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Present toll trunk traffic engineering practices in the United States are
reviewed, and various congestion formulas compared with data obtained on
long distance traffic. Customer habits upon meeting busy channels are noted
and a theory developed describing the probable result of permitting subseribers
to have direct dialing access to high delay toll trunk groups.

Continent-wide automatic alternate routing plans are described briefly,

in which near no-delay service will permit direct customer dialing. The
presence of non-random overflow traffic from high usage groups complicates
the estimation of correct quantities of alternate paths. Present methods of
solving graded multiple problems are reviewed and found unadaptable to the
variely of trunking arrangements occurring in the toll plan.
- Evidence 1s given that the principal fluctuation characteristics of overflow-
type of non-random traffic are described by their mean and variance. An
approximate probability distribution of stmultaneous calls for this kind of
non-random traffic is developed, and found to agree satisfactorily with theo-
retical overflow distributions and those seen in traffic simulations.

A method is devised using “‘equivalent random’” traffic, which has good
loss predictive ability under the “lost calls cleared’ assumption, for a diverse
field of alternate roule trunking arrangements. Loss comparisons are made
with traffic simulation results and with observations in exchanges.

Working curves are presented by which multi-alternate route frunking
systems can be laid out to meet economic and grade of service criteria. Exam-
ples of their application are given.

TABLE oF CONTENTS

1. Introduction. . .. ... vt e e e e 422
2. Present Toll Traffic Engineering Practice. . ........ ... ... ... ... ... ..., 423

* Presented at the First International Congress on the Application of the
Theory of Probability in Telephone Engineering and Admimstration, Copen-
hagen, June 21, 1955.

421



422 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1956

3. Customers Dialing on Groups with Considerable Delay . ................ 431

3.1. Comparison of Some Formulas for Estimating Customers’ NC Service
on Congested Groups. . ....... ... ... . i iiiieiiiaiinnaiinaieis 434

4. Service Requirements for Direct Distance Dialing by Customers. ....... 436

5. Economics of Toll Alternate Routing. . . ................................ 437

6. New Problems in the Engineering and Administration of Intertoll Groups
Resulting from Alternate Routing. .......... ... ... ... ... .. i 441

7. Load-Service Relationships in Alternate Route Systems................. 442
7.1. The “Peaked’’ Character of Overflow Traffie........................ 443
7.2. Approximate Description of the Character of Overflow Traffic. ..... 446

7.2.1. A Probability Distribution for Overflow Traffie. .............. 452
7.2.2. A Probability Distribution for Combined Overflow Traffic Loads 457
7.3. Equivalent Random Theory for Prediction of Amount of Traffic Over-
flowing a Single Stage Alternate Route, and Its Character, with Lost
Calls Cleared. . . .. e e e e e 461
7.3.1. Throwdown Comparisons with Equivalent Random Theory on
Simple Alternate Routing Arrangements with Lost Calls
Cleared. . ... . 468
7.3.2. Comparison of Equivalent Random Theory with Field Results
on Simple Alternate Routing Arrangements................... 470
7.4, Prediction of Traffic Passing Through a Multi-Stage Alternate Route
NetWOrK . o . ot e 475
7.4.1. Correlation of Loss with Peakedness of Components of Non-
Random Offered Traffic. ......... .. ... .. ... i, 481
7.5. Expected Loss on First Routed Traffic Offered to Final Route ... ... 482
7.6. Load on Each Trunk, Particularly the Last Trunk, in a Non-Slipped
Alternate Route. . . ... ... . ... 486
8. Practical Methods for Alternate Route Engineering..................... 487
8.1. Determination of Final Group Size with First Routed Traffic Offered
Directly to Final Group. ........ ... i 490
8.2, Provision of Trunks Individual to First Routed Traffic to Equalize
BTV G . .. e 491
8.3. Area in Which Significant Savings in Final Route Trunks are Real-
ized by Allowing for the Preferred Service Given a First Routed
Traffic Parcel .. ... .. . e e 494
8.4. Character of Traffic Carried on Non-Final Routes.................. 495
8.5. Solution of a Typical Toll Multi-Alternate Route Trunking Arrange-
ment: Bloomsburg, Pa......... ... ...

9, Conelusion. . .. .. ... e 505
Acknowledgements. . ... .. .. ... 506
References. . .. ....oont i e 506
Abridged Bibliography of Articles on Toll Alternate Routing............ 507
Appendix I: Derivation of Moments of Overflow Traffic................. 507
Appendix II: Character of Overflow when Non-Random Traffic is Offered
toa group of Trunks. . ... . 511

1. INTRODUCTION

It has long been the stated aim of the Bell System to make it easily

and economically possible for any telephone customer in the United
States to reach any other telephone in the world. The principal effort
in this direction by the American Telephone and Telegraph Company
and its associated operating companies is, of course, confined to inter-
connecting the telephones in the United States, and to providing com-
munication channels between North America and the other countries of
the world. Since the United States is some 1500 miles from north to
south and 3000 miles from east to west, to realize even the aim of fast



THEORIES FOR TOLL TRAFFIC ENGINEERING IN THE U. 8. A. 423

and economical service between customers is a problem of great magni-
tude; it has engaged our planning engineers for many years.

There are now 52 million telephones in the United States, over 80 per
cent of which areequipped with dials. Until quiterecently most telephone
users were limited in their direct dialing to the local or immediately sur-
rounding areas and long distance operators were obliged to build up a
circuit with the aid of a “through’ operator at each switching point.

- Both speed and economy dictated the automatic build-up of long toll
circuits without the intervention of more than the originating toll oper-
ator. The development of the No. 4-type toll crossbar switching system
with its ability to accept, translate, and pass on the necessary digits (or
equivalent information) to the distant office made this method of oper-
ation possible and feasible, It was introduced during World War II, and
now by means of it and allied equipment, 55 per cent of all long distance
calls (over 25 miles) are completed by the originating operator.

As more elaborate switching and charge-recording arrangements were
developed, particularly in metropolitan areas, the distances which cus-
tomers themselves might dial measurably increased. This expansion of
the local dialing area was found to be both economical and pleasing to
the users. It was then not too great an effort to visualize customers
dialing to all other telephones in the United States and neighboring
countries, and perhaps ultimately across the sea.

The physical accomplishment of nationwide direct distance dialing
which is now gradually being introduced has involved, as may well be
imagined, an immense amount of advance study and fundamental plan-
ning. Adequate transmission and signalling with up to eight intertoll
trunks in tandem, a nationwide uniform numbering plan simple enough
to be used accurately and easily by the ordinary telephone caller, pro-
vision for automatic recording of who called whom and how long he
talked, with subsequent automatic message accounting, are a few of
many problems which have required solution. How they are being met is
a romantic story beyond the scope of the present paper. The references
given in the bibliography at the end contain much of the history as well
as the plans for the future,

2. PRESENT TOLL TRAFFIC ENGINEERING PRACTICE

There are today approximately 116,000 intertoll trunks (over 25 miles
in length) in the Bell System, apportioned among some 13,000 trunk
-groups. A small segment of the 2,600 toll centers which they interconnect
is shown in Fig. 1. Most of these intertoll groups are presently traffic
engineered to operate according to one of several so-called T-schedules:
T-8, T-15, T-30, T-60, or T-120. The number following T (T for Toll) is
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Fig. 1 — Principal intertoll trunk groups in Minnesota and Wisconsin.
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Fig. 2 — Permitted intertoll trunk occupancy for a 6.5-minute usage time
per message.

the expected, or average, delay in seconds for calls to obtain an idle
trunk in that group during the average Busy Season Busy Hour. In 1954
the system “average trunk speed” was approximately 30 seconds, re-
sulting from operating the majority of the groups at a busy-hour trunk-
ing efficiency of 75 to 85 per cent in the busy season.

The T-engineering tables show permissible call minutes of use for a
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wide range of group sizes, and several selections of message holding
times. They were constructed following summarization of many obser-
vations of load and resultant average delays on ringdown (non-dial)
intertoll trunks.! Fig. 2 shows the permissible occupancy (efficiency) of
various trunk group sizes for 6.5 minutes of use per message, for a va-
riety of T-schedules. It is perhaps of some interest that the best fitting
curves relating average delay and load were found to be the well-known
Pollaczek-Crommelin delay curves for constant holding time — this in
spite of the fact that the circuit holding times were far indeed from
having a constant value.

A second, and probably not uncorrelated, observation was that the
per cent “No-Circuit” (NC) reported on the operators’ tickets showed
consistently lower values than were measured on group-busy timing de-
vices. Although not thoroughly documented, this disparity has generally
been attributed to the reluctance of an operator to admit immediately
the presence of an NC condition. She exhibits a certain tolerance (very
difficult to measure) before actually recording a delay which would
require her to adopt a prescribed procedure for the subsequent handling
of the call.* There are then two measures of the No-Circuit condition
which are of some interest, the “NC encountered” by operators, and the
“NC existing” as measured by timing devices.

It has long been observed that the distribution of numbers n of simul-
taneous calls found on T-engineered ringdown intertoll groups is in re-
markable agreement with the individual probability terms of the Erlang
“lost calls” formula,

'n _—a’

a e

fon) = —" (1)

n_—a’
[4

a=0 Nl

Il

where ¢ = number of paths in the group,
o' = an enhanced average load submitted such that
a'[l — Ey.(a')] = L, the actual load carried, and
Ei.(a’) = f(¢) = Erlang loss probability (commonly called Er-
lang B in America).
An example of the agreement of observations with (1) is shown in Fig.
3, where the results of switch counts made some years ago on many
ringdown circuit groups of size 3 are summarized. A wide range of “sub-

* Upon finding No-Circuit, an operator is instructed to try again in 30 seconds
and 60 seconds (before giving an NC report to the customer), followed by addi-
tional attempts 5 minutes and 10 minutes later if necessary.
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Fig. 3 — Distributions of simultaneous calls on three-trunk toll groups at

Albany and Buffalo.

mitted” loads a’ to produce the observed carried loads is required. On
Fig. 4 are shown the corresponding comparisons of theory and obser-
vations for the proportions of time all paths are busy (“NC Existing”)
for 2-, 4-, 5-, 7-, and 9-circuit groups. Good agreement has also been ob-
served for circuit groups up to 20 trunks. This has been found to be a
stable relationship, in spite of the considerable variation in the actual
practices in ringdown operation on the resubmission of delayed calls.
Since the estimation of traffic loads and the subsequent administration

of ringdown toll trunks has been performed principally by means of
Group Busy Timers (which cumulate the duration of NC time), the
Erlang relationship just deseribed has been of great importance,
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With the recent rapid increase in operator dialed intertoll groups, it
might be expected that the above discrepancy between % NC encoun-
tered” and “ % NC existing” would disappear — for an operator now
initiates each call unaware of the momentary state of the load on any
particular intertoll group. By the use of peg count meters (which count
calls offered) and overflow call counters, this change has in fact been
observed to occur. Moreover, since the initial re-trial intervals are com-
monly fairly short (30 seconds) subsequent attempts tend to find some
of the previous congestion still existing, so that the ratio of overflow to
peg count readings now exceeds slightly the “% NC existing.” This
situation is illustrated in Fig. 5, which shows data taken on an operator-
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dialed T-engineered group of 16 trunks between Newark, N. J., and
Akron, Ohio. Curve A shows the empirically determined “NC encoun-
tered” relationship described above for ringdown operation; Curve B
gives the corresponding theoretical “NC existing” values. Lines C and D
give the operator-dialing results, for morning and afternoon busy hours.
The observed points are now seen generally to be significantly above
Curve B.*

At the same time as this change in the “NC encountered” was occur-
ring, due to the introduction of operator toll dialing, there seems to have
been little disturbance to the traditional relationship between load

* The observed point at 11 erlangs which is clearly far out of agreement with
the remainder of the data was produced By a combination of high-trend hours

and an hour in which an operator apparently made many re-trials in rapid sue-
cession.
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carried and “ % NC existing.” C. J. Truitt of the A.T. & T. Co. studied
a number of operator-dialed T-engineered groups at Newark, New Jersey,
in 1954 with a traffic usage recorder (TUR) and group-busy timers, and
found the relationship of equation (1) still good. (This analysis has not
been published.)

A study by Dr. L. Kosten has provided an estimate of the probability
that when an NC condition has been found, it will also appear at a time
7 later.” When this modification is made, the expected load-versus-NC
relationship is shown by Curve E on Fig. 5. (The re-trial time here was
taken as the operators’ nominal 30 seconds; with 150-second circuit-use
time the return is 0.2 holding time.) The observed NC’s are seen to lie
slightly above the E-curve. This could be explained either on the basis
that Kosten’s analysis is a lower limit, or that the operators did not
strictly observe the 30-second return schedule, or, more probably, a
combination of both.

3. CUSTOMERS DIALING ON GROUPS WITH CONSIDERABLE DELAY

It is not to be expected that customers could generally be persuaded to
wait a designated constant or minimum re-trial time on their calls which
meet, the NC condition. Little actual experience has been accumulated
on customers dialing long distance calls on high-delay circuits. However,
it is plausible that they would follow the re-trial time distributions of
customers making local calls, who encounter paths-busy or line-busy
signals (between which they apparently do not usually distinguish).
Some information on re-trial times was assembled in 1944 by C. Clos® by
observing the action of customers who received the busy signal on 1,100
local calls in the City of New York. As seen in Fig. 6, the return times,
after meeting “busy,” exhibit a marked tendency toward the exponential
distribution, after allowance for a minimum interval required for re-
dialing.

An exponential distribution with average of 250 seconds has been
fitted by eye on Fig. 6, to the earlier — and more critical — customer re-
turn times. This may seem an unexpectedly long wait in the light of indi-
vidual experience; however it is probably a fair estimate, especially
since, following the collection of the above data, it has become common
practice for American operating companies in their Instructional lit-
erature to advise customers receiving the busy signal to “hang up, wait
a few minutes, and try again.”

The mathematical representation of the situation assuming exponen-
tial return times is easily formulated. Let there be x actual trunks, and
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imagine y waiting positions, where y is so large that few calls are re-
jected.* Assume that the offered load is a erlangs, and that the calls have
exponential conversation holding times of unit average duration. Finally
let the average return time for calls which have advanced to the waiting
positions, be 1/s times that of the unit conversation time. The statistical
equilibrium equation can then be written for the probability flm, n)
that m calls are in progress on the z trunks and n calls are waiting on
the » storage positions:

fim,n) = af(m — 1, n) dt + sn + 1) flm — 1,n + 1) dt
+ (m + Df(m + 1, n) dt + af(x,n — 1) dix (2)
+ [L — (ak** + snkx) dt — m di]f(m, n)

where 0 < m = 2,0 £ n £ y, and the special limiting situations are
recognized by:

Il
=

* Include term only when m
**x Omit sn whenm = x
**% Omit @ when m = zand n = y
Equation (2) reduces to
(axk* + snkx + m)f(m, n) = af(m — 1, n)
+ s(n + 1)ftm — 1,n + 1) (3)
+ (m 4+ L)ftm + 1, n) + af(x,n — 1)*

Solution of (3) is most easily effected for moderate values of x and y
by first setting f(x, ¥) = 1.000000 and solving for all other f (m, n) in
z y

terms of f(x, ). Normalizing through f(m, n) = 1.0, then gives
. 0

m=0 n=
the entire f(m, n) array.
The proportion of time “NC exists,” will, of course be

¥
;f(-’c, n) (4)
and the load carried is
L=2, Eomf(m, n) (5)
m=0 n=

The proportion of call attempts meeting NC, including all re-trials

* The quantity y can also be chosen so that some calls are rejected, thus roughly
deseribing those calls abandoned after the first attempt.
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will be
Expected overflow calls per unit time
W(x, a, s) = —
Expected calls offered per unit time
> ®)
a + sn)f(x, n) _ !
_ ,.=u( /i, _ s+ af(x, y)
z X a -+ si
> 2 (a + sn)f(m, n)
m=0 n=0
W
in which n# = Z 2 nf(m,n). And when y is chosen so large that f(z, y)
m=0 n=0
is negligible, as we shall use it here,
L=a (5"
sn -
Wz, a,s) = —— (6)
1 a + si
] / @E @)
6 TRUNKS / APOISSON
v 0.5k P(c,L)
= ) ;
< w
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Fig. 7 — Comparison of trunking formulas.



434 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1956

This formula provides a means for estimating the grade of service
which customers might be expected to receive if asked to dial their calls
over moderate-delay or high-delay trunk groups. For a circuit use length
of 150 seconds, and an average return time of 250 seconds (as on Fig. 6),
both exponential, the load-versus-proportion-NC curves for 6 and 16
trunks are given as curves (3) on Fig. 7. For example with an offered
(= carried) load of a = 4.15 erlangs on 6 trunks we should expect to find
27.5 per cent of the total attempts resulting in failure.

