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Chemical Interactions Among Defects in
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By HOWARD REISS, C. S. FULLER, and F. J. MORIN

Interactions among defects in germanium and stlicon have been tnvesti-
gated. The solid solutions involved bear a strong resemblance to aqueous
solutions insofar as they represent media for chemical reactions. Such
phenomena as acid-base neufralization, complex ton formation, andion pair-
ing, all take place. These phenomena, besides being of interest in themselves,
are useful in studying the properties of the semiconductors in which they
occur. The following article is a blend of theory and experiment, and de-
scribes developments in this field during the past few years.
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I. INTRODUCTION

The effort of Wagner! and his school to bring defects in solids into the
domain of chemical reactants has provided a framework within which
various abstruse statistical phenomena can be viewed in terms of the
intuitive principle of mass action.? Most of the work to date in this field
has been performed on oxide and sulfide semiconductors or on ionic com-
pounds such as silver chloride. In these materials the control of defects
(impurities are to be regarded as defects) is not all that might be desired,
and so with a few exceptions, experiments have been either semiquanti-
tative or even qualitative.

With the emergence of widespread interest in semi-conductors, cul-
minating in the perfection of the transistor, quantities of extremely pure
single crystal germanium and silicon have become available. In addition
the physical properties, and even the quantum mechanical theory of the
behavior of these substances have been widely investigated, so that a
great deal of information concerning them exists. Coupled with the fact
that defects in them, especially impurities, are particularly susceptible
to control, these circumstances render germanium and silicon ideal sub-
stances in which to test many of the concepts associated with defect
interactions.

This view was adopted at Bell Telephone Laboratories a few years ago
when experimental work was first undertaken. Not only has it been
possible to demonstrate quantitatively the validity of the mass action
principle applied to defects, but new kinds of interactions have been
discovered and studied. Furthermore new techniques of measurement
have been developed which we feel open the way for broader investiga-
tion of a still largely unexplored field.

In fact solids (particularly semiconductors like germanium and silicon)
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appear in every respect to provide a medium for chemical reactivity
similar to liquids, particularly water. Such pehnomena as acid-base reac-
tions, complex ion formation, and electrolyte phenomena such as Debye
Hiickel effects, ion pairing, etc., all seem to take place.

Besides the experiments theoretical work has been done in an attempt
to define the limits of validity of the mass action principle, to furnish
more refined electrolyte theories, and most importantly, to provide firm
theoretical bases for entirely new phenomena such as ion pair relaxation
processes.

The consequence is that the field of diamond lattice® semiconductors
which has previously engaged the special interests of physicists threatens
to become important to chemists. Semiconductor crystals are of interest,
not only because of the specific chemical processes occurring in these
substances, but also because they serve as proving grounds for certain
ideas current among chemists, such as electrolyte theory. On the other
hand renewed interest is induced on the part of physicists because chem-
ical effects like ion pairing engender new physical effects.

The purpose of this paper is to present the field of defect interaction
as it now stands, in a manner intelligible to both physicists and chem-
ists. However, this is not a review paper. Most of the experimental re-
sults, and particularly the theories which are fully derived in the text or
the appendices are entirely new. Some allusion will be made to published
work, particularly to descriptions of the results of some previous theories,
in order to round out the development.

The governing theme of the article lies in the analogy between
semiconductors and aqueous solutions. This analogy is useful not so
much for what it explains, but for the experiments which it suggests.
More than once it has stimulated us to new investigations.

In our work we have made extensive use of lithium as an impurity.
This is so because lithium can be employed with special ease to demon-
strate most of the concepts we have in mind. This specialization should
not obscure the fact that other impurities although not well suited to
the performance of accurate measurements, will exhibit much of the
same behavior.

II. ELECTRONS AND HOLES AS CHEMICAL ENTITIES

Since electrons and holes' are obvious occupants of semiconductors
like germanium and silicon, and are intimately associated with the pres-
ence of donor and acceptor impurities,* it is fitting to inquire into the
roles they may play in chemical interactions between donors and ac-
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ceptors. This question has been discussed in two papers,® ¢ and only its
principle aspects will be considered.

To gain perspective it is convenient to consider a system representing
the prototype of most systems to be discussed here. Consider a single
crystal of silicon containing substitutional boron atoms. Boron, a group
I1I element, is an acceptor, and being substitutional cannot readily dif-
fuse” at temperatures much below the melting point of silicon. If this
crystal is immersed in a solution containing lithium, e.g., a solution of
lithium in molten tin, lithium will diffuse into it and behave as a donor.
Evidence suggests that lithium dissolves interstitially in silicon, thereby
accounting for the fact that it possesses a high diffusivity® at a tempera-
ture where boron is immobile, for example, below 300°C. When the
lithium is uniformly distributed throughout the silicon its solubility in
relation to the external phase can be determined. Throughout this process
boron remains fixed in the lattice.

If both lithium and boron were inert impurities the solubility of the
former would not be expected to depend on the presence or absence of
the latter, for the level of solubility is low enough to render (under
ordinary circumstances) the solid solution ideal.? On the other hand the
impurities exhibit donor and acceptor behaviors respectively, and some
unusual effects might exist. We shall first speculate on the simplest possi-
bility in this direction, with the assistance of the set of equilibrium reac-
tions diagrammed below.*

Li(Sn) =2 Li(8i) = Lit + ¢
+
B(Si) 2B~ +¢* (2.1)
T}r _
[

At the left lithium in tin is shown as Li(Sn). It is in reversible equilib-
rium with Li(S7), un-ionized lithium dissolved in silicon. The latter, in
turn, ionizes to yield a positive Ls* jon and a conduction electron, e”.
Boron, confined to the silicon lattice as B(87) ionizes as an acceptor to
give B~ and a positive hole, ¢™. The conduction electron, ¢, may fall
into a valence band hole, ¢, to form a recombined hole-electron pair,
¢T¢™. This process and its reverse are indicated by the vertical equilibrium
at the right.

All of the reactions in (2.1), occuring within the silicon crystal are
describable in terms of tansitions between states in the energy band dia-

* A glossary of symbols is given at the end of this article,
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gram of silicon, exhibited in Fig. 1. The conduction band, the valence
band, and the forbidden gap are shown. Lithium and boron both intro-
duce localized energy states in the range of forbidden energies. The state
for lithium lies just below the bottom of the conduction band while that
for boron lies just over the top of the valence band. The separations in
energy between most donors or acceptors and their nearest bands are of
the order of hundredths of an electron volt while the breadths of the for-
bidden gaps in germanium or silicon are of the order of one electron volt.

Process 1 in Fig. 1 involving a transition between the donor level and
conduction band corresponds to the ionization of lithium in (2.1). Proe-
ess 2 is the ionization of boron while process 3 represents hole-electron
recombination and generation. The various energies of transition are the
heats of reaction of the chemical-like changes in (2.1).

Proceeding in the chemists fashion one might argue as follows concern-
ing (2.1). If e*e” is a stable compound, as it is at fairly low temperatures,
then its formation should exhaust the solution of electrons, forcing the
set of lithium equilibria to the right. In this way the presence of boron,
supplying holes toward the formation of e*e”, increases the solubility of
lithium. In fact if " is regarded as the solid state analogue of the hydro-
gen ion in aqueous solution, and ¢~ as the counterpart of the hydroxyl
ion, then the donor, lithium, may be considered a base while boron, may
be considered an acid. Furthermore e*e” must correspond to water.
Thus the scheme in (2.1) is analogous to a neutralization reaction in
which the weakly ionized substance is ¢¥e ™.

If the immobile boron atoms were replaced by immobile donors, e.g.,
phosphorus atoms, a reduction, rather than an increase, in the solubility
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Fig. 1 — Energy band diagram showing the chemical equilibria of (2.1).
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of lithium might be expected on the basis of an oversupply of electrons
(i.e., by the common ion effect®). In that case we would have a base
displacing another base from solution.

The intimate comparison between this kind of solution and an aqueous
solution is worth emphasizing not so much for what it adds to one’s
understanding of the situation but rather for the further effects it sug-
gests along the lines of analogy. These additional phenomena have been
looked for and found, and will be discussed later in this article.

The scheme shown in (2.1) should be applicable, in principle, to other
donors and acceptors and to germanium and other semiconductors as
well as silicon. Furthermore the external phase may be any one of a suit-
able variety, and need not even be liquid. Other systems, however, are
not as convenient, especially in regard to the ease of equilibration of an
impurity over the parts of an heterogeneous system. The lengths to which
one can go in comparing electrolytes and semiconductors are discussed
in a recent paper.”

In order to quantify the scheme of (2.1) it seems natural to invoke the
law of mass action.” Treatments in which holes and electrons are in-
volved in mass action expressions are not new, although systems forming
such perfect analogies to aqueous solutions do not seem to have been
discussed in the past. For example, in connection with the oxidation of
copper Wagner"” writes

40u + 0, 2 20u0 + 40 + 4e* (2.2)

in which O is a negatively charged cation vacaney in the Cus0 lattice,
and et is a hole. Wagner proceeds to invoke the law of mass action in
order to compute the oxygen pressure dependence in this system.

In another example Baumbach and Wagner'® and others have investi-
gated oxygen pressure over non-stoichiometric zinc oxide. They consider
the possible reactions

2Zn0 = 2Zn + 02
' 1
2Znt = 2Zntt 4+ 2 (2.3)
_!_
2¢”

and apply the law of mass action. In (2.3) the various states of Zn are
presumably interstitial.

Kroger and Vink' have recently considered the problem in oxides and
sulfides in a rather general way. However in none of the oxide-sulfide
systems has it been possible to achieve really quantitative results. In
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contrast silicon and germanium offer possibilities of an entirely new order.
The advent of the transistor has not only provided large supplies of pure
single crystal material, but it has also made available a store of funda-
mental information concerning the physical properties of these sub-
stances. For example, data exists on their energy band diagrams includ-
ing impurily states — also on resistivity — impurity density curves,
diffusivities of impurities, etc. Furthermore, the amount of ionizable
impurities can be controlled within narrow limits, and can be changed
at will and measured accurately. Consequently it is reasonable to assume
that experiments on germanium and silicon will be more successful than
similar investigations using other materials.

At this point it is in order to examine whether or not the treatment of
clectrons and holes as normal chemical entities satisfying the law of
mass action is altogether simple and straightforward. This problem has
been investigated by Reiss’ who found the treatment permissible only
as long as the statistics satisfied by holes and electrons remain classical.
The validity of this contention can be seen in a very simple manner.
Consider a system like that in (2.1). Let the total concentration of donor
(ionized and un-ionized) be Np, the concentration of ionized donor be
D™, the concentration of conduction electrons be n, and that of valence
band holes be p. Let N, and A~ denote the concentrations of total ac-
ceptor and acceptor ions respectively. Finally, let & be the thermody-
namic activity' of the donor (lithium in (2.1)) in the external phase.

Then, corresponding to the heterogeneous equilibrium in which lith-
ium distributes itself between the two phases we can write

N» — D*

[

= I(o (2.4)

in which K, depends on temperature, but not on composition. This as-
sumes the semiconductor to be dilute enough in donor so that the ac-
tivity of un-ionized donor can be replaced by its concentration, Ny — D,
For the ionization of the donor we can write the mass action relation,

D*n
m = I{D (2.5)
and for the acceptor,
Ap  _

while for the electron-hole recombination equilibrium

np = K, (2.7
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In (2.5), (2.6), and (2.7) all the K’s are independent of composition. To
these equations is added the charge neutrality condition,

D++p_=A‘+n (2.8)

Equations (2.4) through (2.8) are enough to determine Np in its de-
pendence on N, , «, and the various K’s. Together they represent the
mass action approach. To demonstrate their validity it is necessary to
appeal to statistical considerations.

Thus N» — DV, the concentration of un-ionized donor is really the
density of electrons in the donor level of the energy diagram for the semi-
conductor. According to Fermi statistics this density is given by’

Np — DT = Np/{1 + 14 exp [(E» — F)/kT]} (2.9)

in which Ep is the energy of the donor level, ¥ is the Fermi level,' k,
the Boltzmann constant, and 7', the temperature. Furthermore, accord-
ing to Fermi statistics, n, the total density of electrons in the conduction
band is

n = Z‘_lg,-/{l + exp [(E; — F)/kT]} (2.10)

where g; is the density of levels of energy, E;, in the conduction band,
and the sum extends over all states in that band. Similar expressions are
available for the occupation of the acceptor level and the valence band.
F is usually determined by summing over all expressions like (2.9) and
(2.10) and equating the result to the total number of electrons in the
system. This operation corresponds exactly to applying the conserva-
tion condition, (2.8). It is obvious from the manner of its determina-
tion that F depends upon Np — D™, n, ete.

If we now form the expression on the left of (2.5) by substituting for
each factor in it from (2.9) and (2.10), it is obvious that the result de-
pends in a very complicated fashion upon F, and so cannot be the con-
stant, K, independent of composition, since in the last paragraph F
was shown to depend on composition. On the other hand if attention is
confined to the limit in which classical statistics apply"” the unities in
the denominators of (2.9) and (2.10) can be disregarded in comparison
to the exponentials, and those equations become

‘Np — DT = 2N /e Pt (2.11)

and
n = FlT Z g,ﬂ_hl“ (2.12)
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respectively. Moreover, from (2.11)
DT = N[l — 2" E0/kT) = N, (2.13)
where the second term in brackets is ignored for the same reason as unity

in the denominators of (2.9) and (2.10). Substituting (2.11) through
(2.13) into (2.5) yields

—E kT
i€
D'n Z,: gi

N» — DV~ " 2¢ FoFT -

in which the right side is truly independent of composition, since I'' has
cancelled out of the expression. Similar arguments hold for (2.6) and
(2.7). Therefore in the classical limit the law of mass action is valid, at
least insofar as internal equilibria are concerned.

We have next to examine the validity of (2.4) which is really the law
of mass action applied to the heterogeneous equilibrium between phases.
Substitution of (2.11) into (2.4) leads to the prediction

26_EDIkT

a="7 (" YNy = K{e"* | Np (2.15)
0

in the classical case, if (2.4) is valid. In order to confirm (2.15) it is neces-
sary to evaluate the chemical potentials™ of the donor in the external
phase and in the semiconductor, and equate the two. The resulting ex-
pression should be equivalent to (2.15).

Since e« is the activity of the donor in the external phase its chemical
potential in that phase is, by definition,

p= (T, p) + kT tn o (2.16)

where y.o, the chemical potential in the standard state, may depend on
temperature and pressure, but not on composition. T'o compute the chem-
ical potential in the semiconductor statistical methods must once more
be invoked. Thus, according to (2.13), donor atoms are nearly totally
ionized in the classical case, so that the addition of a donor atom to the
semiconductor amounts to addition of two separate particles, the donor
ion and the electron. The chemical potential of the added atom is there-
fore the sum of the potentials of the ion and the electron separately.
Since the ions are supposedly present in low concentration the latter
can serve as an activity,” and in analogy to (2.16) we obtain for the
ionic chemical potential

po+ = upr (T, p) + kT tn D (2.17)
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Furthermore, it is well established® that the Fermi level plays the role
of chemical potential, p, , for the electron

pe = F (2.18)
Thus the chemical potential for the donor atom is
up = pot + Mo = po+’ + KT D* + F
= o + KTt Np + F = pp® + kT n {"*"}N»

where (2.13) has been used to replace D¥ by N, . We note that the ac-
tivity of the donor atom must be

{"*T} N p (2.20)

with ¢*7 playing the role of an activity coefficient.”
Equating pp given by (2.19) to p in (2.16) results in the equation

a = expl(ups® — &")/kT1{e" "} Np (2.21)
which can be made identical to (2.15) by identifying
exp[(up+® — u°)/kT]

with K of that expression. Thus in the classical case the law of mass
action is applicable to the heterogeneous equilibrium.

When classical statistics no longer apply it is still possible to evaluate
Np — D™, using the full expression (2.9). Therefore the solubility Np,
of the donor can still be determined if (2.4) remains valid. To decide
this question it is necessary to evaluate up, the chemical potential of
the donor in the semiconductor under non-classical conditions. This
problem is not as simple as those treated above, but it can be solved,
and the detailed arguments can be found in Reference 5. Here we shall
be content with quoting the results. However, before doing this the non-
classical counterpart of (2.15) will be written by combining (2.9) with
(2.4). The result is

a = [Ko/{l + 34 exp[(Ep — F)/kT}IN > (2.22)

and if (2.4) is valid (2.22) should be derivable by equating u to the
proper value of up .

Since in the non-classical case a finite portion of the donor states are
occupied by electrons, the introduction of an additional average donor
atom is no longer equivalent to adding two independent particles whose
chemical potentials can be summed. In the statistical derivation of up
it is therefore necessary to evaluate the total free energy of the semi-

(2.19)
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conductor phase, and to differentiate this with respect to Np , keeping
temperature and pressure fixed.* The result is

pp = ppt’ + kT &n Np

(2.23)
+ F — kT {n {1 4+ 2exp[— (Ep — F)/ET}

in which it has been assumed that the concentration of impurity is
sufficiently low so that the solution would be ideal if the impurity could
not ionize. In the classical case the exponential in the logarithm is small
compared to unity and (2.23) becomes identical with (2.19), as it should.
In the totally degenerate case the exponential dominates the unity and
we have

{up+" + Ep — kT 2} + kT tn N
= up + kT taNp

which is the chemical potential of an un-ionized component of a dilute

=
o
Il

(2.24)

* An interesting by-product of this derivation (discussed in Reference 5) is the
fact that the Fermi level, F, is hardly ever the Gibbs free energy per electron for
the electron assembly, although it is always the electronic chemical potential, in
the sense that it measures the direction of flow of electrons. This arises because
the Gibbs free energy is not always a homogeneous function?? of the first degree in
the mole numbers (electron numbers). Thus if the number of electrons in the as-
sembly is N, the Gibbs free energy, @, is given by

- " L] R P
G = NF + kT g [V{av}m w,:l in i

where the sum is over all energy levels, 7, referred to an invariant standard level.
V is the volume of the system, w; is the total number of states at the jth level, and
hjis the number of unoccupied states (holes) at the jth level. For F to be the free
energy per electron the term involving the sum must vanish so that

F =

=@

But this can only happen when
wj = K;V

where K; is independent of V. This requirement is formally met in the case of the
free electron gas where the electrons have been treated as independent particles
in a box so that

w; = [8mo’? = E dE/2R]V

where m, is the electron mass, and %, Plank’s constant. Since this is the case most
frequently dealt with in thermodynamic problems it has been customary to think
of I as the free energy per electron, although even here the truth of the contention
depends on the assumption of particle in the box behavior.

At the other extreme, it is obvious that «; for a level corresponding to the deep
closed shell states of the atoms forming a solid cannot depend at all on the ex-
ternal volume since they are essentially localized. In computing the free energy
o{l the semiconductor phase it is necessary to understand carefully subtleties of
this nature.
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solution, as it should be for the degenerate case in which ionization is
suppressed. Equating pp in (2.23) to p in (2.16) yields

_ e[’ — v+ En)/kT]}
T { 1+ Y exp [(E — F)/kT) Np (2.25)

which is identical with (2.22) if K, is taken to be
14 expl(uo+® — &° + Ep)/kT] (2.26)

Thus one arrives at the conclusion that the law of mass action remains
valid for the heterogeneous equilibrium even when it fails for the homo-
geneous internal equilibria.

This is a fairly important result since it implies that solubilities can
give information on the behavior of the Fermi level and hence on the
distribution of electronic energy levels, even under conditions of de-
generacy.

The chemical potential specified by (2.23) is of course important in
itself, for treating any equilibrium (external or internal) in which the
donor may participate.

One last remark is in order. This concerns the treatment of heterogene-
ous equilibria involving some external phase, and the surface® rather than
the body of a semiconductor. In such treatments it has been customary
to compute the chemical potential of an ionizable adsorbed atom by
summing the ion chemical potential and the Fermi level, as in (2.19).
This is no more possible if the statistics of the surface states are non-
classical, then it is possible when considering non-classical situations
involving the body of the crystal. Care must therefore be exercised also
in the treatment of surface equilibria.

