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Given two or more processes, the units from which fail in accordance with
an exponential or delayed exponential law, the problem is to select the partic-
ular process with the smallest failure rate. It is assumed that there is a com-
mon guarantee pertod of zero or positive duralion during which no failures
occur. This guarantee period may be known or unknown. It is desired to
accomplish the above goal in as short a time as possible withowt invalidating
certain predetermined probability specifications. Three statistical techniques
are considered for reducing the average experiment time needed to reach a
decision.

1. One technique is to increase the tnitial number of units put on test.
This technique will substantially shorten the average experiment time. Its
effect on the probability of a correct selection is generally negligible and in
some cases there is no effect.

2. Another technique is to replace each failure immediately by a new
unit from the same process. This replacement technique adds to the book-
keeping of the test, but if any of the population variances is large (say in
comparison with the guarantee period) then this technique will result in a
substantial saving in the average experiment time.

3. A third technique is to use an appropriate sequeniial procedure. In
many problems the sequential procedure results in a smaller average experi-
ment lime than the best non-sequential procedure regardless of the frue
failure rates. The amount of saving depends principally on the “‘distance”
between the smallest and second smallest failure rales.

For the special case of two processes, tables are given lo show the proba-
bility of a correct selection and the avemge experiment time for each of three
types of procedures.

Numerical estimales of the relative efficiency of the procedures are given
by computing the ratio of the average experiment ttme for two procedures of
different type with the same initial sample size and satisfying the same
probability specification.
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INTRODUCTION

This paper is concerned with a study of the advantages and disad-
vantages of three statistical techniques for reducing the average dura-
tion of life tests. These techniques are:

1. Increasing the initial number of units on test.

2. Using a replacement technique.

3. Using a sequential procedure.

To show the advantages of each of these techniques, we shall consider
the problem of deciding which of two processes has the smaller failure
rate. Three different types of procedures for making this decision will
be considered. They are:

R:, A nonsequential, nonreplacement type of procedure
R., A nonsequential, replacement type of procedure
Rs, A sequential, replacement type of procedure

Within each type we will consider different values of n, the initial
number of units on test for each process. The effect of replacement is
shown by comparing the average experiment time for procedures of
type 1 and 2 with the same value of » and comparable probabilities of a
correct selection. The effect of using a sequential rule is shown by com-
paring the average experiment time for procedures of type 2 and 3 with
the same value of n and comparable probabilities of a correct selection.

ASSUMPTIONS

1. Tt is assumed that failure is clearly defined and that failures are

recognized without any chance of error.
2. The lifetime of individual units from either population is assumed
to follow an exponential density of the form

f(z; 0, 9) = % = forzz g

(1)
flz;0,9) =0 forxz <g

where the location parameter g = 0 represents the common guarantee

period and the scale parameter # > 0 represents the unknown parameter

which distinguishes the two different processes. Let 6, = 6. denote the

ordered values of the unknown parameter # for the two processes; then

the ordered failure rates are given by

M=1/+9) = h=1/(0+9g) (2)

3. It is not known which process has the parameter 6; and which has
the parameter ;.
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4. The parameter g is assumed to be the same for both processes. It
may be known or unknown.

5. The initial number n of units put on test is the same for both pro-
cesses.

6. All units have independent lifetimes, i.e., the test environment is
not such that the failure of one unit results in the failure of other units
on test.

7. Replacements used in the test are assumed to come from the same
population as the units they replace. If the replacement units have to
sit on a shelf before being used then it is assumed that the replacements
are not affected by shelf-aging.

CONCLUSIONS

1. Increasing the initial sample size n has at most a negligible effect
on the probability of a correct selection. It has a substantial effect on the
average experiment time for all three types of procedures. If the value of
n is doubled, then the average time is reduced to a value less than or
equal to half of its original value.

2. The technique of replacement always reduces the average experi-
ment time. This reduction is substantial when ¢ = 0 or when the popu-
lation variance of either process is large compared to the value of g.
This decrease in average experiment time must always be weighed against
the disadvantage of an increase in bookkeeping and the necessity of
having the replacement units available for use.

3. The sequential procedure enables the experimenter to make rational
decisions as the evidence builds up without waiting for a predetermined
number of failures. It has a shorter average experiment time than non-
sequential procedures satisfying the same specification. This reduction
brought about by the sequential procedure increases as the ratio « of
the two failure rates increases. In addition the sequential procedure
always terminates with a decision that is clearly convincing on the basis
of the observed results, i.e., the & posteriori probability of a correct
selection is always large at the termination of the experiment.

SPECIFICATION OF THE TEST

Each of the three types of procedures is set up so as to satisfy the
same specification described below. Let « denote the true value of the
ratio 6;/6, which by definition must be greater than, or equal to, one.
It turns out that in each type of procedure the probability of a correct
selection depends on 6 and 6, only through their ratio a.
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1. The experimenter is asked to specify the smallest value of « (say
it is @* > 1) that is worth detecting. Then the interval (1, «*) represents
a zone of indifference such that if the true ratio « lies therein then we
would still like to make a correct selection, but the loss due to a wrong
selection in this case is negligible.