For comparison with a fixed return time of NC-calls, the W-formula
curves for exponential returns of 30 seconds (s = 5) and 250 seconds
(s = 0.6) averages are shown on Fig. 5. The first is far too severe an
assumption for operator performance, giving NC’s nearly double those
actually observed (and those given by theory for a 30-second constant
return time). The 250-second average return, however, lies only slightly
above the 30-second constant return curve and is in good agreement with
the data. Although not logically an adequate formula for interpreting
Peg Count and Overflow registrations on T-engineered groups under
operator dialing conditions, the W-formula apparently could be used for
this purpose with suitable s-values determined empirically.

3.1. Comparison of Some Formulas for Estimating Customers’ NC' Service
on Congested Groups

As has been previously observed, a large proportion of customers who
receive a busy signal, return within a few minutes (on Fig. 6, 75 per cent
of the customers returned within 10 minutes). It is well known too, that
under adverse service conditions subseriber attempts (to reach a par-
ticular distant office for example) tend to produce an inflated estimate
of the true offered load. A count of calls carried (or a direct measurement
of load carried) will commonly be a closer estimate of the offered load
than a count of attempts. An exception may occur when a large propor-
tion of attempts is lost, indicating an offered load possibly in excess even
of the number of paths provided. Under the latter condition it is diffi-
cult to estimate the true offered load by any method, since not all the
attempts can be expected to return repeatedly until served; instead, a
significant number will be abandoned somewhere through the trials. In
most other circumstances, however, the carried load will prove a reason-
ably good estimate of the true offered load in systems not provided with
alternate paths.

This is a matter of especial interest for both toll and local operation
in America since principal future reliance for load measurement is ex-
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pected to be placed on automatically processed TUR data, and as the
TUR is a switch counting device the results will be in terms of load
carried. Moreover, the quantity now obtained in many local exchanges
is load carried.* Visual switch counting of line finders and selectors off-
normal is widely practiced in step-by-step and panel offices; a variety of
electromechanical switch counting devices is also to be found in crossbar
offices. It is common to take load-carried figures as equal to load-offered
when using conventional trunking tables to ascertain the proper pro-
vision of trunks or switches. Fig. 7 compares the NC predictions made by
a number of the available load-loss formulas when load carried is used as
the entry variable.

The lowest curves (1) on Fig. 7 are from the Erlang lost calls formula
E, (or B) with load carried L used as the offered load a. At low losses,
say 0.01 or less, either L or @ = L/[1 — Ei(a)] can be used indiscrimi-
nately as the entry in the E, formula. If however considerably larger
losses are encountered and calls are not in reality ‘“cleared” upon meet-
ing NC, it will no longer be satisfactory to substitute L for a. In this
circumstance it is common to calculate a fictitious load a’ to submit to
the ¢ paths such that the load carried, a’[1 — Ei.(a’)], equals the desired
L. (This was the process used in Section 2 to obtain “% NC existing.”)
The curves (2) on Fig. 7 show this relation; physically it corresponds to
an initially offered load of L erlangs (or L call arrivals per average hold-
ing time), whose overflow calls return again and again until successful
but without disturbing the randomness of the input. Thus if the loss
from this enhanced random traffic is E, then the total trials seen per
holding time will be L(1 + E 4+ E*+ ---) = L/(1 — E) = a’, the ap-
parent arrival rate of new calls, but actually of new calls plus return
attempts.

The random resubmission of calls may provide a reasonable descrip-
tion of operation under certain circumstances, presumably when re-trials
are not excessive. KKosten® has discussed the dangers here and provided
upper and lower limit formulas and curves for estimating the proportions
of NC’s to be expected when re-trials are made at any specified fixed
return time. His lower bounds (lower bound because the change in con-
gestion character caused by the returning calls is ignored) are shown by
open dots on Fig. 7 for return times of 1.67 holding times. They lie above
curves (2) (although only very slightly because of the relatively long
return time) since they allow for the fact that a call shortly returning

* In fact, it is difficult to see how any estimate of offered load, other than carried
load, can be obtained with useful reliability.
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after meeting a busy signal will have a higher probability of again find-
ing all paths busy, than would a randomly originated call.

The curves (3) show the W-formula previously developed in this sec-
tion, which contemplates exponential return times on all NC attempts.
The average return time here is also taken as 1.67 holding times. These
curves lie higher than Kosten’s values for two reasons. First, the altered
congestion due to return calls is allowed for; and second, with exponential
returns nearly two-thirds of the return times are shorter than the aver-
age, and of these, the shortest ones will have a relatively high probability
of failure upon re-trying. If the customers were to return with exponen-
tial times after waiting an average of only 0.2 holding time (e.g., 30
seconds wait for 150-second calls) the W-curves would rise markedly to
the positions shown by (4).

Curves (5) and (6) give the proportions of time that all paths are busy
(equation 4) under the W-formula assumptions corresponding to NC
curves (3) and (4) respectively; their upward displacement from the
random return curves (2) reflects the disturbance to the group congestion
produced by the non-random return of the delayed calls. (The limiting
position for these curves is, of course, given by Erlang’s F; (or C) delay
formula.) As would be expected, curve (6) is above (5) since the former
contemplates exponential returns with average of 0.2 holding time, as
against 1.67 for curve (5). Neither the (5)-curves nor the open dots of
constant 30-second return times show a marked increase over curves (2).
This appears to explain why the relationship of load carried versus “NC
existing” (as charted in Figs. 3 and 4) was found so insensitive to vari-
able operating procedures in handling subsequent attempts in toll ring-
down operation, and again, why it did not appreciably change under
operator dialing.

Finally, through the two fields of curves on Fig. 7 is indicated the
Poisson summation P(c, L) with load carried L used as the entering
variable. The fact that these values approach closely the (2) and (3) sets
of curves over a considerable range of NC’s should reassure those who
have been concerned that the Poisson engineering tables were not useful
for losses larger than a few per cent.*

4, SERVICE REQUIREMENTS FOR DIRECT DISTANCE DIALING BY CUSTOMERS

As shown by the W-curves (3) on Fig. 7, the attempt failures by cus-
tomers resulting from their tendency to re- hv shortly following an NC
* Reference may be made also to a throwdown by C. Clos (Ref. 3) using the

return times of Fig. 6; his “% NC” results agreed closely with the Poisson pre-
dictions.
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would be expected to exceed slightly the values for completely random
re-trials. These particular curves are based on a re-trial interval of 1.67
times the average circuit-use time. Such moderation on the part of the
customer is probably attainable through instructional literature and
other means if the customer believes the “NC” or “busy” to be caused
by the called party’s actually using his telephone (the usual case in local
practice). It would be considerably more difficult, however, to dissuade
the customer from re-trying at a more rapid rate if the circuit NC’s
should generally approach or exceed actual called-party busies, a con-
dition of which he would sooner or later become aware. His attempts
might then be more nearly described by the (4) curves on Fig. 7 cor-
responding to an average exponential return of only 0.2 holding time—or
even higher. Such a result would not only displease the user, but also
result in the requirement of increased switching control equipment to
handle many more wasted attempts.

If subseribers are to be given satisfactory direct dialing access to the
intertoll trunk network, it appears then that the probability of finding
NC even in the busy hours must be kept to a low figure. The following
engineering objective has tentatively been selected: The calls offered to
the “final” group of trunks in an allernate roule system should receive no
more than 3 per cent NC(P.03) during the network busy season busy hour.
(If there are no alternate routes, the direct group is the “final” route.)

Since in the nationwide plan there will be a final route between each
of some 2,600 toll centers and its next higher center, and the majority
of calls offered to high usage trunks will be carried without trying
their final route (or routes), the over-all point-to-point service, while
not easy to estimate, will apparently be quite satisfactory for cus-
tomer dialing.

5. ECONOMICS OF TOLL ALTERNATE ROUTING

In a general study of the economies of a nationwide toll switching plan,
made some years ago by engineers of the American Telephone and Tele-
graph Company, it was concluded that a toll line plant sufficient to give
the then average level of service (about T-40) with ordinary single-route
procedures could, if operated on a multi-alternate route basis, give the
desired P.03 service on final routes with little, if any, increase in toll line
investment.* On the other hand to attain a similar P.03 grade of service
by liberalizing a typical intertoll group of 10 trunks working presently

* This, of course, does not reflect the added costs of the No. 4 switching equip-
ment.
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at a T-40 grade of service and an occupancy of 0.81 would require an
increase of 43 per cent (to 14.3 trunks), with a corresponding decrease
in occupancy to 0.57. The possible savings in toll lines with alternate
routing are therefore considerable in a system which must provide a
service level satisfactory for customer dialing.

In order to take fullest advantage of the economies of alternate rout-
ing, present plans call for five classes of toll offices. There will be a large
number of so-called End Offices, a smaller number of Toll Centers, and
progressively fewer Primary Centers (about 150), Sectional Centers
(about 40) and Regional Centers (9), one of which will be the National
Center, to be used as the “home” switching point of the other eight
Regional Centers.* Primary and higher centers will be arranged to per-
form automatic alternate routing and are called Control Switching
Points (CSP’s). Each class of office will “home” on a higher class of
office (not necessarily the next higher one); the toll paths between them
are called “final routes.” As described in Section 4, these final routes will
be provided to give low delays, so that between each principal toll point
and every other one there will be available a succession of approximately
P.03 engineered trunk groups. Thus if the more direct and heavily loaded
interconnecting paths commonly provided are busy there will still be a
good chance of making immediate connection over final routes.

Fig. 8 illustrates the manner in which automatic alternate routing will
operate in comparison with present-day operator routing. On a call from
Syracuse, N. Y., to Miami, Florida, (a distance of some 1,250 miles),
under present-day operation, the Syracuse operator signals Albany, and
requests a trunk to Miami. With T-schedule operation the Syracuse-
Miami traffic might be expected to encounter as much as 25 per cent NC
during the busy hour, and approximately 4 per cent NC for the whole
day, producing perhaps a two-minute over-all speed of service in the
busy season.

With the proposed automatic alternate routing plan, all points on the
chart will have automatic switching systems.f The customer (or the
operator until customer dialing arrangements are completed) will dial a
ten-digit code (three-digit area code 305 for Florida plus the listed
Miami seven-digit telephone number) into the machine at Syracuse.
The various routes which then might conceivably be tried automatically

* See the bibliography (particularly Pilliod and Truitt) for details of the
general trunking plan.

t The notation used on the diagram of Fig. 8 is: Open circle — Primary Center
(Syracuse, Miami); Triangle — Sectional Center (Albany, Jacksonville); Square
—Regional Center (White Plains, Atlanta, St. Louis; St. Louis is also the Na-
tional Center).
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PRESENT OPERATOR AUTOMATIC ALTERNATE
ROUTING ROUTING

Fig. 8 — Present and proposed methods of handling a call from Syracuse, N. Y.,
to Miami, Florida.

are shown on the diagram numbered in the order of trial; in this par-
ticular layout shown, a maximum of eleven circuit groups could be tested
for an idle path if each high usage group should be found NC. Dotted
lines show the high usage routes, which if found busy will overflow to the
final groups represented by solid lines. The switching equipment at each
point upon finding an idle circuit passes on the required digits to the
next machine.

While the routing possibilities shown are factual, only in rare instances
would a call be completed over the final route via St. Louis. Even in the
busy season busy hour just a small portion of the calls would be expected
to be switched as many as three times. And only a fraction of one per
cent of all ealls in the busy hour should encounter NC. As a result the
service will be fast. When ecalls are handled by a toll operator, the cus-
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tomer will not ordinarily need to hang up when NC is obtained. When
he himself dials, a second trial after a short wait following NC should
have a high probability of success.

Not many situations will be as complex as shown in Fig. 8; commonly
several of the links between centers will be missing, the particular ones
retained having been chosen from suitable economic studies. A large
number of switching arrangements will be no more involved than the
illustrative one shown in Fig. 9(a), centering on the Toll Center of
Bloomsburg, Pennsylvania. The dashed lines indicate high usage groups
from Bloomsburg to surrounding toll centers; since Bloomsburg ‘“homes”
on Scranton this is a final route as denoted by the solid line. As an exam-
ple of the operation, consider a call at Bloomsburg destined for Williams-
port. Upon finding all direct trunks busy, a second trial is made via
Harrisburg; and should no paths in the Harrisburg group be available,
a third and final trial is made through the Scranton group.

In considering the traffic flow of a network such as illustrated at
Bloomsburg it is convenient to employ the conventional form of a two-
stage graded multiple having “legs” of varying sizes and traffic loads
individual to each, as shown in Fig. 9(b). Here only the circuits im-
mediately outgoing from the toll center are shown; the parcels of traffic

(a) GEOGRAPHICAL LAYOUT
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----------- SCRANTON

SUNBURY

&
SHAMOKIN N 730 TRIAL
2T 2 :
POTTSVILLE A2 FRACKVILL
2,}/‘ 7NN HAZLETON
TRAL, WILKES-
- — = BARRE

HARRISBURG PHILADELPHIA

(b) GRADED MULTIPLE SCHEMATIC

FINAL GROUP TO SCRANTON | |

!
H.U. GROUP TO HARRISBURG [ ] I [ [
prtry:ll
NO. TRUNKS IN H.U. GROUPS EEEEB R

LOAD TO AND FROM
DISTANT OFFICE (CCS) 365 161 26 540 691 160 123 836 228 154

DISTANT OFFICE SCRN HBG PTVL SHKN SNBY WMPT FKVL HZN WKSB PHLA

Tig. 9 — Automatic alternate routing for direct distance dialing at Blooms-
burg, Pa.
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calculated for each further connecting route will be recorded as part of
the offered load for consideration when the next higher switching center
is engineered. It is implicitly assumed that a call which has selected one
of the alternate route paths will be successful in finding the necessary
paths available from the distant switching point onward. This is not
quite true but is believed generally to be close enough for engineering
purposes, and permits ignoring the return attempt problem.

6. NEW PROBLEMS IN THE ENGINEERING AND ADMINISTRATION OF INTER-
TOLL GROUPS RESULTING FROM ALTERNATE ROUTING

With the greatly increased teamwork among groups of intertoll trunks
which supply overflow calls to an alternate route, an unexpected increase
or flurry in the offered load to any one can adversely affect the service to
all. The high efficiency of the alternate route networks also reduces their
overload carrying ability. Conversely, the influence of an underprovision
of paths in the final alternate route may be felt by many groups which
overflow to it. With non-alternate route arrangements only the single
groups having these flurries would be affected.

Administratively, an alternate route trunk layout may well prove
easier to monitor day by day than a large number of separate and in-
dependent intertoll groups, since a close check on the service given on
the final routes only may be sufficient to insure that all customers are
being served satisfactorily. When rearrangements are indicated, how-

SIMPLE PROGRESSIVE
GRADED MULTIPLE GRADED MULTIPLE

(a) (b)

ILLUSTRATIVE INTERLOCAL AND INTERTOLL
ALTERNATE ROUTE TRUNKING ARRANGEMENTS

(c) (d)

ll

— Il
— I
-l
—

== [

PrEteets tt

Fig. 10 — Graded multiples and alternate route trunking arrangements.
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ever, the determination of the proper place to take action, and the de-
sirable extent, may sometimes be difficult to determine. Suitable traffic
measuring devices must be provided with these latter problems in mind.

For engineering purposes, it will be highly desirable:

(1) To be able to estimate the load-service relationships with any
specified loads offered to a particular intertoll alternate routing network;
and

(2) To know the day-to-day busy hour variations in the various
groups’ offered loads during the busy season, so that the general grade of
service given to customers can be estimated.

The balance of this paper will review the studies which have been made
in the Bell System toward a practicable method for predicting the grade
of service given in an alternate route network under any given loads.
Analyses of the day-to-day load variations and their effects on customer
dialing service are currently being made, and will be reported upon later.

7. LOAD-SERVICE RELATIONSHIPS IN ALTERNATE ROUTE SYSTEMS

In their simplest form, alternate route systems appear as symmetrical
graded multiples, as shown in Fig. 10(a) and 10(b). Patterns such as
these have long been used in local automatic systems to partially over-
come the trunking efficiency limitations imposed by limited access
switches. The traffic capacity of these arrangements has been the sub-
ject of much study by theory and “throwdowns” (simulated traffic
studies) both in the United States and abroad. Field trials have sub-
stantiated the essential accuracy of the trunking tables which have
resulted.

In toll alternate route systems as contemplated in America, however,
there will seldom be the symmetry of pattern found in local graded
multiples, nor does maximum switch size generally produce serious
limitation on the access. The “legs” or first-choice trunk groups will vary
widely in size; likewise the number of such groups overflowing calls
jointly to an alternate route may cover a considerable range. In all cases
a given group, whether or not a link of an alternate route, will have one
or more parcels of traffic for which it is the first-choice route. [See the
right-hand parcel of offered traffic on Fig. 10(c).] Often this first routed
traffic will be the bulk of the load offered to the group, which also serves
as an alternate route for other traffic.

The simplest of the approximate formulas developed for solving the
local graded multiple problems are hopelessly unwieldy when applied
to such arrangements as shown in Fig. 10(d). Likewise it is impracticable

I
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to solve more than a few of the infinite variety of arrangements by means
of “throwdowns.”