The above discussion has shown that there are extensive ranges of
conditions under which holes and electrons obey the law of mass action,
and behave like chemical entities. In the next section some of the con-
sequences of this fact will be developed.

III. APPLICATION OF THE MASS ACTION PRINCIPLE

Equations (2.4) through (2.8) will now be used to determine how, in
the classical case, the solubility, N, of lithium in (2.1) depends upon
N, the concentration of boron in silicon. In the experiments to be de-
seribed, the systems are classical, and the donors and acceptors there-
fore so thoroughly ionized that Np can be replaced by D" and N, by
A”. Insertion of (2.4) into (2.5) yields

D¥n = aK,Ky = K* (3.1)
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since a is maintained constant. Furthermore (2.7) can be written as
np = K, = n (3.2)

where n; is obviously the concentration of holes or electrons under the
condition that the two are equal. It is called the intrinsic concentration™
of holes or electrons. The values of n; in germanium and silicon have been
determined by Morin.*" ** Fig. 2 gives plots of the logarithms of n; in
germanium and silicon versus the reciprocals of temperature. These re-
sults are necessary for subsequent calculations.

Since N, and A~ are assumed equal, we may dispense with (2.6).
The one remaining equation is then (2.8) which we adopt unchanged.
These three relations, (3.1), (3.2), and (2.8) are sufficient to determine
D" or N, as a function of A~ or N4 . The only undetermined parameter
in the set is K* and this can be evaluated by measuring the solubility,
D™, in the absence of acceptor, i.e., under the condition that A~ is zero.
The symbol Dy" is used to designate this value of D*. In Reference 6 it
is shown that

Do+ = K*/(K* + n.-g)”z
or
K* = (Do")'/2 + {(Do")'/4 + nd (D))" (3.3)
Eliminating K* by the use of this relation it is further shown in Ref-
erence 6 that
D* = 4-
1 4+ /1 + (2n;/Dy*)?

(34)

A—- 2 o 1/2
+ {[1 T (2ﬂi/Do+)2:| + s )}

which is the required relation between donor solubility and acceptor
concentration.

Examination of (3.4) reveals several simple features, the more import-
ant, of which we list below:

(1) When A~ (the acceptor doping) is sufficiently large so that
(Dy*)? in the second term can be ignored relative to the term in A~
(3.4) reduces to that of a straight line with slope

_ 2
DA =TT T @Dy (35)

Knowledge of this slope is equivalent to knowledge of D™
(2) Where the straight line portion of the D' versus A~ curve is in-
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volved, the temperature dependence of the solubility, D™, enters only
through the ratio, n;/Dy*. If this ratio is very small, then

DY~ A (3.6)
and the solubility is independent of temperature. In this condition Dt
may approximate A~ by being either slightly less or slightly greater than
the latter. Details are given in Reference 6.

(3) Whereas D" at small values of doping may be an increasing func-
tion of temperature, it may, depending on the system, be a decreasing
function of temperature at high dopings. Thus doping may change the
sign of the temperature coefficient of solubility. Because of this, doping
sometimes may prevent precipitation of a donor when a semiconductor
is cooled, since the latter becomes an undersaturated rather than a
supersaturated solution of impurity. Details are given in Reference 6.

(4) Tt is also shown in Reference 6 that for the acceptor to have any
effect on the solubility of the donor the concentration of A~ should satisfy
the following criterion

A™ > (Dy* or n;) (3.7

Dy" or n; being used depending on which is greater. Obviously at high
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Fig. 2 — Temperature dependences of intringic carrier concentrations in ger-
manium and silicon.
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temperatures when n; achieves a very large value it may not be possible
to have A~ exceed n; , and no efiect due to the acceptor will be observable.
This is simply a mathematical reflection of the fact that the hypothetical
compound e’e” in (2.1) is highly dissociated at high temperatures so that
the holes contributed by the acceptor cannot cause the exhaustion of
electrons in the solution.

In Reference 6 the system described in (2.1) was investigated for the
purpose of testing (3.4). The concentrations, D" and A~ of lithium and
boron respectively were determined by measuring the electrical resis-
tivities of the crystal specimens before and after immersion in molten
tin contaning lithium. Some typical results of these experiments are
shown in Fig. 3 which contains three D™ versus A~ isotherms for the
temperatures 249°, 310°, and 404°C. For the case shown the tin phase
contained 0.18 per eent lithium by weight.

The points in the figure represent experimental findings, while the
drawn curves are based on theory. The agreement between theory and
experiment, is very good, in fact the overall accuracy appears to be bet-
ter than 1 per cent. These isotherms are only a few of a large group ob-
tained at different temperatures and with differently proportioned ex-
ternal phases. The accuracy in all of these is of the same order.

Various of the features of (3.4) listed above are apparent in the curves
of Fig. 3. For example at large values of A~ the curves are straight lines,
thus validating (3.5). Also, the inversion of the temperature coefficient
of solubility with doping is apparent for the curves cross one another,
and whereas, at low dopings (low A7) the solubility is an increasing func-
tion of temperature, at high dopings it decreases with increasing tempera-
ture. Finally we note that D" remains more or less independent of A~
until A~ exceeds n,, confirming (3.7). Values of n; appear in the Figure.

The possible increases in solubility above D, are really quite large.
For example in Fig. 3 the largest increase is of the order of a factor of
10°. However in some experiments increases of 10° have been observed:
These effects truly represent profound interactions between impurities
which are present in highly attenuated form. Thus the number of atoms
per cubic centimeter in crystal silicon is of the order of 5 X 10% em™.
Interactions at doping levels as low as 10" em™, as appear in Fig. 3,
therefore take place at atom fraction levels of about 2 X 1078,

In Fig. 4 we show a curve of lithium solubility at room temperature
in gallium-doped germanium. The curve is wholly experimental; no
attempt has been made to apply theory. The symbols D* and A” are
once more used for the donor and acceptor. In this case the curve again
exhibits some of the general features required by (3.4). The measure-
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Fig. 3 — Isotherms showing the solubility of lithium D%, in silicon as a func-
fiol? of boron doping A-, for an external phase of tin containing 0.18 per cent
ithium.

ments were made by saturating gallium-doped germanium crystals with
lithium by alloying lithium to the germanium surface at a high tempera-
ture, and letting it diffuse in. Following this the crystals were cooled
and lithium was allowed to precipitate to equilibrium. In this case the
external solution is the precipitate and is of unknown composition.

If the straight line portion of the curve is used to determine Dt/A™
appearing in (3.5), the value of D," associated with the precipitate as an
external phase can be computed by using the value of n; obtained from
Fig. 2 for 25°C. The latter is 3 X 10" em™, and the measured D*/A~
is 0.85. Application of (3.5) then leads to a value of Dot of 6.6 X 10"
em ™ at 25°C. Since the highest value of D" measured in Fig. 4 is 5.5 X
10" em™, the solubility increase here shows a factor of 10°. Interaction
is already apparent at values of A™ as low as 10 em™, and since there
are 4.4 X 10" em™® atoms per cubic centimeter in pure germanium this
represents interaction at levels of atom fraction as low as 2 X 107

IV. FURTHER APPLICATIONS OF THE MASS ACTION PRINCIPLE

In the last section the possibility was mentioned of inverting the sign
of the temperature coefficient of solubility, and so preventing impurity
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Fig. 4 — Room temperature isotherm showing the solubility of lithium in
germanium as a function of gallium doping, the external phase being an alloy of
lithium and germanium. The curve merely shows locus of experimental points.

precipitation which might normally occur upon cooling a crystal speci-
men. An experiment demonstrating this effect is described in Reference 6.
Two specimens of germanium, one without added acceptor, and the other
containing gallium at an estimated concentration of 1.3 X 10" em™,
were saturated with lithium. Table I compares the changes in lithium
content observed in these samples with the passage of time. After 25
days no apparent precipitation had occurred in the gallium doped speci-
men, while precipitation was almost complete in the other.

This result suggests a practical scheme for measuring the concentra-
tion of lithium along the solidus curve of the lithium-germanium phase
diagram, i.e., the solubility of lithium in solid germanium when the ex-
ternal phase is also composed of germanium and lithium, and probably
represents the liquidus phase. This measurement, though desirable, has
not been performed before because lithium, diffused into germanium at
an elevated temperature, precipitates when the specimen is cooled.
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TasLe I
Ga Cone, (em=) | Li Cone.gitersuturation | - i Concyafter 4 dhyy \ L Gone, ter 25 dags
0 1.4 X 1018 0.0 X 101 1.1 X 10
1.3 X 10w 8.0 X 10 8.0 X 108 8.0 X 101

Resistivities then measure only the dissolved lithium although the true
solubility at the temperature of saturation includes the precipitated
material.

However, we have seen that germanium suitably doped with gallium
will not lose lithium by precipitation. Therefore the experiment might
be perfmmed in doped germanium. The only difficulty with this sugges-
tion lies in the fact that doping changes the solubility. This obJectmn can
be overcome through use of (3.4). In terms of that equa.tlon D' would
be measured in the presence of gallium whereas Dy*, the solublhty in
undoped germanium, is required. But accmdmg to (3.4) if D, n;, and
A~ (gallium concentration) are known Dy can be computed In fact
solving (3.4) for D" yields

PM + 4/{2@——‘“1 + (DY

/‘/ +D+(D+—A_)+/|/|-D+(D"'—A )J & (DY

The plan is therefore self-evident. Samples of germanium of known
suitable gallium contents A~ are to be saturated with lithium at various
temperatures. If a judicious choice of gallium content is made the lith-
jum will not precipitate when the specimen is cooled. Therefore the value
of DT characteristic of the saturation temperature can be determined
through resistivity measurements performed at room temperature
Taking n; from Fig. 2 it then becomes possible to calculate Dy" using
(4.1).

The crystal specimens employed were cut in the form of small rec-
tangular wafers of dimensions, approximately 1 em X 0.4 cm X 0.1 em.
On the surfaces of these, small filings of lithium were distributed densely
enough so that their average separation was less than the half thickness
of the specimen’s smallest dimension. The filings were alloyed to the
germanium specimen by heating in dry helium for 30 seconds at 530°C.
Then the erystals were permitted to saturate with lithium by diffusion
from the alloy at some chosen lower temperature. After the period of
saturation which ranged from one half hour to as long as 168 days, de-

(4.1)
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TasLE II

T °C. po ohm cm A~ (em™) p ohm (cm) D* em™3 Dgt (cm™3)

26 6.6 X 1013
100 0.0523 2.2 X 10v 0.0735 9 X 1016 2.5 X 10
200 0.44 1.3 X 10 0.90 7.8 X 10t 4.6 X 10
250 0.1494 4.7 X 10 0 652 3.9 X 10 2.6 X 10
300 0.042 2.9 X 10% 0.108 2,156 X 10v7 7.3 X 106
500 0.00614 4.5 X 108 0:0340 4.13 X 101 1.7 X 10
608 0.00577 5.0 X 10 0.049 4,78 X 101 2.8 X 108
650 0.00584 4.3 X 10 0.0178 3.75 X 101 2.4 X 10%

pending on the temperature, the specimen surface was lapped smooth
with carborundum paper. Resistivities were then measured by means of
a two point probe.

Table II collects the data showing 7', the temperature of saturation
in degrees centigrade, p, the resistivity before saturation, A~ the gallium
concentration computed from pg, p the resistivity after saturation, and
D7 the lithium concentration computed from p. The final column shows
Dy* computed using (4.1) and Fig. 2.

In Table II the 25°C value of Dy" has been taken as the value com-
puted in section III in connection with Fig. 4. It might be thought (in
view of a later section in this paper) that the 25° and 100°C values of
D,* are not as reliable as the others because at the low temperatures
involved the solubility of lithium may be influenced by ion pairing as
well as electron-hole equilibria. However, Appendix A shows that the
possible error is small.

In Fig. 5 Dy* is plotted against temperature using these data. The plot
is the curve labeled Ga™ = 0, and the open circles were obtained by in-
serting the measured D" values (crosses) into (4.1). We notice that the
curve has a maximum in the neighborhood of 600°C. The occurrence of
a maximum, is a necessity if D," is to pass to zero, as it must at the
melting point of germanium. It is also worth noticing that D, near
room temperature lies in the range of order 10** em™, but that its meas-
urement has been effected at concentrations as high as 10" em™, This
illustrates another application of the electron-hole equilibrium, namely
in the determination of solubilities.

With Dot in our possession it is interesting to return to (3.4) and to
calculate D* as a function of temperature for various levels of A~. This
has been done for values of A~ equal to 10", 10'°, 10", and 10® em™,
The curves so obtained appear in Fig. 5, labeled Ga~ = 10", 10", 10",
10" em™, respectively. Their most striking common feature is the mini-
mum which appears below 200°C. This minimum introduces a new prob-
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lem in preparing samples without precipitate. Thus consider the 4~ =
10" em™ curve. Suppose the specimen is saturated at 200°C. Then
according to Fig. 5, if A~ for the specimen is 10" em™®, D™ after satura-
tion will be 7 X 10" em™®. However, as the sample is cooled it will tend,
at first, to become supersaturated. For example it will achieve its maxi-
mum supersaturation at about 140°C. where the minimum of the 10'
em ™ curve appears. Thereafter it will return to its undersaturated state.
In fact at 25°C a concentration of 9.3 X 10" em™® could be supported,
whereas the solution contains no more than 7 X 10' em ™ lithium atoms.
Some of these may have precipitated as the cooling process passed
through the minimum, so that sufficient, time must be provided for th.e
process of re-solution.

If the original saturation had taken place at 250°C, the concentration
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Fig. 5 — Solubility of lithium in germanium as a funetion of temperature for
various gallium dopings. The external phase is an alloy of lithium and germanium.
The broken line is the locus of the points (circles) calculated from equation (4.1)
for zero gallium concentration. The values of A~ and D*, used in applying (4.1),
correspond to the points shown by X in the illustration. See Table II.
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of lithium would have been 2.4 X 10'® em™. Since this exceeds the 9.3 X
10" em ™ supportable at 25°C, such a sample would have contained some
precipitate. It was important to avoid these various pitfalls in preparing
the specimens used in the above study. Care was taken to insure that this
was the case.

We now turn to another application of the electron-hole equilibrium.
It has been emphasized that just as a fixed acceptor will increase the
solubility of lithium in silicon, a fixed donor should decrease it. In fact
in a crystal containing a p-n junction the solubility should be above nor-
mal on the p side and below normal on the n side. The built-in field®
which exists at the junction is a reflection of this difference in solubility,
for if it were not present the concentration gradient created by the dis-
parity in solubilities would cause the lithium to diffuse from the p to the
n side until its concentration was uniform throughout the crystal. Ob-
viously this field is in such a direction as to cause lithium ions to move
back to the p side.*

Now in both silicon and germanium the oxide layers on the surface
can react readily with dissolved lithium. As a result the surface behaves
as a sink, and at temperatures as low as room temperature lithium is lost
to the surface from the body of the crystal. At higher temperatures the
body of the erystal can be exhausted of lithium in a few minutes. There
are many experiments which one would like to perform in which the
crystal must be maintained without loss of lithium at an elevated tem-
perature for long periods of time.

The application now to be discussed involves utilization of the built-in
field at a p-n junetion to prevent lithium from reaching the surface where

* The distribution of lithium inthe space charge region of a p-n junction cannot
be computed by the methods advanced thus far. This is because the charge neu-
trality condition (2.8) is no longer valid. Instead the concentration of lithium is
determined by Boltzmann’s law,?® and is given by

D* = D,* exp [— qV/kT)

where ¢ is the charge on a lithium ion, V is the local electrostatic potential, and
D,* is the concentration where V is zero.
V itself must be determined from Poisson’s equation®

4m
o —L

K

where p is the local charge density and « is the dielectric constant of the medium.
In semiconductors p is given in terms of V by3!

p = qH + D* — 2n; sinh (¢V/kT)]
= g[H + D,* exp [— qV/kT] — 2n; sinh (qV/kT))]

where H is the local density of fixed donors less the local density of fixed acceptors.
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it can attack the oxide. Two specimens of 0.34 ohm em p-type silicon
doped with boron were cut from adjacent parts of a crystal. Each
specimen was about 1 cm long, 0.2 em wide, and 0.15-cm thick. The
samples were lapped on No. 400 silicon carbide paper, etched in HF and
HNO; and sealed in helium-flushed evacuated quartz tubes, one con-
taining a small grain of P:0; . The tubes were then heated at 1,200°C.
for 24 hours. This treatment introduced an n-type layer, highly doped
with phosphorus and about 0.001-cm thick, into the surface regions of
the specimen in the tube containing P05 . Upon removal from the tube
this specimen was lapped on the end to remove the n-skin. Complete
removal was determined by testing with a thermal probe.

Small cubes of lithium (0.038 cm on a side) were placed on the ends of
both samples (the lapped end of phosphorus-doped one) and alloyed to
the silicon for 30 seconds at 650°C in an atmosphere of dry helium. After
this treatment the various junction contours should have looked like
those in Fig. 6, in which the bottom crystal is shown with the phosphorus-
doped skin (cross hatched). During the alloying process a small amount
of spherical diffusion of lithium occurs so that small hemispherical
n-regions form with the alloy beads as origins. These are shown in Fig. 6.

Next the specimens were heated in vacuum for about six hours at
400°C. Diffusion of lithium into the body of the crystal should occur
during this period. However in the sample not protected by the n-type
skin lithium should leak to the oxide sink on the surface so that the
n-type region due to the lithium should have the pear-shaped contour
shown in the upper part of Fig. 7. If the built-in field at the p-n junction

Gy
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Fig. 6 — Initial stage following alloying in the diffusion experiment to demon-
strate the impermeability to lithium of a heavily doped n-type skin on silicon.
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formed by the phosphorus layer prevents lithium from reaching the sur-
face, diffusion in the sample with the skin should be plane parallel with a
straight front (except at the rear where the skin has been lapped off and
lithium can leak out) as the p-n junction contour in the lower part of
Fig. 7 indicates.

An acid staining technique” which reveals the junction contours should
then develop a picture resembling Fig. 7. The two specimens were cuf
along their long axes and the stain applied to the newly exposed sur-
faces. The result has been photographed and is shown in Fig. 8 where
the crystal on the right has the n-skin. The p-regions show up dark and
the n, light. The result agrees with Fig. 7.

In another experiment a erystal completely enclosed in a phosphorus
skin was immersed in the tin bath described in Section I1I. It was dis-
covered that lithium entered the crystal with no evident difficulty, just
as though the skin were absent, but once in, could not be driven out by
removal of the external source and continued heating. The implication is
clear. The built-in field has a rectifying action permitting the lithium to
enter the crystal but not to leave. In this sense it performs the same func-
tion foar the mobile lithium ions as it does for holes in a p-n junction
diode.*

V. COMPLEX ION FORMATION

In the previous text processes involving the interaction of electrons
and holes have heen considered. In this section attention will be drawn,

+
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Tig. 7 — Distribution of lithium after an extended period of diffusion at a
temperature lower than the alloying temperature — showing leakage out of the
erystal in the one case (no-skin) and conservation in the other.
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Fig. 8 — Photograph of experimental situation described schematically in
Fig. 7.

to the possibility of interactions between the donor and acceptor ions
themselves. For example, in (2.1) direct interaction of Lit and B~ above
600°C may be possible, especially in view of the mobility of Li*. Such
a reaction was indicated in the work of Reiss, Fuller, and Pietruszkie-
wicz."

Fig. 9 is of assistance in understanding the nature of these observa-
tions. In it are shown plots of the solubility of lithium in silicon. In this
case the situation is similar to that involved in the germanium curves
of Fig. 5 because the external phase is composed of silicon and lithium
and is probably of the liquidus composition. It is formed by simply
alloying lithium to the silicon surface. In Fig. 9, Curve A, illustrates
how solubility depends on temperature when the silicon is undoped.
Curve B, unlike A, is not an experimental plot, i.e., it is not supposed
to represent the locus of the points through which it seems to pass. In-
stead it has been calculated from the theory expounded below. The points
themselves are experimental and represent solubility measurements on
silicon doped with boron to the level 1.9 X 10" em™.
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Curve A possesses a maximum (just as the D" curve of Fig. 5) in the
neighborhood of 650°C. A marked disparity is apparent between solu-
bilities in undoped and doped silicon, the solubility in the latter being
greater. Below 500°C this disparity is easily understood. It stems from
the electron-hole equilibrium considered previously. However the high
solubility in doped silicon at high temperatures is not explicable on this
basis since the crystal becomes intrinsie, and e*¢™ is mostly dissociated.
To account for this phenomenon Reiss, Fuller, and Pietruszkiewicz
invoked the idea of interaction between Lit and B~. They presented
the following argument.

