L — o)/l versus z,. The two approximations (5.15) and (5.27) for
2 < 1 and z, 3> I respectively are shown dashed. Both become inaceu-
rate as they are extended toward zp = 1. The point at z, = 1 was ob-
tained graphically. Each approximation is in error by about 28 per cent
here. The error will decrease as each approximation is extended away
from zy = 1 toward its range of validity.
The voltage in Range 2 is given by

(5.25)
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v,—v =2k [sinh—‘ Ei _ gnn E] (5.28)
q Ca C2

or again joining (5.28) to the solutions in Range 1 we have in Range 2

2kT sinh™ E 4 2Bz — m) (5.29)

V — Vo =
The total voltage drop in the junction can be found by setting V' = V;
and E = E;in (5.29). The term 2Eo(L — ) will be negligible. When
E? is large compared to ¢’ + 2 the junction solution reduces to the
zero current solution as can be seen by comparing (5.3) and (5.25).
Then the solution has the simple form (5.20) and (5.21). £; will always
be large compared to ¢, . (E;* is approximately s,/ and ¢,' = 2s, where
s, is the value of s where the junction solution joins the cubic.) Thus the
difference AV between V,; — V, and the built in voltage is

Ay = KT g Bo (5.30)

Example. Fig. 8 shows the field distribution near the /P junction
for the case I, = 2L; and A = 2, for which the intrinsic region is in-
finitely long. The field distribution near the junction, however, will be
indistinguishable from that for A = 0.665, or s, = 0.95, for which the
intrinsic region is about twice the effective length of current generation.
We have taken ; = 30, which corresponds to an excess acceptor den-
sity P = 4.7 X 10" n; in the P region. Over the range where the junc-
tion solution holds the cubic gives an almost constant field £ = FEy = /i, .
The junction solution goes from the cubic to the zero bias solution in a
distance of the order of the Debye length. The sum of the built in volt-
age and the voltage derived from the cubic differ from the correct voltage
by the order of £E; or about £7'/g. The total voltage is about 0.3 £1L;,
which would be about 11 volts in germanium at room temperature.

VI. GENERAL CASE, UNEQUAL MOBILITIES

This Section deals with the general case where the ratio of the hole
and electron mobilities is arbitrary. The procedure is similar to that
used in the preceding Sections. Many of the results for b = 1 are useful
in the present, more general, case. We shall deal first with the no-recom-
bination case and again find that F is given by a cubic. However, the
field distribution is no longer symmetrical and the coefficient of the 7/E
term in the cubic is a linear function of x instead of a constant. The
differential equation for s in the recombination region remains un-
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Fig. 8 — Field Distribution near the IP Junction for L = 2L; and 4 = §.

changed. It is no longer so that charge diffusion can be neglected except
near the junctions. However, there is a linear combination of J, and J,
in which the diffusion term is negligible except near the junctions.

Basic Relations

The equations are the two continuity (2.9) and Poisson’s (2.1). The
formulas for ¢ — r remain unchanged, since they involve only the
statistics of recombination and are independent of mobility. The hole
and electron currents are given by (2.2) with b arbitrary. Equation (2.2)
for J, in terms of E, p and n remains unchanged. Now .J,,/b has the same
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form as J, had for the b = 1 case. Tt is therefore desirable to deal with
the fictitious carrier flow J, + J,/b and the fictitious current g(J, —
J.,./b) since these have the same form in terms of £ and s = (n + p)/2n;
as J and [ had for b = 1. Thus

Jo d (IF .
J‘,, + T = Zfl‘;g‘]) Ei?],: (_E;—l‘z - S) (01)
L\ 2 o 2B .

where I/; and £ have the same meaning as before and the conductivity
of intrinsic material is now ¢ = gn.u(l 4+ b). As before D and u are re-
spectively the diffusion constant and mobility for holes. Equations (6.1)
and (6.2) reduce respectively to (2.7) for J and (2.6) for I = ¢(J, — J.)
where b = 1.

When the flow is by pure diffusion, the holes and electrons diffuse “in
parallel” so the effective diffusion constant is the reciprocal of the average
of the reciprocal hole and electron diffusion constants. Hence the effective
diffusion length is given by

’ 3 2h .
L = Drm (6.3)

We continue to let 2L = I/qg be the effective length of current genera-
tion; again it is the actual length for the no recombination case. Let z,
and a, be the coordinates of the NI and /P junctions respectively.
Since the problem is not symmetrical we will not take 2 = 0 in the center
of the intrinsic region even for the no-recombination case.