However, for both engineering (planning for future trunk provisions)
and administration (current operating) of trunks in these multi-alternate
routing systems, a rapid, simple, but reasonably accurate method is
required. The basis for the method which has been evolved for Bell
System use will be described in the following pages.

7.1. The “Peaked” Character of Overflow Traffic

The difficulty in predicting the load-service relationship in alternate
route systems has lain in the non-random character of the traffic over-
flowing a first set of paths to which calls may have been randomly
offered. This non-randomness is a well appreciated phenomenon among
traffic engineers. If adequate trunks are provided for accommodating
the momentary traffic peaks, the time-call level diagram may appear
as in Fig. 11(a), (average level of 9.5 erlangs). If however a more limited
number of trunks, say x = 12, is provided, the peaks of Fig. 11(a) will be
clipped, and the overflow calls will either be “lost” or they may be
handled on a subsequent set of paths y. The momentary loads seen on y
then appear as in Fig. 11(b). It will readily be seen that a given average
load on the y trunks will have quite different fluctuation characteristics
than if it had been found on the x trunks. There will be more occurrences
of large numbers of calls, and also longer intervals when few or no calls
are present. This gives rise to the expression that overflow traffic is
“peaked.”

Peaked traffic requires more paths than does random traffic to operate
at a specified grade of delayed or lost calls service. And the increase in
paths required will depend upon the degree of peakedness of the traffie
involved. A measure of peakedness of overflow traffic is then required
which can be easily determined from a knowledge of the load offered and
the number of trunks in the group immediately available.

In 1923, G. W. Kendrick, then with the American Telephone and
Telegraph Company, undertook to solve the graded multiple problem
through an application of Erlang’s statistical equilibrium method. His
principal contribution (in an unpublished memorandum) was to set up
the equations for describing the existence of calls on a full access group
of x 4* y paths, arranged so that arriving calls always seek service first
in the x-group, and then in the y-group when the x are all busy.

Let f(m, n) be the probability that at a random instant m ecalls exist
on the z paths and n calls on the y paths, when an average Poisson load
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of a erlangs is submitted to the z +  paths. The general state equation
for all possible call arrangements, is

(@* 4+ m + n)f(m, n) = (m + Df(m + 1, n) o
+ (n + Dfim,n + 1) + af(m — 1,n) + af(z,n — I

in which the term marked (1) is to be included only when m = z, and
* indicates that the a in this term is to be omitted whenm + n = z + .
m and n may take values only in the intervals,0 = m = 2;0 = n = ¥.

As written, the equation represents the “lost calls cleared” situation.
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By choosing © 4+ y large compared with the submitted load a a “lost
calls held” situation or infinite-overflow-trunks result can be approached
as closely as desired.

Kendrick suggested solving the series of simultaneous equations (7) by
determinants, and also by a method of continued fractions. However
little of this numerical work was actually undertaken until several years
later,

Early in 1935 Miss E. V. Wyckoff of Bell Telephone Laboratories be-
came interested in the solution of the (x + 1)(y + 1) lost calls cleared
simultaneous equations leading to all terms in the f(m, n) distribution.
She devised an order of substituting one equation in the next which pro-
vided an entirely practical and relatively rapid means for the numerical
solution of almost any set of these equations. By this method a con-
siderable number of f(m, n) distributions on z, y type multiples with
varying load levels were calculated.

From the complete m, n matrix of probabilities, one easily obtains the
distribution 8,(n) of overflow calls when exactly m are present on the
lower group of x trunks; or by summing on m, the 8(n) distribution with-
out regard to m, is realized. A number of other procedures for obtaining
the f(m, n) values have been proposed. All involve lengthy computations,
very tedious for solution by desk calculating machines, and most do not
have the ready checks of the Wyckoff-method available at regular points
through the calculations.

In 1937 Kosten® gave the following expression for f(m, n):

s ) =~ 35 (£) G o) ©

! eis1(x)ei(T)

where

‘Pc(ﬂi) =

and for ¢ > 0,

7=0 J

eilz) = c_“i (i A 1)(_5%

These equations, too, are laborious to calculate if the load and num-
bers of trunks are not small. It would, of course, be possible to program a
modern automatic computer to do this work with considerable rapidity.

The corresponding application of the statistical equilibrium equations
to the graded multiple problem was visualized by Kendrick who, how-
ever, went only so far as to write out the equation for the three-trunk
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case consisting of two subgroups of one trunk each and one common
overflow trunk.

Instead of solving the enormously elaborate system of equations de-
seribing all the calls which could simultaneously be present in a large
multiple, several ingenious methods of convoluting the

o) = 3 m, n)

overflow distributions from the individual legs of a graded multiple have
been devised. For example, for the multiple of Fig. 10(a), the probability
of loss P; as seen by a call entering subgroup number 7, is approximately,

v—1 oo o0

P; = Z}u Z:,, 0..:(r) ¥z — 1) + Z; 02,4(r) 9)
in which y(z — 7) is the probability of exactly z — 7 overflow calls being
present, or wanting to be present, on the alternate route from all the
subgroups except the tth, and with no regard for the numbers of calls
present in these subgroups. The 6;,:(r) = fi(x:, r) term, of course, con-
templates all paths in the particular originating call’s subgroup being
occupied, forcing the new call arriving in subgroup ¢ to advance to the
alternate route. This corresponds to the method of solving graded mul-
tiples developed by E. C. Molina® but has the advantage of overcoming
the artificial “no holes in the multiple’” assumption which he made.
Similar calculating procedures have been suggested by Kosten.* These
computational methods doubtless yield useful estimates of the resulting
service, and for the limited numbers of multiple arrangements which
might oceur in within-office switching trains (particularly ones of a sym-
metrical variety) such procedures might be practicable. But it would be
far too laborious to obtain the individual overflow distributions 6(n),
and then convolute them for the large variety of loads and multiple
arrangements expected to be met in toll alternate routing.

7.2. Approxzimate Description of the Character of Overflow Traffic

It was natural that various approximate procedures should be tried in
the attempt to obtain solutions to the general loss formula sufficiently
accurate for engineering and study purposes. The most obvious of these
is to calculate the lower moments or semi-invariants of the loads over-
flowing the subgroups, and from them construct approximate fitting

* Kosten gives the above approximation (9), which he calls Wy*, as an upper

limit to the blocking. He also gives a lower limit, Wy, in which z = y throughout
(References 4, 5).
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distributions for 8(n) and 6.(n). Since each such overflow is independent
of the others, they may be combined additively (or convoluted), to ob-
tain the corresponding total distribution of calls appearing before the
alternate route (or common group). It may further be possible to obtain
an approximate fitting distribution to the sum-distribution of the over-
flow calls.

The ordinary moments about the 0 point of the subgroup overflow
distribution, when m of the z paths are busy, are found by

v

wi'(m) = 2 n'f(m, n) (10)

n=0

When an infinite number of y-paths is assumed, the resulting expres-
sions for the mean and variance are found to be:*
Number of x-paths busy unspecified:{

Mean = a = a-F .(a) (11)
ol —a+alz+14a— a7 (12)

I
I

Variance = v

All z-paths occupied,
Mean = a, = alt — a + 1 + aBy.(a)]™ (13)
Variance = v; = [l — oz + 2a(z + 2 4+ a; — a)”']  (14)

Equations (11) and (12) have been calculated for considerable ranges
of offered load @ and paths x. Figs. 12 and 13 are graphs of these results.
For example when a load of 4 erlangs is submitted to 5 paths, the aver-
age overflow load is seen to be « = 0.80 erlang, the same value, of
course, as determined through a direct application of the Erlang E,
formula. During the time that all x paths are busy, however, the over-
flow load will tend to exceed this general level as indicated by the value
of a; = 1.41 erlangs calculated from (13). Similarly the variance of the
overflow load will tend to increase when the z-paths are fully occupied,

* The derivation of these equations is given in Appendix I.
t The skewness factor may also be of interest:

Vi =
B = patl3

_ 1 a 2 (z + a — a)a? n (15)
T atlta—alr+2\(@—a2+2@—0)+r+2+ @+2— da

+ 3(1 —a) } + a(l —a)(1 — 2{2)]
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as shown by » = 1.30, and », = 1.95. In all cases the variances v and v,
will exceed the variance of corresponding Poisson traffic (which would
have variances of « and a. respectively).

7.2.1. A Probability Distribution for Overflow Traffic

It would be of interest to be able, given the first several descriptive
parameters of any traffic load (such as the mean and variance and skew-
ness factors of the overflow from a group of trunks), to construct an
approximate probability distribution 6(n) which would closely describe
the true momentary distribution of simultaneous calls. Any proposed
fitting distribution for the overflow from random traffic offered to
trunks, can, of course, be compared with

0(n) =m§ f(m, n)

determined from (7) or (8).

Suitable fitting curves should give probabilities for all possitive in-
tegral values of the variable (including zero), and have sufficient unspeci-
fied constants to accommodate the parameters selected for describing
the distribution. Moreover, the higher moments of a fitting distribution
should not diverge too radically from those of the true distribution; that
is, the “natural shapes” of fitting and true distributions should be simi-
lar. Particularly desirable would be a fitting distribution form derived
with some attention to the physical circumstances causing the ebb and
flow of calls in an overflow situation. The following argument and der-
ivation undertake to achieve these desiderata.*

A Poisson distribution of offered traffic is produced by a random arrival
of calls. The assumption is made or implied that the probability of a new
arrival in the next instant of time is quite independent of the number
currently present in the system. When this randomness (and correspond-
ing independence) are disturbed the resulting distribution will no longer
be Poisson. The first important deviation from the Poisson would be
expected to appear in a change from variance = mean, to variance >

* A two-parameter function which has the ability to fit quite well a wide variety
of true overflow distributions, has the form

En) = Ko + 1) e

in which K is the normalizing constant. The distribution is displaced one unit
from the usual discrete generalized exponential form, so that £(0) # 0. The ex-
pression, however, has little rationale for being selected a priori as a suitable
fitting function.
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mean. Corresponding changes in the higher moments would also be
expected.

What would be the physical description of a cause system with a vari-
ance smaller or larger than the Poisson? If the variance is smaller, there
must be forces at work which retard the call arrival rate as the number
of calls recently offered exceeds a normal, or average, figure, and which
increase the arrival rate when the number recently arrived falls below
the normal level. Conversely, the variance will exceed the Poisson’s
should the tendencies of the forces be reversed.* This last is, in fact, a
rough deseription of the incidence rates for calls overflowing a group of
trunks,

Since holding times are attached to and extend from the call arrival
instants, calls are enabled to project their influence into the future; that
is, the presence of a considerable number of calls in a system at any in-
stant reflects their having arrived in recent earlier time, and now can be
used to modify the current rate of call arrival.

Let the probability of a call originating in a short interval of time dt be

Pon = a4+ (n — a)w(n)] dt

number of calls present in the system at time ¢,
a = base or average arrival rate of calls per unit time, and
w(n) = an arbitrary funetion which regulates the modification in
call origination rate as the number of calls rises above
or falls below a.
Correspondingly, let the probability that one of » calls will end in the
short interval of time dt be

where =n

P,.=ndi,

which will be satisfied in the case of exponential call holding times, with
mean unity. Following the usual Erlang procedure, the general statistical
equilibrium equation is

fm) = f)[(1 — Pon)(1 — Pea)l + f(n — DPona(l — Pejn) (16)
+ fin 4+ DA = Pony1)Penna
which gives
(Pow + Peu)f(n) = Popaf(n — 1) + Penf(n + 1)
ignoring terms of order higher than the first in dt.

* The same thinking has been used by Vaulot” for decreasing the call arrival
rate according to the number momentarily present; and by Lundquist® for both
increasing and decreasing the arrival rate,
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Or,
[a + (0 — a)w(n) + nlf(n)
— a4+ (n — a — Dem — D]fn — 1) + (0 + Dfn + 1)

The choice of w(n) will determine the solution of (17). Most simply,
w(n) = k, making the variation from the average call arrival rate directly
proportional to the deviation in numbers of calls present from their
average number. In this case, the solution for an unlimited trunk group
becomes, with @' = a(l — k),

a(@ +k) - [a + (n — 1)i]
I
f(n) = ] = T( At 7 (18)
1 +a,+a(a.2;{— k)+a(a -I—k?z[(a + 2k)+

17)

which may also be written after setting ” = a'/k = a(1 — k)/k, as
a"(a” +1) --- [a" + (n = DIK"

_ nl (19)
f(ﬂ) - (1 — k)_ﬂt
The generating function (g.f.) of (19) is
o e (L= R
20T = S

which is recognized as that for the negative binomial, as distinguished

from the g.f.,
N
(47
N9 /7

(¢ + pT)" = VL

for the positive binomial.
The first four descriptive parameters of f(n) are:

Order Moment about Mean Descriptive Parameter
1 =0 Mean = 7 = a (20)
2 | pa = variance, v = a/(1 — k) Std Devn, ¢ = [a/(1 — K)]V2  (21)
a(l + k) B3 1+ k
3 | ps = TpT Skewness, v/, = Ty T (22)
3a2(1 — k) + a(k?+ 4k +1) . m 244k + 1
4 My = (1 — k):’ I{l]l'tOSlS,ﬂg = ;l =3 + —m (23)
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Since only two constants, a and k&, need specification in (18) or (19),
the mean and variance are sufficient to fix the distribution. That is, with
the mean 7 and variance » known,

a = or a =a(l — k) =na/v, or a” =a(l — k)/k (24)
E=1—a/v=1-—a/v (25)

The probability density distribution f(r) is readily caleulated from
(19); the cumulative distribution G(=n) also may be found through use
of the Incomplete Beta Funection tables since

I(n — 1, a")
= Liln — 1, a(l — k)/k)

G(zn)

Il

(26)

The goodness with which the negative binomial of (19) fits actual dis-
tributions of overflow calls requires some investigation. Perhaps a more
elaborate expression for w(n) than a constant k in (17) is required. Three
comparisons appear possible: (1), comparison with a variety of @,(n)
distributions with exactly m calls on the z trunks, or 8(n) with m unspeci-
fied, (obtained by solving the statistical equilibrium equations (7) for a
divided group); (2), comparison with simulation or “throwdown’’ results;
and (3), comparison with call distributions seen on actual trunk groups.
These are most easily performed in the order listed.*

Comparison of Negative Binomial with True Overflow Distributions

Figs. 14 to 17 show various comparisons of the negative binomial dis-
tribution with true overflow distributions. Fig. 14 gives in cumulative
form the cases of 5 erlangs offered to 1, 2, 5, and 10 trunks. The true

F(zn) = 3 60))

=n

distributions (shown as solid lines) are obtained by solving the difference
equations (7) in the manner described in Section 7.1. The negative bi-
nomial distributions (shown dashed) are chosen to have the same mean
and variance as the several F(=n) cases fitted. The dots shown on

* Comparison could also be made after equating means and variances respec-
tively, between the higher moments of the overflow traffic beyond z trunks and
the corresponding negative binomial moments: e.g., the skewness given by (15)
can be compared with the negative binomial skewness of (22). The difficulty here
is that one is unable to judge whether the disparity between the two distribution
functions as deseribed by differences in their higher parameters is significant or
not for traffic engineering purposes.
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the figure are for random (Poisson) traffic having the same mean values
as the F distributions. The negative binomial provides excellent fits
down to cumulated probabilities of 0.01, with a tendency thereafter to
give somewhat larger values than the true ones. The Poisson agreement
is good only for the overflow from a single trunk, as might have been
anticipated, the divergence rapidly increasing thereafter.

Fig. 15 corresponds with the cases of Fig. 14 except that the true over-
flow F,(=n) distributions for the conditional situation of all x-paths
busy, are fitted. Again the negative binomial is seen to give a good agree-
ment down to 0.01 probability, with somewhat too-high estimates for
larger values of the simultaneous overflow calls n.

Fig. 16 shows additional comparisons of overflow and negative bi-
nomial distributions. As before, the agreement is quite satisfactory to
0.01 probability, the negative binomial thereafter tending to give some-
what high values.

On Fig. 17 are compared the individual 8(n) density distributions for
several cases. The agreement of the negative binomial with the true
distribution is seen to be uniformly good. The dots indicate the random
(Poisson) individual term distribution corresponding to the a = 9.6 case;

1.0 TRUE DISTRIBUTION
———- NEGATIVE BINOMIAL
FITTING DISTRIBUTION
* CORRESPONDING
RANDOM TRAFFIC
0.l
F(zn)
0.01
N \
Q.00 " . n TN . L P : A L |
O 1 2 3 4 56 7 8 9 0 1 12131415

N = NUMBER OF SIMULTANEOUS CALLS

Fig. 14 — Probability distributions of overflow traffic with 5 erlangs offered to
1,2, 5, and 10 trunks, fitted by negative binomial.
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the agreement, of course, is poor since the non-randomness of the over-
flow here is marked, having an average of 1.88 and a variance of 3.84.