At low temperatures lithium ions occupy the interstices of the silicon
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Fig. 9 — Plots showing the solubility of lithium in silicon as a function of tem-
perature. The external phase is an alloy of lithium and silicon. Curve A is for un-

doped silicon. The locus of the points in B is for silicon doped with about 1.9 X 101#
em™ boron.
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lattice as in Fig. 10. In an interstitial position lithium can approach an
oppositely charged boron, but the interaction will be, at the most,
coulombic so that an ion pair will form (see later sections). A covalent
bond is unable to appear not only because there are no electrons avail-
able for it, but also because the lithium ion cannot move to a position
where it can satisfy the tetrahedral symmetry inherent in sp° hybridiza-
tion.® Calculations (of the sort appearing in the later sections of this
paper) show that at high temperatures, at the ion densities involved,
ion pairs of the kind depicted in Fig. 10 are completely dissociated.
Suppose, however, that as temperature is raised vacancies dissolve
in the silicon lattice, and that one such vacancy occupies a position near

St Si
B_ SiL
Lit

St Si
St SL

Fig. 10 — Schematic diagram of a silicon lattice showing a lithium ion in an
interstitial position near a substitutional boron ion, as it occurs in an ion pair.

a boron ion, as in Fig. 11, a slight modification of Fig. 10 in which the
dots represent electrons (dangling bonds). Unpaired electrons such as
these might capture an electron from the valence band of silicon so that
the vacancy acquires a negative charge and behaves like an acceptor.
Tt is reasonable to suppose that the positive lithium ion will move into
this negative vacancy, in the tetrahedral position, and form a covalent
bond as in Fig. 11. The lithium-boron complex so formed retains a nega-
tive charge and is thus a complex ion. If the specimen were extrinsic at
these high temperatures, there would still appear to be as many net
acceptors as before the addition of lithium.*

If the LiB~ compound is stable enough (a question to which we shall

* Tt is possible that rapid cooling may quench some of these LiB acceptors into
the erystal at room temperature. 1f this is so it should be possible to investigate

the associated energy level by Hall measurements in the interval of time before
the complexes anneal out. Similar phenomena might be observed in germanium.
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return below) to hold the lithium atom, the solubility of lithium will be
determined principally by the density of boron atoms. At low tempera-
tures, vacancies are reabsorbed and the lithium atoms return to their
interstitial positions, at quenched-in densities corresponding to the tem-
peratures of equilibration. However, boron acceptors now appear to be
compensated since interstitial lithium behaves as a donor. This renders
it feasible to measure the concentration of lithium by the determination
of resistivity.
The overall reaction may be written in the form

Lit+ B +0+¢ = LB (5.1)

in which [J represents a vacancy. This equilibrium can be grafted onto
(2.1) so that the latter becomes (ignoring un-ionized lithium and boron)

Li (external) == Li* - e
+ +
B~ + et
+ 1
O ete (5.2)
+
. e
1
LB~

The original vertical equilibrium involving holes and electrons loses its
significance at high temperatures, and the new vertical reaction becomes
important, for both [0 and ¢~ appear inincreased concentrations. In this
way a certain amount of symmetry, insofar as temperature is concerned,
is introduced into the problem, i.e., as one equilibrium ceases to dominate

NN NS
SL/LL"'.I:]. \Si. - sa./ \LL. \SL

\SL. .SL/ pry \SL. .S/
s/ \s/ \SL SL/ \s.,/ \SL

Fig. 11 — Schematic diagram illustrating the reaction in (5.1). The square
represents the center of a vacancy and the dots, electrons left unpaired by the oc-
currence of the vacancy.
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the system the other begins to take effect. This symmetry, of course, is
necessary for explainingthe symmetrical locus of the pointsaround Curve
B in Fig. 9.

The scheme (5.2) can be treated quantitatively by applying the mass
action principle, but now the symbol D' can not be used for the solu-
bility of lithium since the totality of dissolved lithium is distributed
between LiB~ and Li*, and the symbol only applies to the latter. We
therefore denote the total concentration of lithium by N, and the con-
centration of LiB™ by C. Then

No=D" 4 C (5.3)

The same argument applies to boron, so that its total concentration will
be designated by

Ni=A"+¢C (5.4)

The problem then reduces to specifying Np as a function of N, . To
accomplish this, to (3.1) and (3.2) is added the mass action expression
going with (5.1)

D"‘i‘n — T o . (5.5)
where y and B are constants. It has been assumed that the vacancy con-
centration follows a temperature law of the form v* exp[—g*/T] where
~* and g* like v and B are constants. This permits the equilibrium con-
stant when multiplied by the vacancy concentration to assume the form
~ exp[—B/T] shown in (5.5). In place of (2.8) a new conservation condi-
tion,

Dt+p=CH+ 4" +n (5.6)
is introduced. The combination (3.1), (3.2), (5.3), (5.4), (5.5) and (5.6)
can be solved so that Np , the lithium solubility appears as a function of
the total boron concentration N4 . Thus
N, /‘/ N * 02
No = 14 \/1+(2n;/ND°)2+ {1+\/1+(2n.-/ND°)2} + (N> () 2
S 5.
aN.(No")[L + VT + 2ni/No
2 4+ #(N°)[1 + V1 + (2ni/No)
In this equation Np® like Dy in (3.4) is the solubility of lithium in un-

doped silicon, i.e., in silicon from which boron is absent.
All the parameters in (5.7) are independently measurable save =




CHEMICAL INTERACTIONS AMONG DEFECTS IN Ge AND Si 563

which can be known for all temperatures when v and 8 have been deter-
mined. Reiss, Fuller, and Pietruszkiewicz used two of the points near
Curve B in Fig. 9, above 1,000°C, to define values of N for use in (5.7).
Then = was computed from (5.7) at these two temperatures. From these
values of 7, v and 8 were determined, and from these, in turn, = was
calculated for all temperatures down to 200°C. Using m, N » was computed
from (5.7) over the entire experimental range of temperature. The result
is Curve B of Fig. 9 which fits the experimental points very well.

Another check on the validity of the theory (which has not yet been
accomplished) would be the following. At high temperatures (5.7) re-
duces to

" *(N2)[1 + V1 + (2n/N )] }
ND = ND NA .
+ {2 + (V)1 + V1 + (2n/Ny0) 68

i.e., Npis a linear function of N, with the slope (in brackets) depending
upon 7. Measurement of this slope at one temperature would thus pro-
vide an independent evaluation of =.

A little thought concerning the scheme outlined in (5.2) leads one to
wonder why the introduction of boron really increases the solubility of
lithium because the same mechanism could be applied to the case in
which boron is absent, i.e., to Curve A of Fig. 9. Thus, if B~ is replaced
by a silicon atom in Figs. 10 and 11, the entire scheme can be adopted
unchanged, except that S replaces B™. Thus

Li (external) 2 Li™ + ¢
+ +
Si 4+ ef
+ !
O ete” (5.9)
_I.
-
1
LiSi

and one wonders why LiB~ should be more stable than LiSi. A possible
answer is the following:"

The tetrahedral covalent radius of boron is 0.88 A.*® This is to be con-
trasted with the tetrahedral radius of silicon which is 1.17 A.** When
boron is substituted in the silicon lattice it therefore produces consider-
able local compressive strain. This strain is partially relieved when a
vacancy is formed adjacent to the boron. Thus the energy required to
form a vacancy near a boron ion in silicon is less than is required for its
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formation near a silicon atom. Hence the endothermal heat of formation
of LiB~ in (5.2) is reduced substantially (by the amount of the released
energy of elastic strain) below the heat of formation of LiSi. This ac-
counts for the greater stability of the former.

The compressive strain around a substitutional boron in germanium
is also illustrated by ion pairing studies to be described later in Section
XII. Its action in that case keeps the ions which form a pair from ap-
proaching each other as closely as they otherwise might. Although really
quantitative studies of pairing have not yet been performed in silicon,
the lattice parameters of germanium and silicon are sufficiently close to
render it fairly certain that the same strain exists in the latter as in the
former. This lends support to the previous argument.

Before closing this section there is another related topic which is worth
mentioning. This concerns part of the explanation of the retrograde solu-
bility observable in the curves of Figs. 5 and 9, i.e., the occurrence of the
maxima. The solubilities along these curves are given by (3.3) in the form

Do+ — K*/(K* + n|.2)1.f2

Suppose that at low temperatures K* is an increasing function of tem-

perature and considerably larger than n; . Then we have the approxima-

tion

Dyt = (K*)™ (5.10)

in which the solubility Dy* must increase with temperature. If n; in-

creases more rapidly than K* with temperature, a point will be reached

at which n;” in the denominator of the (3.3) in its special form above,

exceeds K* by so much that the latter can be ignored. When this is so
another approximation holds,

K*

U

Dy* (5.11)
in which D, decreases with temperature since n; increases more rapidly
than K*. Since (5.10) prediets an increase in solubility with temperature
at low temperatures and (5.11) a decrease at higher temperatures a
maximum occurs somewhere between. The maximum may not be due to
this cause alone, however. For example K* contains the activity, @, in
the external phase, and this may vary with temperature in an erratic
manner.

In any event the influence of the electron-hole equilibrium on Dyt in
both silicon and germanium cannot be ignored. The fact that the distri-
bution coefficients of donors and acceptors in silicon are usually some



CHEMICAL INTERACTIONS AMONG DEFECTS IN Ge AND Si 565

ten-fold greater than in germanium may be due to the smaller width of
the forbidden gap in the latter. This makes for greater values of n; and
according to (3.3) smaller values of D,".

VI. ION PAIRING

The preceding text drew an analogy between semiconductors and
aqueous solutions — phenomena such as neutralization, common ion ef-
fects, and complex formation have been discussed. Another feature of
““wet” chemistry which has appealed to chemists concerns the influence
of coulomb forces among ions on the properties of solutions. This subject
is of peculiar interest because such forces are well understood, and con-
siderable progress can be made in the quantitative prediction of their
effects.

The first really successful theoretical treatment of coulomb forces in
solution is the Debye-Hiickel theory.®” This treatment recognizes the
long range character of coulomb forces, and endeavors to account for
their effects in terms of a communal interaction involving all of the ions
in solution. The theory has now been shown to include certain statistical
inconsistencies™ which, however, are of small consequence in dilute solu-
tions where theory and experiment are in excellent agreement.

The central feature of the Debye-Hiickel theory is the concept of the
ionic atmosphere, i.e., the time average excess concentration of ions of
opposite sign which accumulates in the neighborhood of a particular ion.
The radius of this atmosphere is measured (order of magnitude-wise) by
the now famous Debye length.

kxT

in which « is the dielectric constant of the medium, g is the charge on an
ion, and N 1s the (in this case identical) concentration of both positive
and negative ions. As k decreases or N increases, I becomes smaller so
that the atmosphere is more tightly gathered in. As this process continues
a stage is reached in which the atmospheres of some of the ions may
be best thought of as being fully constituted by a single ion of opposite
sign, i.e., an ton pair forms. This pair-wise interaction is so intense rela-
tive to the communal interaction mentioned above, that insofar as the
paired ions are concerned it may be regarded as the only interaction in-
fluencing the distribution of the pairs themselves. Unpaired ions may still
be treated by the communal Debye-Hiickel theory but their concentra-
tion must be considered as the true concentration of ions reduced by the
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concentration of pairs since the latter possess effectively no fields. In any
event when pairing occurs the Debye-Hiickel effects are relatively second
order, since, even normally, they represent quite small deviations from
ideal solution behavior. Under pairing conditions it is desirable, in the -
first approximation, to focus one’s attention on the pairing interaction.

While developing the aqueous solution analogy inherent in our semi-
conductor model it is natural to inquire whether or not a system like
(2.1), in which at least one of the ions can move, will show effects due to
coulomb interaction. A preliminary caleulation using (6.1) indicates
that if coulomb effects are to be observed they are likely to be of the ion
pairing variety rather than of the Debye-Hiickel type because the dielec-
tric constants of semiconductors are low relative to that of water, e.g.,
12 for silicon® and 16 for germanium® as against 80 for water." The
dominance of ion pairing stems, as it will become clear later, from still
another feature peculiar to semiconductors. This is the closeness with
which two ions of opposite sign can approach one another in semicon-
ductors. In any event experiments are not yet at the stage of sensitivity
necessary for the accurate measurement of the small Debye-Hiickel
effects so that we are virtually compelled to ignore such phenomena.

Fig. 10 is a picture of an ion pair in boron-doped silicon. Corresponding
to this process one may sketch in another vertical equilibrium in (2.1)
to yield (ignoring un-ionized L)

Li (external) = Li* + '
-+ +
B~ + e (6.2)
1 L
[LitB7] ete

where [Li*B ] stands for the ion pair in which the individual ions main-
tain their polar identities and the binding energy is coulombic. The ion
pair is a compound in a statistical sense since as will be seen later the dis-
tance between the ions of a pair is distributed over a range of values. The
interaction between Li™ and B™ is to be distinguished from that shown
in (5.2). The latter occurs at high temperatures whereas the former is
presumably limited to low temperatures, below 300°C.

The quantitative aspects of ion pairing were first considered by Bjer-
rum® and later by Fuoss® who placed Bjerrum’s theory on a somewhat
more acceptable basis. Fuoss’s theory, however, suffers from some of the
same limitations as Bjerrum’s. Nevertheless the Bjerrum-Fuoss theory is
capable of satisfying experimental data over broad ranges of conditions.
In the next section we present a brief resumé of this theory together with
relevant criticism and its relation to a more refined theory due to Reiss.
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VII. THEORIES OF ION PAIRING

Fuoss begins by considering a solution of dielectric constant «, con-
aining equal concentrations, N, of ions of opposite sign. When equilib-
rium has been achieved each negative ion will have another ion (most
probably positive) as a nearest neighbor, a distance r away from it.
Fuoss discounts the possibility that the nearest neighbor will be another
negative ion, and proceeds to calculate what fraction of such nearest
neighbors lies in spherical shells of volumes, 4x* dr, having the negative
ions at their origins. If this fractionis denoted by g(r) dr, it may be evalu-
ated as follows.

In order for the nearest neighbor to be located in the volume, 4m* dr,
two events must take place simultaneously. First the volume, 4xr°/3,
enclosed by the spherical shell must be devoid of ions, or else the ion in
the shell would not be the nearest neighbor. Since g(x)dx is the proba-
bility that a nearest neighbor lies in the shell, 472" dx, the probability
that a nearest neighbor does not lie in this shell is 1 — g(z)dx. From this
it is easily seen that the chance that the volume 4rr"/3 is empty is

Er) =1 — j: g(z) dx (7.1)

where a is the distance separating the centers of the two ions of opposite
sign when they have approached each other as closely as possible.

The second event which must take place is the occupation of the shell
4ar® dr by any positive ion. The chance of this event depends on the time
average concentration of positive ions at r. This coneentration is bound
to exceed the normal concentration N by an amount depending on 7,
because of the attractive effect of the negative ion at the origin. It may
be designated by e(r). The probability in question is then

4mr'e(r) dr (7.2)

The chance g(r) dr that the nearest neighbor lies in the shell 4w dr is
therefore the product of (7.1) by (7.2), i.e., the product of the proba-
hilities of the two events required to occur simultaneously. This leads
to the relation

g(r) = (1 — f gl(x) dx) 4mr’e(r) (7.3)
an integral equation whose solution is

g(r) = exp |:— 4 ‘/; ' ze(x) dle 4m’e(r) (7.4)
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Fig. 12 — Distribution of nearest neighbors in a random assembly of particles
for a concentration of 10'% em™2.

That (7.4) solves (7.3) is easily demonstrated by substitution of the
latter into the former. '

If there were no forces of attraction between ions then e(r) would
equal N, and if @ is take equal to zero (7.4) reduces to

g(r) = 4mr’N exp(—4mr°N/3) (7.5)

This function is plotted in Fig. 12 for the case N = 10" em™. Note that
the position of the maximum, the most probable distance of location of a
nearest neighbor, occurs near the value of 7 equal to (3/4xN)'*. This is
the radius of the average volume per particle when the concentration is
N, i.e. the volume, 1/N.

In order to write g(r) for the case of coulombic interaction it is neces-
sary to compute c(r) under these conditions. Fuoss (after Bjerrum) rea-
soned as follows. If a theory can be constructed which depends only upon
the characteristics of near nearest neighbors (nearest neighbors at small
values of r) then the force of interaction experienced by the nearest
neighbor can be assumed to originate completely in the coulomb field of
the negative ion at the origin. This is predicated on the argument that
both positive and negative ions develop atmospheres of opposite sign
which are superposed when the two ions are close to one another. The
result is a cancellation of the net atmosphere leaving nothing for the two
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1ons to interact with but themselves. Thus the potential energy of inter-
action, for near nearest neighbors will be
2

- L (7.6)
Kr
For small values of r, therefore, ¢(r) can be derived from Boltzmann’s
law and is given by

o(r) = h exp [¢/skTr] 7.7)

where h is a constant. Guided by the requirement that ¢(r) should equal
N at infinite distance from the central negative ion, h was set equal to
N giving, finally,

¢(r) = N exp [¢*/xkTr] (7.8)

The assumption that a theory could be developed depending only on
near nearest neighbors proved reasonable, but the choice of h = N in
(7.8) leads to certain logical difficulties. Thus the average volume domi-
nated by a given negative ion is evidently 1/N. If (7.8) is summed over
this volume the result, representing the number of positive ions in 1/N,
should be unity since there are equal numbers of positive and negative
ions. Unfortunately, the result exceeds unity by very large amounts ex-
cept for very small values of N, i.e., for very dilute solutions. We shall
return to this point later.

If (7.8) is inserted into (7.4) the resulting g(r) has the form typified
by Fig. 13. First, there is an exponential maximum occurring at r = a,
followed by a long low minimum, and this by another maximum which
like the one in Fig. 12 occurs, not far from » = (3/4xN)"®, if N is not
too large. For small values of N the minimum occurs at

r=b=¢/2ukT (7.9)

The function g(r) is actually normalized in (7.4) so that the area under
the curve is unity. The second maximum corresponds to the most proba-
ble position for a nearest neighbor in a random assembly, i.e., to the maxi-
mum in Fig. 12. Essentially the first maximum has been grafted onto
Fig. 12 by the interaction at close range which makes it probable that
short range neighbors will exist. At high values of N the region under the
first maximum becomes so great that enough area is drained (by the con-
dition of normalization) from the second maximum to make it disappear
entirely. At this point the minimum is replaced by a point of inflection,
More will be said concerning this phenomenon later.

Fuoss chooses to define all sets of nearest neighbors inside the mini-
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g(r)
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Fig. 13 — Schematic distribution of neighbors in an assembly of particles when
forces of interaction are present. Repulsive forces are reflected in the appearance
of a distance a, of closest approach of two particles, attractive forces by the ex-
ponential maximum at a.

mum, i.e., inside b = ¢°/2«kT, as ion pairs, and the rest as unpaired. No
thought is given to the small fraction of nearest neighbors which involves
ions of like sign, as it must be small inside r = b. Nor is any thought
given to the possibility that a given positive nearest neighbor may be the
nearest neighbor of two negative ions simultaneously. Such a coincidence
would be very improbable at a distance short enough to be within r = b.
Thus if the entire theory can be made to depend on what happens inside
b, its foundations are reasonable, except for the choice of b = N.

To obviate this difficulty Fuoss had further to devise a means of per-
forming all calculations under conditions where the choice of h = N
was not inconsistent. He assumed (following Bjerrum) that paired and
unpaired ions were in dynamic equilibrium and that the law of mass ac-
tion could be applied to this equilibrium. Thus if P represents the con-
centration of pairs, N — P denotes the concentration of unpaired ions of
one sign and the mass action expression is

P

N =Py =Q (7.10)

where Q is an equilibrium constant independent of concentration. At
infinite dilution, where the assignment » = N is valid, @ should be the
same as at higher concentrations. Therefore (7.4) can be used to evalu-
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ate © at infinite dilution, and the value so obtained employed at higher
concentrations.