2. The experimenter is also asked to specify the minimum value P* >
15 that he desires for the probability of a correct selection whenever
a = o*. In each type of procedure the rules are set up so that the proba-
bility of a correct selection for &« = a* is as close to P* as possible without
being less than P*,

The two constants o > 1 and 14 < P* < 1 are the only quantities
specified by the experimenter. Together they make up the specification
of the test procedure.

EFFICIENCY

If two procedures of different type have the same value of n and satisfy
the same specification then we shall regard them as comparable and
their relative efficiency will be measured by the ratio of their average
experiment times. This ratio is a function of the true a but we shall
consider it only for selected values of @, namely, a« = 1, @ = o* and

a = @,

PROCEDURES OF TYPE R; — NONSEQUENTIAL, NONREPLACEMENT

“The same number n of units are put on test for each of the two pro-
cesses. Experimentation is continued until either one of the two samples
produces a predetermined number r (r < n) of failures. Experimenta-
tion is then stopped and the process with fewer than r failures is chosen
to be the better one.”

TaBLE I — ProBaBiLiTY oF A CORRECT SELECTION — PROCEDURE
Tyee R,
(@ = 2, any ¢ = 0, to be used to obtain r for «* = 2)

7 r=1 r=2 r=13 r=4
1 0.667 — —_ —
2 0.667 0.733 — —
3 0.667 0.738 0.774 —
4 0.667 0.739 0.784 0.802
10 0.667 0.741 0.789 0.825
20 0.667 0.741 0.790 0.826
0 0.667 0.741 0.790 0.827

Note: The value for r = 0 is obviously 0.500 for any n.
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We shall assume that the number n of units put on test is determined
by non-statistical considerations such as the availability of units, the
availability of sockets, ete. Then the only unspecified number in the
above procedure is the integer r. This can be determined from a table
of probabilities of a correct selection to satisfy any given specification
(a*, P*). If, for example, «* = 2 then we can enter Table 1. If n is
given to be 4 and we wish to meet the specification o* = 2, P* = 0.800
then we would enter Table I with » = 4 and select r = 4, it being the
smallest value for which P = P*.

The table above shows that for the given specification we would also
have selected » = 4 for any value of n. In fact, we note that the proba-
bility of a correct selection depends only slightly on n. The given value
of n and the selected value of r then determine a particular procedure
of type Ry, say, Ri(n, r).

The average experiment time for each of several procedures Ri(n, )
is given in Table II for the three critical values of the true ratio a,
namely, « = 1, @ = a* and @« = . Each of the entries has to be multi-
plied by 6., the smaller of the two 6 values, and added to the common
guarantee period g. For n = o« the entry should be zero (+g) but it
was found convenient to put in place of zero the leading term in the
asymptotic expansion of the expectation in powers of 1/n. Hence the
entry for n = e can be used for any large n, say, n = 25 when » £ 4.

We note in Table IT the undesirable feature that for each procedure
the average experiment time increases with « for fixed 6, . For the se-
quential procedure we shall see later that the average experiment time
is greater at @ = o* than at either « = 1 or « = . This is intuitively
more desirable since it means that the procedure spends more time when
the choice is more difficult to make and less time when we are indifferent
or when the choice is easy to make.

PROCEDURES OF TYPE Rp — NONSEQUENTIAL, REPLACEMENT

“Such procedures are carried out exactly as for procedures of E; except
that failures are immediately replaced by new units from the same
population.”

To determine the appropriate value of » for the specification «* = 2,
P* = 0.800 when ¢ = 0 we use the last row of Table I, i.e., the row
marked n = =, and select » = 4. The probability of a correct selection
for procedures of type R is exactly the same for all values of n and de-
pends only on r. Furthermore, it agrees with the probability for pro-
cedures of type R, with n = « so that it is not necessary to prepare a
separate table.
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TapLe IIIl — VaLue oF r REQUIRED To MEET THE SPECIFICATION
(a*, P*) Fror ProcEDpURES oF TypE R. (g = 0)

ot
Pl

1.05 1.10 1.15 1.20 1.25 1.30 1.35 | 1.40 | 1.45 | 1.50 | 2.00 | 2.50 | 3.00
0.50 0 0 0 0 0 0 O 0] 0 0] 0| O] 0
0.55 14 4 2 2 1 1 1 1| 1) 1] 1] 1] 1
0.60 55 15 7 5 3 3 212 21 1] 1] 1|1
0.65 | 126 33 16 10 7 5 41 3] 3311 1] 1
0.70 = 232 61 29 17 12 9 71 60 50 4 2] 1] 1
0.75 383 | 101 47 28 19 14 11| 9 7] 6| 3| 2| 1
0.80 | 596 | 157 73 43 29 21 17 13 11| 9| 4| 2| 2
0.85 | 903 | 238 | 111 65 44 32 2512016 |14 5| 3| 3
0.00 | 1381 | 363 | 169 | 100 67 49 37130 (25|21 8] 5| 4
0.95 | 2274 | 597 | 278 | 164 | 110 80 61 49 |40 |34 |12 ] 7| b
0.99 | 4540 | 1193 | 556 | 327 | 219 | 160 | 122 | 08 | 80 | 68 | 24 | 14 | 10