Comparison of Negative Binomial with Overflow Distributions Observed
by Throwdowns and on Actual Trunk Groups

Fig. 18 shows a comparison of the negative binomial with the over-
flow distributions from four direct groups as seen in throwdown studies.
The agreement over the range of group sizes from one to fifteen trunks is
seen to be excellent. The assumption of randomness (Poisson) as shown
by the dot values is clearly unsatisfactory for overflows beyond more
than two or three trunks.

A number of switch counts made on the final group of an operating
toll alternate routing system at Newark, New Jersey, during periods
when few calls were lost, have also shown good agreement with the neg-
ative binomial distribution.

7.2.2. A Probability Distribution for Combined Overflow Traffic Loads

It has been shown in Section 7.2.1 that, at least for load ranges of wide
interest, the negative binomial with but two parameters, chosen to agree

1.0
TRUE DISTRIBUTION
———— NEGATIVE BINOMIAL
FITTING DISTRIBUTION
0.}
F (2N)
0.0l
0.001__. . . P v N
o | 3 5 6 7 8 9 10 11 12 13 14 15

L
4
=NUMBER OF SIMULTANECUS CALLS

Fig. 15 — Probability distributions of overflow traffic with 5 erlangs offered to
1, 2, 5, and 10 trunks, when all trunks are busy; fitted by negative binomial.
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with mean and variance, gives a satisfactory fit to the distribution of
traffic overflowing a group of trunks. It is now possible, of course, to
convolute the various overflows from any number of groups of varying
sizes, to obtain a combined overflow distribution. This procedure, how-
ever, would be very clumsy and laborious since at each switching point
in the toll alternate route system an entirely different layout of loads and
high usage groups would require solution; it would be unfeasible for
practical working,

We return again to the method of moments. Since the overflows of
the several high usage groups will, in general, be independent of one
another, the ith semi-invariants A; of the individual overflows can be
combined to give the corresponding semi-invariants A; of their total,

Ay =N+ ohi - (27)

Or, in terms of the overflow means and variances, the corresponding
parameters of the combined loads are

A=+ w4+ - (28)
At w4 (29)

Average

Variance = V'

1.0
TRUE DISTRIBUTION
-=~== NEGATIVE BINOMIAL
B FITTING DISTRIBUTION
0.l
F (En) X=10, 84=9.6
AND
Fr(20)
0.01F
x=2,
.
\
0.001 L " " L 1 1 1 ) 1 L 1 1 N N
0 I 2 3 4 5 6 7 8 9 10 {l 12 13 14 15
N = NUMBER OF SIMULTANEQUS CALLS

'Fig. 16 — Probability distributions of overflow traffic: 3 erlangs offered to 2
trunks, and 9.6 erlangs offered to 10 trunks.
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With the mean and variance of the combined overflows now deter-
mined, the negative binomial can again be employed to give an approxi-
mate description of the distribution of the simultaneous calls ¢(z) offered
to the common, or alternate, group.

The acceptability of this procedure can be tested in various ways. One
way is to examine whether the convolution of several negative binomials
(representing overflows from individual groups) is sufficiently well fitted
by another negative binomial with appropriate mean and variance, as
found above.

It can easily be shown that the convolution of several negative bi-
nomials all with the same over-dispersion (variance-to-mean ratio) but
not necessarily the same mean, is again a negative binomial, Shown in
Table I are the distribution components and their parameters of two
examples in which the over-dispersion parameters are not identical. The
third and fourth semi-invariants of the fitted and fitting distributions, are
seen to diverge considerably, as do the Pearsonian skewness and kurtosis
factors. The test of aceeptability for traffic fluctuation description comes
in comparing the fitted and fitting distributions which are shown on
Fig. 19. Here it is seen that, despite what might appear alarming dis-

1.0

TRUE DISTRIBUTION

-——- NEGATIVE BINOMIAL
FITTING DISTRIBUTION

e RANDOM TRAFFIC, a=1.9

0.1
a(n)
0.01
0=0.0024 N
V=0.0033 \‘
0.001 L : ' K |
o + 2 3 4 5 6 7 8 9 10 11 12

N = NUMBER OF SIMULTANEOUS CALLS

Fig. 17 — Probability density distributions of overflow traffic from 10 trunks,
fitted by negative binomial.
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parities in the higher semi-invariants, the agreement for practical traffic
purposes is very good indeed.

Numerous throwdown checks confirm that the negative binomial em-
ploying the calculated sum-overflow mean and variance has a wide range
over which the fit is quite satisfactory for traffic deseription purposes.
Fig. 20 shows three such trunking arrangements selected from a con-
siderable number which have been studied by the simulation method.
Approximately 5,000, 3,500, and 580 calls were run through in the three
examples, respectively. The overflow parameters obtained by experiment
are seen to agree reasonably well with the theoretical ones from (28)
and (29) when the numbers of calls processed is considered.

On Fig. 21 are shown, for the first arrangement of Fig. 20, distributions
of simultaneous offered calls in each subgroup of trunks compared with
the corresponding Poisson; the agreement is satisfactory as was to be
expected. The sum distribution of the overflows from the eight subgroups
is given at the foot of the figure. The superposed Poisson, of course, is a
poor fit; the negative binomial, on the other hand, appears quite accept-
able as a fitting curve.

1o. 1 TRUNK=-a=122 g 3 TRUNKS - 3=2.24
THEORY OBSD THEORY  0BSD
] o8}
0.8 (_-----J (—) 8 (-.---.! (_)
AVG 067 063 AVG 055 0.51
| VAR 077 oso 96T VAR 077 063
P=n « RANDOM TRAFFIC « RANDOM TRAFFIC
041 3=0.67 04r a=0.55
oz} 0.2
0 . . “ O - »
o 1 2 3 4 5 0 1t 2 3 4 5 6
N=NUMBER OF SIMULTANEOUS CALLS
15 TRUNKS - @=11.46 9 TRUNKS - 3=6.21
10 THEory oasp ' THEORY  OBSD
(--- ---‘ (_] (-----I) (—]
0.8l AVG 081 oso ©8 AVG 052 0.46
| VAR 188 142 \ VAR 100 148
I * RANDOM TRAFFIC 06T + RANDOM TRAFFIC
P=n \ a=0.81 a=0.52
oal
ozt
0

" y 0 M)
0 2 4 6 8 10 6] 2 4 6 8 10 12
N=NUMBER OF SIMULTANEQUS CALLS

_ Fig, 18 — Overflow distributions from direct interoffice trunk groups; negative
binomial theory versus throwdown observations,
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TABLE I — COMPARISON OF PARAMETERS OF A FITTING
NEGATIVE BINOMIAL To THE CONVOLUTION OF
THREE NEGATIVE BINOMIALS

Example No. 1 Example No. 2
Component Component parameters ComPonen t Component parameters
dist'n No. dist’n No.
Mean Variance Mean Variance
1 5 5 1 1 1
2 2 4 2 2 3
3 1 3 3 2 6
8 12 5 10
Semi-Invariants A, Skewness 4/8; , and Kurtosis g2 , of Sum Distributions
Parameter Exact Fitting Parameter Exact Fitting
Ay 8 8 Ay 5 5
Aa 12 12 Az 10 10
Ay 32 24 As 37 30
Ay 168 66 As 239.5 130
VB 0.770 0.577 Vi 1.170 0.949
Ba 4.167 3.458 B 5.395 4.300

Fig. 22 shows the corresponding comparisons of the overflow loads in
the other two trunk arrangements of Fig. 20. Again good agreement
with the negative binomial is seen.

7.3. FEquivalent Random Theory for Prediction of Amount of Traffic Over-
flowing a Single Stage Alternate Route, and Its Characler, with Lost
Calls Cleared

As discussed in Section 7.2, when random traffic is offered to a limited
number of trunks z, the overflow traffic is well described (at least for
traffic engineering purposes) by the two parameters, mean « and variance
». The result can readily be applied to a group divided (in one’s mind)
two or more times as in Fig. 23.

Employing the @ and » curves of Figs. 12 and 13, and the appropriate
numbers of trunks x;, @, + @, and x; + x2 + x3, the pairs of descrip-
tive parameters, a;, v1, a2, v and a3, v5 can be read at once. It is clear
then that if at some point in a straight multiple a traffic with parameters
ay , vp 18 seen, and it is offered to wx, paths, the overflow therefrom will
have the characteristics as, v2 . To estimate the particular values of a.
and v, , one would first determine the values of the equivalent random
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1.0 | .- CONVOLUTION OF 3 NEGATIVE BINOMIAL
-“"" VARIABLES WITH PARAMETERS:
‘ AVG VAR
0.8 s 5
2 4
0.6 1 3
0.4
~FITTING NEGATIVE BINOMIAL
0.2
0 " N " L N
1.0
_ CONVOLUTION OF 3 NEGATIVE BINOMIAL
o8k .-~ VARIABLES WITH PARAMETERS:
- AVG VAR
1 1
06| 2 3
2 6
04l
L-FITTING NEGATIVE BINOMIAL
0.2}
o] L i 1 2 i i A A

A i A e L A
4 6 8 10 12 14 16
N=NUMBER OF CALLS PRESENT

Fig. 19 — Fitting sums of negative binomial variables with a negative binomial.

traffic @ and trunks 2; which would have produced ey and v . Then pro-
ceeding in the forward direction, using a and x; + 2z, one consults the
« and v charts to find a; and v, . Thus, within the limitations of straight
group traffic flow, the character (mean and variance) of any overflow
load from z trunks can be predicted if the character (mean and variance)
of the load submitted to them is known.

Curves could be constructed in the manner just described by which the
overflow’s ' and v’ are estimated from a load, o and v, offered to x trunks.
An illustrative fragment of such curves is shown in Appendix II, with an
example of their application in the calculation of a straight trunk group
loss by considering the successive overflows from each trunk as the
offered loads to the next.

Enough, perhaps, has been shown in Section 7.2 of the generally ex-
cellent descriptions of a variety of non-random traffic loads obtainable
by the use of only the two parameters @ and », to make one strongly
suspect that most of the fluctuation information needed for traffic engi-
neering purposes is contained in those two values. If this is, in fact, the
case, we should then be able to predict the overflow o, ¢’ from x trunks
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with an offered load «, v which has arisen in any manner of overflow from
earlier high usage groups, as illustrated in Fig. 24.

This is found to be the case, as will be illustrated in several studies de-
scribed in the balance of this section. In the determination of the charac-
teristics of the overflow traffic «’, ¢’ in the cases of non-full-access groups,
such as Figs. 24(b) and 24(c), the equivalent straight group is visualized
[Fig. 24(a)), and the Equivalent Random load A and trunks S are found.*
Using A, and S + C, to enter the « and » curves of Figs. 12 and 13, o’
and ¢ are readily determined. To facilitate the reading of A and S, Fig.
25t and Fig. 261 (which latter enlarges the lower left corner of Fig. 25)
have been drawn. Since, in general, « and » will not have come from a
simple straight group, as in Fig. 24(a), it is not to be expected that S,

OVERFLOW THEORY OBSD
AVERAGE 576 598
VARIANCE 12.37 14.89
== — = OST NO.1
L | LN R |
OFFER 136 1024 1024 1018 922 763 748 076 ERLANGS
OVERFLOW THEORY 0BSD
AVERAGE 5.02 506
VARIANCE 9.95 7.90
— - = = OST NO.6
ot t ot s
OFFER 1066 324 2.44 1146 981 059 1.42 ERLANGS
OVERFLOW HEORY 0BSD.
AVERAGE 283 2.87
VARIANCE 3.35 334
= OST NO.14

T R
1

OFFER 2.52 1.08 094 094 059 113 085 ERLANGS

Fig. 20 — Comparison of joint-overflow parameters; theory versus throwdown.

* A somewhat similar method, commonly identified with the British Post
Office, which uses one p ars nneter, has been employed for solving symmetrical

grnded multiples (Ref, 9).
i Figs. 25 and 26 will be found in the envelope on the inside back cover,
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0.15 GROUP NO.1 GROUP NO.2
17 TRUNKS,a=13.16 14 TRUNKS, a=10,24
0.10
005
0 . )
5] 5 10 15 20 0 5 10 15 20
I =NUMBER OF SIMULTANEOUS CALLS OFFERED TO THE DIRECT TRUNKS
0.15 GROUP NO.3 GROUP NO.4
13 TRUNKS, 3=10.24 14 TRUNKS, 3=10,18
010}
0.05
0 . )
0 5 10 15 20 0 5 10 15 20
0.15 GROUP NO.5 GROUP NO.6
12 TRUNKS, a=9.22 10 TRUNKS, a=7.63
0.10
005
0 e
o 5 10 15 20 o 5 10 15 20
0.5
0.20 GROUP NO.7 0.4 GROUP NO.8
10 TRUNKS, a=7.48 1 TRUNK, @=0.76
0.15
f(r) 010
0.05
0 i
| 2 3 4 5
0.15 DISTRIBUTION OF OVERFLOW CALLS FROM 8 DIRECT
GROUPS OFFERED TO 1ST ALTERNATE ROUTE
-, THEORY 0BSD
010 AVG 576 598
' --POISSON VAR 124 149
_--THROWDOWN OBSNS
0.05
,-NEGATIVE BINOMIAL
0 -

) T2 3 4 5 6 7 8 @8 10 1 iz 13 4 15 16 17 18 19
N=NUMBER OF SIMULTANEOUS CALLS OFFERED TO THE ALTERNATE ROUTE

Fig. 21 — Comparison of theoretical and throwdown distributions of simul-
taneous calls offered to direct groups and to their first alternate route (OST No. 1).
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read from Fig. 25, will be an integer. This causes no trouble and S should
be carried along fractionally to the extent of the accuracy of result de-
sired. Reading S to one-tenth of a trunk will usually be found sufficient
for traffic engineering purposes.

Fxample 1: Suppose a simple graded multiple has three trunks in each
of two subgroups, which overflow to € common trunks, where ¢ = 1,

1.0

08

06

04

02f

OST NO.6
THEORY 0BSD
(=) (—)
AVG 5.02 5.06
VAR 9.95 7.90
* RANDOM TRAFFIC,a=50
--0BSD

-~-NEGATIVE BINOMIAL

0.8

0.6

04

0.2

2 4 6 8 10 12 14 16 18

N=NUMBER OF SIMULTANEOUS CALLS

OST NO.14
THEORY 0BSD

[reomm) (—)
AVG 283 2.87
VAR 3.35 334

* RANDOM TRAFFIC,a=2.8

-~NEGATIVE BINOMIAL

2 4 6 8 10 12 14 16 18
N=NUMBER OF SIMULTANEOUS CALLS

_ Fig. 22 — Combined overflow loads offered to alternate-route OST trunks from
direct interoffice trunks; negative binomial theory vs throwdown observations.

T“sfva
X3

T 0‘2 1V2
Xz —
fa,,v,

T

Xy

Fig. 23 — A full access group divided at several points to examine the traffic

character at each point.
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2 or 3. A load of @ erlangs is submitted to each subgroup, e having the
values 1, 2, 3, 4 or 5. What grade of service will be given?

Solution: The load overflowing each subgroup, when a = 1 for example,
has the characteristics e = 0.0625 and v = 0.0790. Then A’ = 2« = 0.125
and V' = 20 = 0.158. Reading on Fig. 26 gives the Equivalent Random
values of A = 1.04 erlangs, S = 2.55 trunks. Reading on Fig. 12.1 with
¢+ 8 =2355when C = 1, and A = 1.04, we find &’ = 0.0350 and
o'/ (a; 4+ as) = 0.0175. We construct Table IT in which loss values pre-
dicted by the Equivalent Random (ER) Theory are given in columns
(3), (5) and (7). For comparison, the corresponding exact values given
by Neovius* are shown in columns (2), (4) and (6). (Less exact loss

(a) (b) (c)

Yo, v Yoy Yot v
c
ta,v to,v ta,v
- —_—_—
R= = = ==

Fig. 24 — Various high usage trunk group arrangements producing the same
total overflow «, v.

figures were given previously by Conny Palm'’. The agreement is seen
to be excellent for engineering needs for all values in the table.

Ezample 2: Suppose in Fig. 24(b) the random offered loads and paths
are as given in Table I11; we desire the proportion of overflow and the
overflow load characteristics from an alternate route of 5 trunks.