Besides the inconsistency of the choice, h = N, the form (7.4) contains
another objectionable feature. This is revealed by a more rigorous treat-
ment devised recently by Reiss,” and has to do with the factor,

exp [—4r f ' a’c(r) dz),

in (7.4). It can be shown that this factor is inconsistent with the suppo-
sition that the nearest neighbor to a given negative ion interacts only
with that ion and no other. Fortunately, in Fuoss’s scheme g(r) given by
(7.4) needs to be used only at infinite dilution, and then only for such
values of r as lie inside b. Under this condition and in this range the ex-
ponential factor in question can be replaced by unity from which it de-
viates only slightly. Thus the form of g(r) used eventually is

g(r) = 4m°N exp [¢*/xkTr) (7.11)

Q is computed as follows. At infinite dilution P tends toward zero so
that (7.10) becomes

p

v - QN (7.12)

But P/N is the fraction of ions paired which by definition is the fraction

of nearest neighbors lying inside » = b. From the definition of g(r),

P/N is evidently given by
P

b b
N = f g(r) dr = 4zN f * exp [¢*/xkTr] dr (7.13)

which upon substitution in (7.12) yields
b
Q= 4r f r* exp [¢*/xkTr] dr (7.14)

The evaluation of © in this way permits one to base the entire theory on
the distribution of near nearest neighbors, so that all the assumptions
which demand this procedure are validated.

Using the computed € in (7.10) P can be evaluated, and also N — P
which as the concentration of free ions of one species measures the ther-
modynamice activity of that species. In this manner it is possible to caleu-
late the equilibrium effects of coulomb interaction insofar as solution
properties are concerned. To treat transport phenomena such as ionic
mobility in an applied electric field Fuoss assumes that paired ions repre-
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senting neutral complexes are unable to respond to the applied field and
so do not contribute to the overall mobility. The mobility of unpaired
ions is assumed to be u, , the mobility observable at infinite dilution. The
apparent mobility g at any finite concentration is then po reduced by
the fraction P/N of ions paired. Thus

u=[1 — (P/N)luo (7.15)

The Bjerrum-Fuoss theory when applied to real systems reproduces
the experimental data very well, although the parameter a, the distance
of closest approach, needs to be determined from the data itself.

The concept of a pair defined in terms of the minimum occurring at b,
becomes rather vague when that minimum vanishes in favor of a point
of inflection. At this stage triplets and other higher order clusters form
and the situation becomes very complicated.

In Reference 44, Reiss has developed a more refined theory of pairing.
Instead of avoiding the use of an inconsistent g(r) by introduction of the
mass action principle, an attempt is made to provide a rigorous form for
g(r), which proves to be the following

g(r) = exp [—4xr’N/3) 4w’k exp [¢°/xkT1] (7.16)

in which
h=1 / [ f exp [— 4m°N/3] 4w exp [¢/skTr] dr  (7.17)

It is also shown that the activity of an ionic species, measured by N — P
in the Bjerrum-Tuoss theory, is measured by +/hN in the more rigorous
theory. The distribution (7.16) suffers neither from an inability to con-
serve charge in the volume 1/N (as does (7.4)) nor from any inconsistency
involving the interaction of a nearest neighbor with other ions than the
one to which it is nearest neighbor [as does (7.4)].

When /AN computed by (7.17) is compared with (N — P) computed
according to (7.10) and (7.14), for arbitrary values of «, a, T, and N,
the results are almost identical. This shows the virtue of the Bjerrum-
Fuoss theory, and in fact, suggests that in most cases it should be used
for calculation rather than the more refined theory, for the latter involves
rather complicated numerical procedures.

The refined theory can also be adapted to the treatment of transport
phenomena.” Thus in place of g(r) it is possible to write a distribution
function T'(7), specifying the fraction of nearest neighbors lying in the vol-
ume element d7, in a system in the steady state rather than at equilib-
rium. In the presence of an applied field the distribution loses its spheri-
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cal symmetry and it must be defined in terms of the volume elment, dF,
lying at the vector distance 7, rather than in terms of the spherical shell
of volume, 4 dr. In reference (44) it is shown that

I'(7) = exp [—4m’N/3]e(7) (7.18)
where ¢(7) is the density function in the non-equilibrium case, and is
determined by the equation

Evet v v+ vew =0 (7.19)

after suitable boundary conditions have been appended. The quantity
¥, designates the local electrostatic potential, determined by the ions as
well as the applied field. These equations are restricted specifically to
the semiconductor case in which the negative ion is unable to move.

The current carried by nearest neighbors in the volume element dr
in unit volume of solution is

J(F) = —exp[—4m’N/3]le(PuVY + (kT/q) tnc(¥)]  (7.20)

Using these equations it proves possible in reference 45 to provide a
more refined version of (7.15) in which the mobility of nearest neighbors
inside » = b need not be considered zero, nor those outside » = b be con-
sidered perfectly free and possessed of the mobility po . In fact the aver-
age mobility of a nearest neighbor separated by a distance r from its
immobile partner proves to be

R ([3?722 n g; + 2] exp (= e/r) + 2F (3% - 1)) (7.21)

where

£ = q¢/kkT (7.22)
and )
& £
I = (ﬁ + o + 1) exp (— ¢/a) (7.23)
For values of r greater than £ (7.21) can be approximated by
g _1(¢ de s
L=5 (3_1"2 + -+ 2) exp (— &/r) (7.24)

and is therefore a function of ¢/r. Fuoss’s b corresponds to r = £/2 or to
e/r = 2. Iig. 14 contains a plot of i/ versus r for T = 400°K, a =
2.5 X 107% em, ¢ = 4.77 X 107" statcoulombs, and x = 16. Note that
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Fig. 14 — Average mobility (calculated from the refined theory of pairing) of

a mobile ion in a pair as a function of the distance from its immobile neighbor.
The example shown corresponds to a substance having @ = 2.5 X 108 cm « = 16
at a temperature of 400°K.

at r = &/2 = b, i/u is near 0.5 which is the average value of Fuoss’s
fi/ o for ions taken from either side of r = b. Therefore a certain sym-
metry with respect tor = b does exist, tending to justify Fuoss’s model.
According to (7.24) i/po is 0.8 by the time r = 3¢/2 = 3b, independent
of the value of a. In other words an ion located a short distance beyond
b does have practically complete mobility as the Bjerrum-Fuoss theory
assumes.
The refinement of (7.15) which occurs can be written as follows

2h ® . | der | &
“={<1——T) . [(2 +40+5)
+ 2F (;—? — rz) exp (s/r):] exp (— 47m°N/3) dr} o

Comparison of p/uy computed from (7.25) with 1 — (P/N) appearing
in (7.15) over wide ranges of conditions again reveals an excellent cor-
respondence and further substantiates the Bjerrum-Fuoss theory. Since
calculations employing the latter are so much simpler it is expedient to
regard the cruder theory as an accurate approximation to the more re-
fined one. This practice will be followed from now on.

(7.25)
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VIII. PHENOMENA ASSOCIATED WITH ION PAIRING IN SEMICONDUCTORS

In this section we shall discuss some of the phenomena which are to
be expected in semiconductors when ion pairing takes place. At the time
of writing several of these phenomena have been investigated quantita-
tively in germanium and casually in silicon. A report on these studies
will be given in the later sections of this paper.

In the meantime it is fitting to inquire into the peculiarities which arise
because a semiconducting medium rather than a dielectric liquid is in-
volved. The possible means of detecting and measuring ion pairing in
semiconductors are numerous, and many of them do not have counter-
parts in aqueous solution, This implies that a host, of new phenomena are
to be expected, many of which are peculiar to semiconductors.

Some distinetions between semiconductors and liquids are apparent
at once. Thus ions are not always mobile in semiconductors at tempera-
tures where ion pairing is pronounced. Lithium is exceptional in this
respect, being mobile in germanium and silicon down to very low tem-
peratures. In fact ion pairing has been observed in germanium containing
lithium down to dry ice temperatures, and even below. Another difference
is the low dielectric constant of semiconductors as compared with water.
Furthermore, in semiconductors, charge balance need not be maintained
by the ions themselves, but may be effected by the presence of holes or
electrons. Although charged the latter entities need not be considered in
pairing processes since, as particles, they possess effective radii of the
order of their thermal wavelengths which may exceed 20 Angstroms at
the temperatures involved. At these distances very little coulomb binding
energy would be available. Under certain rare conditions the screening
effect of these mobile carriers may make some contribution. This may be
particularly the case when relaxation processes (to be discussed later) are
carried out in poorly compensated specimens of semiconductor, since
such processes involve phenomena between ions separated by large dis-
tances.

A very obvious distinction is the fact that ions in a semiconductor
oceupy a lattice, and cannot therefore move through a continuum of
positions, as in the case of liquid solutions. Furthermore the lattice may
introduce elastic strain energy into the binding energy of a pair. This
influence will alter the value of a, the distance of closest approach, when
the latter is chosen so as to achieve the best fit between theory and ex-
periment. As the extent of pairing is extremely sensitive to the magnitude
of a, its measurement provides a useful tool for exploring the state of
strain in the neighborhood of an isolated impurity. We shall demonstrate
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this application later in connection with the strain in the neighborhood
of a substitutional boron in germanium.

Aside from its bearing on the minimum distance a, the existence of the
lattice will be ignored in the following considerations.

The values of a, typical of semiconductors, are generally of the order
of 2 Angstroms as against 6 to 8 Angstroms for ions in liquids. This re-
sults from the fact that liquid ions are generally solvated. The conse-
quence to be expected, and indeed found, is that ion pairing will be far
more pronounced in semiconductors than in liquids of comparable di-
electric constant.

The fact that ions have limited mobilities in semiconductors can be
turned to advantage by choosing a system such as lithium and boron in
silicon in which only one species of ion, in the case mentioned, lithium, is
mobile. Under these conditions it is possible to obviate the clustering
phenomenon, mentioned previously, which appears in liquids at high ion
concentrations. Clustering is prevented because the immobile ions are
uniformly distributed in a random manner, having been grown into the
crystals at high temperature where pairing and related processes are un-
important. The obvious complications attending cluster formation can
therefore be avoided.

Of course, mobility, being limited to a single species of ion is also an
advantage in the theory of the transport phenomena, in such systems.

It is convenient to list some of the effects due to pairing which are to
be expected in semiconductors. We do so in the following compilation.

(4) Equilibrium Phase Relalions

From (6.2) it is apparent that the pairing equilibrium should affect
the solubility of lithium in silicon. The same must be true for germanium
doped with an acceptor. Although such effects probably occur, they are
accompanied by influences arising from the other possible equilibria. As
a result the situation is somewhat complex and it is not easy (see Ap-
pendix A) to produce experimental conditions under which pairing will
be evident. For this reason quantitative investigations along these lines
have not yet been attempted.

(B) Variation of Energy Levels

When an ion pair is formed of a donor and acceptor, both the donor
and acceptor levels are altered. Thus the proximity of the negative ac-
ceptor ion increases the difficulty of return to the donor state for an
electron, (i.e. the donor level is raised). Likewise the acceptor level is
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lowered. In ion pairs it is in fact to be expected that the donor level will
be moved up into the conduction band and the aceptor level down into
the valence band.* This change in energy level structure should be ap-
parent in Hall coefficient measurements at low temperature. Experiments
of this sort have been conducted and are reported in this paper. Under
certain conditions this phenomenon may be useful for the elimination of
trapping?® levels from the forbidden gap.

(C') Change of Carrier Mobility

Ton pairs possess dipolar fields, and consequently, scattering cross-sec-
tions very much smaller than those of point charges. The addition of
lithium to a sample under such conditions that more than half the added
lithium becomes paired should therefore increase rather than decrease
the mobility of holes. The latter effect is the one to be expected in the
absence of pairing. In other words not only carriers but also the secat-
terers are removed by compensating the acceptor with donor. Experi-
ments of this sort have been performed. They are described later in this
paper. Since they allow us to measure the degree of pairing with good
accuracy they have been very valuable in validating the theory, and also
in exploring the nature of the potential function in the neighborhood of
an isolated acceptor.

(D) Relaxation Times

A semiconductor containing unpaired donors and acceptors at one
temperature can be cooled to a lower temperature, and the impurities
should then pair. If the temperature is lowered sufficiently, the pairing
process will be slow enough to be followed, kinetically, by observing any
parameter (such as carrier mobility) sensitive to pairing. Experiments of
this sort have been performed and will be described later.

The process of pairing can be characterized by a calculable relaxation
time, which depends on the acceptor concentration, the diffusivity of
the mobile donor, the dielectric constant, and the charges on the ions
among other things. The measured time can therefore be used as a means
of determining any one of these parameters.

() Diffusion
It is evident that pairing should reduce the diffusivity of a mobile
donor. Studies of diffusion in the presence of an immobile acceptor should

* A rough ealculation indieates that about 0.5 e.v. would be required to place
an additional electron on an ion pair.
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therefore reveal the action of pairing. Experiments of this sort have been
performed and will also be described in this paper.

The reduction in the diffusivity of a donor such as lithium may be
desirable in certain places.

(F) Direct Transport

Diffusion studies suffer from the defect that ion pairing produces a
concentration dependent diffusivity. (See Appendix B). For this resaon
a very desirable measurement would involve determining the amount of
a mobile donor like lithium transported by an electric field through a
uniformly saturated specimen of semiconductor. This flux, together with
information concerning the level of saturation, should provide a direct
measure of the mobility of lithium under homogeneous conditions.
Formula (7.15) or its refinement (7.25) could then be applied directly
to the results.

The above list is by no means complete, for there are still other tech-
niques available for measurement, for example nuclear and paramagnetic
resonance. Enough has been given however to indicate the wide range
of phenomena which ion pairing in solids can affect. In liquids, only A
and F are of any consequence. It is important to realize that not only do
these phenomena serve as tools for the study of ion pairing, but that ion
pairing, when properly understood, can serve as a tool for the study of
the phenomena themselves.

IX. PAIRING CALCULATIONS

The evaluation of @ according to (7.14) presents somewhat of a prob-
lem because the integral must be arrived at numerically. Fortunately,
the literature contains tables' of the integral in what amounts to di-
mensionless form. The transformation

£ = ¢ /ckTr (9.1)
is introduced and then € is shown to be given by
Q = 4x[¢’/xkTT Qa) (9.2)
where
a = q/ckTa (9.3)

and logy Q(e) is tabulated in Table III.
In a specimen in which the numbers of donors and acceptors are un-
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Tasue III

@ logio Q(a) a logi Qla)

2.0 — 0 18.0 2.92

2.5 —0.728 20.0 3.59

3.0 —=0.489 25.0 5.35

4.0 —0.260 30.0 7.19

5.0 —0.124 35.0 9.08

6.0 0.016 40.0 11.01

7.0 0.152 45.0 12.99

8.0 0.300 50.0 14.96

9.0 0.470 55.0 16.95

10.0 0.655 60.0 18.98
12.0 1.125 65.0 21.02
14.0 1.680 70.0 23.05
16.0 2.275 75.0 25.01
80.0 27.15

equal* (7.10) may be written as
P
Q (9.4)

(N.— P)(Np, — P)

where N, and N are, respectively, the total densities of acceptors and
donors.

This equation has the following solution for P/N,, the fraction of
donors paired.

P 1 1 N, 1 1 N\t Ny

=it - 1/z(l+ﬁm+zv;) N, 99
Inspection of (9.5) reveals that for given N, and @, P/Np is a decreasing
function of increasing Np .

Very often, P/Np is measured in an experiment, and from this it is
desired to calculate @, the distance of closest approach. For such pur-
poses the form (9.5) is not very convenient. In fact an entirely different
procedure is to be preferred. Suppose P/Np is denoted by 8, and 8 is
substituted into (9.4), into which (9.2) has been inserted. We obtain

logn Q(a) = loguw [Zl; (x;s—;)a Voo BI\ED) i 8)] (9.6)

A knowledge of # thus suffices to determine logy, @(e), from which, in
turn, a can be determined by interpolation in Table ITI. Then (9.3) can
be used for the evaluation of a.

* This is a situation which cannot arise in liquids, since there, charge balance
must be maintained by the ions themselves. It can occur when the ions are of
different charge, but then things are complicated by the formation of triplets,
ete., in addition to pairs.
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TasLe IV

T°K Q (cmd) T°K Q (cmd)
100 2.2 X 10? [ 400 2.3 X 1077
150 6.45 X 1077 500 1.54 X 1078
200 3.42 X 1071 600 3.0 X 107w
225 1.28 X 10712 700 1.03 X 107
250 8.79 X 101 800 4.7 X 107
300 1.61 X 10718

Experiments which will be described later indicate that in germanium,
gallium and lithium can approach as close as 1.7 X 107° em., Using this
value of a, and x = 16, ¢ = 4.77 X 107" statcoulombs, the values of @
appearing in Table IV were computed from (9.2)

With these values, P/Np, the fraction of donors paired can be com-
puted from (9.5) as a function of temperature and N, for the simplest
case, i.e., the one for which N, = Np. Fig. 15 contains plots showing
these dependences. It must be remembered that all other things remain-
ing the same P/Np will be greater than the values shown in Fig. 15
when Np < N4.

A rather important integral to which reference shall be made later is

T2
I(ra, m) = f 2* exp (¢/xkTx) dx 9.7

The integral appearing in (7.14) is a special case of (9.7) with 1 = a, and
= b. I(r2, r1) has been evaluated over a considerable range. To facili-
tate matters the transformation

z = (¢*/xkT) \ (9.8)

has been employed. In this notation ry and r, transform to p1 and p2 , and
P2

I(r,m) =(g"/skT)* f N exp (1/) d\ = (¢/<kT)%(pz, o) (9.9)
P1

Figs. 16 and 17 contain plots of (pz, 0.05) out to p» = 5. The choice
of p1 equal to 0.05 was rather un.fortunate since for k = 16, and T' =
300°K it corresponds to p1 = 2.5 X 107® ¢m. Since acceptors like gallium
possess values in respect to lithium as low as 1.7 X 1078 e¢m 7(p2, 0.05)
is not much use in these cases. The choice 0.05 was made before the ex-
perimental data on gallium was available. Below we shall describe a.
method for extending 7(pz, ;) to cases where 7y is less than 2.5 X 107°
em.
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Tig. 15 — Fraction of ions paired, assuming equal densities of positive and
negative ions, calculated as a function of temperature and concentration from
equation (9.5). The situation illustrated might apply to gallium and lithium in
germanium in view of the choice of @ and «.

Fig. 16 covers the range from p: = 0.05 to 0.08 and involves a
logarithmic scale because of the sharp variation of 7 in this range. (This
points up the sensitivity of the degree of pairing to the magnitude of a.)
Tig. 17 extends the curve to p» = 5. When p. exceeds 5, 7(p2, 0.05) can
be obtained from the formula
(P2)2 (Ps)s

5+ 35 (9.10)

In order to determine i(ps, p1) when py = 0.05, the following formula

may be used.

i(py, 0.05) = 3865 +

i(p2, p) = i(pa, 0.05) — i(p1, 0.05) (9.11)
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Finally for cases in which p; < 0.05, Table III can be used. Thus
i(ps, p1) = Q(1/p1) — Q(20) + i(p2, 0.05) (9.12)

where 1/p1, and 20 are « values in Table III.

X. THEORY OF RELAXATION

" 1n Section VIII attention was drawn to the fact that jon pairing in
semiconductors can be made to oceur slowly enough so that its kinetics
can be followed. It is possible to characterize these kinetics by a relaxa-
tion time 7, which we shall endeavor to calculate in the present section.

4000 —
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L(p,, 0.05)
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10 |
0.050 0055 0,060 0.085 0070 ©  0.075 0.080

Pz

Fig. 16 — Plot, for small values of p: of i(p: , 0.05) from 9.9).
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Fig. 17 — Plot, for larger values of p: , of i(p: , 0.05) from (9.9).