No-Recombination C'ase

Setting » = 0 we can immediately integrate the continuity equations

dfy _ dJu _

dv ~ dx

subjeet to the boundary conditions:

at the N1 junction, z = x,, Jp=0, J.=—=1/q (6.4)
3.
at the /P junction, » = 2, , g, =1/q, J,=10

The result is J, = g(x — x,) and J, = g(x — x,). This agrees with / =
q(Jy — J,) = 2qgL since 2L = x, — x, is the length of the intrinsic
region, which, for no-recombination, is also the effective length of cur-
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rent generation. It will be convenient to choose * = 0 so that z, =
—x,/b. Then the origin is nearer to the NI junction for b > 1. Now
from this and the boundary conditions (6.4) and I = 2qggL we have the
positions of the junctions:

T 2 = =2
L 140 L 14+%b
As before, the junctions are at x = & L for b = 1.

We can now find the fictitious carrier flow J, + J,/b and the fictitious
current g(J, — J,/b) as functions of x.

(6.5)

%= (M) e (©6)
Ju\ 21 Bz
o(%-%) = a1+ %) 6D

where the dimensionless parameter 8 = (b* — 1)/4b. Thus the fictitious
current g(J, — J,/b) is equal to the actual current times a linear func-
tion of x. This function is always positive and varies from a minimum of
1/b to a maximum of 1.

Combining (6.6) with (6.1) and integrating gives the equation

E* 2\’
that we had before. Now, however, F isnot a minimum at the same point
where s is a maximum. As before, when recombination is negligible
throughout all of the intrinsic region, A determines the voltage; and,
when recombination is important over part of the region, A determines
both the voltage and the length of the intrinsic region v, — 2, > 2L =

I/gq.
Combining (6.7) with (6.2) gives

2
I (1 ¥ ?Lf) — 0 [Es — g ‘;?ﬂ 6.9)

which is similar to the previous (3.6) except that [ is multiplied by the
factor 1 + Bx/L, which varies from 1 + 1/b to 1 + b. The same argu-
ments used in Section V apply here and show that the second term in
brackets (the diffusion term) can be neglected except near the junctions.
In other words, although [ is always part drift and part diffusion,
I(1 4 Bz/L) is approximately pure drift except at the junctions.
Eliminating s between (6.9) and (6.8) and neglecting the diffusion
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term in (6.9) gives the cubic equation

BT m)ﬁ(x)ﬂ
E_E—;E,(Hrf =(or) —4 (6.10)

for the field distribution.

In germanium, where b = 2.1, 8 = 0.406, x, = 1.35L and =z, =
—0.65L. The coefficient of I/¢E; therefore varies from 1.47 to 3.10, or
by a factor of a little more than 2. This will introduce some asymmetry
into the E versus  curve in the low field region where the fictitious car-
rier flow J, + J./b is by diffusion. It is evident that, as the voltage in-
creases, the field versus z curve becomes increasingly symmetrical about
the z = 0 point; so the effect of having b 5 1 is simply to shift the
field distribution along the x axis.

Recombination

The arguments of section 4 again apply. Where recombination is im-
portant, n — p is small compared to n + p, so g — r = g(1 — s°). The
diffusion term dominates in the fictitious particle flow J, + J./b; that
is, B*/E," is small compared to s, so (6.1) becomes

ds

Jn _ o5 pds
JP+?_ Qn,de

The continuity equations give
d Jn _ 1 _ _ n’i(l + b) 2

So again we have

ds _ (11— §%)

o T oLz (6.11)

The solution joins the no recombination solution where s = A4 —
(x/2L:)". Therefore A is again related to s, the maximum s, by 4 =
so(1 — s0°/3) and the s versus  curve is given by (4.8) and is symmetrical
about the point where s is a maximum. When the recombination solu-
tion joins onto no-recombination solutions, there will be a different
no-recombination solution on each side of the recombination region.
The junctions will be at the points z, and v, on the respective no-recom-
bination solutions. The length of the intrinsic region will not be x, —
2, = 2L since the x = 0 points are different on the two no-recombination
solutions and are separated by a region of maximum recombination.
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To find E when s is known we express the current I = ¢(J, — J,)
in terms of s and FE. Since n — p is small compared to n + p, we set
n = p = sn; in (2.2) and obtain

(6.12)

7= G[SE__I—bIchs]

1+b q dz
Thus the current contains both a drift and a diffusion term. This is to be
expected for unequal mobilities. When holes and electrons have the
same concentration gradient, the electrons, which have the higher dif-
fusion constant, diffuse faster than the holes; hence the diffusion gives a
net current. It is seen that in the recombination region the total carrier
concentration has a symmetrical distribution about the point where it
is a maximum but the field remains unsymmetrical.