Solution: The individual overflows eu , v1; @2, v2 ; and az, v are read
from Figs. 12 and 13 and recorded in columns (4) and (5) of the table.
The « and v columns are totalled to obtain the sum-overflow average A’
and variance V’. The Equivalent Random load A which, if submitted to
S trunks would produce overflow A, V”, is found from Fig. 26. Finally,
with A submitted to S + C trunks the characteristics o’ and ¢’, of the
load overflowing the C' trunks are found. The numerical values obtained

* Artificial Traffic Trials Using Digital Computers, a paper presented by G.
Neovius at the First International Congress on the Application of the Theory of

fgsog)ability on Telephone Engineering and Administration, Copenhagen, June,
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TaBLe II—CarncuraTioN oF Loss IN A SiMPLE GRADED MULTIPLE
g =23 =a =3, a =a =a=1to5, C=1t03

Proportion of Each Sul}group Load which Overflows

=a'/(a1 + a2)
Load Submitted to each
Suhgrnupam Erlangs C=1 C=2 C=3
True ER True ER True ER
1) ) (3 @ (5) (6 (n

0.01737 | 0.0175 | 0.00396 | 0.0045 | 0.00077 | 0.00088
0.11548 | 0.115 | 0.05630 | 0.057 | 0.02438 | 0.024
0.24566 | 0.246 | 0.16399 | 0.163 | 0.10212 | 0.103
0.35935 | 0.363 | 0.27705 | 0.279 | 0.20535 | 0.210
0.44920 | 0.445 | 0.37336 | 0.370 | 0.30308 | 0.3056

QU oI b =

for this example are shown in the lower section of Table II1. As before,
of course, the “lost” calls are assumed cleared, and do not reappear in
the system.

FExample 3: A load of 18 erlangs is offered through four groups of
10-point selector switches to twenty-two trunks which have been desig-
nated as “high usage” paths in an alternate route plan. Which of the
trunk arrangements shown in Fig. 27 is to be preferred, and to what
extent?

Solution: By successive applications of the Equivalent Random
method the overflow percentages for each of the three trunk arrange-
ments are determined. The results are shown in column 2 of Table IV.
The difference in percentage overflow between the three trunk plans is
small; however, plan 2 is slightly superior followed by plans 3 and 1 in

TasLE III — CALcuLATION OF OVERFLOWS FROM A SIMPLE
ALTERNATE RouTE TRUNK ARRANGEMENT

Offered Load i Overflow Loads
SN“EﬂhD:f egrlgn;: mn Number ;E Trunks
a v
1 3.5 3 1.41 1.98
2 5.7 6 1.39 2.40
3 6.0 9 0.45 0.85
15.2 3.25 5.23

Description of load offered to alternate route: A' = 3.25, V' = 5.23.

Equivalent straight multiple: S = 5.8 trunks, A = 8.00 erlangs (from Fig. 26).

Overflow from ¢ = 5 alternate route trunks (enter Figs. 12 and 13 with A =
S80and S+ € = 108:a’ = 0.72, v’ = 1.48.

Proportion of load to commons which overflows = 0.72/3.25 = 0.22.

Proportion of offered load which overflows = 0.72/15.2 = 0.0475.
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PROPORTION OVERFLOWING

NO.1 E.R.THEORY NEOVIUS THROWDOWNS
[ —— & 8 » BESK P%NAE:SED
— & * @
A=18 —=0.123 o.118 o0.114
— LN -
— . L L ’
NO.2
—- e
A =18 —— e & I [ I
. e e —=0.113 0.110 o.l10
B N

NO.3

A=18 {:: : [ I I I I [ [—-—o.na ‘013 o.an
SRR RRRRN!

Tig. 27 — Comparison of losses on three graded arrangements of 22 trunks.

that order. The results of extensive simulations made by Neovius on the
three trunk plans are available for comparison.* The values so obtained
are seen to be very close to the ER theoretical ones; moreover the same
order of preference among the three plans is indicated and with closely
similar loss differentials between them.

7.3.1. Throwdown Comparisons with Egquivalent Random Theory on
Simple Alternate Routing Arrangements with Lost Calls Cleared

Results of manually run throwdowns on a considerable number of
non-symmetrical single-stage alternate route arrangements are available.
Some of these were shown in Fig. 20; they represent part of a projected
multi-alternate route layout (to be described later) for outgoing calls
from the local No. 1 crossbar Murray Hill-6 office in New York to all
other offices in the metropolitan area. The paths hunted over initially are
called direct trunks; they overflow calls to Office Selector Tandem (OST)
groups, numbered from 1 to 17, which are located in widely dispersed
central office buildings in the Greater New York area.

* Loc. cit,
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TaBLe IV—Loss ComMPARISON OF GRADED ARRANGEMENTS

Estimates of Percentage of Load Overflowing
Plan Number Neovius Throwdowns
ER Theory
BESK Computer Punched Cards
(262144 calls) (10,000 calls)
(1) (2) (3) (4)
1 12.3 11.81 11.4
2 11.3 10.98 11.0
3 11.8 11.25 11.1

TasrLe V— CoMrarisoN oF THEORY AND THROWDOWNS FOR THE
ParamMETERS OF Loaps OvErrFLowing THE ComMmoN TRUNKS
IN SINGLE-STAGE GRADED MULTIPLES

D]SZEu(tAe!E}e::gﬁc) No. of | Total No Tot%ilr.:ncatd’rorgsiesd to Total Overflow Load from OST
Grno.u'ps LDf of 'g.unkts
rec n 1rec : ;

C—;%up lNrgnfé Trlunks tGroups Eriangs ?q%?r:,)fﬂcuslt: Theory‘ Throwdown

' (in 2.7 hours) o o' o v’
1 6 8 91 68.91 4950 2.00| 5.50 | 2.36 | 6.52
2 3 3 45 37.49 2690 2.10 5.60 2.06 6.36
3 6 6 80 60.62 4355 1.50 | 4.00 | 1.30 | 5.67
4 3 6 52 38.49 2765 230 5.20 | 2.08| 6.43
5 3 3 17 12.51 900 0.45| 0.83 | 0.49 1.02
6 -4 7 64 48.62 3490 2.50 | 5.90 | 2.36 | 4.88
7 8 12 78 57.42 4125 2.20 | 5.60 1.71 4.08
8 6 9 16 12.96 930 0.82 1.63 0.81 1.11
9 1 2 22 16.96 1220 1.30 | 2.60 | 1.02| 1.73
10 5 6 10 9.52 685 0.78 1.40 1.06 | 2.07
11 8 13 16 16.43 1180 1.90| 3.80 | 2.77 | 7.29
12 8 9 2 6.88 495 0.70 | 1.30 | 0.81 1.83
13 5 15 33 21.42 1540 1.75 | 3.30 | 1.16 | 2.01
14 2 7 11 8.05 580 1.46 | 2,20 1.63 | 2.14
15 9 15 8 11.97 860 1.60 | 3.25| 1.55 | 4.12
16 11 22 34 27.46 1970 1.75 | 4.00 | 1.34 | 2.26
17 3 7 4 5.81 420 1.53 | 2.31 1.43 1.80
26.64 | 58.42 | 25.92 | 61.32

In Table V are given certain descriptive data for the 17 OST trunk
arrangements showing numbers of legs of direct trunks, total direct
trunks, the offered erlangs and calls, and the mean and variance of the
alternate routes’ overflows, as obtained by the ER theory and by
throwdowns.* The throwdown ' and " values of the OST overflow

* Additional details of this simulation study are given in Section 7.4.
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Fig. 28 — Comparison of theoretical and throwdown overflows from a number
of first alternate routes.

were obtained by 36-second switch counts of those calls from each OST
group which had come to rest on subsequent alternate routes.

On Fig. 28 is shown a summary of the observed and calculated pro-
portions of “lost” to “offered” traffic at each OST alternate route group.
As may be seen from the figure and the last four columns of Table V,
the general agreement is quite good; the individual group variations are
probably no more than to be expected in a simulation of this magnitude.

An assumption of randomness (which has sometimes been argued as
returning when several overflows are combined) for the load offered to
the OST’s gives the Erlang E loss curve on Fig. 28. This, as was to be
expected, rather consistently understates the loss.

Since “switch-counts” were made on the calls overflowing each OST,
the distributions of these overflows may be compared with those esti-
mated by the Negative Binomial theory having the mean and variance
predicted above for the overflow. Fig. 29 shows the individual and cumu-
lative probability distributions of the overflow simultaneous calls from
the first two OST alternate routes. As will ke seen, the agreement is
quite good even though this is traffic which has been twice “non-ran-
domized.” Comparison of the observed and calculated overflow means
and variances in Table V indicates that similar agreement between
observed and theoretical fitting distributions for most of the other OST’s
would be found.

7.3.2. Comparison of Equivalent Random Theory with Field Results on
Stmple Alternate Routing Arrangements

Data were made available to the author from certain measurements
made in 1941 by his colleague C. Clos on the automatic alternate routing
trunk arrangement in operation in the Murray Hill-2 central office in
New York. Mr. Clos observed for one busy hour the load carried on
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several of its OST alternate route groups (similar to those shown in
Table V for the Murray Hill-6 office, but not identical) by means of an
electromechanical switch-counter having a six-second cyele. During
each hour’s observation, numbers of calls offered and overflowing were
also recorded.

Although the loads offered to the corresponding direct trunks which
overflowed to the OST group under observation were not simultaneously
measured, such measurements had been made previously for several
hours so that the relative contribution from each direct group was
closely known. In this way the loads offered to each direct group which
produced the total arriving before each OST group could be estimated
with considerable assurance. From these direct group loads the character
(mean and variance) of the traffic offered to and overflowing the OST’s
was predicted. The observed proportion of offered traffic which over-
flowed is shown on Fig. 30 along with the Equivalent Random theory
prediction. The general agreement is again seen to be fairly good al-
though with some tendency for the ER theory to predict higher than
observed losses in the lower loss ranges; perhaps the disparity on in-

OST NO.1 OST NO.2
05r THEORY oBSD 95 THEORY 0BSD
0.4 AVG 2.00 2.36 | AVG 2.10 2.05
' vAR 550 652 Of VAR  5.60 636
0.3 03
L]
(n ¥~ RANDOM TRAFFIC L RANDOM TRAFFIC
o2} F oz}
~-NEGATIVE BINOMIAL

o ~THROWDOWN orl ~-THROWDOWN
’ ' -NEGATIVE BINOMIAL
) B , 0 s —

0 5 10 15 0 5 10 15

N=NUMBER OF SIMULTANEOUS CALLS
1.0 1.0
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0.6 o6}
PZn
0.4} 04
~THROWDOWN

0.2 oar THROWDOWN

0 . . o .
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N=NUMBER OF SIMULTANEOUS CALLS

Fig. 20 — Distributions of loads overflowing from first alternate (OST) groups;
negative binomial theory versus throwdown observations.
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dividual OST groups is within the limits one might expect for data
based on single-hour observations and for which the magnitudes of the
direct group offered loads required some estimation. The assumption of
random traffic offered to the OST gives, as anticipated, loss predictions
(Erlang F)) consistently below those observed.

More recently extensive field tests have been conducted on a working
toll automatic alternate route system at Newark, New Jersey. High
usage groups to seven distant large cities overflowed calls to the New-
ark-Pittsburgh alternate (final) route. Data deseribing the high usage
groups and typical system busy hour loads are given in Table VI. (The
loads, of course, varied considerably from day to day.) The size of the
Pittsburgh route varied over the six weeks of the 1955 tests from 64 tc
71 trunks. Altogether the system comprised some 255 intertoll trunks. °

Observations were made at the Newark end of the groups by means
of a Traffic Usage Recorder — making switch counts every 100 seconds
— and by peg count and overflow registers. Register readings were photo-
graphically recorded by half-hourly, or more frequent, intervals. To
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OFFERED JAVG 7.55 719 522 381 206 779 2.36 4.09 248
LOAD |vAR 1358 1566 659 730 2.51 1854 277 4.59 590

Fig. 30 — Observed tandem overflows in alternate route study at Murray
Hill-2 (New York) 1940-1941,
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TaBLe VI—Hiea Usage Groups aAND TYPICAL SYSTEM
Busy Hour Loabs

High Usage Group, Length of Direct Route | Nominal Size of Group | Typical Offered Load
Newark to: (Air Miles) (Number of Trunks) {erlangs)
Baltimore............. 170 18 19
Cineinnati,........... 560 42 43
Cleveland............. 395 27 26
Dallas. ».............. 1375 33 34
Detroit............... 470 37 36
Kansas City.......... 1100 26 23
New Orleans, ......... 1170 5 4

compare theory with the observed overflow from the final route, esti-
mates of the offered load A’ and its variance V' are required. In the
present case, the total load offered to the final route in each hour was
estimated as

A" = Average of Offered Load

Peg Count of Calls Offered

= to Pittsburgh Group X Average Load Carried

(Peg Count of Offered Calls) : .

— (Peg Count of Overflow Calls) by Pittsburgh Group
The variance V' of the total load offered to the final route was estimated
for each hour as

I

V' = Variance of Offered Load

7 7
A’ - Z oy —]— E Vi
i=1 i=1

where «; and »; are, respectively, the average and variance of the load
overflowing from the 7th high usage group. (The expression, A’ —
7

> a;, is an estimate of the average — and, therefore of the variance

i=1

— of the first-routed traffic offered directly to the final route. Thus the
total variance, V', is taken as the sum of the direct and overflow com-
ponents.) Using A’, ¥V’ and the actual number, C, of final route trunks in
service, the proportion of offered ealls expected to overflow was calcu-
lated for the traffic and trunk conditions seen for 25 system busy hours
from February 17 to April 1, 1955 on the Pittsburgh route. The results
are displayed on Tig. 31, where certain traffic data on each hour are
given in the lower part of the figure. The hours are ordered — for con-
venience in plotting and viewing — by ascending proportions of calls
overflowing the group; observed results are shown by the double line
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curve, The superposed single line is the corresponding estimate by ER
theory of the hour-to-hour call losses. As may be seen, theory and ob-
servation are in good agreement both point by point and on the average
over the range of losses from 0.01 to 0.50. The dashed line shows the
prediction of final route loss for each hour on the assumption that the
offered traffic A’ was random. Such an assumption gives consistently low
estimates of the existing true loss.

As of interest, a series of heavy dots is included on Fig. 31. These are
the result of caleulating the Poisson Summation, P(C,L), where L is the
average load carried on, rather than offered to, the C trunks. It is inter-
esting that just as in earlier studies in this paper on straight groups of
intertoll trunks (for example as seen on Fig. 7), the Poisson Summation
with load carried taken as the load offered parameter, gives loss values
surprisingly close to those observed. Also, as before, this summation has
a tendency to give too-great losses at light loadings of a group and too-
small losses at the heavier loadings.

7.4 Prediction of Traffic Passing Through a Multi-Stage Alternate Roule
Network

In the contemplated American automatic toll switching plan, wide
advantage is expected to be taken of the efficiency gains available in
multi-alternate routing, Thus any procedure for traffic analysis and
prediction needs to be adaptable for the more complex multi-stage
arrangements as well as the simpler single-stage ones so far examined.
Extension of the Equivalent Random theory to successive overflows is
easily done since the characterizing parameters, average and variance,
of the load overflowing a group of paths are always available.

Since few cases of more than single-stage automatic alternate routing
are yet in operation in the American toll plant, it is not readily possible
to check an extension of the theory with actual field data. Moreover col-
lecting and analyzing observations on a large operating multi-alternate
route system would be a comparatively formidable experiment.

However, in New York city’s local interoffice trunking there is a very
considerable development of multi-alternate routing made possible by
the flexibility of the marker arrangements in the No. 1 crossbar switching
system. None of these overflow arrangements has been observed as a
whole, simultaneously and in detail. The Murray Hill-2 data in OST
groups reviewed in Section 7.3.2 were among the partial studies which
have been made.

In connection with studies made just prior to World War 11 on these
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TasrLe VII — Sum oF Digect Grour OvErrLow LoADSs,
OrrerED TO OST’s

| Theory Observed
AVEIAge. ..ttt 86.06 87.12
Varianee . . ......overeeereeaaiiaiaiaeann 129.5 127.4

local multi-alternate route systems, a throwdown was made in 1941 on a
proposed trunk plan for the Murray Hill-6 office. The arrangement of
trunks is shown on Fig. 32. Three successive alternate routes, Office
Selector Tandems (OST), Crossbar Tandem (XBT), and Suburban
Tandem (ST), are available to the large majority of the 123 direct trunk
groups leading outward to 169 distant offices. (The remaining 46 parcels
of traffic did not have direct trunks to distant offices but, as indicated
on the diagram, offered their loads directly to a tandem group.) A total
of 726 trunks is involved, carrying 475 erlangs of traffic.

A throwdown of 34,001 offered calls corresponding to 2.7 hours of
traffic was run. Calls had approximate exponential holding times, averag-
ing 135 seconds. Records were kept of numbers of calls and the load from
the traffic parcels offered to each direct group, as they were carried or
passed beyond the groups of paths to which they had access. Loads car-
ried by each trunk in the system were also observed by means of a 36-
second “switch-count.” (The results on the 17 OST groups reported in
Section 7.3.1 were part of this study.)

Comparisons of observation and theory which are of interest include
the combined loads to and overflowing the 17 OST’s. Observed versus
calculated parameters (starting with theory from the original direct
group submitted loads) are given in Table VII. The agreement is seen
to be very good.

The corresponding comparison of total load from all the OST’s is
given in Table VIII. Again the agreement is highly satisfactory.