Suppose a system is first maintained at a temperature high enough to
prevent pairing, and then, at an instant designated as zero time, is
suddenly chilled to a temperature at which pairing takes place. One
thereby has a system which would normally contain pairs but which
finds itself with donors and acceptors which are uniformly and randomly
distributed. Since the donors are assumed mobile, a process ensues
whereby they drift toward acceptors until an equilibrium is established
in which each acceptor develops an atmosphere of donors with density
e(r), given by (7.7).

This final state in which the atmosphere is fully developed is the paired
state characteristic of the lower temperature. The relaxation time to be
defined must measure the interval required for the near completion of
the above process.

In order to acquire physical feeling for the phenomenon, we begin with
some simple considerations. In particular a system will be dealt with
containing equal numbers of positive and negative ions. This restriction
can be lifted later.

Now, to a first approximation the pairing phenomenon may be re-
garded as a trapping process in which mobile, positive donor atoms are
captured by the negative acceptors. Thus, suppose each acceptor is imag-
ined to possess a sphere of influence of radius R, beyond which its force
field may be considered negligible, and inside which a positive ion is to be
regarded as captured. This picture immediately emphasizes certain sub-
tleties which require discussion before further progress can be made.

In the crudest sense one might reason that the probability of an en-
counter between a positive ion and a negative trap would depend on the
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product of the densities of both. These densities must be equal because
when a positive ion is trapped the resulting ion pair is neutral so that a
trap is eliminated simultaneously. If these equal densities are designated
by n, we arrive at the second order rate law

dn _ 2
J = ko (10.1)

where ks is a suitable constant, and ¢ is time.

This law would be perfectly valid if the mean free path of a mobile
positive ion were large compared to the distance between ions and the
probability of sticking on a first encounter were small. The trapping
cross-section rather than the movement prior to trapping would de-
termine the trapping rate. In this case the rate would certainly depend
on the concentrations of both the traps and the ions being trapped.

On the other hand, in our case, not only is the mean free path of a
positive ion much smaller than the distance between ions, but the
sticking probability is high. A given ion must diffuse or make many ran-
dom jumps before encountering a trap and upon doing so is immediately
captured. Therefore, the rate of reaction is diffusion controlled.

Because of the random jump process a given mobile ion is most likely
to be captured by its nearest neighbor during the first half of relaxation,
and relative to the degree of advancement of the trapping process, the
density of traps may be considered constant. This leads to first order
kinetics rather than second,* i.e., to

dn

where n is the density of untrapped ions.

By definition &, is the fraction of ions captured in unit time, i.e., the
probability that one ion will be captured per unit time. Its reciprocal
must be the average lifetime of an ion. This lifetime
1
Tk
shall be defined as the relaxation itme for ion pairing. A rough calculation
of = can be made quickly. Thus, suppose that the initial concentrations
of donors and acceptors are equally N. About each fixed acceptor can be
described a sphere of volume, 1/N. On the average this sphere should be
oceupied by one donor which according to what has been said above, will
eventually be captured by the acceptor at the center. In the mind, all

(10.3)

T

* The phenomenon stems from the fact that first and second order processes are
almost indistinguishable during the first half of the reaction, but also from the
fact that the diffusion control prevents the process from being a true second or-
der one, although its departure from second order may be small.
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the spheres can be superposed so that an assembly of donors N in num-
ber is contained in the volume 1/N, at the density N°. The problem of
relaxation is then the problem of diffusion of these donors to the sink of
radius B, at the center of the volume. The bounding shell of the sphere
may be considered impermeable, thus enforcing the condition that each
donor shall be trapped by its nearest neighbor. Since the diffusion prob-
lem has spherical symmetry the radius, r, originating at the center of
the sink at the origin may be chosen as the position coordinate. At r =
R, the density, p, of diffusant may be considered zero. The radius, L, of
the volume, 1/N, is so large compared to R, that in the initial stages of
diffusion L may be regarded as infinite.

In spherical diffusion to a sink from an infinite field, a true steady
state is possible, and this steady state is quickly arrived at when the
radius, R, of the sink is small.® Under this condition concentration is
deseribed by

p=4A— TE (10.4)

where A and B are constants. Furthermore at early times n is still N,
the initial concentration at r = L & e, so that

p(») = N* (10.5)
In addition we know that
o(R) =0 (10.6)
These boundary conditions suffice to determine A and B in (10.4), and
yield
p =N [1 -~ i—‘}‘] (10.7)

Now the rate of capture (—(dn/dt) in (10.2)) is obviously measured
by the flux of ions into the spherical shell of area, 47R’, which marks the
boundary of the sink. This flux is given according to Fick’s law" by

2 dp _ d_n
4R Dy (E’)hﬁ = 7 (10.8)
where Dy is the diffusivity of the donor. Substituting (10.7) into (10.8)
yields

dn

47N°RDy = — T (10.9)

During the initial stages of trapping the right side of (10.2) may be
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written as kN, i.e.,
dn

= -4 1
kDN 7 (10.10)
Equating the left sides of (10.9) and (10.10) gives
kl = 411'NRD[|
or
1 1
"= &~ 4=NED, (10.11)

It now remains to choose a value for the capture radius, K. A reason-
able guess may be made as follows: Around each acceptor there is a
coulomb potential well of depth

V= —¢/xr (10.12)
Since the average thermal energy is k7, it seems reasonable to regard an

ion as trapped when it falls to a depth kT in this well. Thus, inserting k7'
on the left of (10.12) and R for r on the right leads to

R = ¢/kkT (10.13)
and upon substitution in (10.11) we obtain
kkT

TR I @N D, (10.14)

This result, obtained by crude reasoning, is actually quite close to the
more rigorous value derived below. Furthermore, the above derivation
is useful in providing insight into the physical meaning of the relaxation
time.

The chief difficulty with the preceding lies in the arbitrary choice of
R, and is a direct consequence of the long range nature of coulomb forces.
Another difficulty arises because the distribution of donors about ac-
ceptors is eventually specified by (7.7) so that at r = R = ¢*/«kT

o b {ﬂ} (10.15)
q

Since this slope has a negative value the trap exhibits some aspects of a
source rather than a sink which could only produce a positive concen-
tration gradient. This last objection will not be serious when & is very
small since, then the final value of ¢(r) beyond r = ¢’/kkT = R will be
effectively zero, as would be required for a perfect sink.
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The last point raises still another question: What happens when the
sink is not perfect, i.e. where the equilibrium state does not involve
complete pairing?

All these difficulties can be removed by a more sophisticated treatment
of the diffusion problem. Thus, retain the sphere of volume, 1/N, en-
closing N donors at the density N*. However, the equations of motion of
these donors are altered to account for the fact that besides diffusing
they drift in the field of the acceptor at the origin. Thus the flux density
of donors will be given by

* _ dp ¢
T 8) = —Da {ar + {kar?} p}

— _ploe B
= Dy {57 + 7 P}

where R has been substituted for ¢°/xkT. Equation (10.16) is obtained
by adding to the diffusion component,

(10.16)

dp
Dy e

of the flux density, the drift component,

Hod
)
KT

where g is the mobility of a donor ion and —g¢/k* is the field due the
acceptor at the origin. The Einstein relation®
to = gDo/ET (10.17)

has also been used to replace g, with Dy .
The spherical shell bounding the volume, 1/N, of radius

3 1/3
I - (m) (10.18)
is regarded as impermeable, so we obtain the boundary condition
JH¥IL, t) = 0. (10.19)

Furthermore an arbitrary inner boundary, » = R, is no longer defined
but use is made of the real boundary, r = a, i.e., the distance of closest
approach, at which is applied the condition

JH*a, t) =0 (10.20)
As before, the initial condition may be expressed as

p=N  t=0 a<r<L (10.21)
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The continuity equation,” in spherical coordinates takes the form

19

0
29 e = 9P
S5 17 (10.22)

at
Substitution of (10.16) into (10.22) gives, finally,

19 ]2dp _ 1 ap

Equations (10.23), (10.21), (10.20) and (10.19) form a set defining a
boundary value problem, the solution of which is p(r, t), from which, in
turn, J*(r, t) can be computed. It then remains to compute (dn/df) in
(10.2) from J*. The former is not simply 4xR*J* (as in (10.8)) because
now J* is not defined unambiguously, being a function of r. J*(R, 1)
might be employed but then the method is no less arbitrary than the
simple one described above.

Fortunately, nature eliminates the dilemma. It is a peculiarity of
spherical diffusion, when the sink radius is much smaller than the radius
of the diffusion field, that after a brief transient period, 4m”J*(r), except
near the boundaries of the field, becomes practically independent of »,
and depends only on {. This feature is elaborated in Appendix C. Since
in our case the radius of the field is of order, I, and the effective radius of
the sink is of order, R, and L > R, it may be expected that this phe-
nomenon will be observed. In fact its existence has been assumed previ-
ously in the derivation of (10.4).

Under such conditions it does not matter how the radius of the sink
is defined so long as 47R* is multiplied by J*(R) and not the value of
J* at some other location.

The boundary value problem, (10.23), (10.21), (10.20), (10.19) is
solved in Appendix C, and it is shown there that the value of Aar® J*(r)
obtained after the transient has passed is closely approximated by

47FQ2N2.D0 e-e,l,-

W2 7% = et
4ar' S *(r) T (10.24)
with
_ kkT(N — M)
= _———4WQ2N2D() (10.25)
where

L
M = 1/411-[ r exp [¢*/kkTr] dr (10.26)
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The close connection between M defined by (10.26) and % defined by
(7.17) is apparent. Thus in (7.17) when » = I, exp[—4mr°N /3] is ¢,
and for larger values of » this exponential quickly forces the convergence
of the integral. Therefore the values of h and M will be almost equal.
This is not surprising since they are meant to be the same thing, i.e.,
the average concentration, ¢(«), of donors at infinite distance in the
equilibrium atmosphere of an acceptor. Both quantities are computed
so as to conserve charge in this atmosphere.

At large values of N, M proves to be much smaller than N so that
(10.25) reduces to (10.14), validating the crude treatment, for = in (10.24)
is obviously the relaxation time. This is easily seen by writing

dn 2 47q’N*Do —us
—_———— = — " = — .2
i 47’ T *(r) T ¢ (10.27)
from which one derives by integration
n=M-+ (N —Me'" (10.28)

According to (10.28) at ¢ = 0, n = N, the correct initial density for
unpaired ions. At ¢t = ®, n = M, also the correct density, i.e., the
density at large values of 7, when equilibrium is achieved. Obviously =
plays the, role of the relaxation time, since by differentiation of (10.28)

_dn — M) _ (n — M)
dt B T

which is to be compared with (10.2) and (10.3).

Values of M can be computed using formulas (9.10), (9.11), and (9.12)
and Figs. 16 and 17 since the integral in (10.26) is one of the ¢ integrals
Fig. 18 shows some values of M, computed in this way for the tempera-
tures 206°, 225°, 250°, and 300°K, for a semiconductor where the value
ofa = 2.5 X 10~ em, « = 16, and q = 4.77 X 107" statcoulombs. The
plots are of M versus N. Note that the values of M are generally much
less than N, the disparity increasing with lower temperatures and larger
N.

Tt is also possible to calculate = for the above system in its dependence
upon N and T. To do this the value of Dy must be known as a function
of temperature. Fuller and Severiens™ have measured the diffusivities of
lithium in germanium and silicon down to about 500°K. These data plot
logarithmically against 1/T as excellent straight lines. In Fig. 19, we
show an extrapolation of the line for lithium in germanium down to the
neighborhood of 200°K. From this figure it is possible to read values of

(10.29)




590 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1056

1017
‘ | I - 300° K

a=25%10"8 cMm |

K=16 1

10iE
v

7 ‘ 250

1015

TN

M INCM™3

AR

Mok

1012
1015 |D1E 1017 10!5 1019
N IN CM™2

Fig. 18 — Dependence of constant M defined by (10.26) on temperature and
concentration, for particular values of a and «.

Dy for germanium to which the system of Fig. 18 refers, since « has been
chosen at 16.

Using Figs. 18 and 19, Fig. 20 was computed. It shows r plotted in
seconds versus N for the same temperatures appearing in Fig. 18. These
curves show that at values of N as low as 10" em™® relaxation times are
short enough to be observable down to 200°K, being at the most some
50 hours in extent. The value of N makes a big difference.” For example
at 200°K the relaxation time is only 4 minutes with N = 10" em™.
Presumably, at 10 em™, relaxation could be observed down to much
lower temperatures.

It is interesting to note that insofar as M hardly appears in =, the
latter is independent of the distance of closest approach, a. Since a is to
some extent empirical this is a fortunate circumstance, and the measure-
ment of  may provide an accurate means of determining, N, Dy, «, or
¢, whichever parameter is regarded as unknown. Furthermore « as a
macroscopic parameter has real meaning in = since the forces involved
may be regarded as being applied over the many lattice parameters
separating the drifting donor from its acceptor,
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This section will be closed by indicating how the restriction to systems
containing equal numbers of donors and acceptors might be lifted. Thus,
suppose N 4 exceeds N . Then there will be N4 — N mobile holes main-
taining charge neutrality. To a first approximation these will screen the
N. — N uncompensated acceptor ions so that the Np donors will see
effectively only N, acceptors. Thus in first approximation r can be com-
puted for this system by replacing N in the preceding formulas by Np .

Of course it is possible that there will be a further effect. Thus the
mobile holes will probably shield some-of the compensated acceptors as
well. This will lead to a further (probably small) reduction in 7, over and
above that obtained by replacing N by N . We shall not go into this
in the present paper, because in most of the experiments performed Np
was near N4 . In the few exceptions the crude correction, suggested
above, can be used.

XI. INVESTIGATION OF ION PAIRING BY DIFFUSION

Most of the theoretical tools required for the study of ion pairing have
now been provided, and attention will be turned to experiments which
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Fig. 19 — Diffusivity of lithium in germanium extrapolated from the data of
Fuller and Severiens.
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have been performed in this field. A fairly large group of these exist, and
it remains to describe them in detail. We shall begin with the study of
the diffusion of lithium in p-type germanium.

At the outset a matter having to do with the diffusion potential de-
mands attention. This is the potential which arises, for example, in
p-type material, because the mobility of a hole is so much greater than
the mobility of a lithium ion. In consequence, holes diffuse into regions
containing high concentrations of lithium more rapidly than lithium ions
can diffuse out to maintain space charge neutrality. As a result such re-

105 \
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Fig. 20 — Relaxation time as a function of temperature and concentration com-
puted from equation (10.25) using the data of Figs. 18 and 19.
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gions develop positive potentials and a field exists tending to expel
lithium. This causes the lithium to drift as well as diffuse so that Fick’s
law*® is no longer valid.

The most that can be done toward the elimination of diffusion poten-
tials is to minimize them so that no local space charge exists. At equilib-
rium, this corresponds to the condition®

— N4 = 2n;sinh(gV/EkT) (11.1)

where V is the local electrostatic potential. It is always permissible to
assume that fast moving electrons and holes are in equilibrium relative
to diffusing ions. If a material which is p-type everywhere is being con-
sidered, (11.1) can be simplified to

— Np = n; exp [—¢V/EkT] (11.2)

In Appendix D it is proved that (11.2) will be valid everywhere within
a region where N4 is constant and greater than N, provided that Np
does not fluctuate through ranges of the order N, in a distance less than

_ wekT
{ = 1/—q2N4 (11.3)

Under most conditions of experiment £ will be of the order of 10™° cm
Unfortunately many of the experiments described in this section (par-
ticularly those performed at 25°C.) involve diffusion layers as thin as
107° em. As a result space charge will exist and the diffusion potential
will not always be minimized. Even if it is minimized so that (11.2) is
satisfied the residual field will still aid diffusion and lead to higher ap-
parent diffusivities. Therefore the effect cannot be ignored even when
minimization has been achieved.
In the absence of space charge the drift component of flux density
due to the field is easily computed. It will be given by
av
—H ﬁ' ND (11.4)
According to (11.2)
v kT dNp
ox g(N+ — Nbp) K3

so that (11.4) becomes

__-M( N»p )ai_\r,p=_[.lokT(1 P)( Np )aND
q \N.— Np/ oz q Np — N»/ ox

P dNp
= —D —
D( ( —ND) ox

(11.5)

(11.6)
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where (7.15) and the Einstein relation® have been used, and D is the
diffusivity in the absence of pairing.

P/Npin (11.6) can be evaluated using (9.5) so that the coefficient pre-
ceding (N p/dz) contains N, as the only variable.

In Appendix B it is shown that ion pairing itself leads to severe de-
partures from Fick’s law.” In fact the diffusion flux density in the pres-
ence of pairing is given by

1 1)
AN, — N z
N 2( »— Nt o,

=14 Vo
2 Vi(ND—NA— )+A—r‘3 o

Here again the diffusivity is specified by the factors preceding (dNp/dz)
and, though variable, depends only on N, , the local concentration of
diffusant. Adding the two coefficients appearing in (11.6) and (11.7) the
value of the diffusivity, D, in the presence of both pairing and diffusion
potential is obtained. Thus

o %(ND—NAJrl)

RNSTACER

P Np
+2(1- 1) ()

It is obvious from (11.8) that even in the absence of space charge D is
an extremely complicated function of N, and will be much more com-
plex if space charge needs to be considered. When N, < N, (11.8) re-
duces to

(11.7)

D=

(11.8)

B 1 Do
D =Dy (—1 e (1 + )) Trow, (11.9)

Comparison with equation (B15) shows that when (11.8) is true (i.e.,
in the absence of space charge) the diffusion potential may be ignored
for Np << N, . Comparison of (B14) with (B15) shows how much D can
vary with N, when ion pairing occurs.

The proper study of diffusion in the presence of ion pairing should be
augmented by a mathematical analysis, accounting for the concentra-
tion dependent diffusivity. Since this dependence is complicated the
resulting boundary value problem must be solved numerically, and this
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represents a formidable task. Although work along these lines is being
done we shall content ourselves, in this article, with a less quantitative
approach. The following plan has been followed.

A rectangular wafer of semiconductor uniformly doped with ac-
ceptor to the level, N4, is uniformly saturated with lithium to a level,
N, slightly less than N, . Thus, the resulting specimen is well compen-
sated but not converted to n-type. Lithium is then allowed to diffuse
out of the specimen, and because of the thinness of the wafer, this
process may be regarded as plane-parallel diffusion normal to its large
surfaces. Low resistivity p-type layers therefore develop near the sur-
faces. If the thin ends of the wafer are put in contact with a source of
current, current will flow parallel to its axis, so that the equipotential
surfaces will be planes normal to this axis. The flow of current will be
one dimensional because the inhomogeneity in lithium distribution oc-
curs in the direction normal to its flow (see Fig. 21).

If two probe points are placed at a fixed distance apart on the broad
surface of the wafer (see Fig. 21), then the conductance measured be-
tween them is a reflection of the total number of carriers in the low
resistivity layers, i.e., a measure of the total amount of lithium which
has diffused out. A more detailed connection between this conductance
and diffusivity is derived in Appendix E. For the moment, however,
attention will be confined to the description of the general plan of ex-
periment.

According to the formulas derived in the early parts of this section,
and also to (B14) and (B15), the diffusivity is something like Dy/2 in the

Ge / /
SPECIMEN cumesnT
//
-—
| VOLTAGE, (E)
_________ ACCEPTOR DOPING .
LEVEL

LITHIUM SATURATION LEVEL

/ T~ LITHIUM

- CONCENTRATION
CURRENT CURVES

Fig. 21 — Diagram illustrating measurement of dependence of diffusivity on
ion pairing (see Section XI).
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bulk of the wafer where Np almost equals N4 , but is as low as Dy/(1 +
QN 4) near the surface where Np < N4 . If QN, is very much larger
than unity as it will be under conditions where appreciable pairing oc-
curs, the diffusivity will, therefore, be much smaller near the surface
than at the high end of the diffusion curve, deeper within the specimen.
The surface will then offer resistance to diffusion, and it may be expected
that the measured value of the diffusivity will correspond more closely
to the slow process near the surface rather than to the faster process
oceurring deeper in the semiconductor. Of course this cannot be entirely
true because the resistance at the surface coupled with the lack of re-
sistance inside the wafer will tend to steepen the concentration gradient
near the surface. This will give the impression of a diffusivity somewhat
higher than the one corresponding to the surface.

