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This paper treats propagation of slow waves in two-dimensional new-
tralized electron flow in which all electrons have the same velocity in the
direction of propagation but in which there are sireams of two or more veloci-
ties normal to the direction of propagalion. In a finite beam in which
electrons are reflected elastically at the boundaries and in which equal de
currents are carried by electrons with iransverse velocilies +wy; and —wy
there is an antisymmetrical growing wave if

w,” ~ (ruy/W)*
and a symmelrical growing wave if
W, ~ 44 (ruy /W)’

Here w, is plasma frequency for the total charge density and W is beam
width.

INTRODUCTION

It is well-known that there can be growing waves in electron flow when
the flow is composed of several streams of electrons having different
velocities in the direction of propagation of the waves."* While Birdsall®
considers the case of growing waves in electron flow consisting of streams
which cross one another, the growing waves which he finds apparently
oceur when two streams have different components of velocity in the
direction of propagation.

This paper shows that there can be growing waves in electron flow
consisting of two or more streams with the same component of velocity
in the direction of wave propagation but with different components of
velocity transverse to the direction of propagation. Such growing waves
can exist when the electric field varies in strength across the flow. Such
waves could result in the amplification of noise fluctuations in electron
flow. They could also be used to amplify signals.
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Actual electron flow as it occurs in practical tubes can exhibit trans-
verse velocities. For instance, in Brillouin flow, 7 * if we consider electron
motion in a coordinate system rotating with the Larmor frequency we
see that electrons with transverse velocities are free to cross the beam
repeatedly, being reflected at the boundaries of the beam. The trans-
verse velocities may be completely disorganized thermal velocities, or
they may be larger and better-organized velocities due to aberrations at,
the edges of the cathode or at lenses or apertures. Two-dimensional
Brillouin flow allows similar transverse motions.

It would be difficult to treat the case of Brillouin or Brillouin-like flow
with transverse velocities. Here, simpler cases with transverse velocities
will be considered. The first case treated is that of infinite ion-neutra-
lized two-dimensional flow with transverse velocities. The second case
treated is that of two-dimensional flow in a beam of finite width in which
the electrons are elastically reflected at the boundaries of the beam.
Growing waves are found in both cases, and the rate of growth may be
large.

In the case of the finite beam both an antisymmetric mode and a
symmetric mode are possible. Here, it appears, the current density
required for a growing wave in the symmetric mode is about 44 times
as great as the current density required for a growing wave in the anti-
symmetric mode. Hence, as the current is increased, the first growing
waves to arise might be antisymmetric modes, which could couple to a
symmetrical resonator or helix only through a lack of symmetry or
through high-level effects.

1. Infinile two-dimensional flow

Consider a two-dimensional problem in which the potential varies
sinusoidally in the y direction, as exp(—jBz) in the z direction and as exp
(jol) with time. Let there be two electron streams, each of a negative
charge po and each moving with the velocity u, in the z direction, but
with velocities 1, and —uy respectively in the y direction. Let us denote
ac quantities pertaining to the first stream by subscripts 1 and ac quan-
tities pertaining to the second stream by subscripts 2. The ac charge
density will be denoted by p, the ac velocity in the y direction by ¥,
and the ac velocity in the z direction by 2. We will use linearized or
small-signal equations of motion.! We will denote differentiation with
respect to y by the operator D.

The equation of continuity gives

jwpr = —D(piux + potn) + iBlprtto + pofa) (1.1)
j(ﬂpg = -—D(—pgul —+ p.}gjz) + jﬂ(Pzﬂo + poza) (1-2)

II
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Let us define

dy = jlw — Bug) 4+ wD (1.3)

dy = jlw — Buy) — D (1.4)
We can then rewrite (1.1) and (1.2) as

dipy = po(—Dyy + jBz1) (1.5)

dops = po(—Dyj2 + jBZ2) (1.6)

We will assume that we are dealing with slow waves and can use a po-
tential V to describe the field. We can thus write the linearized equations
of motion in the form

diy = —j S BV (1.7)
m
doty = —j 2 8V (1.8)
22z J m .
. [ -
d[‘!jl = — DI (]...())
m
dupe = 5 DV (1.10)
m