Not all of the overflow from the OST’s was offered to the 22 crossbar
tandem trunks; for economic reasons certain parcels by-passed XBT and
were sent directly to Suburban Tandem.* This posed the problem of
breaking off certain portions of the overflow from the OST’s, to be added
again to the overflow from XBT. An estimate was needed of the contri-
bution made by each parcel of direct group traffic to any OST’s over-
flow. These were taken as proportional to the loads offered the OST by
each direct group (this assumes that each parcel suffers the same over-

* In the toll alternate route system by-passing of this sort will not oceur.
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flow probability). The variance of this overflow portion by-passing XBT
was estimated by assigning to it the same variance-to-average ratio as
was found for the total load overflowing the OST. Subtracting the means
and variances so estimated for all items by-passing XBT, left an approxi-
mate load for XBT from each OST. Combining these corrected overflows
gave mean and variance values for offered load to XBT. Observed values

TasrLe VIII — Sum oF Loaps OvErFLowINg OST’s

Theory Observed
Average. ..... ... iiiiiiiiiiieie 26.64 25.92
Varianee . .. ..o 58.42 61.32
TasrLe IX — Loap OrFrFerED TO CROSSBAR TANDEM
Theory Observed
Average. ... 25.18 25.51
Varianee . . ... ... 47 .67 56.10
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Tig. 33 — Distribution of load offered to crossbar tandem trunks; negative bi-
nomial theory versus throwdown observations.
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TaBLE X — Loap OverrFrLowiNnG CrossBar TANDEM

Theory Observed
AVETAZe. . ..o 6.55 6.47
Variance. ................ i 23.80 33.48

and those calculated (in the above manner) are given in Table IX.
Tig. 33 shows the distribution of XBT offered loads, observed and calcu-
lated. The agreement is very satisfactory. The random traffic (Poisson)
distribution, is of course, considerably too narrow.

In a manner exactly similar to previous cases, the Iiquivalent Random
load method was applied to the XBT group to obtain estimated param-
eters of the traffic overflowing. Comparison of observation and theory
at this point is given in Table X.

Fig. 34 shows the corresponding observed and caleulated distributions
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Fig. 34 — Distribution of calls from erossbar tandem trunks; negative binomial
theory versus throwdown observations,
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of simultaneous calls. The agreement again is reasonably good, in spite
of the considerable disparity in variances.

The overflow from XBT and the load which by-passed it, as well as
some other miscellaneous parcels of traffie, were now combined for final
offer to the Suburban Tandem group of 17 trunks. The comparison of
parameters here is again available in Table XI. On Fig. 35 are shown
the observed and calculated distributions of simultaneous calls for the
load offered to the ST trunks. The agreement is once again seen to be
very satisfactory.

We now estimate the loss from the ST trunks for comparison with the
actual proportion of calls which failed to find an idle path, and finally

TapLE XI — Loap OFFERED TO SUBURBAN TANDEM

Theory Observed
Average.. ... PP 15.38 14.52
Varlanee. . ..., 42 .06 48.53

THEORY 0OBSD
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o.10r . ® (eamans  (—)
. AVG 15,38 14.52
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Tig. 35 — Distribution of load offered to suburban tandem trunks; negative
binomial theory versus throwdown observations.
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TaBLE XII — Grape oF ServicE oN ST Grour

Obser-

vation Observation

Theory

Load submitted (erlangs) | 15.38 | 14.52 | Number of calls sub-

mitted 1057
Load overflowing (er- | 3.20 2.63 | Number of calls over-
langs) flowing 200
Proportion load over-| 0.209 | 0.181 | Proportion of ealls over-
flowing flowing 0.189

TaBLE XIII — GRADE OF SERVICE ON THE SYSTEM

Theory Observed
Total load submitted.. . ......................... 475 erlangs 34,001 calls
Total load overflowing. .......................... 3.20 erlangs | 200 calls
Proportion of load not served.................... 0.00674 0.00588

compare the proportions of all traffic offered the system which failed to
find a trunk immediately. See Tables XII and XIII.

After these several and varied combinations of offered and overflowed
loads to a system of one direct and three alternate routes it is seen that
the final prediction of amount of load finally lost beyond the ST trunks
is gratifyingly close to that actually observed in the throwdown. The
prediction of the system grade of service is, of course, correspondingly
good.

It is interesting in this connection to examine also the proportions
overflowing the ST group when summarized by parcels contributed from
the several OST groups. The individual losses are shown on Fig. 36; they
appear well in line with the variation one would expect from group to
group with the moderate numbers of calls which progressed this far
through the multiple.
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Fig, 36 — Overflow calls on third alternate (ST) route.
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7.4.1 Correlation of Loss with Peakedness of Components of Non-Ran-
dom Offered Traffic ‘

Common sense suggests that if several non-random parcels of traffic
are combined, and their joint proportion of overflow from a trunk group
is P, the parcels which contain the more peaked traffic should experience
overflow proportions larger than P, and the smoother traffic an overflow
proportion smaller than P. It is by no means clear however, a priors, the
extent to which this would occur. One might conjecture that if any one
parcel’s contribution to the total combined load is small, its loss would
be caused principally by the aggregate of calls from the other parcels,
and consequently its own loss would be at about the general average loss
P, and hence not very much determined by its own peakedness. The
Murray Hill-6 throwdown results may be examined in this respect. The
mean and variance of each OST-parcel of traffic, for example, arriving
at the final ST route was recorded, together with, as noted before, its
own proportion of overflow from the ST trunks. The variance/mean over-
dispersion ratio, used as a measure of peakedness, is plotted for each
parcel of traffic against its proportion of loss on Fig. 37. There is an un-
doubted, but only moderate, increase in proportion of overflow with
increased peakedness in the offered loads.

It is quite possible, however, that by recognizing the differences be-
tween the service given various parcels of traffie, significant savings in
final route trunks can be effected for certain combinations of loads and
trunking arrangements. Of particular interest is the service given to a
parcel of random traffic offered directly to the final route when compared
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Fig. 37 — Effect of peakedness on overflow of a parcel of traffic reaching an
alternate route.
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with that received by non-random parcels overflowing to it from high
usage groups.

7.5 Expected Loss on First Routed Traffic Offered to Final Route

The congestion experienced by the first-routed traffic offered to the
final group in a complex alternate route arrangement [such as the right
hand parcels in Figs. 10(c) and (d)] will be the same as encountered in a
series of random tests of the final route by an independent observer,
that is, it will be the proportion of time that all of the final trunks are
busy. As noted before, the distribution of simultaneous calls n (and hence
the congestion) on the € final trunks produced by some specific arrange-
ment of offered load and high usage trunks can be closely simulated by
that due to a single Equivalent Random load offered to a straight group
of 8§ + C trunks. Then the proportion of time that the C trunks are
busy in such an equivalent system provides an estimate of the corres-
ponding time in the real system; and this proportion should be approxi-
mately the desired grade of service given the first routed traffic.

Brockmeyer' has given an expression (his equation 36) for the pro-
portion of time, R,, in a simple § + C system with random offer 4,
and “lost calls cleared,” that all C' trunks are busy, independent of the
condition of the S-trunks:

Ry = f(8,C,4)
. oop1(S) (30)
- E1.8+C(A) 60(8)
where
5. /0—-14m A5
9= 5 (70" S

However, ¢¢(S) is usually calculated more readily step-by-step using
the formula

oe(S) = d¢lS — 1) + ae-1(S),
starting with
ce(0) =1 and 7o(S) = A®/S!
The average load carried on the C paths is clearly

Lc = A[EI.S(A) - EI,S+C(A)]: (31)
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and the variance of the carried load can be shown to be*

a1(S)

— ACE s46(A) + Le — L% (32)
@2(.8)

Ve = ALe

On Fig. 38, R, values are shown in solid line curves for several com-
binations of A and C over a small range of S trunks. The corresponding
losses R, for all traffic offered the final group, where R, = a'/A4’, are
shown as broken curves on the same figure. The R, values are always
above R;, agreeing with the common sense conclusion that a random
component of traffic will receive better service than more peaked non-
random components.

However, there are evidently considerable areas where the loss differ-
ence between the two R’s will not be large. In the loss range of principal
interest, 0.01 to 0.10, there is less proportionate difference between the
R’s as the A = C paired values increase on Fig. 38. For example, at
Ry = 005, and A = C = 10, R:/R; = 0.050/0.034 = 1.47; while for
A = C = 30, R:/R: = 0.050/0.044 = 1.13. Similarly for A = 2C, the
R./R; ratios are given in Table XIV. Again the rapid decrease in the
R./R ratio is notable as A and C increase.

Ir. I. Tange of the Swedish Telephone Administration has performed
elaborate simulation studies on a variety of semi-symmetrical alternate
route arrangements, to test the disparity between the B, and R, types
of losses on the final route.t For example if g high-usage groups of 8
paths each, jointly overflow 2.0 erlangs to a final route which also serves
2.0 erlangs of first routed traffic, Tange found the differences in losses
between the two 2-erlang parcels, Ruiigh usage huy —&1, shown in
column 9 of Table XV. The corresponding ER calculations are performed
in columns 2 to 8, the last of which is comparable with the throwdown
values of column 9. The agreement is not unreasonable considering the
sensitiveness of determining the difference between two small prob-
abilities of loss. A quite similar agreement was found for a variety of
other loads and trunk arrangements.

* In terms of the first two factorial moments of n: V¢ is given by
Ve = ﬂ’[(z) + ]Um — ﬂf(;)’, where My = Le

General expressions M for the factorial moments of » are derived in an unpub-
lished memorandum by J. Riordan.

t Optimal Use of Both-Way Circuits in Cases of Unlimited Availability, a
paper by F., 1. Tinge, presented at the First International Congress on the Appli-
cation of the Theory of Probability in Telephone Engineering and Administration,
June 1955, Copenhagen.
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TaprLe XV—CowmparisoN oF ER. THEorY aND THROWDOWNS ON
Disparity oF Loss BErweeEN Hica Usage OVERFLOW AND
Ranpom OFFErR TO A Finan Group
(8 trunks in each high usage group; 9 final trunks serving 2.0 erlangs
high usage overflow and 2.0 erlangs first routed traffic.)

h r ER Theory (4’ = 4.0) R
 Groups o Thmoun
1, sage
Trnks | v | 4 S |Re=aya| R | Rhu 7 (Rhu—Rim Ko = R1
(1) (2) 3) (4) (5) (6) (N (8) (9)
1 5.77 | 7.51 | 4.17 | 0.0375 | 0.0251 | 0.0499 | 0.0248 0.0180
2 5.80 | 7.50 | 4.25 | 0.0383 | 0.0255 | 0.0511 | 0.0256 0.0247
3 5.74 | 7.44 | 4.08 | 0.0369 | 0.0248 | 0.0490 | 0.0242 0.0286
4 5.68 | 7.30 | 3.91 | 0.0362 | 0.0247 | 0.0477 | 0.0230 0.0276
b 5.64 | 7.20 | 3.80 | 0.0355 | 0.0242 | 0.0468 | 0.0226 0.0245
6 5.58 | 7.06 | 3.64 | 0.0350 | 0.0240 | 0.0460 | 0.0220 0.0221
7 5.55 | 7.00 | 3.56 | 0.0345 | 0.0238 | 0.0452 | 0.0204 0.0202
8 5.51 | 6.91 | 3.45 | 0.0335 | 0.0236 | 0.0434 | 0.0198 0.0188
9 5.47 | 6.81 | 3.34 | 0.0325 | 0.0231 | 0.0419 | 0.0188 0.0177
10 5.45 | 6.76 | 3.20 [ 0.0312 | 0.0225 | 0.0399 | 0.0174 0.0166

Limited data are available showing the disparity of F; and R, in
actual operation in a range of load and trunk values well beyond those
for which R; values have been calculated. Special peg count and over-
flow registers were installed for a time on the final route during the 1955
Newark alternate route tests. These gave separate readings for the calls
from high usage groups, and for the first routed Newark to Pittsburgh
calls. Comparative losses for 17 hours of operation over a wide range of
loadings are shown on Fig. 39. The numbers at each pair of points give
the per cent of final route offered traffic which was first routed (random).
In general, approximately equal amounts of the two types of traffic were
offered.

In 6 of the hours almost identical loss ratios were observed, in 7 hours
the overflow-from-high-usage calls showed higher losses, and in 4 hours
lower losses, than the corresponding first routed calls. The non-random
calls clearly enjoyed practically as good service as the random calls, This
result is not in disagreement with what one might expect from theory.
To compare directly with the Newark-Pittsburgh case we should need
curves on Fig. 38 expanded to correspond to A’, V' values of (50, 85)
to (120, 200). Examining the mid-range case of ¢' = 65, 4’ = 70, V' =
120, we find A = 123, S = 54. Here A is approximately 2C; extrapolat-
ing the A = 2C curves of Fig. 38 to these much higher values of A and ¢
suggests that R./R; would be but little different from unity.
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It is clear from the above theory, throwdowns, and actual observa-
tion that there are certain areas where the service differences given first
routed and high usage trunk overflow parcels of traffic are significant.
In Section 8, where practical engineering methods are discussed, curves
are presented which permit recognition of this fact in the determination
of final trunk requirements.

7.6 Load on Each Trunk, Particularly the Last Trunk, in a Non-Slipped
Alternate Route

In the engineering of alternate route systems it is necessary to deter-
mine the point at which to limit a high usage group of trunks and send
the overflow traffie via an alternate route. This is an economic problem
whose solution requires an estimate of the load which will be carried on
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® OVERFLOW TRAFFIC FROM 7 HIGH USAGE GROUPS
0.0010 1 1 | | |
oL%% 858 -
40 50 &0 70 80 90 100 110 20

A'=ESTIMATED OFFERED LOAD TO PITTSBURGH IN ERLANGS (INCLUDING RETRIALS)

F1a. 39 — Comparison of losses on final route (Newark to Pittsburgh) for high
usage overflow and first routed traffic,
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the last trunk of a straight high usage group of any specified size, carry-
ing either first or higher choice traffic or a mixture thereof.*

The Equivalent Random theory readily supplies estimates of the loads
carried by any trunk in an alternate routing network. After having found
the Equivalent Random load A offered to S 4+ C trunks which corresponds
to the given parameters of the traffic offered to the (' trunks, it is a simple
matter to calculate the expected load £ on any one of the C trunks if
they are not slipped or reversed. The load on the 7th trunk in a simple
straight multiple (or the 8 + jth in a divided multiple of S lower and C
upper trunks), is

Li = lgyj = AlB154(4) — Ers45(4)] (33)

where F; ,(A) is the Erlang loss formula. A moderate range of values of
{; versus load A is given on Figure 40.}

Using this method, selected comparisons of theoretical versus observed
loads carried on particular trunks at various points in the Murray-
Hill-6 throwdown are shown in Fig. 41; these include the loads on each
of the trunks of the first two OST groups of Fig. 32, and on the second
and third alternate routes, crossbar and suburban tandem, respectively.
The agreement is seen to be fairly good, although at the tail end of the
latter two groups the observed values drop away somewhat from the
theoretical ones. There seems no explanation for this beyond the possi-
bility that the throwdown load samples here are becoming small and
might by chance have deviated this far from the true values (or the
arbitrary breakdown of OST overflows into parcels offered to and by-
passing XBT may well have introduced errors of sufficient amount to
account for this disparity). As is well known, (33) gives good estimates
of the loads carried by each trunk in a high usage group to which random
(Poisson) traffic is offered; this relationship has long been used for the
purpose in Bell System trunk engineering.

8., PRACTICAL METHODS FOR ALTERNATE ROUTE ENGINEERING

To reduce to practical use the theory so far presented for analysis of
alternate route systems, working curves are needed incorporating the

* The proper selection point will be where the circuit annual charge per erlang
of traffic carried on the last trunk, is just equal to the annual charge per erlang
of traffic carried by the longer (usually) alternate route enlarged to handle the
overflow traffic.

1 A comprehensive table of ¢ is given by A. Jensen as Table IV in his book
“Moe’s Principle,” Copenhagen, 1950; coverage is for £ = 0.001 erlang, i = 1(1)140;
IA = 0.1(0.1)10, 10(1)50, 50(4)100. Note that n + 1, in Jensen’s notation, equals 2
here.
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pertinent load-loss relationships. The methods so far discussed, and
proposed for use, will be briefly reviewed.

The dimensioning of each high usage group of trunks is expected to be
performed in the manner currently in use, as described in Section 7.6.
The eritical figure in this method is the load carried on the last high
usage trunk, and is chosen so as to yield an economic division of the
offered load between high usage and alternate route trunks. Fig. 40 is
one form of load-on-each-trunk presentation suitable for choosing eco-
nomic high usage group size once the permitted load on the last trunk
is established.

The character (average « and variance v) of the traffic overflowing
each high usage group is easily found from Figs. 12 and 13 (or equivalent

1.0 -
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Fig. 41 — Comparison of load carried by each alternate route trunk; theory
versus throwdowns.
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tables). The respective sums of the overflow ’s and »’s, give A’ and V"
by (28) and (29); they provide the necessary statistical description of
traffic offered to the alternate route.