If the current flowing in the wafer under the conditions of measure-
ment is I, and the potential measured between the points is V, then the
conductance between the points is

= =1V (11.10)

In Appendix E it is shown (under the assumption that D is constant)
that

/%0 = 1+ 2.2569/D (szD ) Vi (11.11)
d Eo NA

where Zy is the conductance after the specimen is saturated with
lithium, but before any lithium has diffused out, and Z_, is the con-
ductance before lithium has been added. N4 is the uniform concentration
of acceptor, and N ,° is the initial uniform concentration of lithium, while
d is the thickness of the wafer. ¢ is a correction factor which arises be-
cause the mobility of holes varies from point to point in the wafer, as
the density of lithium varies. There are two extreme types of variation.

The first takes place in a specimen in which, at room temperature
(where the conductance measurement is made) ion pairing is complete.
Then the local density of impurity scatterers™ will be Ny — Np. At
the other extreme no ion pairing occurs, and the density of scatterers is
NA + Nn .

The nature of ¢ depends on how much pairing is involved. In Fig. 22 ¢
has been evaluated in its dependence on N° for the extreme cases men-
tioned. Furthermore it has been assumed then that N is given by a
Fick’s law solution of the diffusion problem, and that diffusion begins in
a nearly compensated specimen.

The first thing to notice is that ¢ is not very different from unity in



CHEMICAL INTERACTIONS AMONG DEFECTS IN Ge AND Si 597

1.7
[+ ]
1.6 [~ f,u(NechE,}ech.é,dg
g ==L
oo
sl ,u(N)f erfcé dg
o
L~

1.4 1 /

.3 -~
J ; %NG

.2 > l/

//
1.1 e
1.0 | | i
______|____ NON PAIRING |
0.9 —
-...____-‘-‘
"-...--
0.8 ~
0.7
10'6 2 3 4 5 6 17 54 5 6 8 s
NS IN cm3

Tig. 22 — Plots of correction factor #, required to compensate for the depend-
ence of hole mobility on the density of scattering centers along a diffusion curve.
¢ is plotted against the initial density of donor and is shown for the two extreme
cases of pairing and no pairing,.

either extreme, and therefore closer to unity in some intermediate situ-
ation. In any event the correct value of ¢ can be read from Fig. 22 if the
experiments involve either extreme at the measurement temperature.
This has, in fact, been approximately the case in our experiments, in
which pairing is almost complete at the temperature where conduc-
tances have been measured.

According to (11.11) a plot of Z/Z, against 4/t should be a straight
line of slope

S

_ 22569/ D (z,,. N,,“) (11.12)

d Zo N4

Measurement of S therefore affords a measure of D). Of course the ap-
parent D obtained in this manner can never represent anything beyond
some average quantity having the general significance of a diffusivity.
This follows from the previous discussion concerning the non-constancy
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of D. The only exception to this statement occurs in connection with high
temperature experiments (above 200°C.) where both pairing and the
diffusion potential are of little consequence. The mere fact that =/=,
plots as a straight line against 4/ is not evidence for the constancy of
D. In Appendix E it is shown that a straight line will result, even when
ion pairing is important, provided that the diffusion potential is based
on the no-space-charge condition, i.e. provided that D wvaries only
through its dependence on N, .

On the other hand, the last statement implies that the existence of a
straight line relationship is evidence that the diffusion potential has at
least been minimized.

The most careful experiments were performed in germanium doped to
various levels with gallium, indium, and zine as acceptors. The ger-
manium specimens were cut in the form of rectangular wafers of ap-
proximate dimensions (1.25 em X 0.40 em X 0.15 em). Fresh lithium
filings, were evenly and densely spread on one surface of the wafer, and
alloyed to the germanium by heating for 30 seconds at 530°C in an at-
mosphere of dry flowing helium. Then the other surface was subjected
to similar treatment.

After this the specimen was sealed in an evacuated pyrex tube and
heated at a predetermined temperature for a predetermined period of
time. The temperature was chosen, according to Fig. 5, so that the
saturated specimen would still be p-type and just barely short of being
fully compensated. Also attention was paid to the problem of avoiding
precipitation on cooling. The time of saturation was determined from an
extrapolation of the known lithium diffusion data, in germanium, of
Fuller and Severiens™ which is plotted in Figure 19 for the range ex-
tending from about 0° to 300°C.

After saturation the sealed tube was dropped into water and cooled.
It was opened and the wafer ground on both sides, first with No. 600
Aloxite paper, and then with M 30314 American Optical corundum
abrasive paper. The final thicknesses of the specimens ranged from 0.025
to 0.075 em, the thinnest samples being used for the runs at the lowest
temperature.

If the specimen is quite thin and highly compensated it is 1possible in
principle to measure very small diffusivities (as low as 107" em®/sec)
within a period of several hours. This is so because the low resistivity
layer formed near the surface, although thin, will carry a finite share of
the current in thin compensated specimens. On the other hand, additional
difficulties arise. Diffusion layers as small as 1004 may be involved. If
the surface is microscopically rough, diffusion will not be plane-parallel
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and the measured diffusivity will appear larger than the real diffusivity.
This condition can be partially corrected by etching the surface chemi-
cally until it is fairly smooth.

When dealing with such thin layers, the no-space-charge assumption
becomes invalid and the diffusion potential ought really to be considered.
Considering all the difficulties, i.e., concentration dependence of diffusion
coefficient, possible existence of space charge, and roughness of surface,
it is apparent that only qualitative effects are to be looked for in the dif-
fusivities which have been measured.

The most that can be predicted is that for specimens containing a
given amount of acceptor, the measured D (some average quantity)
should be less than Dy, the disparity increasing with decreasing tem-
perature. At high temperatures D should converge on D, . Furthermore,
at a given temperature D should decrease with an increase in concen-
tration of acceptor. These tendencies are in line with the idea that reduc-
tion of temperature or increase of doping leads to an increase in pairing.

Runs were carried out on specimens etched with Superoxol®® at the
temperatures 25°, 100°, and 200°C. In the 25°C run the wafer was allowed
to remain in the measuring apparatus under the two probe points in air,
and ¥ was measured from time to time. At 100°C the specimen was
:mmersed in glycerine containing a few drops of HCI, the temperature
of the bath being controlled. Periodic removal from the bath facilitated
the measurement of £. At 200°C glycerine was again used as a sink for
lithium, the sample being removed periodically for measurement.

Fig. 23 illustrates some typical plots of Z/Z, versus 4v/t. They are
all satisfactorily straight. Fig. 24 shows a plot of log Dy against 1/T,
extrapolated from the data of Fuller and Severiens.” In this illustration,
values of log D (obtained from the above measurements by determining
the slopes S and employing (11.12)) are also plotted at the temperatures
of diffusion. For ¢ the case of complete pairing was assumed.

The first thing to note is that the points for log D all lie below log Dy
except at 200°C and satisfy the qualitative requirement outlined above.*
Moreover they drop further below log Dg as the temperature is reduced,
while at 200°C they have almost converged on log Dy .

The results for zinc are particularly interesting. Zinc is supposed to
have a double negative charge in germanium.” Hence we would expect
very intense pairing to occur. This is indicated in the diffusion data
where the sample containing zinc at the rather low level, N, = 2.7

* The long range nature of the interaction forces becomes evident when one
considers that the diffusivities are being altered by impurity (acceptor) concen-
trations of the order of 1 part per million.
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X 10" em™®, shows a large reduction in diffusivity even at temperatures

as high as 200°C.

The difficulties discussed in this section serve to emphasize the im-
portance of a direct transport experiment in which lithium atoms wuni-
formly distributed throughout germanium or silicon, uniformly doped
with acceptor, are caused to migrate by an electric field, and their
mobilities measured. Because of the uniform dispersion of solutes the
mobility will be constant everywhere. Furthermore no diffusion poten-
tial will be involved, and also the refined formula (7.25) can be applied.
There are, however, many difficulties associated with the performance
of this type of measurement.

In closing it may be mentioned that a few much less careful experi-
ments of the kind described here have been performed in boron-doped
silicon. The results indicate ion pairing in a qualitative way but more
definite experiments are needed.
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XII. INVESTIGATION OF ION PAIRING BY ITS EFFECT ON CARRIER MOBILITY

In Section VIII attention was called to the fact that ion pairing should
influence the mobility of holes, because each pair formed, reduces the
number of charged impurities by two. Thus, a specimen previously doped
with acceptor, might, if sufficient lithium is added, exhibit an increase in
hole mobility, even though the addition of lithium implies the addition
of more impurities. This effect has been observed in connection with the
Hall mobility of holes in germanium.

Two specimens of germanium were cut from adjacent positions in a
single crystal doped with gallium to the level 3 X 10" em™. One of these
was saturated with lithium through application of the same procedure
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Tig. 24 — Plot of diffusivity of lithium in undoped germanium as a function
of temperature — also showing points for apparent diffusivities of lithium in
variously doped specimens.
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employed in section V. Hall mobilities of the two specimens were meas-
ured® down to below 10°K. Cooling was carried out slowly to permit as
much relaxation into the paired state as possible (see Section X). In
Fig. 25 plots of the Hall mobilities versus temperature of both specimens
are presented. Curve A is for the sample containing 2.8 X 10" ¢em™
lithium. It therefore contained about 5.8 X 10" e¢m™ total impurities
as compared to the control sample whose curve is shown as B in Flgure
25 and which contained only 3 X 10" ¥ impurities.

The lithium doped bridge exhibits by far the higher Hall mobility for
holes (except at very low temperatures where poorly understood phe-
nomena occur). In fact at 40°K the sample containing lithium shows a
hole mobility 16 times greater than that of the control at the correspond-
ing temperature. Rough analysis of the relative mobilities at T = 100°K
indicate ~2 X 10" em™ scattering centers in the control sample and 5
X 10" em™® scattering centers in the sample containing pairs.

This experiment has been repeated with other specimens doped to
different levels with gallium and even with other acceptors, and leaves
no doubt that a mechanism which is most reasonably assumed to be
pairing, is removing charged impurities from the crystal.

The phenomenon we have just deseribed suggests an excellent method
for testing the ion pairing formula derived in Sections VII and XTI, for it
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em™3 lithium.
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enables us to determine at what temperature, at given values of N,
and N, P/Nis exactly 0.5. Thus consider the fact that, all other things
being equal, the control bridge and the one containing added lithium
will exhibit equal Hall mobilities at a given temperature when the con-
centrations of charged impurities are identical in both of them. Now the
concentration of such impurities in the control is simply N4 . The con-
centration in the bridge containing lithium is

N4+ Np— 2P (12.1)

The quantity 2P is removed from N, + N, , because each time a pair
forms two charged scatterers are eliminated. The condition that the
scattering densities in both bridges be equal is then simply

NA:NA+ND'—2P
or

P —_—

o=
Therefore if plots of Hall mobilities versus temperature such as those
appearing in Figure 25 are continued until they cross, the temperature
of crossing marks the point at which P/N is 0.5.

In Fig. 26 typical crossings of this kind are shown. They are for two
different gallium doped germanium crystals, one containing 3 X 10"
em™ gallium and the other 9 X 10'° em™. The curves for the controls
and lithium saturated samples in each case are shown as plots of the
logarithm of Hall mobility against logarithm of absolute temperature.
The lines plotted in this manner are straight. The lithium content of
the bridge containing 9 X 10" ¢m™ gallium was 6.1 X 10" em™ while
that in the bridge with 3 X 10" em™ gallium was 2.8 X 10" em™. All
of these concentrations were obtained from Hall coefficient measurements
in the controls and the lithium doped specimens.

As the temperature is increased the mobilities of the samples with
lithium are reduced and approach the mobilities of the controls. This
happens because pairs dissociate and more charged impurities appear.
Finally when P/N is exactly 0.5 the curves cross. In Fig. 27 we notice
that mobility measurements were not performed right up to the cross
point, but that the straight lines have been extrapolated. This procedure
was adopted of necessity, because of the high diffusivity of lithium. Thus,
reference to Fig. 5 shows that the solubility in doped germanium de-
creases to a minimum as the temperature is raised from room tempera-
ture, and there is danger of precipitation. For this reason the measure-

0.5 (12.2)
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Fig. 26 — Illustration of cross over phenomenon for germanium samples con-
taining gallium. Sample 314 contains 9 X 101% em™? gallium and sample 302 con-
tains 3 X 10 cm3, Samples 316 and 301 are the corresponding samples to which
lithium has been added.

ments were not carried to high temperatures.* In addition the value
of the Hall coefficient was carefully checked at each temperature to see
if it had changed. Since the reciprocal of the Hall coefficient™ measures
the carrier density any reduction in its value would have implied loss of
compensation, or precipitation of lithium.

Over the measured points no appreciable variation of Hall coefficient,
was noted. Fortunately, the pairing relaxation time is quite small (less
than a second) at the high temperatures involved so that it wasn’t
necessary to hold the samples at these temperatures for long periods in
order to achieve pairing equilibrium. The times involved were too short
for the occurrence of phase equilibrium characterized by precipitation.

The above discussion points up some of the care that must be taken
to obtain reliable measurements. Another factor which enters the pic-
ture is the possible existence of a precipitate in the lithium doped bridge.

* In boron-doped germanium the cross-over was actually observed — no extra-

polation having been necessary, because the temperature of intersection was suffi-
ciently low.
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During the course of our experiments it was discovered that precipitates
have a profound effect on carrier mobility, reducing it so severely, that
the mobility of the lithium doped bridge may never even rise above that
of the control. Great care must be exercised in the preparation of suitable
bridges to avoid the presence of precipitated lithium. Thus it may be
necessary to saturate the bridge at a very low temperature (see Section
IV, Figure 5) so that it is somewhat undersaturated at room tempera-
ture. This means that diffusion periods of weeks may be involved.

In Fig. 26 the sample with N, = 9 X 10 ¢em™, and Np = 6.1 X 10°
em™ has P/Np = 0.5 at 348°K, while the sample with N, = 3 X 10"
em™ and Np = 2.8 X 10" em™ is half-paired at 440°K. This is to be
expected, the more heavily doped specimen remaining paired up to
higher temperatures. Using (9.6) and (9.3) it is possible to calculate a,
the distance of closest approach of a gallium and lithium ion, from each
of the measured cross points.

Thus in (9.6) we set # = 0.5, and N4, Np and T to correspond to each
of the cases described. Having logiw Q(a), o can be determined by in-
terpolation in Table III and ¢ then determined from (9.3). Of course «
is taken to be 16. Carrying through this procedure in connection with
Fig. 26 leads to the satisfying result that @ = 1.71 X 107° cm for the
heavily doped sample and 1.73 X 10~° e¢m for the lightly doped one.
The values of @ appearing in Table IV based on @ = 1.7 X 10~ cm there-
fore correspond to gallium.

Not only is this result satisfying because the two a’s agree so well
even though the samples involved were so different in constitution, but
also because it is expected on the basis of the addition of known particle
radii. Thus according to Pauling’® the tetrahedral covalent radius of
gallium is 1.26 X 10~° cm while the ionic radius of lithium is 0.6 X 1078
cm. Since gallium is presumably substitutional in a tetrahedral lattice
we use its tetrahedral covalent radius, and since lithium is probably in-
terstitial we use the ionic radius. The sum of the two is 1.86 X 10™* c¢m
which compares very favorably with the values of a quoted above.

This result constitutes good evidence that lithium is interstitial, for if
it were somehow substitutional we might expect @ to be something like
a germanium-germanium bond length which is 2.46 X 10 em. Such a
value of ¢ would lead to profoundly different crossing temperatures (of
the order of 100° lower) so that it is not very likely.

One further point needs mention. This is the fact that as the two ions
approach very closely, the concept of the uniform macroscopic dielectric
constant, k, loses its meaning. In fact, the binding energy should be in-
creased (as though x were reduced). Crude estimates of the magnitude
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of this effect based on a dielectric cavity model show it to be of the order
of some 10 or 15 percent of the energy computed on the assumption of
the dielectric continuum, the increased binding energy showing up as a
reduced value of a. This may account for the fact that the observed a,
at 1.7 X 107® em is less than the theoretical value, 1.86 X 10~ em

The above example shows the ion pairing phenomenon in action as a
structural tool, useful in investigating isolated impurities. In particular
the demonstration that lithium is interstitial is interesting. The values
of ¢ have much more meaning as independent parameters in solids than
they have in liquids, where a given ion may be surrounded by a sheath of
solvating solvent molecules. Under the latter conditions the value of a
can only be determined through application of the ion pairing theory
itself.

Of course, certain unusual situations arise in solids also, and values of
@ (determined from ion pairing) are valuable indications of structural
peculiarities.

Similar experiments have been performed on specimens doped with
indium and boron. The results of all our investigations on the cross-over
phenomenon are tabulated in Table V. In the table the first column
lists the acceptor involved, and the second and third the appropriate
concentrations of impurities. The fourth column contains the cross-over
temperature, while the fifth, the measured value of a determined from
it. The last column lists the values of @ to be expected on the basis of the
addition of tetrahedral covalent radii to the ionic radius of lithium — all
of which appear in Pauling.’®

The reliability of the measurements are in the order gallium, alumi-
num, boron, and indium. The principal reason for this is that the indium
crystal was not grown specially for this work and was somewhat non-
uniform. Of the two values obtained for @ we tend to place more confi-

TABLE V
Acceptor Acceptor Lithium e over Measured Pauling a
{em™3) (co3) °C) (cm) - (em)
B 7.0 X 10t 5.9 % 101 338 2.05 X 10~ | 1.48 X 1078
B 7.0 X 1018 | 5.54 X 10 320 2.27 X 10~% | 1.48 X 108
B 7.0 X 10 | 5.85 X 1016 330 2.16 X 10~% | 1.48 X 10~
Al 9.5 X 10 9.0 X 10% 350 1.68 X 10~¢ | 1.86 X 10~®
Ga 3.0 X 1017 2.8 X 10% 440 1.71 X 10-® | 1.86 X 108
Ga 9.0 X 10 6.1 X 10 348 1.73 X 10® | 1.86 X 10
In 3.3 X 107 1.9 X 107 476 1.61 X 10~® | 2.04 X 108
In 3.3 % 107 | 2.68 X 10V 426 1.83 X 108 | 2.04 X 108




CHEMICAL INTERACTIONS AMONG DEFECTS IN Ge AND Si 607

dence in 1.83 X 107° than in 1.61 X 10° em. More work is necessary,
however, before a real decision can be made.

A feature of Table V is the fact that gallium, aluminum, and indium
exhibit orthodox behavior, i.e., the measured a’s are in both cases slightly
less than those expected on the basis of the addition of radii. The in-
ternal consistency of the theory gains support from the fact that gal-
lium and aluminum behave similarly as the Pauling a’s tabulated in
Table V predict. In fact if 1.83 X 1078 em is taken as the more reliable
indium value the three cases fail-to match the Pauling radii by about the
same amount, a result which implies that the disparity is due to the same
cause, i.e., failure of the dielectric continuum concept.

Another feature of Table V is the fact that boron is out of line to the
extent that the measured a exceeds the Pauling a by 50 per cent. A pos-
sible explanation is the following. The tetmhedral radii of boron and
germanium are poorly matched (0.88 X and 1.26 A respectively). The
strain in the boron-germanium bond may appear as a distortion of the
germanium atom in such a way as to increase the effective size of the
horon ion. This strain was mentioned before in Section V where it was
invoked to explain the stability of LiB~ complex in silicon.

XIII. RELAXATION STUDIES

The relaxation time discussed in Section X has been studied experi-
mentally. The following procedure was used. A specimen was warmed
to 350°K where a considerable amount of pair dissociation occurred, and
then cooled quickly by plunging into liquid nitrogen. It was then rapidly
transferred to a constant temperature bath, held at a temperature where
pair formation took place at a reasonable rate, and the change in sample
conductivity (as pairing took place) was measured as a function of time.