It is also unnecessary to prepare a separate table for the average ex-
periment time for procedures of type R. since for ¢ = 0 the exact values
can be obtained by substituting the appropriate value of n in the ex-
pressions appearing in Table II in the row marked n = o« . For example,
forn = 2, r = 1 and « = 1 the exact value for ¢ = 0 is 0.500 6./2 =
0.250 6, and forn = 3, r = 4, a = o the exact value for g = 01is
4.000 6./3 = 1.333 6, . Tt should be noted that for procedures of type R,
we need not restrict our attention to the cases r < n but can also con-
sider r > n.

Table IIT shows the value of r required to meet the specification
(a*, P*) with a procedure of type R. for various selected values of o*
and P*.

PROCEDURES OF TYPE Rz — SEQUENTIAL, REPLACEMENT

Let D{t) denote the absolute difference between the number of fail-
ures produced by the two processes at any time {. The sequential pro-
cedure is as follows:

“Stop the test as soon as the inequality

In [P*/(1 — P¥)]

b = In o*

(3)

is satisfied. Then select the population with the smaller number of fail-
ures as the better one.”

To get the best results we will choose (a*, P*) so that the right hand
member of the inequality (3) is an integer. Otherwise we would be operat-
ing with a higher value of P* (or a smaller value of &*) than was specified.
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TABLE IV — AvErRAGE EXPERIMENT TIME AND PROBABILITY OF A
CorrRECT SELECTION — ProcEDURE TYPE R;
(a* = 2, P* = 0800, ¢ = 0)

(Multiply each average time entry by 6:)

n a =1 a=2 a = o
1 2.000 2.400 2.000
2 1.000 1.200 1.000
3 0.667 0.800 0.667
4 0.500 0.600 0.500
10 0.200 0.240 0.200
20 0.100 0.120 0.100
w 2.000/n 2.400/n 2.000/n
Probability. .......... 0.500 0.800 1.000

For example, we might choose o* = 2 and P* = 0.800. For procedures
of type Ry the probability of a correct selection is again completely in-
dependent of n; here it depends only on the true value of the ratio ea.
The average experiment time depends strongly on 7 and only to a limited
extent on the true value of the ratio a. Table IV gives these quantities
fora =1, a = 2, and @ = o for the particular specification o* = 2,
P* = 0.800 and for the particular value g = 0.

EFFICIENCY

We are now in a position to compare the efficiency of two different
types of procedures using the same value of n. The efficiency of R, rela-
tive to R. is the reciprocal of the ratio of their average experiment time.
This is given in Table V for o* = 2, P* = 0.800,r = 4andn = 4, 10,20
and . By Table I the value P* = 0.800 is not attained for n < 4.

In comparing the sequential and the nonsequential procedures it was
found that the slight excesses in the last column of Table I over 0.800

TasLe V— Erriciency orF Tyre R; RELATIVE TO
TypE R,

(a* = 2, P* = 0.800,r = 4, g = 0)

” =1 a =2 a =@
4 0.501 0.495 0.480
10 0.837 0.836 0.835
20 0.925 0.917 0.922

@ 1.000 1.000 1.000
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TasLe VI — ErFFiciEncy oF ApJusTED R; RELATIVE To R;
(a* = 2, P* = 0.800, g = 0)

" a=1 a=12 ax= o
4 0.615 0.575 0.419
10 0.754 0.708 0.528
20 0.818 0.768 0.573
@ 0.873 0.822 0.612

had an effect on the efficiency. To make the procedures more comparable
the values for r = 3 and » = 4 in Table I were averaged with values p
and 1 — p computed so as to give a probability of exactly 0.800 at a = a*.
The corresponding values for the average experiment time were then
averaged with the same values p and 1 — p. The nonsequential pro-
cedures so altered will be called “adjusted procedures.” The efficiency
of the adjusted R, relative to R, is given in Table V1.

In Table VI the last row gives the efficiency of the adjusted procedure
R relative to B3 . Thus we can separate out the advantage due to
the replacement feature and the advantage due to the sequential fea-
ture. Table VII gives these results in terms of percentage reduction of
average experiment time.

We note that the reduction due to the replacement feature alone is
greatest for small n and essentially constant with « while the reduction

TasLe VII — Per CenT REDUCTION IN AVERAGE EXPERIMENT TIME
DUE TO STATISTICAL TECHNIQUES

(a* = 2, P* = 0.800,9 = 0)

Reduction
Reduction due to Reduction due to due to both
a n Replacement Sequential Replacement
Feature Alone Feature Alone and Sequential
Features
4 29.5 12,7 38.5
1 10 13.7 12.7 24.6
20 6.3 12.7 18.2
w0 0.0 12.7 12.7
4 30.1 17.8 42.5
9 10 13.9 17.8 29.2
20 6.6 17.8 23.2
* 0.0 17.8 17.8
4 3l.5 38.8 58.1
, 10 13.6 388 47.2
B 20 6.3 ! 388 42.7
= 0.0 | 38.8 388
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due to the sequential feature alone is greatest for large a and is inde-
pendent of n. Hence if the initial sample size per process n is large we
can disregard the replacement technique. On the other hand the true
value of « is not known and hence the advantage of sequential experi-
mentation should not be disregarded.