Junction Solution

When (E,/E,)’ is large compared to I/¢E; the junction solution is
independent of b; so the solution obtained in Section V is valid. In all
cases the junction solution can be found using the method of Section V.
The effect of b will be small over most of the range where the junction
solution holds because the concentration of one type of carrier will be
negligible. To be exact, I in (5.8) should be multiplied by the factor
(1 + Bay/L), which can be taken to be (1 + b)/2b at the NI junction
and (1 4 b)/2 at the IP junction. Instead of equation (5.7) we have

; I By dE\ Ip

as can be seen by differentiating (6.10) with E; = 2L; = ¢ =1.

VII. EFFECT OF FIXED CHARGE

This section will deal briefly with the case where there is some fixed
charge but where the carrier charge cannot be neglected. For no recom-
bination, the field distribution is given by a first order differential equa-
tion. Solutions in closed form are obtained for the case of pure drift flow.
For recombination and charge neutrality the solution in Section IV is
valid provided the fixed charge is small compared to n; . We have seen
that at large fields the F versus x curve becomes linear, correspond-
ing to a fixed charge density of N; where N; = +/2n;£/L;. Thus
the fixed charge may have a dominant effect on the space charge while
having a negligible effect on the solution in the range where recombi-
nation is important.
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Let the density of fixed charge be N = Ng — N, = excess density
of donors over acceptors. N may be either positive or negative. In what
follows we shall assume that N is positive. So the structure is NvP
where » means weakly doped n-type. Equations (2.2) for the hole and
electron currents remain unchanged. Poisson’s equation becomes

dE

= — 7.
= alp — n+ N) (7.1)
We shall deal with the general case of arbitrary mobilities. As in Section
VI it is convenient to deal with a fictitious current ¢(J, — J,/b) and a
fictitious particle flow J, + J,/b. The extra term in (7.1) drops out by
differentiation when (7.1) is substituted into the equation for J, —J,/b
so (6.2) remains unchanged. However, instead of (6.1) we have

B2
J+——2 Dd (Ez—s)-—uNE (7.2)

So the fictitious particle flow is no longer the gradient of a potential
involving only F and s.

No Recombination

Asg in Section VI the continuity equations can be immediately inte-
grated to give (6.6) and (6.7). Again [ is given by (6.9) where the dif-
fusion term on the right can be neglected except at the junctions; so
again we have osl = (1 4 Bx/L). Substituting this into (7 .2) and com-
bining (7.2) and (6.6) gives a first order differential equation for E versus
2. Tt is convenient to again use dimensionless quantities with Ky, 2L;
and o, as the units of field, length and current respectively. Then the
differential equation becomes

d 2 B.’E _
. [E ~ (1 + )] = 2(x + aF) (7.3)
where
_ N
[ N“

and as before N; = +/2n.&/L; , which is around 4 X 10" in germanium
at room temperature. The solution of (7.3) contains one arbitrary con-
stant (which corresponds to A in the N = 0 case). The lower limit on
the constant is determined by the necessity of joining onto a recombina-
tion solution where s approached unity. The positions of z, and x, of
the N» and »P junctions respectively are given by (6.5).
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In the region of low fields where E° is comparable to or less than I,
(7.3) would have to be solved graphically or on a machine. At higher
fields the equation is easily integrated as discussed below.