From (1.5) to (1.10) we obtain

dipy = =L po(D* — BV (1.11)
m

dipe = —= p(D* — BV (1.12)
m
Now, Poisson’s equation is
(De _ BZ)V _ _M + p2 (1_13)
€

From (1.11) to (1.13) we obtain

W = W = = tg0 (4 ) 0 =V (w
dl" dg'
e
o =2 po (L15)
F
€

Here w, is the plasma frequency for the charge of both beams.
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Either
(D — BV =0 (1.16)
or else

—w, (d + d2)

2 (1

1=

We will consider this second case.
We should note from (1.3) and (1.4) that

di = wlD? — (0 — Buy)’ + 2/D(w — Buo)a (1.18)
dy = u’D* — (0 — Bu)’ — 2jD(w — Bug)ua (1.19)
d + d) = 2D’ — (w0 — Bute)’] (1.20)

dids = [u’D* + (@ — Buo)’T’ (1.21)

Thus, (1.17) becomes

1 = —wpﬂ[ﬂ-lzDg — (w - ;6“0)2] (122)

7['{L12D2 + (t’.l.'l - B'ltg)g]"!

If the quantities involved vary sinusoidally with y as cos yy or sin vy,
then

D' = —4 (1.23)

w — Buo :
1 = w.P2 I:l+< Y )] (12_1)
vy | — (o= Buo\* T '
Yt

What happens if we have many transverse velocities? If we refer back
to (1.14) we see that we will have an equation of the form

2 2
1= 2, — Yo (_——dlc’é j'dd,j") (1.25)
In 2n

Here w,” is a plasma frequency based on the density of electrons having
transverse velocities =, . Equation (1.25) can be written

(w — 5’“-0)2]
: [ 1+ — 5., 2
1= 3 @ [ VU (1.26)
T [1 (o — .(31.10)‘3]l

,.y‘!.u n2

Our equation becomes
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N - \u N

4

(w-BUg) —

Fig. 1

Suppose we plot the left-hand and the right-hand sides of (1.26) versus
(w — Puy). The general appearance of the left-hand and right-hand sides
of (1.26) is indicated in Fig. 1 for the case of two velocities u, . There
will always be two unattenuated waves at values of (v — Bug)® > v'u.”
where u, is the extreme value of u,; these correspond to intersections 3
and 3’ in Fig. 2. The other waves, two per value of %, , may be unat-
tenuated or a pair of increasing and decreasing waves, depending on the
values of the parameters. If

2
M-Iy |

Y.’

there will be at least one pair of increasing and decreasing waves.

It is not elear what will happen for a Maxwellian distribution of veloci-
ties. However, we must remember that various aberrations might give a
very different, strongly peaked velocity distribution.

Let us consider the amount of gain in the case of one pair of transverse
velocities, 4=, . The equation is now

52
v | Lt (1.27)

Wy’ 1 — (w - ,811.})2 2
YUr

g L= (1.28)

Let
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This relation defines e. Equation (1.27) becomes

yu' 11— € (1.29)
In Fig. 2, ¢ is plotted versus the parameter v'u,’/w, . We see that as the
parameter falls below unity, e increases, at first rapidly, and then more
slowly, reaching a value of =4=1 as the parameter goes to zero (as w,
goes to infinity, for instance). '

It will be shown in Section 2 of this paper that these results for infinite
flow are in some degree an approximation to the results for flow in narrow
beams. It is therefore of interest to see what results they yield if applied
to a beam of finite width.

If the beam has a length L, the voltage gain is

Yo E (1.30)
The gain @ in db is
1L ]

G =87
Uo

db (1.31)




GROWING WAVES DUE TO TRANSVERSE VELOCITIES 115
Let the width of the beam be W. We let,
(1.32)

Thus, for n = 1, there is a half-cycle variation across the beam. From
(1.31) and (1.32)
G =273 (“_1 5’) ne db (1.33)
ug d
Now L/u is the time it takes the electrons to go from one end of the
beam to the other, while W /u, is the time it takes the electrons to cross
the beam. If the electrons cross the beam N times

o L
N = o (1.34)
Thus,
(G = 27.3 Nne db (1.35)

While for a given value of € the gain is higher if we make the phase
vary many times across the beam, i.e., if we make n large, we should
note that to get any gain at all we must have

2 2 2
wp > YUl

i 2 (1.36)
ol > (mrul)

14

If we increase w,’, which is proportional to current density, so that W,
passes through this value, the gain will rise sharply just after w,” passes
through this value and will rise less rapidly thereafter.