The formulas used to compute the accompanying tables are given in
Addendum 2.
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AppENDUM 1

In this addendum we shall consider the more general problem of select-
ing the best of k exponential populations treated on a higher mathemati-
cal level. For k = 2 this reduces to the problem discussed above.

DEFINITIONS AND ASSUMPTIONS

There are given k populations II; (7 = 1,2, - -+, k) such that the life-
times of units taken from any of these populations are independent
chance variables with the exponential density (1) with a common (known
or unknown) location parameter ¢ = 0. The distributions for the & popu-
lations are identical except for the unknown scale parameter § > 0 which
may be different for the k different populations. We shall consider three
different cases with regard to g.

Case 1: The parameter g has the value zero (g = 0).

Case 2: The parameter ¢ has a positive, known value (g > 0).

Case 3: The parameter ¢ is unknown (g = 0).

Let the ordered values of the k scale parameters be denoted by

bz0z- =6 (4)

where equal values may be regarded as ordered in any arbitrary manner.
At any time ¢ each population has a certain number of failures associated
with it. Let the ordered values of these integers be denoted by ri = ri(t)
so that

IA
&>
1A
1A

= Tk (5)
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For each unit the life beyond its guarantee period will be referred to
as its Poisson life, Let L.(¢) denote the total amount of Poisson life

observed up to time ¢ in the population with r; failures (i = 1,2, --- , k).
If two or more of the r; are equal, say r; = rip1 = +++ = ryy;, then we
shall assign r; and L; to the population with the largest Poisson life,
riy1 and Ly, to the population with the next largest, - - - , riy; and Liy;

to the population with the smallest Poisson life. If there are two or more
equal pairs (r;, L;) then these should be ordered by a random device
giving equal probability to each ordering. Then the subseripts in (5) as
well as those in (4) are in one-to-one correspondence with the k given
populations. It should be noted that L.({) = 0 for all 7 and any time
t = 0. The complete set of quantities L;(f) (+ = 1,2, --- , k) need not
be ordered. Let « = 6,/8, so that, since the 4; are ordered, « = 1.

We shall further assume that:

1. The initial number n of units put on test is the same and the start-
ing time is the same for each of the k populations.

2. Each replacement is assumed to be a new unit from the same popu-
lation as the failure that it replaces.

3. Failures are assumed to be clearly recognizable without any chance
of error.

SPECIFICATIONS FOR CASE 1: ¢ = 0

Before experimentation starts the experimenter is asked to specify two
constants o* and P* such that o* > 1 and 34 < P* < 1. The procedure
R; = Ry(n), which is defined in terms of the specified o* and P* has
the property that it will correctly select the population with the largest
scale parameter with probability at least P* whenever « = «*. The initial
number n of units put on test may either be fixed by nonstatistical con-
siderations or may be determined by placing some restriction on the
average experiment time function.

Rule Ry :

“Continue experimentation with replacement until the inequality

> a0 < (1= Poy/Pr (6)

=2

is satisfied. Then stop and select the population with the smallest num-
ber of failures as the one having the largest scale parameter.”
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Remarks

1. Since P* > 14 then (1 — P*)/P* < 1 and hence no two popula-
tions can have the same value r; at stopping time.

2. For k = 2 the inequality (6) reduces to the inequality (3).

3. The procedure R; terminates only at a failure time, never between
failures, since the left member of (6) depends on { only through the
quantities 7;(¢).

4. After experimentation is completed one can make, at the 100P per
cent confidence level, the confidence statement

0, < 6, < a* 6, (or B/a* <0, =< 0) (7)

where 8, is the scale parameter of the selected population.

Numerical Illustrations

Suppose the preassigned constants are P* = 0.95 and o* = 19" =
2.088 so that (1 — P*)/P* = 1{g. Then for k = 2 the procedure is to
stop when r: — r; = 4. For k = 3 it is easy to check that the procedure
reduces to the simple form: “Stop when r, — r = 5”. For k > 3 either
calculations can be carried out as experimentation progresses or a table
of stopping values can be constructed before experimentation starts.
For k = 4 and k = 5 see Table VIII.

In the above form the proposed rule is to stop when, for at least one

Tante VIII — Spquentian RuLe For P* = 0.95, o* = 19

k=4 k=25
ra—r ra—ri ra—r1 r2—n ra—r.1 rAa—n s n

5 5 9 5 5 9 10

5 6 6 5 5 10 10 |

6 6 6 * 5 6 6 8
5 6 7 7
5 7 7 7T
6 6 6 6

* Starred rows can be omitted without affecting the test since every integer in
these rows is at least as great as the corresponding integer in the previous row.
They are shown here to illustrate a systematie method which insures that all the
necessary rows are included.