Case of Pure Drif!
When the flow is entirely by drift, E* >> I and (7.3) becomes

dE =z

= B + a (7.4)
which is made integrable by the substitution £ = yx. A family of solu-
tions for positive I throughout the » region is

(E — aix)"™(E + aux)™ = Ey*" (7.5)

where 2a; = V4 + o + @ and 2a; = VE+ o — a and E, is the
value of E at 2 = 0. For an intrinsic region N = « = 0 and (7.5) reduces
to E* = E;° + 2°, which is the same as (3.9) for negative 4. Fig. 9 shows
several curves for various values of F,. These remain above, and at
large distances approach, the asymptotic solutions £ = ax on the
right of the origin and £ = —asz on the left. These curvesdiffer from the
corresponding curves for an intrinsic region in that the straight line
asymptotes now have slopes of a; and —a. instead of 1. Toward the P
side the slope is greater because the positive change ¢N of the excess do-
nors is added to the charge of holes. Toward the N side of the » re-
gion the slope is reduced because N compensates to some extent for the
electron charge. As « increases and the » region becomes more n type,
the solution approaches that for a simple NP junction, where ' = ax
on the N side.
Another set of solutions of (7.4) are given by

(mx — E)"(ax + B)” = a,"a"2." (7.6)

Several of these are shown in Fig. 9. They remain below the linear
asymptotes and go through zero field at * = =x.. Actually these will
join onto solutions of the more general equation (7.3) when % becomes
small and the diffusion term becomes important.

Recombination. When the fixed charge density is small compared to the
intrinsic hole and electron density the treatment of recombination in
Section IV remains valid. The recombination solution joins onto a solu-
tion of (7.3) at small fields. When N is comparable to n; the recombina-
tion solution is difficult even with the assumption of charge neutrality.
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APPENDIX A

Prim’s Zero-Current Approximation

Prim’s analysis is based on the assumption that the hole and electron
currents are negligibly small differences between their drift and diffusion
terms. Setting J, = J, = 0 then gives n and p as functions of the po-
tential, which is found by substituting n and p into Poisson’s equation
and solving subject to the boundary conditions at the junctions. These
conditions involve the applied bias and the majority carrier densities in
the extrinsic regions. Since the current is assumed to vanish, the phe-
nomena of carrier generation and recombination do not enter the
problem and the results are independent of carrier mobility. The results
will be exact when there is no applied voltage; the potential drop across
the unit is then the built-in potential. In this appendix we use an internal
consistency check to see for what values of applied bias the analysis
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breaks down. First we find where the carrier concentration is in error by
finding the bias at which the minimum drift current as calculated from
qu(n 4+ p)E becomes equal to the total current, as found from the excess
of generation over recombination in the intrinsic region. We then go on
to find where the error in carrier concentration gives a sufficient error in
space charge to affect the calculation of electric field. As we shall see, the
zero-current approximation gives too low a carrier concentration in the
interior of the intrinsic region. This will lead to serious errors in the field
distribution only if the space charge of the carriers is important. When
the bias is sufficiently high or the intrinsic region sufficiently narrow
that the intrinsic region is swept so clean that the carrier space charge is,
in fact, negligible, it will not matter that the calculated carrier density
is too low, even by orders of magnitude. In such cases, the electric field is
constant throughout most of the intrinsic region.

In the following we shall, for simplicity, take b = 1 and assume that
the extrinsic regions are equally doped so that the problem is symmetri-
cal.

Carrier Densily

We now find where, on the zero current assumption, the drift current
becomes equal to the total current. This involves knowing only the
carrier concentrations and the field E; in the center of the intrinsic
region, where the drift current gu(n + p)E; is a minimum. By symmetry
n and p are equal here and n = p = n; exp (—qV,./2kT) where V, is
the applied bias. The minimum field £; is given by the total voltage
drop V and the field penetration parameter 5, which is the ratio of the
minimum field to the average field. Thus n = 2LE;/V where 2L is the
width of the intrinsic regions. The difference between V and V, is the
built-in voltage (2tT/q)/{n(N/n;) where N is the mzﬁority carrier
concentration in the extrinsic regions. We now have for the drift current
in the center of the intrinsic region

gu(n + p)E = @D g Ziexp( — aVe (A1)
’\,T ]J 2]GT

We next find the total current from the excess of generation over re-
combination in the intrinsic region. From the zero current assumption,
np = ni exp (—qVa/kT) is constant throughout the intrinsic region.
Hence g — 7 is constant. So the current I = g(g — r)2L = gL(n" — np)/

™ is
_amif _aVa :
I= - [1 exp( ki"):l (A2)
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Equating this to the drift current (A1) in the center of the intrinsic

region gives
LY Vv Va
(f-) =1 g—kT esch (g A:T) (A3)

The error in carrier concentration is less for narrower intrinsic regions
and lower biases. Thus (A3) gives a curve of L versus V, such that the
zero current solution gives a good approximation to carrier concentration
for points in the V,L plane lying well below the curve. As expected, for
zero bias, the solution is good for any value of L. However, for a bias of
several k7'/g, the solution for carrier concentration breaks down unless
L is a very small fraction of a diffusion length.