The principle upon which this measurement is based is the following.
At a given temperature the occurrence of pairing does not change the
carrier concentration, only the carrier mobility. As a result the measure-
ment of conductivity is effectively a measurement of relative mobility.
During relaxation the densities of charged impurities are changed, at the
most, by amounts of the order of 50 per cent. Over this range, the mobil-
ity may be considered a linear function of scatterer density. The depend-
ence of conductivity on time, as pairing takes place, must be of the form

c=0o, —be " (13.1)

where o, is the conductivity when ¢t = o, and 7 is the relaxation time de-
fined in section X while @ is some unknown constant, depending among
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other things on the initial state of the system. Equation (13.1) is based
on the assumption that the number of charged scatterers decays as a
first order process, and that ¢ is a linear function of this number, relative
to the exponential dependence on time.

The first order character of pairing is fortunate for it renders the
measurement of r independent of a knowledge of ®, i.e. independent of
the initial state of the system. This is not only fortunate from the point
of view of calculation but from experiment, since it is almost impossible
to prepare a specimen in a well defined initial state.

The unimportance of ® is best seen by plotting the logarithm of
o, — o against time. According to (13.1) this plot is specified by

log (o, — o) = log® -+ f: (13.1)

Thus the reciprocal of its slope measures r, and @ is not involved. Fig.
27 illustrates the data for a typical run plotted in this manner. The sam-
ple is one containing about 9 X 10" ¢m™ gallium and the experiment
was performed at 195°K (dry ice temperature). Notice that the curve is
absolutely straight out to 3500 minutes, demonstrating beyond a doubt
that the process is first order. The relaxation time computed from its
slope is 1.51 X 10° seconds as against a value calculated by the methods
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Fig. 27 — Plot of log (¢, — o) asa function of time showing first order kinetics
of pairing.
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Fig. 28 — Plots of logarithm of relaxation time versus reciprocal temperature
showing agreement between theory and experiment.

of section X of 1.66 X 10° seconds. The result is in good agreement with
theory.

Studies of the kind illustrated in Fig. 27 have been carried out in
samples doped to various levels and also at various temperatures.
Boron and indium have been used as doping agents, as well as gallium.
Relaxation times have been measured over the range extending from
about a second to hundreds of thousands of seconds. In each case straight
line plots were obtained and the agreement between calculated and
measured ’s has been as good as in the example illustrated by Fig. 28.
Relaxation connected with dissociation has also been measured with
equally satisfactory results.

Some of these data are shown in Fig. 29 where log = is plotted as a
function of reciprocal temperature for gallium and boron at two different
values of doping. The drawn curves are theoretical obtained from Fig. 20
while the points shown are experimental. It is seen that agreement is
nearly perfect. The relaxation time, true to the demands of theory, does
not seem to depend on the kind of acceptor used for doping, i.e., it is
independent of a, the distance of closest approach.

The data in Fig. 28 actually can be used to measure the diffusivity of
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lithium. As must be the case from the above mentioned agreement, the
values of D,y computed from them agree with the diffusion data of Fuller
and Severiens” almost perfectly. This is a very quick and sensitive
method (also probably exceedingly accurate) for determining diffusivi-
ties. For example the work already completed, in effect, represents the
determination of diffusivities of the order of 10™*° e¢m’/sec within a
matter of an hour, and, no doubt, smaller diffusivities could be deter-
mined by doping more heavily with acceptor.

XIV. THE EFFECT OF ION PAIRING ON ENERGY LEVELS

It was predicted in Section VI1I that ion pairing would drive the
electronic energy states of donors and acceptors from the forbidden
energy region. In this section it will be demonstrated by low temperature
Hall effect measurements that the addition of lithium to gallium-doped
germanium does indeed result in the removal of states from the forbidden
gap rather than in the simple compensation which oceurs when a non-
mobile donor such as antimony is added.

At low temperatures where carrier concentration, p, is less than the
donor concentration, it can be expressed in the form®

_ N, —Np (Zmnka
P="N 72

where N4 and Np are the concentrations of acceptor and donor states,
respectively, m, , the effective mass of free holes, h, Plank’s constant,
and I, the ionization energy of the acceptor. The values of m, and E,
are known for the group III acceptors.®

Lithium was added to a specimen of germanium known to contain
1.0 X 10" em™ gallium atoms and a negligible amount of ordinary
donors. Carrier concentrations for this specimen were determined from
Hall coefficient measurements. The logarithm of this concentration is
shown in Fig. 29 plotted against reciprocal temperature. The high
temperature limit of this plot fixes Nu — N at 1.15 X 10" em™.

At low temperatures the curve exhibits an extended linear portion to
which (14.1) should apply. Evaluating (14.1) with p = 4.0 X 10" em™ at
1/T = 0.06 deg” and Ny — Np = 1.15 X 10" em™® we find that Np =
2.6 X 10" em™ and N, = 1.4 X 10*° em™.

Therefore, the density of apparent acceptor states has been decreased
by 1.0 X 10" — 1.4 X 10*° = 8.6 X 10" em ™. The added concentration
of lithium was 1.0 X 10"° em™ — 1.15 X 10 em™ = 8.85 X 10" em™,
almost identical with the loss in conceniration of acceplor states. This im-
plies (as would be expected) that the lithium is almost totally paired.

)3.'2 exp [—E./kT] (14.1)
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Tiig. 20 — Plot of hole concentration as a function of reciprocal temperature for
a sample containing ion pairs.

An even more striking result appears. From the above results the
density of lithium atoms involved in pairs is 8.85 X 10° em™ — 2.6 X
10" em™ = 8.6 X 10" em™, the same number by which the density of
acceptors has been decreased! There can be little question that ion pairing
is the mechanism responsible for the removal of states.

In closing it is worth pointing out that the density of unpaired lithiums
2.6 X 10" em™, is certainly not characteristic of the low temperatures
at which the above Hall measurements were performed. Obviously a
density characteristic of some higher temperature has been quenched
into the specimen. At the low temperature involved the unpaired density
would be effectively zero.

XV. RESEARCH POSSIBILITIES

The fields deseribed in the preceding text have been hardly touched,
even by this long paper, and it does not seem fitting to close without
some speculation concerning the possibilities of future work.

In the first place, there are other donors and acceptors besides lithium
which are reasonably mobile in germanium or silicon, e.g. copper, iron,
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zine or gold. To some extent the methods of this paper can be applied
to these. Furthermore, returning to lithium, there are impurities both
mobile and immobile which introduce more than one energy state into
the forbidden gap. The phase relations of lithium in the presence of these
should be extremely interesting since the corresponding mass action
equations are more complicated. Analogues of dibasic®® acids and bases
should exist.

In the case of ion pairing doubly charged acceptors like zine in ger-
manium® should be extremely interesting, since large amounts of pairing
should persist up to very high temperatures. In fact such studies repre-
sent excellent means of testing for the existence of doubly charged ions.
There is also the question of what happens to the two energy levels when
an acceptor like zine pairs with a single lithium ion. Are both levels
driven from the forbidden gap or do they split under the perturbation?

Then there is the problem of ion triplets — a possibility with impuri-
ties like zine — which is unexplored both theoretically and experiment-
ally. Also, very strange diffusion effects must occur in the presence of
doubly charged ions, to say nothing of the effect which uncompensated
mobile holes might have on relaxation processes.

The field of ion pairing in silicon is relatively unexplored.

All of the phenomena discussed in this paper must occur in the group
III-V compounds, more or less complicated by additional effects.

The question of the formation of the LiB~ complex in both germanium
and silicon needs further study. It should behave as an acceptor and its
electronic energy state might be revealed by suitable quenching
techniques.

Non ionic reactions between group V donors and group IIT acceptors
very likely occur, i.e., a real III-V covalent bond may be formed be-
tween such atoms dissolved in germanium or silicon at high tempera-
tures. This possibility could be investigated by looking for changes in
carrier mobility or impurity energy levels upon extended heating — in
much the same way that ion pairing has been studied. If found, the
phenomenon may provide an excellent technique for measuring the dif-
fusitivities of all classes of impurities even at fairly low temperatures.

Such compounds may possess strange energy levels and be responsible
for unexplained traps and recombination centers.

The effect of stress on the extent of ion pairing may well be profound
since there will be a tendency for such stress to concentrate at imperfec-
tions. Stress studies on ion pairing may therefore be useful for further
investigating the strain about an isolated impurity.

Ton pairing between lithium ions and acceptor centers located in
dislocations or vacancies should occur. In the first case the dislocation
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would be the analogue of the polyelectrolyte molecule in the aqueous
solution.

An interesting question, in the diffusion of substitutional acceptors,
concerns whether the ion or the neutral atom is responsible for diffusion.
It is possible that the neutral atom, less securely bonded to the lattice,
is the chief agent. This might be determined by changing the ratio of
neutral atoms to ions by suitably doping with other donors or acceptors.

Doping apparently affects the concentration of vacancies which have
acceptor properties and therefore the rate of diffusion.” ™

Other interesting effects concerning the distribution of an impurity
between two different kinds sites in the lattice™ are also possible.

These and many other fascinating fields still require exploration. We
hope to investigate some of them in the near future.
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APPENDIX A
THE EFFECT OF ION PAIRING ON SOLUBILITY

In Section VIII attention was called to the fact that ion pairing should
have some effect on lithium solubility but that it would be difficult to
achieve conditions under which the effect would be observable. Now, this
point will be enlarged upon. Consider an equilibrium like (2.1) except
imagine it to take place in germanium with gallium as the immobile ac-
ceptor. (This because germanium with gallium has been studied in ion
pairing investigations.)

Li (external) = Li* +

+ +
Ga~ + e (A1)
1 1

[LitGaT] ete”
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where [Li*Ga™] represents an ion pair, whose concentration we denote
by P. N4 and Np will be the total densities of acceptor and donor re-
spectively and A™ and D™ the densities of acceptor and donor ions in the
unpaired state.

As in the main text, n and p will represent the concentrations of holes
and electrons. The following relations are then to be expected on the
basis of definition, mass action, and charge balance.

Ni=A"+P ) (A2)
Np=D"+ P (A3)
D'n = K* (A4)
np = ni (A5)
A+LD’ -0 (A6)
DY+ p=A"+n (A7)

Equations (A4), (A5), and (A7) are just reproductions of (3.1), (3.2),
(2.8), while (AG) is the same as (9.4). The problem is to express the solu-
bility of lithium, Np, as a function of N, . Manipulation of the pre-
ceding set of equations gives this result as

_ (Na— A+ 04))
Ny = e (A8)
with A~ given by the solution of
Nai—A" _
QA-
1+ 1/ 1+ 2”"
Dn+
(A9)

+ i 5 2+ (Dg*)?
/(@)

where D," is defined by (3.3). Equation (A9) generally needs to be solved
numerically for A™.

To see what these relations predict in a special case consider the
solubility of lithium in gallium-doped germanium at 300°K. At this
temperature the values of n; and Dy and Q are

n; = 2.8 X 102 em™
Dot =7 % 10" em™ (A10)
Q = 1.61 X 10® em™,
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TABLE Al — TEMPERATURE = 300°K

Ng (em™3) Np (cm™) Np* (cm™3) P =Ng — A" (cm™)
101 1.25 X 10 1.25 X 10 0.15 X 10M
1018 0.94 X 105 0.875 X 10 0.44 X 105
1016 0.985 X 10 0.875 X 10t 0.77 X 101
1047 0.990 X 10V 0.875 X 10V 0.92 X 10V
1018 0.995 X 10 0.875 X 10 0.97 X 10

The value of n; is taken from Figure 2, of D,", from Figure 5, and of Q,
from Table 1V. Using (A10) together with (A9) and (A8) leads to the
results tabulated in Table AIL. In this table, N ,* represents the solu-
bility for the case @ = 0, i.e., the solubility if there were no ion pairing.
The main feature to be obtained from the Table is that N is not very
much larger than Np*, no matter how large the value of N, . This is
true in spite of the fact that the last column which lists P shows that at
N4 = 10® em™ P is about 98 % of N, so that pairing of the donor is
virtually complete.

The result is not limited to the special conditions of doping and tem-
perature chosen in compiling Table AI, but must be quite general. One
can arrive at this conclusion in the following way.

By subtracting (A3) from (A2) we obtain

NA—ND:A—-'-‘D-F. (A.].].)

The quantities A~ and DT appear in equations (A4) and (A7), while
and p, appearing in (A4) and (A7) are related by (A5). These three equa-
tions are sufficient for the determination of D in its dependence on A™.
That this is the case is immediately obvious when (A4), (A5), and (A7)
are recognized as reproductions of (3.1), (3.2) and (2.8). In fact this
means that the desired relationship between D™ and A~ is nothing more
than equation (3.4) which itself is predicated on (3.1), (3.2), and (2.8).
But then it is known according to (3.6), that D™ can at the most be
slightly greater than A™, although most likely less. This assumes of course
that we deal with dopings sufficiently high so that (3.5) applies. On
the other hand at low dopings (3.4) tells us that D will be Dy". There-
fore if we work with a system in which in the absence of pairing the elec-
tron-hole equilibrium has driven the value of N close to N4 (as it has
in this system — see Np*) the introduction of pairing cannot drive it
much higher, since according to (A11) if D cannot get higher than 4™,
N cannot exceed N4 . This is evident in Table ATl where N comes very
close to N4 but never exceeds it.

When N, is very small so that D™ equals D, " and does exceed A~ by
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a large amount, there can be no visible increment in solubility as a result
of pairing because P can never exceed N4 which by definition is small.

The physical reason for these limitations is the following. Suppose N »
is driven close to N4 by the hole-electron equilibrium so that in terms of
carriers (holes and electrons) the specimen is very closely compensated.
Then if by the formation of pairs, additional donors are caused to enter
the crystal, the electrons they donate cannot be absorbed by holes be-
cause very few of the latter are present. Thus the following two sketched
equilibria will oppose each other

Li (external) = Li* 4+ e

_l_

Ga~ (A12)

1

[Li*GaT]
the one involving electrons attempting to drive lithium out of solution
because of the build-up of electron concentration, and the pairing equi-
librium attempting to bring lithium into solution in order to form pairs.
Thus the pairing process will not be as efficient a solubilizer as might
be thought at first.

This point can be illustrated by considering a situation in which the
germanium crystal not only contains gallium to the level, N4 but also
an immobile donor, to the level N = 0.99 N, . Thus, the crystal is almost
compensated before any lithium has been added. Nevertheless, there are
still N4 gallium ions so that even though the hole-electron equilibrium,
working on the differential, 0.01 N, , cannot increase the solubility of
lithium, the pairing process might. To investigate this situation equations
(A2) to (A7) can be adopted with the simple change that (A~ — N) re-
places A™ in (A7).

Taking the situation covered by (A10) at 300°K, Table AIl was com-
piled. Here again N p* is the solubility for @ = 0.

If only the hole-electron effect were operative, then we could not ex-
pect to drive Np much beyond N4 — N.In the 10"° case N, — N is 10"
em™® and in the 10" case it is 10"® em™. The values of Np* in Table AIT
thus confirm this argument. Furthermore, N is in neither case much
greater than N* showing that despite the fact that there were, respec-

TaBLE AIT — TEMPERATURE 300°K

N4 (cm™) N (cm™) ‘ Np (cm™) Np* (cm™) P (cm™)

107 0.99 X 107 6 X 106 0.88 X 1018 1.6 X 10t

1018 0.99 X 10 l 3.2 X 10n 1.26 X 101 3 X 104
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tively, 10'® and 10" em™® gallium ions available for pairing, the pairing
process did very little to increase the solubility.

If the constant €is exceedingly large as is probably the case for a
multiply charged acceptor, it is possible that ion paring will have a meas-
urable effect on solubility.

ArreENDIX B

CONCENTRATION DEPENDENCE OF DIFFUSIVITY IN THE PRESENCE OF ION
PAIRING

In Section VIII it was mentioned that the diffusivity of a mobile donor
like lithium is concentration dependent when the donor participates in a
pairing equilibrium with an immobile acceptor. In this appendix we
propose to investigate the nature of the dependence.

Consider a semiconductor, uniformly doped to the level, N,, with
acceptor. Let the local density of mobile donor be Np(x), « being the
position coordinate. If P(x) is the local pair concentration, then the local
density of free diffusible ions is (Np — P). The flux of these diffusing
ions then depends upon the gradient (assuming Fick’s law") of (Np —
P). Thus, if Dy is the diffusivity of free donor, i.e. the diffusivity in the
absence of pairing, then the flux density is

d(Np — P)
= —Dp————~ B1
f b pooe (B1)
If we apply (9.4) to the present case we can write
—(N. —

(Na — P)(No — P)  [(Na=No)+ (No — P)I(Np — P)

from which it is possible to solve for (N, — P). Thus

1 ] :
No — P=§(Np — N, —-)+1/1(N,, N, - S—lz) +A‘f;’ (B3)

Q 4
Substitution of (B3) into (B1) yields
1 1

(B4)

F=-3 1+1/1(N N, _ 1Y No| oo
Ve~ -*—ﬁ)+‘sz‘

If ion pairing was not thought of, the flux density would have been writ-
ten in terms of the gradient of the total concentration, Np .
N

f=-D—= (B5)
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where D is the diffusivity. Comparison of (B5) with (B4) leads to the
relation

%(ND—NAJré)

1 1\? Np
/‘/E(ND—NA—Q)'FE

so that D depends on the local concentration, Np, of diffusant.
It is interesting to explore the limiting forms of D when Np << N4 and
when Np = N, . In the latter case (B6) reduces to

Dy
Dz-é—

1+ (B6)

1
D, 20
D=—|14 —F—— (B7)
2 V1+&
4Q° Q
while (B3) becomes
— 1_ /1 Na
N, P-l-m— T (B8)

Substituting the left side of (B8) for the denominator involving the
radical in (B7) leads to

_ Dy 1
b=% [1 tam, — P+t 1] (BY)
But according to (B2), when N, = Np,
P

(NA - P}Q = N-A—__"P (B].O)
so that (B9) becomes

_ Dy 1

D= ?[1 T 5P I:I (B12)
N,-pT

Now in case the degree of pairing is high (which is, of course, the case
we are interested in) P will be almost equal to N4 so that

2P

will be a very large number. If this is so the second term in brackets in
(B12) can be set equal to zero and we have
p=2. (B14)
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In the other extreme with Np << N, (B6) becomes
1/1
Dy éﬁ—NQ Dy

D=—|1+ = (B15)
2 141 2 14 QN,
V;@+NJ

Since & N4 can exceed unity by a large amount it is evident that the re-
lation in (B15) predicts a large reduction in diffusivity towards the
front end of a diffusion curve where Np << N, , and (B14) a smaller re-
duction in Dy where Np may be close to N, . That part of the medium
near the front of the diffusion curve acts therefore like a region of high
resistance, confining the diffusant to the back end where the resistance
is low.

AprpPEnDIX C
SOLUTION OF BOUNDARY VALUE PROBLEM FOR RELAXATION

In Section X equations (10.23), (10.21), (10.20), and (10.19) defined
a boundary value problem which we reproduce here, except that (10.20)
and (10.19) have been written more completely with the aid of (10.16).
Thus

19 ( .dp )_1ap

ﬁm05+h”ﬁﬁ €
% §P=°’ r=L r=a (C2)
p=N, t=0, a<r<L (C3)

In principle this problem is soluble by separation of variables.*”® Thus we
define

p(r, 1) = G(r) S(1) (C4)

which upon substitution into (C1), yields the two ordinary differential
equations

d s d@ 2~ _
105 4wy =0 (C6)

where n° is an arbitrary positive parameter.
The allowable values of n are determined by (C2) which can now be
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replaced by

9 Bg_o r=-L r=ua (1)
dr r?
Equation (C6) can be solved immediately to give

S,() = ¢ (C8)

and if we assign the subscript n to the G going with 5 the most general
solution of (C1) and (C2) will be

p = 2 AGy(r)e " (C9)
Ll

where the A, are arbitrary constants so determined that (C3) is satisfied.

Equation (C9) shows that in reality there exists, for this problem, a
spectrum of relaxation times, 1/7°Dq . After a brief transient period many
of the higher order terms will decay away and eventually only the first
two terms will have to be considered. Finally when equilibrium is at-
tained only the first term will survive.