REDUCING TIME IN RELIABILITY STUDIES 191

row (say row j) in the table, the observed row vector (r» — 71,
rs — 11, -+, rx — r1) is such that each component is at least as large as
the corresponding component of row j.

Properties of Ry fork = 2andg = 0

Tor k = 2 and ¢ = 0 the procedure R; is an example of a Sequential
Probability Ratio test as defined by A. Wald in his book.” The Average
Sample Number (ASN) function and the Operating Characteristics (OC)
function for R; can be obtained from the general formulae given by
Wald. Both of these functions depend on 6; and 6. only through their
ratio . In our problem there is no excess over the boundary and hence
Wald’s approximation formulas are exact. When our problem is put into
the Wald framework, the symmetry of our problem implies equal proba-
bilities of type 1 and type 2 errors. The OC function takes on comple-
mentary values for any point & = 6:/6, and its reciprocal 6./6; . We shall
therefore compute it only for & = 1 and denote it by P(a). For a > 1
the quantity P(«) denotes the probability of a correct selection for the
true ratio a.

The equation determining Wald’s h function® is

)k w\—h
(a ) a(a ) =1 (8)
1+« 14+«
for which the non-zero solution in h is easily computed to be
In «
h(a) = o (9)

Hence we obtain from Wald’s formula (3:43) in Reference 5

P@) = oy (10)
where s is the smallest integer greater than or equal to
8 = In [P*/(1 — P¥)]/In o* (11)
In particular, for « = 17, o* and © we have
Pty =1y, Pl*)zP* Ple) =1 (12)

We have written P(17) above for lim P(xz) as @ — 1 from the right. The
procedure becomes more efficient if we choose PP and a* so that S is an
integer. Then s = S and P(a*) = P*.

Letting F denote the total number of observed failures required to
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terminate the experiment we obtain for the ASN function

v fat1 a'—l)
E(F,a)—s(a—__ 1)(a’+1 fora > 1 (13)

and, in particular, for a = 1,
E(F:1) =5 and E(F;»)=s (14)
It is interesting to note that for s = 1 we obtain
EFf;a) =1 foralla =2 1 (15)

and that this result is exact since for s = 1 the right-hand member S
of (3) is at most one and hence the procedure terminates with certainty
immediately after the first failure.

As a result of the exponential assumption, the assumption of replace-
ment and the assumption that ¢ = 0 it follows that the intervals between
failures are independently and identically distributed. F'or a single popu-
lation the time interval between failures is an exponential chance vari-
able. Hence, for two populations, the time interval is the minimum of
two exponentials which is again exponential. Letting 7 denote the
(chance) duration of a typical interval and letting T' denote the (chance)
total time needed to terminate the procedure, we have

H(T; &, 8) = B(F; ) E(r; , 6) = B(F; a) (%2) ( — a) (16)

Hence we obtain from (13) and (14)

. _ gg sa o —1
E(T'a'%)“na——la'—i—l fora >1 (17)
2
E(T; 1, 6) = ol and E(T; o, 68) = s (18)
2n n

For the numerical illustration treated above with & = 2 we have

4

P(a) = _T_’ = (19)

PO = 14;  P(2088) = 095  P(») =1 (20)
4 _ 2 C{z

R i 2

E(F; 1) = 16.0; E(F;2.088) = 10.2; E(F; ») =4 (22)
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B(T; 1, 62) = %; E(T; 2.088, 6:) = 0-292;

(23)
B(T; »,0) = 22

For & > 2 the proposed procedure is an application of a general se-
quential rule for selecting the best of & populations which is treated in
[1]. Proof that the probability specification is met and bounds on the
probability of a correct decision can be found there.

CASE 2: COMMON KNOWN g > 0

In order to obtain the properties of the sequential procedure R; for
this case it will be convenient to consider other sequential procedures.
TLet 8 = 1/6. — 1/6; so that, since the 8; are ordered, 3 = 0. Let us
assume that the experimenter can specify three constants «*, §* and
P* such that «* > 1, 8% > 0and 4 < P* < 1 and a procedure is de-
sired which will select the population with the largest secale parameter
with probability at least P* whenever we have both

a=eao* and B = B*

The following procedure meets this specification.

Rule Ry':
“Continue experimentation with replacement until the inequality
k
Z ¥ i) B ) < (1—P*)/P* (24)
i=2

is satisfied. Then stop and select the population with the smallest number
of failures as the one having the largest scale parameter. If, at stopping
time, two or more populations have the same value 7 then select that
particular one of these with the largest Poisson life L, .”