According to the Equivalent Random method for estimating the alter-
nate route trunks required to provide a specified grade of service to the
overflow traffic A’, one next determines a random load A which when
submitted to S trunks will yield an overflow with the same character
(A’, V') as that derived from the complex system’s high usage groups.
An alternate route of €' trunks beyond these S trunks is then imagined.
The erlang overflow o/, with random offer 4, to § + C trunks is found
from standard J;-formula tables or curves (such as Fig. 12).

The ratio Ry = o'/ A’ is a first estimate of the grade of service given to
each parcel of traffic offered to the alternate route. As discussed in Sec-
tion 7.5, this service estimate, under certain conditions of load and
trunk arrangement, may be significantly pessimistic when applied to a
first routed parcel of traffic offered directly to the alternate route. An
improved estimate of the overflow probability for such first routed
traffic was found to be R; as given by (30).

8.1 Determination of Final Group Size with First Rouled Traffic Offered
Directly to the Final Group

When first routed traffic is offered directly to the final group, its
service R will nearly always be poorer than the overall service given to
those other traffic parcels enjoying high usage groups. The first routed
traffic’s service will then be controlling in determining the final group
size. Since R, is a function of S, ' and A in the Equivalent Random
solution (30), and there is a one-to-one correspondence of pairs of 4 and
S values with A’ and V’ values, engineering charts can be constructed at
selected service levels R; which show the final route trunks C required,
for any given values of A’ and V’. Figs. 42 to 45 show this relation at
service levels of Ry = 0.01, 0.03, 0.05 and 0.10, respectively.*

* On Fig,. 42 (and also Figs. 46-49) the low numbered curves assume, at™first
sight, surprising shapes, indicating that a load with given average and variance
would require fewer trunks if the average were increased. This arises from the
sensitivity of the tails of the distribution of offered calls, to the V'/A’ peaked-

ness ratio which, of course, decreases with inereases in A’. For example, with €
= 4 trunks and fixed ¥V’ = 0.52, the loss rapidly decreases with increasing A':

A’ VA’ A N o' a'f4’
0.28 1.86 6.1 10. 0.0155 0.055
0.33 1.58 3.0 5.0 0.0081 0.025
0.40 1.30 1.42 2.03 0.0036 0.009
0.52 1.00 0.52 0 0.0008 0.002
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These four R, levels would appear to cover the most used engineering
range. For example, if the traffic offered to the final route (including the
first routed traffic) has parameters A’ = 12 and V' = 20, reading on
Fig. 43 indicates that to give P = 0.03 “lost calls cleared” service to
the first routed traffic, ¢ = 19 final route trunks should be provided.
(For random traffic (V' = A’ = 12), 17.8 trunks would be required.)

Other charts, of course, might be constructed from which R; could be
read for specific values of A’, V’ and C. They would become voluminous,
however, if a wide range of all three variables were required.

8.2 Provision of Trunks Individual to First Routed Traffic to Equalize
Service

If the difference between the service R, given the first routed parcel of
traffic and the service given all of the other parcels, is material, it may be
desirable to take measures to diminish these inequities. This may readily
be accomplished by setting aside a number of the otherwise full access
final route trunks, for exclusive and first choice use of the first routed
traffic. High usage groups are now provided for all parcels of traffic. The
alternate route then services their combined overflow. The overall grade
of service given the 7th parcel of offered traffic in a single stage alter-

nate route system will then be approximately
!

sk
P; = By zi{a:)R. = Ex,x.'(a-')z—, (34)

Thus the service will tend to be uniform among the offered parcels when
all send substantially identical proportions of their offered loads to the
alternate route. And the natural provision of “individual’” trunks for the
exclusive use of the first routed traffic would be such that the same pro-
“portion should overflow as occurs in the associated high usage groups.

This procedure cannot be followed literally since high usage group
size is fixed by economie considerations rather than any predetermined
overflow value. The resultant overflow proportions will commonly vary
over a considerable range. In this circumstance it would appear reason-
able to estimate the objective overflow proportion to be used in estab-
lishing the individual group for the first routed traffic, as some weighted
average b of the overflow proportions of the several high usage groups.
Thus with weights ¢ and overflow proportions b,

E___glbl+g‘zb2+
gL+ go+ -

* Although not exact, this equation can probably be accepted for most engi-
neering purposes where high usage trunks are provided for each parcel of traffic.

(35)
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A choice of all weights g equal to unity will often be satisfactory for the
present purpose. The desired high usage group size for the first routed
traffic is then found from standard E;-tables showing trunks x required,
as a function of offered traffic @ and proportion overflow b.

Since the different parcels of traffic have varying proportions b of their
loads overflowing to the final route, by equation (34) the parcel with
the largest proportion will determine the permitted value of R, . Thus

R2 = P/bmax (36)

where P is the specified poorest overall service (say 0.03) for any parcel.
It may be noted that on occasion some one parcel, perhaps a small one,
may provide an outstandingly large bum.. value, which will tend to give
a considerably better than required service to all the major traffic
parcels. Some compromise with a literal application of a fixed poorest
serviee criterion may be indicated in such cases.

An alternative and somewhat simpler procedure here is to use an
average value b in (36) instead of buax , With a compensating modifica-
tion of P, so that substantially the same R, is obtained as before. The
allowance in P will be influenced by the choice of weights ¢ in (35). It
will commonly be found in practice that overflow proportions to final
groups for large parcels of traffic are lower than for small parcels. Choos-
ing all weights, as unity, as opposed to weighting by traffic volumes for
example, tends to insert a small element of service protection for those
traffic parcels (often the smaller ones) with the higher prportionate high
usage group overflows.

Having determined R,, a ready means is needed for estimating the
required number of final route trunks, Curves for this purpose are pro-
vided on Figs. 46 to 49, within whose range, R; = 0.01 to 0.10, it will
usually be sufficiently accurate to interpolate for trunk engineering
purposes. These Rs-curves exactly parallel the R;-curves for use when
first routed traffic is offered directly to the final group without benefit
of individual high usage trunks. If R. is well outside the charted range
a run-through of the ER calculations may be required.

8.3 Area in Which Significant Savings in Final Route Trunks are Realized
by Allowing for the Preferred Service Given a First Routed Traffic Parcel

Considerable effort has been expended by alternate route research
workers in various countries to discover and evaluate those areas where
first routed (random) traffic offered to a final route enjoys a substantial
service advantage over competing parcels of traffic which have over-
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flowed from high usage groups. A comparison of Figs. 42 to 45, (which
indicate trunk provision for meeting a first routed traffic criterion R,)
with Figs. 46 to 49 (which indicate trunk provision for meeting a com-
posite-load-offered-to-the-final-route criterion R.) gives a means for de-
ciding under what conditions in practice it is important to distinguish
between the two criteria. Fig. 50 shows the borders of areas, defined in
terms of A’ and V’, the characterizing parameters of the total load
offered to the final route, where a 2 and 5 per eent overprovision of final
trunks would occur using R, for B; as the loss measure for first routed
traffic. Thus in the alternate route examples displayed in Table XV,
where 2 = 8, ¢ = 2 to 10, A" = 4.0 and V"’ varies from 5.80 to 5.45,
Fig. 50 shows that by failing to allow for the preferred position of the 2
erlang first routed parcel, we should at R = 0.02 engineered loss, provide
a little over 5 per cent more final trunks than necessary. (Actually 10.2
and 9.9 versus 9.6 and 9.4 trunks for g = 2 and 10, respectively.)

The curves of Fig. 50 for final route loads larger than a few erlangs,
are almost straight lines. At an objective engineering base of R = 0.03,
for example, the 2 and 5 per cent trunk overprovision areas through
using R, instead of R; are outlined closely by:

2 per cent overprovision occurs at V'/(4’ — 1) = 1.4
5 per ¢ent overprovision oceurs at V'/(4A’ — 1) = 1.8.

Thus in the range of loads covered by Fig. 50, one might conclude that
useful and determinable savings in final trunks can be achieved by use
of the specialized R,-curves instead of the more general Ry-curves, when
the ratio V//(4’ — 1) exceeds some figure in the 1.4 to 1.8 range, say 1.6.
(In the examples just cited the V'/(A’ — 1) ratio is approximately 1.9.)

8.4. Character of Traffic Carried on Non-Final Routes

Telephone traffic which is carried by a non-final route will ordinarily
be subjected to a peak clipping proecess which will depress the variance
of the carried portion below that of the offered load. If this traffic ter-
minates at the distant end of the route, its character, while conceivably
affecting the toll and local switching trains in that office, will not require
further consideration for intertoll trunk engineering. If, however, some
or all of the route’s load is to be carried on toll facilities to a more distant
point (the common situation), the character of such parcels of traffic will
be of interest in providing suitable subsequent paths. For this purpose
it will be desirable to have etimates of the mean and variance of these
carried parcels.

When a random traffic of “a’ erlangs is offered to a group of “¢’’ paths
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Fig. 50 — Overprovision of final route trunks when R, is used instead of R,
as service to first routed traffic.

and overflowing calls do not return, the variance of the carried load is
Va=all —E.(@][l 4+ aE,, . (@) — aE,, . (a)]* (37)
and the ratio of variance to average of the carried load is

Vcd

7 =1—a [E1,.:—1(a) - El.c(a)]*

1 - ('i - 1) (a — L)* (38)

L
=14

* These particular forms are due to P. J. Burke.
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From (38) it is easy to see that

Va = L(]- - fr)
= (Load carried by the group)(1 — load on last trunk) (39)

This is a convenient relationship since for high usage trunk study work,
both the loads carried (in erlangs) on the group and on the last trunk
will ordinarily be at hand.

If the high usage group’s load is to be split in various directions at
the distant point for re-offer to other groups, it would appear not un-
reasonable to assign a variance to each portion so as to maintain the
ratio expressed in equation (38). That is, if a carried load L is divided

into parts Ay, Ag - - - where L = Xy + Ay - -, then the associated
variances vy, vz . . . would be

Y1 = kl (1 - [c)

yo=A (1 — £) (40)

If, however, the load offered to the group is non-random (e.g., the
group is an intermediate route in a multi-alternate route system), the
procedure is not quite so simple as in the random case just discussed.
Equation (32) expresses the variance V; of the carried load on a group
of C' paths whose offered traffic consists of the overflow from a first
group of S paths to which a random load of A erlangs has been offered.
V¢ could of course be expressed in terms of A’, V' and (', and curves or
tables constructed for working purposes. However, such are not avail-
able, and in any case might be unwieldy for practical use.

A simple alternative procedure can be used which yields a conserva-
tive (too large) estimate of carried load variance. With random load
offered to a divided two stage multiple of = paths followed by y paths, a
positive correlation exists between the numbers m and n of calls present
simultaneously on the x and y paths, respectively. Then the variance
Vingn of the m 4 n distribution is greater than the sum of the individual
variances of m and n,

.de-n ; Vm + Vn
or
Ve < Vogn — Vi (41)

Now n can be chosen arbitrarily, and if made very large, V,.,. becomes
" the offered load variance, and V, the overflow load variance. Both of
these are usually (or can be made) available. Their difference then,
according to (41) gives an upper limit to V., the desired ecarried load
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TaBLE XVI—APPROXIMATE DETERMINATION OF THE VARIANCE
oF CARRIED LoADS;
x lower paths, 8 upper paths; offer to upper paths = 3 erlangs

Lower Paths, x Upper Paths, ¥
No. Random | Variance Ef"i'?‘_mmd True Variance ;- Estimated True
Lower offered of ‘fn”"ni“] variance of | of offer \?ar}unf;:e of variance \&ar&a?ce‘
Paths load overflow | % ]C:;é ed carried load V' (= V)| °Y c";,““" of cd load o(lgmc?;a‘
— T 7 -
x A(=T) Va vV —v, | EaGD (Col 3) I v meyer)

(1) (2) (3) (4) (5) (6) (7 ®8) (&)

0 3.00 3.00 0 0 3.00 0.035 2.97 2.853
3 5.399 4.056 1.35 0.60 4.06 0.121 3.93 3.664
6 7.856 4.98 2.88 1.418 4.95 0.236 4.74 4.175
12 12,882 6.22 6.66 3.538 6.22 0.520 5.70 4,790

variance. Corresponding reasoning yields the same conclusion when the
offered load before the 2 paths is non-random.

A numerical example by Brockmeyer'! while clearly insufficient to
establish the degree of the inequality (41), indicates something as to the
discrepancy introduced by this approximate procedure. Comparison with
the true values is shown in Table XVI.

In the case of random offer to the 0, 3, 6, 12 “lower paths,” the ap-
proximate method of equation (41) overestimates the variance of the
carried load by nearly two to one (columns 4 and 5 of Table XVI). The
exact procedure of (37) is then clearly desirable when it is applicable,
that is when random traffic is being offered. For the 8 upper paths to
which non-random load is offered (the non-randomness is suggested by
comparing the variance of column 6 in Table XVI with the average
offered load of 3 erlangs), the approximate formula (41) gives a not too
extravagant overestimate of the true carried load variance. Until eurves
or tables are computed from equation (32), it would appear useful to
follow the above procedure for estimating the carried load variance
when non-random load is offered.

8.5. Solution of a Typical Toll Multi-Alternate Roule Trunking Arrange-
ment: Bloomsburg, Pa.

In Fig. 9 a typical, moderately complex, toll alternate route layout
was illustrated. Tt is centered on the toll office at Bloomsburg, Pa. The
loads to be carried between Bloomsburg and the ten surrounding cities
are indicated in CCS (hundred call seconds per hour of traffic; 36 CCS = -
1 erlang). The numbers of direct high usage trunks shown are assumed
to have been determined by an economic study; we are asked to find
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the number of trunks which should be installed on the Bloomsburg-
Harrisburg route, so that the last trunk will carry approximately 18
C'CS (0.50 erlang). Following this determination, (@) the number of final
trunks from Bloomsburg to Scranton is desired so that the poorest
service given to any of the original parcels of traffic will be no more than
3 calls in 100 meeting NC. Also (b) the modified Bloomsburg-Seranton
trunk arrangement is to be determined when a high usage group is pro-
vided for the first routed traffic.

Solution (a): First Rouled Traffic Offered Directly to Final Group

The offered loads in CCS to each distant point are shown in column
(2) of Table XVII; the corresponding erlang values are in column (3).
Consulting Figs. 12 and 13, the direct group overflow load parameters,
average and variance, are read and entered in columns (5) and (6) re-
spectively for the four groups overflowing to Harrisburg, and in columns
(7) and (8) for the four groups directly overflowing to Scranton. The
variance for the direct Bloomsburg-Harrisburg traffic equals its average;
likewise for the direct Bloomshurg-Scranton traffic. They are so entered
in the table, The parameters of the total load on the Harrisburg group
are found by totalling, giving A’ = 11.19, and V' = 19.90,

The required size Cy of the Harrisburg group is now determined by
the Equivalent Random theory. Entering Fig. 25 with A’ and V' just
determined, the ER values of trunks and load found are §; = 13.55,
and A; = 23.75. € is to be selected so that on a straight group of S; +
C'; trunks with offered load A, the last trunk will carry 0.50 erlang.
Reading from Fig. 40, the load carried by the 26th trunk approximates
this figure. Hence €y = 26 — S; = 12.45 trunks; or choose 12 trunks.

The overflow load’s mean and variance from the Harrisburg group
with 12 trunks, is now read from Figs. 12 and 13, entering with load
A, = 23.75 and C; + S, = 25.55 trunks. The overflow values (o' =
2.50 and »* = 7.50) are entered in columns (7) and (8) of the table.
The total offered load to Scranton is now obtained by totalling columns
(7) and (8), giving A" = 16.27 and V" = 25.60.

We desire now to know the number of trunks (. for the Seranton
group which will provide NC' 3 per cent of the time to the poorest service
parcel of traffic, i.e., the first routed Bloomsburg-Seranton parcel. The
R, = 0.03 and R, = 0.03 solutions are available, the former of course
being more closely applicable. A check reference to Fig. 50 shows a
difference of approximately 4 per cent in trunk provision would result
from the two methods. Entering Figs. 43 and 47 with A" = 16.27 and
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V" = 25.60, we obtain the trunk requirements:

Ry Method. ....... 23.8 trunks
R; Method. ....... 24 8 trunks

Thus the more precise method of solution here yields a reduction of 1.0
in 25 trunks, a saving of 4 per cent, as had been predicted.