The last statement implies that 7 = 0, is an allowable eigenvalue, i.e.,
that the first term is independent of time. That this is so can be proved
by solving (C5) for n = 0, and substituting the result in (C7). Thus

Golr) = exp (I—f) (C10)

and this does satisfy (C7). p can then be approximated after the transient
by

p = Aqexp (];3) + Ay Gy(r)e P! (C11)

from which it is obvious that the relaxation time dealt with in section X
is

1

2
m Du

T = (C12)

In principle it should be possible to evaluate Gy by the straightforward
solution of (C5) and determination of the second eigenvalue through
substitution of this solution in (C7). In fact this represents a rather un-
pleasant task since (7 is a confluent hypergeometric function " Therefore
we shall follow an alternative route based on the assumption that by the
time (C11) applies the flux 4xr°J*(r), where J* is given by (10.16), is
almost independent of 7. The reader is referred to some related papers™ ©
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for the justification of this view. Briefly it is permissible, after a short
transient period, in spherical diffusion, whenever the dimensions of the
diffusion field are large compared to the dimension of the sink. This re-
sults from the fact that in spherical diffusion from an infinite field*® a
real steady state is reached after a brief transient period. In contrast, in
plane-parallel diffusion to a sink from an infinite field,” a steady state is
never reached.
Substituting (C11) into (10.16) then yields

J¥ = —Dyde P! (dG‘ + k G,) (C13)

dr r?
Multiplying J* by 4" and demanding that the product be independent
of r, leads to the relation
299 L R = s (C14)
dr
where § is constant. The solution of (C14) is
R
G, = exp (?) + % (C15)

This is a sufficient approximation for G; .

The constants n;, A¢, 41, and § must now be determined. To accom-
plish this we note that (C2) which specifies that the boundaries at r = a
and r = L, are impermeable is equivalent to the condition that ions be
conserved with the interval (a, L), or that

L
4r f rpdr = N (C16)
After infinite time p is specified by the first term of (C11) and when this

is inserted into (C16) the result is

Ay = NII_J (C17)
where M is defined by (10.26).
Substitution of (C17) and (C15) into (C11) gives

p = NM exp (R/r) + (Al exp (R/7) + %) ¢t ((18)

Now (C3) applied to (C18) demands
NM+ A, =0 (C19)

Ad _

B N (C20)
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Of course this presumes that the approximation contained in (C18) is
valid down to very small values of time. This assumption is well founded
as the transient does vanish after a rather short time.

Inserting (C19) and (C20) in (C18) then gives us

p = NM exp (R/r) + N[N — M exp (R/r)]e™™™*  (C21)

in which only » remains to be determined.

Substitution of (C21) into (C16), recalling the definitions of M and L,
shows that it already satisfies (C16) for any time, ¢. Thus (C16) cannot
be used for determining »; .

On the other hand we note from (C21) that as soon as » becomes of
order, R, p becomes almost independent of 7, being given

p = N[N + (N — M)e ™) (C22)

Since L is of the order 10R or greater, this means that throughout most
of the volume, 1/N (in fact throughout 0.999 1/N) p is independent
of r. Effectively, the entire volume 1/N has been drained of ions, ie.,
they have been trapped. The total ion content at time ¢, may then be
taken as the product of p, given by (C22), with 1/N, that is,

N + (N — M)e > (C23)
The time rate of change of this content must be given by the flux 4m*.J*.

d —n12Dgt
a[N—HN-M)e ]

2 (C24)
= —nlDy(N — M)e ™" = 4m’J*(r, 1)

= —47RN"Doc """

in which (C21) has been substituted into (10.16) to pass from the third
to the fourth expression. Comparing the second and fourth term of (C24)
reveals

47N 2Du 47rq2N 2.Dq}

D = =1y = TN — ) (C25)

or

1 kTN — M)
Dy 4x¢'N'Dy

(C26)

T =

the value quoted in (10.25).
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AppENDIX D
MINIMIZATION OF THE DIFFUSION POTENTIAL

In Section V the statement was made that equation (11.2) was a valid
approximation everywhere within a p type region, provided that Np
did not fluctuate through ranges of order N, in shorter distances than

wxkT

{ =
N

(D1)

This statement will now be proved.
The electrostatic potential is determined by the space charge equation™
2
TV = N + ) — V) (D2)
x K
where we assume that the material is everywhere p-type so that the elec-
tron density, n, does not enter the right side of (D2). Furthermore, the
mobility of holes is so much greater than that of donor ions that the for-
mer may be considered to always be at equilibrium with respect to the
distribution of the latter. Boltzmann’s law® may then be applied to p.
The result is

p = Naexp [—qV/kT] (D3)

where the potential is taken to be zero when p = N,.

Choose an arbitrary point, z,, where the potential is ¥, and investi-
gate (D2) in its neighborhood. We wish to determine the conditions under
which the right side of (1D2) may be approximated by zero, i.e., the ‘“no-
space-charge condition,” in this neighborhood. The limits of the neigh-
borhood will be defined such that

|V — Vol = |ul| 2 kT/2q (D4)
so that, in it, the exponential in (D3) can be linearized
p = Naexp [— qVo/kT] ( - %) (D5)

Then (D2) becomes

N (D6)
+ [?ﬁ exp (— qu/kT)] u}
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The no space charge condition in the defined region is therefore
" — (kl‘ exp (un/icT)) N @) & (k_q?_) exp (— qVo/kT) —1 (D7)

qN 4 exp (— qVo/kT)
To simplify notation define
exp[—gVo/kT] = 7o (D8)
Next expand both Np and » in Fourier series
Np = > A, sin sz + B, cos sz (D9)
8=0
u = 2, o sin sz + By cos sv (D10)

Substitution of (D9) and (D10) into (D6) and equating coefficients of
like terms leads to the set of relations

kT

B = Nare [Na(yo — 1) + Bi) (D11)
_ 4mqg /47"y )

m_xG+WMMd& (D12)
_ 4 _um_)

oo = 2 (v (ot i) P (D13

Now the wavelength of the sth component in (D9) is
A = 2ur/s (D14)
If N, contains no important components of wavelength shorter than
14
e (D15)

the B, for such components may be set equal to zero. But then the only
terms which appear in (D12) and (D13) are terms where the denomina-
tors which (with the aid of (D14)) may be written as

-62
1 Di6
3 ( + 'Yo)\az) (D16)
may be set equal to x. Thus we have in place of (D12) and (D13)
w=2 4= 4 (D17)

kr T aNave
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¢t , kT
- = N Be (D18)
The requirement that N, contain no Fourier terms of wavelength shorter
than (D15) is obviously the condition that N, never pass from its
maximum to its minimum value in a distance shorter than D(15). Since
we are assuming that N, may at places be of order N, , and at others,
of order zero, this amounts to the condition that N, does not fluctuate
over ranges comparable with N4 in distances shorter than (D15).
The use of (D11), (D17), and (D18) in (D10) yields

u = _kT I:NA(-YO — 1) + Y (A, sin sz + B, cos sa:)]
aN 4o =0
(D19)
_ kT (yo—1) , kT Ny
7 (7) avo Ny

which by reference to the definition (D8) for v, proves to be identical
with (D7), the no-space-charge condition.

Equation (D19) is only true when N, does not fluctuate through
ranges of order, N, , in distances smaller than {/4/y, . This distance de-
pends on ¥, and thus on the point where ¥V = ¥, whose neighborhood
is being explored. Thus, we may say that there will be no space charge
at all points whose V, is such as to fix v, at a value such that

_6’2

2
kmin

Yo > (D20)
where Apin 18 the minimum wavelength which needs to be considered in
the Fourier expansion of N . In terms of the definition of v, this means
ET , Ahia
Vu < -E' {n Iz
Thus, at all points where V), is less than the right side of (D21) the no
space charge approximation will hold. (D21) shows, that in the limit
when A\nin goes toward zero, i.e. when the infinite series must be used
for Np, the right side of (ID21) will approach — « and V, will satisfy
(D21) hardly anywhere. Thus space charge will exist almost everywhere.
In most diffusion problems the extremes of potential will occur in re-
gions where there is no space charge. Thus in one extreme N; may equal
0.9 N, and in the other it may equal zero. If there is no space charge in
these extremes we may write for them

Nis— Np=p= Nyexp (—¢V/ET) (D22)

(D21)

in which (ID3) has been used. Setting N, equal to zero in one extreme
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yields V = 0. In the other extreme N = 0.9 N 4 so that we get

V= % £n 10 (D23)

This therefore is the largest value which ¥, may assume in our case.
Inserting the expression in D21 in place of V, we end with the relation

10 < die (D24)
fz
Thus provided that in the distribution being considered
Amin > 3.5£ (D25)

there will be no space charge anywhere.
At high temperatures 0.1 N, may be less than n; . Under these condi-

tions (D24) should be replaced by

N, < Amin

<% (D26)

and in the limit that n; becomes very large it is obvious that (D26) will
always be satisfied. The rule to be enunciated for the cases we shall be
interested in is the one given in section X1, i.e. that no space charge will
exist provided that A’uin is no less than order, £.

ArpENDIX E

CALCULATION OF DIFFUSIVITIES FROM CONDUCTANCES OF DIFFUSION
LAYERS

In this appendix equation (11.12) will be derived. In the first place
we note that the dependence of N on position z, and time ¢, will be of
the form N(z/+/t) at any stage of the diffusion process. This results
from a theorem due to Boltzmann® that when the dependence of D upon
z and £ is of the form D(N ), i.e., the dependence is through N, and a
semi-infinite region extending from z = 0 tox = o is being considered,
then, in the case of plane parallel diffusion, the only variable in the prob-
lem will be z/4/1.

Although the wafers considered in Section XI are of finite thicknessd,
the stages of diffusion investigated are such that the two regions of loss
near the surfaces have not contacted each other. As a result the system
behaves like two semi-infinite regions backed against one another, and
the preceding arguments hold. The conductance Z, defined in section
XI will be proportional to the integral of the product of the local carrier
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density by the local mobility. Thus
df2
3= w fo u(z, O[Na — Noz, )] do (E1)

where w is a proportionality constant and w(z, ) is the local mobility.
An upper limit of d/2 rather than d is used because of symmetry. The
local mobility will vary because N, and therefore the local density of
charged impurity scatterers,” varies. Let N’ be the initial uniform den-
sity (before any diffusion out) of donors, and write (E1) as

z

Il

dj2
w ju' _u(:E, t)[NA - Nno + NDO - ND(.’,U, t)] dx

d/2 @
= w .£ ulz, t)[NA - Nno] dr + o -/; ulx, t)[Nno (E2)

— No(z,8)] dz

The second integral on the right of (E2) is given the upper limit o,
because in the experiments we wish to perform N . — Np becomes zero
long before x reaches d/2.

Now in the first integral on the right of (E2) we may set u(z, t) equal
to the constant value up, which it assumes in the bulk of the wafer, be-
cause the breadth of the depletion layer near the surface (in which
p(x, t) departs from o) is small compared to d/2. The same thing can-
not be done in the second integral since the integrand vanishes beyond
the depletion layer and the total eontribution comes from that layer.
We thus obtain

= = wp’(N, — Np¥) d/2

o (@) - ()

In the integral in (E3) both p and Np are represented as functions of
v/4/1, the latter because of what has been said above, and the former,
because it is a function of the latter. Defining

v = z/2+/Di (E4)

in which D is constant, and substituting in (E3) gives finally

(E3)

3 = wu,(Ns — Np)d/2 + 20/Di Lm ,u(v)[NDD — No(»)]dv (E5)
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Since the definite integral is a constant (E5) shows that T is a linear
function of v/, a fact mentioned in section XI.

In order to make use of the measured dependence of Z on V1 to
determine diffusivities, the functions u(») and Np(») must be specified.
For the latter we shall assume the Fick’s law solution™

Np =Ny erf» (E6)

going with constant D, and Np = 0 as a boundary condition at z = 0
at the surface. (In section XI the limitations of this assumption in the
presence of ion pairing and diffusion potential are discussed.) The »
dependence of u is more complicated. In general, we shall be concerned
with electrical measurements in two extreme cases. In the first case
ion pairing, under the condition of measurement, is everywhere com-
plete so that the local density of scatterers will be given by

N4 — No(») (E7)

In the other case ion pairing will be entirely absent, so that the local
scatterer density, will be specified by

Ni+ Nop(v) (E8)

In all experiments N 4 will be only slightly greater than N » so that it
may be replaced by this quantity. Doing this, and substituting (E6)
into (EE8) and (E9) gives

Ny erfe » = N(») (E9)
for the scattering density in the ion pairing case, and
N1 + exf ») = N(v) (E10)

for the no pairing case.

Since almost all our experiments have been in germanium we now
specialize our attention to that substance. However, the procedure in-
voked below can be applied to silicon as well.

The dependence of hole mobility, p, on scattering density, N, for ger-
manium at room temperature is shown in Fig. 30 taken from Prince’s
data.” The integral in (E5) assumes the form

N, [ w(NG)) eric v dbv. (E11)
0
Choosing N(») as either (E9) or (E10) and using Fig. 30 together with a

table of error functions makes the numerical evaluation of (E11) possible.
Since N (») given by (E9) or (E10) depends on N 2, so will the integral.
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_ Fig, 30 — Plot of hole-drift mobility in germanium as a function of ionized
impurity concentration after Prince.

The numerical evaluation has been performed for a range of Np' in
both the pairing and non-pairing cases. In this manner it has been pos-
sible to evaluate the “correction factor’’ ¢ defined by the following equa-
tion

f u(y) erfe v dv = dpe f erfe v dv (E12)
0 0

= Ju.(0.563)

where g is the mobility in the presence of N 4 scatterers. Fig. 22 contains

plots (for germanium) of J(N ") versus N’ for both the pairing and non-

pairing cases. It is seen that ¢ is never much different from unity.
Equation (E5) can now be written as

S = wu,(Na — No)d/2 + wp_[1.1288N"v/D]Vt (E13)
Defining

S0 = wp,(Na — Np)d/2 (E14)
s, = w__gug (E15)

it is obvious that 2, is the conductance before any donor has diffused
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out and = after all the donor has been diffused out. With these defini-
tions (Elﬁ) becomes

2.2569u_/D ( Ny’ )
3/Z =1 =
Po=tt == W) V1 (B17)
Calling the slope of this curve S leads to the result
2.2560u.. /D ( N,’ )
S =
od o (E18)

or using (E14) and (E15)

Sd 2y Ny )2
= (==t El
(2.2560 =, Np° (E19)

This is equivalent to equation (11.12).

GLOSSARY OF SYMBOLS

a distance of closest approach of two ions of opposite sign

A constant in expression for p in section on relaxation theory
A™ concentration of ionized acceptors

Ay A, going with 5 = 0

A4, A, going with =

A, constant preceding the gth eigenfunction in solution of the

relaxation problem

A, coefficient of sin sx in Fourier expression for N

b q’/2«kT, position of minimum in g(r)

B constant in expression for p in section on relaxation theory

B~ boron ion

B(S2) un-ionized boron in silicon

B, coefficient of cos sz in Fourier expression for N

e(r) concentration of positive ions in atmosphere of a negative
ion

C concentration of LiB™

d thickness of wafer in diffusion experiment

D diffusivity of donor ion in the most general sense

Dy diffusivity of donor ion in the absence of pairing

Dt concentration of ionized donors

D,* value of D in the absence of acceptor

Dt concentration of mobile donor ions where ¥V = 0

e conduction band electron

et valence band hole
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ee

Ep

A

E'(1)

gi
g(r)

i(pz, p1)
I

I(ra, m1)
J()

J*

k

Fex

ke

K,

K,
K.
Ky,

K;

K*

{

L

Li*
Li(Sn)
Li(S?)
LiSi
LiB

recombined hole-electron pair

energy level in electron gas

ionization energy of a donor

ionization energy of an acceptor

energy level in conduction band

chance that volume 477°/3 will not contain an ion
flux density

Termi level — also constant in equation (7.21)
density of states of energy E; in conduction band
nearest neighbor distribution function at equilibrium
Gibbs free energy of electron assembly

gallium ion in germanium

space dependent part of relaxation eigenfunction

G, forq =0

Gv forn=m

Plank’s constant — also used for normalizing constant in
c(r)

number of holes in the jth energy level

net local density of fixed donors

£3I (Tz ’ 7'1)

field current in diffusion measurement

integral for ion pairing calculations taken between r; and 72
current in the atmosphere of a nearest neighbor

flux density of ions being trapped

Boltzmann’s constant

first order rate constant in relaxation theory

second order rate constant in relaxation theory
distribution coefficient of donor between semiconductor and
external phase

electron-hole recombination equilibrium constant
ionization constant of acceptor

jonization constant of donor

constant relating w; to volume, V

product of Kp, Ky, and &

sereening length for diffusion potential

Debye length — also used for radius of volume, 1/N
lithium ion

lithium in molten tin

un-ionized lithium in silicon

lithium-silicon complex
un-ionized InB~



Np*

q
Q)

RSN R
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lithium-boron complex ion in semiconductor

lithium-boron ion pair

lithium-gallium ion pair

normal mass of electron

effective mass of a hole

normalizing constant in relaxation theory

concentration of conduction electrons — also used for density
of untrapped ions ’in relaxation

intrinsic concentration of electrons

total acceptor coneentration

total donor concentration

total solubility of donor in undoped semiconductor—also used
for initial density of donors in diffusion experiments
ionconcentrationinanelectrolytesolution—alsoused forinitial
value of n in relaxation—also used for concentration of im-
mobile donors in Appendix A

solubility of donor in absence of ion pairing in Appendix A
concentration of holes

concentration of ion pairs

charge on an ion

tabulated integral for computing Q

distance between positive and negative ions in a pair

a particular value of r

a particular value of »

capture radius of an ion in relaxation

slope of Z/Z, versus /¢ curve

time dependent part of relaxation eigenfunction belonging
to eigenvalue 5

time

temperature

V—-T1

electrostatic potential — also used for volume — also used
for potential difference between probe points — also used for
potential energy of a positive in neighborhood of negative
ion

electrostatic potential where z =

variable of integration — same as r also rectangular position
coordinate

special value of x.
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o - ¢/a—alsoused for thermodynamic activity of donor in external
phase '

ay coefficient of sin sz in Fourier expression for «

B constant in exponential in L¢B~ equilibrium constant

p* constant in exponential in expression for vacancy concentra-
tion

Bo B:sfors =0

Bs coeficient of cos sz in fourier expression for u

Y pre-exponential factor in LiB™ equilibrium constant

¥ pre-exponential factor in expression for vacancy concentra-
tion

Yo exp[—qVo/kT]

I'(7) non-equilibrium nearest neighbor distribution function

b constant appearing in Appendix C

£ qﬂ/ kkT

r eigenvalue in relaxation problem

m second eigenvalue in set of 4

] fraction of donor paired

¥ correction factor for variable carrier mobility

K dielectric constant

A xfe

Aa 2x/s, wavelength of sth component of fourier series

Ainin wavelength of component of fourier series for Np, having
minimum wavelength

n chemical potential of donor in an external phase — also used
for mobility of donor ion — also used for local carrier mo-
bility

w chemical potential of donor in external phase in standard state

Upt chemical potential of donor ion

wpt’ chemical potential of donor ion in the standard state

™ chemical potential of an electron

) chemical potential of donor atom in semiconductor

o chemical potential of donor atom in standard state

m mobility of donor atom at infinite dilution — also used for
carrier mobility in diffusion experiments before diffusion

T carrier mobility in diffusion experiments after all diffusant
has diffused out

v x/24/Dt

£ e/r

T LiB~ equilibrium constant

p resistivity of gallium-doped germanium after saturation with
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[
STWNSoiee W b2 =

[—
b =

lithium — also used for local charge density in Poisson’s
equation — also used for density of diffusing positive ions in
relaxation

resistivity of gallium-doped germanium before saturation
with lithium

/e

1"2/ €

conductivity during relaxation

conductivity in relaxed state

conductance between probe points

conductance before diffusion begins in diffusion experiments
conductance after diffusion is over in diffusion experiments
relaxation time

constant in relaxation formula for conductivity

local electrostatic potential in ionic atmosphere
proportionality constant connecting conductance between
probe points with integral over carrier concentration

number of states in jth level of electronic energy diagram
ion pairing equilibrium constant

vacant lattice site in covalent crystal

negatively charged cation vacancy
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