Remarks
1. For k = 2 the inequality reduces to
(ra — ) Ina* + (Iy — L) B* = In [P*/(1 — P¥)] (25)

If ¢ = 0 then L; = L, for all ¢ and the procedure R;’ reduces to R;.
2. The procedure B3 may terminate not only at failures but also be-
tween failures.
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3. The same inequality (24) can also be used if experimentation is
carried on withoul replacement, one advantage of the latter being that
there is less bookkeeping involved. In this case there is a possibility
that the units will all fail before the inequality is satisfied so that the
procedure is not yet completely defined for this case. One possibility
in such a situation is to continue experimentation with new units from
each population until the inequality is satisfied. Such a procedure will
terminate in a finite time with probability one, i.e., Prob{T > To} — 0
as Ty — =, and the probability specification will be satisfied.

4. A procedure Ry (ni, ma, -+, e, t1, t2, -+, &) using the same
inequality (24) but based on different initial sample sizes and/or on
different starting times for the initial samples also satisfies the above
probability specification. In the case of different starting times it is
required that the experimenter wait at least g units of time after the last
initial sample is put on test before reaching any decision.

5. One disadvantage of R, is that there is some (however remote)
possibility of terminating while r; = r» . This can be avoided by adding
the condition r» > 1 to (24) but, of course, the average experiment time
is increased. Another way of avoiding this is to use the procedure E;
which depends only on the number of failures; the effect of using Rj
when g > 0 will be considered below.

6. The terms of the sum in (24) represent likelihood ratios. If at any
time each term is less than unity then we shall regard the decision to
select the population with r; failures and L units of Poisson life as opti-
mal. Since (1 — P*)/P* < 1 then each term must be less than unity at
termination.

Properties of Procedure R3' for kb = 2

The OC and ASN funetions for By’ will be approximated by comparing
Ry with another procedure R;” defined below. We shall assume that P*
is close to unity and that g is small enough (compared to 6:) so that the
probability of obtaining two failures within g units of time is small
enough to be negligible. Then we can write approximately at termination

LialT —rg (G=12--,k) (26)
and
. Ly — Li= (ri — ™)y (=23, -,k (27)
Substituting this in (24) and letting
5t = a* Y (28)

suggests a new rule, say R;”, which we now define.
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Rule Ry”

“Continue experimentation with replacement until the inequality

k
28T < (1 — PY)/P* (29)
is satisfied. Then stop and select the population with r; failures as the
one with the largest scale parameter.”
For rule Ry” the experimenter need only specify P* and the smallest
value §* of the single parameter

[V} _
5 = _leuf(l.’ﬂg) (1/8y)) — a'ﬁﬂﬁ (30)
2

that he desires to detect with probability at least P*.

We shall approximate the OC and ASN function of Ry" for b = 2
by computing them under the assumption that (27) holds at termina-
tion. The results will be considered as an approximation for the OC and
ASN functions respectively of Ry’ for & = 2. The similarity of (29)
and (6) immediately suggests that we might replace o* by 6* and a by
& in the formulae for (6). To use the resulting expressions for Ky’ we
would compute §* as a function of &* and g* by (28) and & as a function
of e and 8 by (30).

The similarity of (29) and (6) shows that Z, (defined in Reference 5,
page 170) under (27) with ¢ > 0 is the same function of §* and § as it
is of &* and « when g = 0. To complete the justification of the above
result it is sufficient to show that the individual increment z of Z, is the
same function of 8* and & under (27) with g > 0 as it is of o* and «
when g = 0. To keep the increments independent it is necessary to as-
sociate each failure with the Poisson life that follows rather than with
the Poisson life that precedes the failure. Neglecting the probability
that any two failures occur within ¢ units of time we have two values for
z, namely

n Bu(nl——y)fﬂle—nf,’ﬂg

e=log—— — = —logs (31)
n ¢~ im0z —nt/iy

23

and, interchanging 6, and 6., gives z = log . Moreover
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f f B' *(riﬁu)h?-_re*mn’ﬂl dx dy
2

B2 —g8s(n—1)+eynl /018 | O —010ant0, (n-1)110100)
n ¢ tal 32)

Prob {z = Hlé)g 8} =

0
1+ 34
Thus the OC and ASN functions under (27) with ¢ > 0 bear the same

relation to 6* and & as they do to &* and « when g = 0. Hence, letting
w denote the smallest integer greater than or equal to

In [P*/(1 — P*)] _ In[P*/(1 — P*)]

= In 6%  gB* + Ina* (33)
we can write (omitting P* in the rule deseription)
P8 Ry’ (o, 89} = P8 R ()] = (34)

v + 1
E\F; Ry (o, 8%)) = E{F; Ry"(5*)}

"’j (g —_l_ i)(&"’ T }) fors > 1 (35)
lwz fors =1

We ean approximate the average time between failures by

AT N(y+51)(0'+92) 02 o ) )
Elr 6,60:, g} = m+2) =§’I+1—L—(]+a (36)

and the average experiment time by

(g + 6)(g + 62)
n(® + 0 + 2¢) 37)

Sinee § = 1 then 8"/(1 + §") is an inereasing function of w and by
(33) it is a non-increasing function of §*. By (28) * = «* and hence,
if we disregard the approximation (34),

% x\11n §/ln a*
_LP[I/)(*l/(l - E*)]ln 6/In a* = P[a,Ra”(a*)l (38)