The above caleulation is on a Lost Calls Cleared basis. Since the over-
flow direct traffic calls will return to this group to obtain service, to as-
sure their receiving no more than 3 per cent NC, the provision of the
final route would theoretically need to be slightly more liberal. An esti-
mate of the allowance required here may be made by adding the ex-
pected erlangs loss A for the direct traffic (most of the final route over-
flow calls which come from high usage routes will be carried by their
respective groups on the next retrial) to both the A" and V" values
previously obtained, and recalculating the trunks required from that
point onward. (In fact this could have been included in the initial com-
putation.) Thus:

A =003 X 10.14 = 0.30 erlang
A" =16.27 + 0.30 = 16.57 erlangs
V" = 2560 4+ 0.30 = 25.90 erlangs

Il

Again consulting Figs, 43 and 47 gives the corresponding final trunk
values

R, Method. .. ... .. 24.1 trunks
R; Method. ....... 25.1 trunks

Of the above four figures for the number of trunks in the Seranton
route, the R-Method with retrials, i.e., 24.1 trunks, would appear to
give the best estimate of the required trunks to give 0.03 service to the
poorest service parcel.

Solution (b): With High Usage Group Provided for First Routed Traffic

Following the procedure outlined in Section 8.2, we obtain an average
of the proportions overflowing to the final route for all offered load par-
cels. The individual parcel overflow proportion estimates are shown in
the last column of Table XVII; their unweighted average is0.112. With
a first routed offer to Seranton of 10.14 erlangs, a provision of 12 high
usage trunks will result in an overflow of & = 1.26 erlangs, or a propor-
tton of 0.125 which is the value most closely attainable to the objective
0.112. With 12 trunks the overflow variance is found to be 2.80.



504 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1956

Replacing 10.14 in columns 7 and 8 of Table XVII with 1.26 and 2.80,
respectively, gives new estimates characterizing the offer to the final
route, A” = 7.39 and V"' = 18.26. We now proceed to insure that the
poorest. service parcel obtains 0.03 service. This occurs on the Phila-
delphia and Harrisburg groups, which overflow to the final group ap-
proximately 0.224 of their original offered loads. The final group must
then, according to equation (34) be engineered for

R, = 0.03/0.224 = 0.134 service.

This value lies above the highest R, engineering chart (Fig. 49, R, =
0.10), so an ER calculation is indicated.

The Equivalent Random average is 28.6 erlangs, and S = 23.5
trunks. We determine the total trunks S 4 R which, with 28.6 erlangs
offered, will overflow 0.134(7.39) = 0.99 erlang. From Fig. 12.2, 35.6
trunks are required. Then the final route provision should be €' = 35.6 —
23.5 = 12.1 trunks; and a total of 12 + 12.1 or 24.1 Scranton trunks
is indicated.

Simplified Allernative Solution: In Section 8.2 a simplified approxi-
mate procedure was described using a modified probability P’ for the
average overall service for all parcels of traffic, instead of P for the poor-
est service parcel. Suppose P’ = 0.01 is chosen as being acceptable.
Then

P o001
Rz - B

= —— = (0089

Interpolating between the R, = 0.05 and 0.10 curves (Figs. 48 and 49)
gives with A” = 7.39 and V” = 18.26, C = 13.4, the number of final
trunks required. Again the same result could have been obtained by
making the suitable ER computatien. It may be noted that if P’ had
been chosen as 0.015 (one-half of P), R, would have become 0.134,
exactly the same value found in the poorest-service-parcel method. The
final trunk provision, of course, would have again been 12.1 trunks.

Disscussion

In the first solution above, 24.1 full access final trunks from Blooms-
burg to Scranton were required. The service on the first routed traffic
was 0.03; however, the service enjoyed by the offered traffic as a whole
was markedly better than 0.03. The corresponding ER calculation
shows (4 = 28.3, S + € = 12.3 4+ 24.1) a total overflow of «” = 0.72
erlangs, or an overall service of 0.72/91.21 = 0.008.
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In the second solution, 12 high usage and 12.1 common final, or a total
of 24,1, trunks were again required, to give 0.03 service to the poorest
service parcels of offered load. The overall service here, however, was
0.99/91.21 = 0.011. Thus, with the same number of paths provided,
in the second solution (high usage arrangement) the overall call loss was
40 pes cent larger than in the first solution.* However, it may well be
desirable to accept such an average service penalty since by providing
high usage trunks for the first routed traffic, the latter’s service cannot
be degraded nearly so readily should heavy overloads occur momentarily
in the other parcels of traffic.

9. CONCLUSION

As direct distance dialing increases, it will be necessary to provide
intertoll paths so that substantially no-delay service is given at all times.
To do this economically, automatic multi-alternate routing will replace
the present single route operation. Traffic engineering of these compli-
cated trunking arrangements will be more difficult than with simple
intertoll groups.

One of the new problems is to describe adequately the non-random
character of overflow traffic. In the present paper this is proposed to be
done by employing both mean and variance values to deseribe each par-
cel of traffic, instead of only the mean as used heretofore. Numerous
comparisons are made with simulation results which indicate that ade-
quate predictive reliability is obtained by this method for most traffic
engineering and administrative purposes. Working curves are provided
by which trunking arrangements of considerable complexity can readily
be solved.

A second problem requiring further review is the day-to-day variation
among the primary loads and their effect on the alternate route system’s
grade of service. A thorough study of these variations will permit a re-
evaluation of the service criteria which have tentatively been adopted.
A closely allied problem is that of providing the necessary kind and
amounts of traffic measuring devices at suitable points in the toll alter-
nate route systems. Requisite to the solution of both of these problems
is an understanding of traffic flow character in a complex overflow-type

* The actual loss difference may be slightly greater than estimated here since
in the first solution (complete access final trunks), an allowance was included for
return attempts to the final route by first routed calls meeting an 0.03 loss, while
in the second solution (high usage group for first routed traffie) no return at-
tempts to the final route were considered. These would presumably be small since
only 1 per cent of all calls would overflow and most of these upon retrial would be
handled on their respective high usage groups.
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of trunking plan, and a method for estimating quantitatively the essential
fluctuation parameters at each point in such a system. The present paper
has undertaken to shed some light on the former, and to provide an
approximate yet sufficiently accurate method by which the latter can
be accomplished. It may be expected then that these studies, as they are
developed, will provide the basis for assuring an adequate direct dis-
tance dialing service at all times with a minimum investment in intertoll
trunk facilities.
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AppENDIX I*
DERIVATION OF MOMENTS OF OVERFLOW TRAFFIC

This appendix gives a derivation of certain factorial moments of the
equilibrium probabilities of congestion in a divided full-access multiple
used as a basis for the calculations in the text, These moments were de-
rived independently in unpublished memoranda (1941) by E. C. Molina
(the first four) and by H. Nyquist; curiously, the method of derivation
here, which uses factorial moment generating functions, employs auxili-
ary relations from both Molina and Nyquist. Although these factorial
moments may be obtained at a glance from the probability expressions
given by Kosten in 1937, if it is remembered that

p(x) = g (—1)= ('l") ﬂi‘!*’ , (1.1)

r

where p(x) is a discrete probability and M ¢, is the kth factorial moment
of its distribution, Kosten does not so identify the moments and it may
be interesting to have a direct derivation.

Starting from the equilibrium formulas of the text for f(m, n), the
probability of m trunks busy in the specific group of & trunks, and » in

* Prepared by J. Riordan.
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the (unlimited) common group, namely
(@ 4+ m + n)f(m,n) — (m + 1)f(m + 1, n)
— (n4+ Dfim,n+ 1) —aftm —1,n) =0 12)
(@ + = + n)f(z, n) — af(z,n — 1)
— (n+ f@x,n+ 1) —af(z —1,n) =0
and
flm,n) = 0, m <0 or n <0 or m >z,

factorial moment generating function recurrences may be found and

solved.
With m fixed, factorial moments of » are defined by

Mas(m) = 3= (0afCm, n) (13)

or alternatively by the factorial moment exponential generating function

o0

M(m, 1) = ;ZOM(,,)(m)tk/k! = S+ mm (1)

N

In (1.3), (n)y = n(n — 1) --- (n — k + 1) is the usual notation for a

falling factorial.
Using (1.4) in equations (1.2), and for brevity D = d/dt, it is found
that

a+m+tD)yM(@m, t) — (m + )M@m + 1, ¢)
—aM(m — 1,t) =0 (1.5)
(x — at + tD)M(z, 1) — aM(x — 1,8) =0

which correspond (by equating powers of ) to the factorial moment re-
currences

(a + m + k)M gy(m) — (m + DM gy(m + 1)
- aMm(m - 1) =0 (lﬁ)
(.’B 4+ k)M(k)(.’.U) - afcM'(kfn(a:) - (lﬂ’[(k)(:l? - 1) =0

Notice that the first of (1.6) is a recurrence in m, which suggests (fol-
lowing Molina) introducing a new generating function defined by

Gi(u) = 20 My (m)u™ (L.7)
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Using this in (1.5), it is found that

[(a 4k —aut (w—1) diu] Galu) = 0 (1.8)
Hence
1 de(’M) _ k
G du T i1T—u (1.9)

and, by easy integrations,
Gr(u) = ee™ (1 — u)™*, (1.10)

with ¢ an arbitrary constant, which is clearly identical with G»(0) =
M (0).
Expansion of the right-hand side of (1.10) shows that

M gy(m) = M@y (0) gﬂ (k +J - 1) rﬂ_l = M (0)ar(m), (1.11)

J (m — !
if
oolm) = a”/m!  and, ou(m) = ;‘;("’ +-; - 1)% (1.12)

The notation ¢,(m) is copied from Nyquist; the functions are closely
related to the ¢, used by Kosten; indeed ox(m) = e"pn'. They have
the generating function

ge(u) = i ar(m)u™ = ¢"(1 — u)™* (1.13)

m=0
from which a number of recurrences are found readily. Thus
ge(u) = (1 — wgey(u)

dgi(w)
u du

auge(u) + kugia(u)

= —agr(w) + (@ — B)gr(w) + kges(u)
(the last by use of the first) imply
ar(m) = oru(m) — orqalm — 1)
mar(m) = ase(m — 1) + kappa(m — 1)

= — G,U'k_l(m) + (a — k)ak(m) + ]Cd'k+1(m)
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The first of these leads to

a'k(O) + O’k(].) + -+ 0’.!;(1[1) = 0’;;4_1(2?)) (114:)
and the last is useful in the form
kopp(m) = (m + k — a)or(m) + asr_(m) (1.15)

Also, the first along with op(m) = a™/m! leads to a simple calculation
procedure, as IKosten has noticed.

By (1.11) the factorial moments are now completely determined ex-
cept for M 4,(0). To determine the latter, the second of (1.6) and the
normalizing equation

S Mo(m) = 1 (1.16)

m=0

are available,
Thus from the second of (1.6)

(@ + k)ow(x) — acile — DM 4(0) = akara(x)M g-1y(0)  (1.17)
Also
(x + Baw(x) — aci(z — 1)
= (x + k — a)or(w) + alow(z) — oz — 1)]
(x + k — a)ar(x) + aora(2)

= .’m-k+1(;v) »

the last step by (1.15). Hence

Il

M) = a %2 4 y0) (1.18)
Tr41()
and by iteration
M(0) = ¢ @@ 5p 65 (1.19)
g () or()
From (1.11) and (1.16), and in the last step (1.14),
3 Mo(m) = 2, Mo(0)ao(m) = My(0)oi(z) = 1 (1.20)
m=0 m=0

Hence finally
M y(m) = M) (0)ow(m)

i aol@)ar(m) (1.21)
Tr1(3) 7x()
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and

My = 3 Man(m) = aoa)/ou(a) (1.22)
Ordinary moments are found from the factorial moments by linear
relations; thus if m; is the £th ordinary moment (about the origin)
moe = M my = Mg, me = M@ + Mg,
my = M@ + 3M @) + Mg

Thus

mo(m) = ao(m)/a1(x)

mi(m) = aci(m)eo(x)/o1(x)o2(x)

me(m) = a’aa(m)oo(z)/o2(x)o3(x) + aci(m)ay(x)/o1(x)os(z)
and, in particular, using notation of the text

mo(x) = oo(z)/oi(z) = Ei.(a)

= m) _ o) a

: mo(x) aa() r—a+ 1+ aF .(a) (1.23)
_omya) . _ d'n(a) o

T @ T T @) +oae o (1.24)

= o[l — az + 2a(z + 2 + a. — a)7]

Finally the sum moments: mz = »_ mx(m) are
0

me = 1
(1.25)
m = a = ag(x)/o1(z) = al -(a)
my = @'oo(x)/o2(x) + my = mafa(z + 1 4+ my — a)™' + 1] (1.26)

v=mpg—m’ =m[l —m +alx+ 14+ m —a)’

In these, K, .(a) = oo(x)/o:(x) is the familiar Erlang loss function.

AprPENDIX II — CHARACTER OF OVERFLOW LOAD WHEN NON-RANDOM
TRAFFIC IS OFFERED TO A GROUP OF TRUNKS

It has long been recognized that it would be useful to have a method
by which the character of the overflow traffic could be determined when
non-random traffic is offered to a group of trunks.. Excellent agreement
has been found in both throwdown and field observation over ranges of
considerable interest with the “equivalent random” method of describ-



3 TRUNKS ||

VARIANCE OF OVERFLOW LOAD FROM X TRUNKS

AVERAGE OF OVERFLOW LOAD FROM X TRUNKS IN ERLANGS
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0.4 0.4
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IN ERLANGS

Fig. 51 — Mean and variance of overflow load when non-random traffic is
offered to a group of trunks.

512



THEORIES FOR TOLL TRAFFIC ENGINEERING IN THE U. S. A. 513

ing the character of non-random traffic. An approximate solution of the
problem is offered based on this method.
Suppose a random traffic a is offered to a straight multiple which is
divided into a lower z; portion and an upper z, portion, as follows:
Ten, s
T2

T a,

Ta
From Nyquist’s and Molina’s work we know the mean and variance
of the two overflows to be:

T

a™
!
a1 = a By, (a) = a 2L

a*t

a2
l+at+g+ -+

!
1)1=a1|:1—a1+x1_a:_a1+1:|

az = G- El.;\:l+=g(a)

' a
"2““2[1—“2+x1+x2—a+a2+1]

Since a; and v; completely determine a and ; , and these in turn, with
a3 , determine a» and v, , we may express a, and »» in terms of only o,
v, and xp . The overflow characteristics (. and v.), are then given for a
non-random load (e; and ;) offered to x trunks as was desired.

Fig. 51 of this Appendix has been constructed by the Equivalent Ran-
dom method. The charts show the expected values of a» and v, when
a1, »1 (or vy/ey), and a3, are given. The range of oy is only 0 to 5 er-
langs, and v/« is given only from the Poisson unity relation to a peaked-
ness value of 2.5. Extended and more definitive curves or tables could
readily, of course, be constructed.

The use of the curves can perhaps best be illustrated by the solution
of a familiar example.

Ezxample: A load of 4.5 erlangs is submitted to 10 trunks; on the “lost
calls cleared” basis; what is the average load passing to overflow?

Solution: Compute the load characteristics from the first trunk when
4.5 erlangs of random traffic are submitted to it. These values are found
to be &y = 3.68, v; = 4.15. Now using a; and v, (or v1/ay = 4.15/3.68 =
1.13) as the offered load to the second trunk, read on the chart the param-
eters of the overflow from the second trunk, and so on. The successive
overflow values are given in Table XVIII.
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The proportion of load overflowing the group is then 0.0472/4.50 =
0.0105, which agrees, of course, with the Erlang E; ;0(4.5) value. The
successive overflow values are shown on the chart by the row of dots
along the a. and v» 1-trunk curves.

Instead of considering successive single-trunk overflows as in the ex-
ample above, other numbers of trunks may be chosen and their over-
flows determined. For example suppose the 10 trunks are subdivided
into 2 + 3 4+ 2 + 3 trunks. The loads overflowing these groups are
given in Table XIX.

Again the overflow is 0.0472 erlang, or a proportion lost of 0.0105,
which is, as it should be, the same as found in the previous example.
The values read in this example are indicated by the row of dots marked
1, 3, 6, 8 on the 2-trunk and 3-trunk curves.

The above procedure and curves should be of use in obtaining an esti-
mate of the character of the overflow traffic when a non-random load
is offered to a group of paths.

TasLE XVIII — Successive NoN-RANDoM OVERFLOWS

Characteristics of Load Offered to Trunk No. {
(same as overflow from previous trunk)
Trunk Number

g Average Variance Ratio gi::.ﬂrglzncc to
1 4.50 4.50 1.00 (Random)

2 3.68 4.15 1.13

3 2.92 3.68 1.26

4 2.22 3.11 1.40

5 1.61 2.46 1.53

6 1.09 1.80 1.64

7 0.694 1.19 1.72

8 0,406 0.709 1.75

9 0.217 0.377 1.74

10 0.106 0.180 1.70

Overflow 0.0472 0.077 1.64

TaBLE XIX — SucessivE NoN-RaNpoM OVERFLOWS

Offered Load Characteristics
(same as overflow from previous trunk)

Trunk Number lgﬁ,:x'frﬁl::;lln
i Average ‘ Variance Ratio a&g:_‘;&tme to
1 2 4.50 4.50 1.00 (Random)
3 3 2.92 3.68 1.26
6 2 1.09 1.80 1.64
8 3 0.406 0.709 1.75
Overflow 0.0472 0.077 1.64