2. A Two-Dimensional Beam of Finite Width.

Let us assume a beam of finite width in the y-direction; the boundaries
lying at ¥ = =, . It will be assumed also that electrons incident upon
these boundaries are elastically reflected, so that electrons of the incident
stream (1 or 2) are converted into those of the other stream (2 or 1). The
condition of elastic reflection implies that

= =1 (2.1)

5 =2 aty = =y (2.2)
and, in addition, that

pp=rp2 aty = xy (2.3)

since there is no change in the number of electrons at the boundary.
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The equations of motion and of continuity (1.7—1.12) may be satisfied
by introducing a single quantity, ¥, such that

V = d’dsy (2.4)

b= —j S Bdiddy (2.5)
m

b= —j L dt dep (2.6)
m

g = %dl d2Dy (2.7)

g = = di* daDy (2.8)

m
1= —;“; pl(D* — ) di¥ (2.9)
p2 = —é po(D* — 8% diy (2.10)

Then, if we introduce the symbol, 2, for w — Suy

g1+ g2 = 2j ?% di doDOY (2.11)
S— d = 23'?% di daDy (2.12)
o1 — =2 = poD" — BuRDY (2.13)
It is clear that if
Dy=D% =0 y==xmw : (2.14)

the conditions for elastic reflection will be satisfied. The equation satis-
fied by ¥ may now be found from Poisson’s equation, (1-13), and is

(D" — §) di* diy = 22 (D" — B + W
or
(D* — AO[w'D* + &) + o, (D’ — 9] = 0 (2.15)

which is of the sixth degree in D. So far four boundary conditions have
been imposed. The remaining necessary pair arise from matching the
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internal fields to the external ones. For ¥ > ¥,

V = Voe—jﬂz_e—ﬂﬂ (2.16}
and
av
W +38V=0 aty = Yo
Similarly
av
o 8V =0 aty = —yo (2.17)

The most familiar procedure now would be to look for solutions of
(2.15) of the form, ™. This would give the sextic for ¢

(€ — B)(w'e" + @) + o, (' — @) =0 (2.18)

with the roots ¢ = £8, e, +c, let us say. We could then express ¢
as a linear combination of these six solutions and adjust the coefficients
to satisfy the six boundary equations. In this way a characteristic equa-
tion for 8 would be obtained. From the symmetry of the problem this
has the general form F (8, ¢;) = F(B, ¢:), where ¢; and ¢, are found from
(2.18). The discussion of the problem in these terms is rather laborious
and, if we are concerned mainly with examining qualitatively the onset
of increasing waves, another approach serves better.

From the symmetry of the equations and of the boundary conditions
we see that there are solutions for ¢ (and consequently for V and p)
which are even in i and again some which are odd in y. Consider first the
even solutions. We will assume that there is an even function, ¥, (3y),
periodic in y with period 2y, , which coincides with ¢(y) in the open
interval, —yy < y < y and that ¢1(y) has a Fourier cosine series repre-
sentation:

nmw

w(y) = 2 ¢ cos Ay An = 7 n=2012 - (219)
1 0

¥ inside the interval satisfies (2.15), so we assume that y4(y) obeys

(D* = (D + &) + w, (u’D* — Py
. (2.20)
= 2. oy — 2m + 1)

m=—gg

where § is the familiar §-function. Since Dy and D’ are required to vanish
at the ends of the interval and ¢, D* and D' are even it follows that all
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of these functions are continuous. We assume that ¢, = ¢, D¢y = Dy,
D%, = D%, D' = D% and DY = D' at the ends of the intervals.
From (2.20), "D’ — —16 as y — ¥ .