Clearly the rules Ri(a*, P*) and Ry” (e*, P*) are equivalent so that
for g > 0 we have

E{T; Ry (a*, 8%)} = E{F; Ry (a*, §%))

Pls; R (a%)) =

P{3; Ry(a®)} = P{8; By" (o)} (39)
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and hence, in particular, letting 8 = &* in (38) we have
P{6*; Rs(a*)} = P{6*; Rs"(6%)} = P* (40)

since the right member of (34) reduces to P* when W is an integer and
8 = &* The error in the approximations above can be disregarded when
¢ is small compared to 6, . Thus we have shown that for small values of
g/ 8 the probability specification based on (a*, 8* P*) is satisfied in the
sense of (40) if we use the procedure R;(a*, P*), i.e., if we proceed as if
g = 0.

It would be desirable to show that we can proceed as if g = 0 for all
values of g and P*. It can be shown that for sufficiently large n the rule
Rs(a*, P*) meets it specification for all g. One effect of increasing n
is to decrease the average time FE(r) between failures and to approach
the corresponding problem without replacement since g/E(r) becomes
large. Hence we need only show that Ri;(a*, P*) meets its specification
for the corresponding problem without replacement. If we disregard the
information furnished by Poisson life and rely solely on the counting of
failures then the problem reduces to testing in a single binomial whether
8 = 6 for population 11, and 8 = 6, for population TI; or vice versa. Let-
ting p denote the probability that the next failure arises from II; then
we have formally

Hyp = ﬁl——a versus Hy:p = &
For preassigned constants «* > 1 and P* (14 < P* < 1) the appropri-
ate sequential likelihood test to meet the specification:

“Probability of a Correct Selection = P* whenever o = o*’ (41)
then turns out to be prec ise]y the procedure R;(«*, P*). Hence we may
proceed as if ¢ = 0 when n is sufficiently large.

The specifications of the problem may be given in a dlﬁ"el rent form.
Suppose 6,* > 6.* are specified and it is desired to have a probability of a
correct selection of at least P* whenever 6, = 6,* > 6.* = 6, . Then we
can form the following sequential likelihood procedure E3* which is
more efficient than R3(a*, P¥).

Rule Ry*:

“Continue experimentation without replacement until a time ¢ is
reached at which the inequality

k Bt,’ﬂg' _ ljl—(r.'—ﬁ) 1 — pP*
S]] s &
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is satisfied. Then stop and select the population with r failures as the
population with 8 = 6,".

It can be easily shown that the greatest lower bound of the bracketed
quantity in (42) is 0,*/6,*. Hence for 6,*/6.* = o* and P* > 14 the time
required by Ry*(8,*, 6;*, P*) will always be less than the time required
by Ri(a*, P*).

Another type of problem is one in which we are given that 6§ = 6,*
for one population and 6 = 6;* for the & — 1 others where 6,* > 6,* are
specified. The problem is to select the population with 8 = 6;*. Then
(42) can again be used. In this case the parameter space is discrete with
k points only one of which is correct. If Rule Ry* is used then the
probability of selecting the correct point is at least P*.

Equilibrium Approach When Failures Are Replaced

Consider first the case in which all items on test are from the same
exponential population with parameters (6, g). Let T'»; denote the length
of the time interval between the j®* and the j + 1¢* failures, (7 = 0,
1, -+ ), where n is the number of items on test and the 0 failure de-
notes the starting time. As time increases to infinity the expected number
of failures per unit time clearly approachesn/(6 + g) which is called the
equilibrium failure rate. The inverse of this is the expected time between
failures at equilibrium, say E(7T..). The question as to how the quanti-
ties E(T,;) approach E(T,,) is of considerable interest in its own right.
The following results hold for any fixed integer n = 1 unless explicitly
stated otherwise. It is easy to see that

E(Tw) £ E(Tw,) £ E(Tw) (43)
since the exact values are respectively
—(n—1)g/8
4 (1 e ) 9+90 + 0 (44)
n—1 n n

In fact, since all units are new at starting time and since at the time of
the first failure all units (except the replacement) have passed their
guarantee period with probability one then

E(Tw) £ E(Th;) = E(Tw) (7z0) (45

If we compare the case ¢ > 0 with the special case g = 0 we obtain

i
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and if we compare it with the non-replacement case (g/0 is large) we
obtain

[/
n—j
These comparisons show that the difference in (46) is small when g/8 is
small and for j < n the difference in (47) is small when ¢/8 is large.