Carrier Space Charge.

In Prim’s analysis the carrier space charge is so low throughout most
of the intrinsic region that the field remains approximately constant
and equal to E;. However there must be enough carriers present that
the drift currents of holes and electrons can remove the carriers as fast
as they are generated. In this section we ask where the space charge of
the necessary carriers becomes large enough that its effect on the field
can no longer be neglected. Let AE be the change in field due to the
space charge in the intrinsic region (not counting the high field regions
near the junctions). Unless AE is small compared to E; the neglect of
carrier space charge will not be justified. We shall find the ratio of AK
to E;.

If the field is to be approximately constant, then the hole and electron
concentrations can easily be found from the hole and electrons currents.
We shall dead with applied biases of at least a few kT/q, for which
recombination is negligible and the total current I = ¢g2L = gn.L/r.
Since g — r = g is constant, the hole and electron currents are linear in
z and, for constant field, are proportional to the hole and electron con-
centrations respectively. Thus the net space charge of the moving
carriers q(p — n) is proportional to 2 and varies from zero in the center
of the intrinsic region to gp near the IP junction, where n is small
compared to p and the current flows by hole drift, so I = gupE; . Thus
the maximum charge is I/uE; and the total positive charge of the car-
riers on the P side of the center is IL/2uE; . This gives a drop in field



THEORY OF THE SWEPT INTRINSIC STRUCTURE 1283
Dividing by E; = 3V /2L gives

AE L' (kTN
%= 53 (o7 (40

Setting AE equal to some fraction, say 20 per cent of E, gives a family
of curves for V versus L with 5 as a parameter. Prim has plotted such
curves in Fig. 11 of his paper. His curves will be good approximations
when V for a given L and 7 lies above the V given by (A4).

Prim’s results are expressed in terms of the parameters U =
qV/2kT and [, = 2L/£, where £, is the Debye length in the extrinsic
material. £, is given by the same formula as £ except that N replaces n; .
Substituting these into (A4) and setting AE = E,;/5 gives

NL;

U (A5)
Prim’s U versus [, curves will be accurate up to the point where they
intersect the corresponding curves from (A5). For germanium a reason-
able value of NL;/n:£ is about 10°. This says that Prim’s curves go bad
at about [, = 10*, which would be about 2.1 X 10 ¢m in germanium
at 300°C.

Branching of the V versus L Curves

An effect which does not emerge from the zero-current analysis is
that ¥V may have several values for the same L and #. In other words
the V versus L curve for given 5 will have more than one branch. Specifi-
cally, there will be a single V versus L curve up to a certain L at which
the curve splits into three branches that diverge as L increases. This
may be seen as follows: Consider an intrinsic region that is long compared
to the diffusion length. Suppose a bias is applied that is low enough not
to appreciably affect the space charge and potential drop at the junc-
tions. A current will flow and a proportional, ohmic voltage drop will be
developed across the intrinsic region. If the intrinsic region is long
enough, this ohmic voltage may become large compared to the built-in
voltage before the voltage drop at the junctions has changed appre-
ciably. In this range the field penetration parameter will be rising from
zero to about unity as V increases from the built-in voltage and ap-
proaches the ohmic voltage. As the voltage continues to increase, the
space charge begins to penetrate the intrinsic region and a majority of
the voltage drop comes in the space charge regions. Let L be the ef-
fective length of current generation. When L is larger than a diffusion
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length but small compared to the length of the intrinsic region, then the
voltage drop at the ends of the intrinsic region will be proportional to
L? while the current, and consequently the minimum field, will be propor-
tional to L. Thus 5 will be proportional to 1/L and will decrease as V'
increases and the region becomes more swept. Finally the two space
charge regions meet; then 5 rises again with V and approaches unity.
Hence, for a given 5 and length of intrinsic region, there will be three
different values of V. For lower L the dip in the 5 versus V curve will be
less, and there will be only one V for some values of 7. Since 7 starts
from zero at the built-in voltage and approaches unity for infinite volt-
age, there must be either one or three values of V for every . Thus
when the V versus L curve (or in Prim’s notation the U versus [, curve)
branches, it branches at once into three curves. Prim’s plot gives the
upper branch in cases where all three are present.