Since

+oo o
26y — 2m + 1yo) = N 2 (=Dreoshy  (221)
= 2y Yo 1

we obtain from (2.20)
Yo B — )

STt cos Ay )
+2 2 (D" G @ — ey — o @ + a)

(2.22)

Since
av _ 22 212
£+ BV = (D + B)(u D" + @)Y,
using (2.4), the condition for matching to the external field,
W eV =0,
oy
yields, using Dy = D% = 0 and w,'Dy = — 14, the relation
(w'D* + @)y = B aty = uo.
Applying this to (2.22), we then obtain, finally,

o 1
B B — wf]
o (92 _ uIQR,‘!)Q
+ 2 ; (62 + AHE)[(QF —_ u12kn2)2 — wp2(92 + u12hﬂ2)]

(2.23)

For the odd solution we use a funetion, ¥»(y), equal to ¢(y) in —y <
y < yo and representable by a sine series. To ensure the vanishing of Dy
and D% at y = ==, it is appropriate to use the functions, sin uy, where
un = (n + 14)7/yo . The period is now 4y, and we define y»(y) in yo <
y < 3y by the relation ya(y) = ¥(2yo — ) and in =3y <y < —¥o by
Ya(y) = ¥(—2yo — y). Thus, we write

va(y) = Z:; dosin py  pn = (n 4+ Y8)7/yo

¥2(y) will be supposed to satisfy
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(D" — BN’ D* + ) + o, (D" — 9°)[¢s

% - - 2.24
= z [6(y — 4m + 1yo) — 8y — 4m — 1y0)] (224)

=©

The extended definition of ¢, (outside —y, < y < yo) 1s such that we may
again takey, = ¢,- - -+, D' = D' at the ends of the interval. u,'D%, is
still equal to — 1§ at y = yo . Now

+o0 -
S 6y — Im + 1yo) — &y — dm — 1y0)]
) (2.25)
-1 > (=1)"sin pay
Yo

so from (2.24) we may find

= (—1)" sin pay
yn = — 2.
W= @ — ey — @ T ] 20

Matching to the external field as before gives

(w’D* + @)Y = -2% at y =wo

and applied to (2.26) we have
Y _ ¥ (@ — w'p”)’
=90 = 2.2
% " % T @ — ) - @ ) G2

The equations (2.23) and (2.27) for the even and odd modes may be
rewritten using the following reduced variables.

(2.23) becomes
0

]‘_- oo z.’ (nﬂ _ }-1‘2)‘.' B
P T2 A T e = T

and (2.27) transforms to

—rz (2.28)

)
) 2

n+ 1) — I

2

- 2+ A+ 2P+ 10— FF—#lln + L+ K (200)

= —mz
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We shall assume in considering (2.28) and (2.29) that the beam is
sufficiently wide for the transit of an electron from one side to the other
to take a few RF cycles. The number of eycles is in fact, wyo/7mus, and,
hence, from the definition of z, we see that for values of & less than 2,
perhaps, z is certainly positive.

Let us consider (2.29) first since it proves to be the simpler case. If we
transfer the term mz to the right hand side, it follows from the observa-
tion that z is positive (for modest values of k), that it is necessary to
make the sum negative. The sum may be studied qualitatively by sketch-
ing in the &* — & plane the lines on which the individual terms go to
infinity, given by

2 [(n + V2)2 - '102]2
S Oy Py (2:30)

|

4 ]
/ /Azo
3 | 1
L~
* <_
2 \]
L .--'-u
+ ‘ l .----""'-
1
“
0
o] 0.5 1.0 1.5 2.0 2.5 3.0 3.5

J-z

Fig. 3
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Fig. 3 shows a few such curves (n = 0, 1, 2). To the right of such curves
the individual term in question is negative, except on the line, ¥* =
(n + 15)*, where it attains the value of zero. Approaching the curves
from the right the terms go to — «. On the left of the curves the func-
tion is positive and goes to + = as the curve is approached from the

: / /

A N 4 A
/.. /

AR

YARYZS

i

3
2 \ \\
/ ~L_
1 \\ ~
o S~ ™S
] 1 2 3 4 6 7 8 9
J 2
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left. Clearly in the regions marked + which lie to the left of every curve
given by (2.30), the sum is positive and we cannot have roots. Let us
examine the sum in the region to the right of the n = 0 curve and to the
left of all others. On the line, i* = 14, the sum is positive, since the first
term is zero. On any other line, 1* = constant, the sum goes from + =
at the n = 1 curve monotonically to — = at the n = 0 curve, so that
somewhere it must pass through 0. This enables us to draw the zero-
sum contours qualitatively in this region and they are indicated in Fig. 3.
We are now in a position to follow the variation in the sum as k varies
at fixed &°. It is readily seen that for 8 < 0.25, because —z is negative
in the region under consideration, there will be four real roots, two for
positive, two for negative k. For 8" slightly greater than 0.25, the sum has