It is possible to compute E(T,;) exactly for ¢ = 0 but the computa-
tion is extremely tedious for j = 2. The results for j = 1 and 0 are given
in (44). Forj = 2

B(T,;) = (=12 -, n—1). (47

w2 " (48)
+ n—2 gDl n— 2 e—z(n—l)g.w:| (n > 2)
n—1 n*n — 1)
and
B(Tw) =g — 311 — 47 4 ") (49)

For the case of two populations with a common guarantee period ¢
we can write similar inequalities. We shall use different symbols a, b for
the initial sample size from the populations with scale parameters 6, , 8,
respectively even though our principal interest is in the casea = b = n
say. Let Tas,; denote the interval between the j* and j 4 1%t fail-
ures in this case and let A; = 1/8; (z = 1, 2). We then have for all values
of @ and b

[a\ + bhe] ™' < E(Tap,s) £ E(Tapo)
=g+ fan+ ] (=012, ») (50

(6 4 9)(6: 4 9)
a(f: + g) + b6, + ¢) (51)

The result for E(T.5.1) corresponding to that in (43) does not hold if
the ratio 6,/6; is too large; in particular it can be shown that

—glla—1)A+bha]
BT = () e L —
o ai; + bhg (G _ l)hl + b)\z a)\l + b)nz (52)

(o Yo g o = e
a?\l + bkz GA[ + (b _ 1)?\2 CU\] + bxz

is larger than E(T.p.,) fora = b = 1 when ¢g/8, = 0.01 and ¢/6: = 0.10

E(Tu,b.w) =
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so that 6,/6: = 10. The expression (52) reduces to that in (44) if we set
6, = 0, = 6 and replace a and b by n/2 in the resulting expression.

Corresponding exact expressions for E(T, ;) for j > 1 are extremely
tedious to derive and unwieldy although the integrations involved are
elementary. If we let g — o then we obtain expressions for the non-
replacement case which are relatively simple. They are best expressed
as a recursion formula.

= _—ahl 1, .
E(Tc.b..r) - ak]_ + bkz ETu-—l,b.;—l
b\ (53)
2 .
+ P ETap,i—1 (G7=z1
_ ahL 1
E(Teps) = o1 + bhz (@ — DA + b,
b 1 (54)
2 >
+ a1 + bhz ahy + (b — e (0,6 2 1)
E(Tap,;) < g+ 6i/a forj = aandj =0 (55)
E(Tap,;) = 0/(a—J) forl £j<a—1 (56)

Results similar to (55) and (56) hold for the case @ = 0. The above
results for ¢ = « provide useful approximations for E(7a,,;) when g
is large. Upper bounds are given by

E(Tos;) < [an + (b — DM (G=12---,b) (57)
E(Ta,b,j+b) é [(G. - j))\I]_l (.7 = l: 2: e, a = 1) (58)

Duration of the Experiment

For the sequential rule Ry’ with & = 2 we can now write down approxi-
mations as well as upper and lower bounds to the expected duration
E(T) of the experiment. From (50)

E(F; 5) =

m § E(T) = :';0 E(Tn.n.j) (59)

+ [E(F; 8) — clE(Twn.)

g+

where ¢ is the largest integer less than or equal to E(F; 8). The right ex-
pression of (59) can be approximated by (53) and (54) if ¢ is large. If
¢ < 2n then the upper bounds are given by (57) and (58). A simpler



REDUCING TIME IN RELIABILITY STUDIES 201 o

upper bound, which holds for all values of ¢ is given by

MDéEWMMﬁWQ=ME&G+%> (60)

CASE 3! COMMON UNKNOWN LOCATION PARAMETER ¢ 20

In this case the more conservative procedure is to proceed under the
assumption that ¢ = 0. By the discussion above the probability require-
ment will in most problems be satisfied for all ¢ = 0. The OC and ASN
functions, which are now functions of the true value of g, were already
obtained above. Of course, we need not consider values of g greater than
the smallest observed lifetime of all units tested to failure.

ADDENDUM 2

For completeness it would be appropriate to state explicitly some of
the formulas used in computing the tables in the early part of the paper.
For the nonsequential, nonreplacement rule B, with & = 2 the proba-
bility of a correct selection is .

Hmm=jfﬂmwmmmm (61)

where

fr(x, 6) — g C:(l _ e—r;’B)r—l eux(nfﬂ-l).’s- (T < n) (62)

and C; is the usual combinatorial symbol. This can also be expressed in
the form

Pla; B) = 1 — (rC7)’ ,; ;L-% (63)

Cioi{Blry,n —r+ 1 + a(n — r + NI

where B[z, y| is the complete Beta function. Equation (66) holds for
any g = 0.

For the rule R, the expected duration of the experiment for k = 2
is given by

mm=£%mmmm—F&ﬁn+mamunmmmnm(M)

where f,(x, 8) is the density in (62) and F,(x, 6) is its c.d.f. This can
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also be expressed in the form
"e 3 ¥ (=™ o

6, r(Cy —— i 65

L 1{C) -;;Z-:l(n—-r—i-J)[z—I—n-r—l-a(J—t-n—T)F (65)
plus another similar expression in which 6y, a are replaced by 0,, ot
respectively. For ¢ > 0 we need only add g to this result. This result
was used to compute E(T) in table 1A fora = 1 and @ = 2. Fora = «
the expression simplifies to

T _ l)r—J
E(T) = 67C™ - (=D 66
(T) 0rC fi_\; 11(”'_3._*_1)2 (66)
which can be shown to be equivalent to
. 1
B(T) =6, (67)
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