wjro

kZ

SHADED REGIONS
NEGATIVE

wl-
./
|
s

‘;’“ wl-
wln

Fig. 6A
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a deep minimum for k = 0, so that there are still four real roots unless z
is very large. For z fixed, as §° increases, the depth of the minimum de-
creases and there will finally oceur a &° for which the minimum is so shal-
low that two of the real roots disappear. Call z(0) the value of z for &k = 0,
write the sum as 2(8°, ") and suppose that =(5°, 0) = —z(0), then for
small & we have

U N 9z 292_,_ W
(@ k) = —m2(0) + (8° — 60)352+k6k2_ w2(0) — - k
0z
,2_u|/uu =@ 2 g2
k @-k .@(6 80)
ak? ak?

o 02 T @ 9
ak? ak? ak?

The roots become complex when

/az
k= w1/ o + d6? — ) + (ul/uo)

52 — 52 _ (ul/uﬂ)z
0z 9%
362 ok?

Since u1/uy may be considered small (say 10 per cent) it is sufficient to
look for the values of & .
When k* = 0 we have
23" 2 (4w
2+ (n+ 15 (n+ 14 — &

—Te =

222 w0 5'1 z? )
=z2+622((n+w—52+(n+1/2)2+z2

=z + pepr (6 tan w6 + z tanh mz)

Fig. 4 shows the solution of this equation for various z(0) or wyo/mup .
Clearly the threshold 8 is rather insensitive to variations in wye/mu .

Equation (2.28) may be examined by a similar method, but here some
complications arise. Fig. 5 shows the infinity curves for n = 0, 1, 2, 3;
the n = 0 term being of the form k*/k* — &°. The lowest critical region
in 6 is the neighborhood of the point k* = 8" = 14, which is the intersec-
tion of the n = 0 and n = 1 lines. To obtain an idea of the behavior of
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the left hand side (Lh.s.) of (2.28) in this area we first see how the point
k* = & = 14 can be approached so that the L.h.s. remains finite. If we
put & = 145 4+ eand ¢" = V3 + ce and expand the first two dominant
terms of (2.28), then adjust ¢ to keep the result finite as ¢ — 0 we find

¢ = 13.32 -5

4322+ 1
¢ varies from — 54 to 14 as z goes from 0 to o, changing sign at 2* = 54.
Every curve for which the Lh.s. is constant makes quadratic contact with
the line 8 — 14 = ¢(k* — 14) at & = 8 = 14. If we remember that
the Lh.s. is positive for i* = 0,0 < & < 1l and fork* = 1,0 < 8 < 1,

kZ

wl—-

SHADED AREAS
NEGATIVE

S v
wln

Fig. 6B
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since there are no negative terms in the sum for these ranges and again
that the L.h.s. must change sign between the n = 0 and n = 1 lines for
any &* in the range 0 < k* < 1 (since it varies from F o to £ =), this
information may be combined with that about the immediate vicinity
of 8 = k* = 14 to enable us to draw a line on which the Lh.s. is zero.
This is indicated in Figs. 6A and 6B for small z and large z respec-
tively. It will be seen that the zero curve and, in fact, all curves on which
the Lh.s. is equal to a negative constant are required to have a vertical
tangent at some point. This point may be above or below K = 14 (de-
pending upon the sign of ¢ or the size of z) but always at a 8 > 14. For
" < 14 there are no regions where roots can arise as we can readily see
by considering how the 1h.s. varies with &* at fixed 8. For a fixed 8* > 13
we have, then, either for k' > 14 or k* < 14, according to the size of z,
a negative minimum which becomes indefinitely deep as 8 — 14. Thus,
since the negative terms on the right-hand side are not sensitive to small
changes in §°, we must expect to find, for a fixed value of the Lh.s., two
real solutions of (2.28) for some values of 4 and no real solutions for some
larger value of §°, since the negative minimum of the Lh.s. may be made
as shallow as we like by increasing &°. By continuity then we expect to
find pairs of complex roots in this region. Rather oddly these roots, which
will exist certainly for &* sufficiently close to ¥4 + 0, will disappear if
§* is sufficiently increased.
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