Analysis of Switching Networks

By C.Y.LEE
(Manuseript received August 2, 1955)

Using a stimplified model, an analysis of switching networks is presented.
Methods for finding characteristics of a network such as blocking probability,
retrial and connection-time distributions are given. The problem of equiv-
alent crosspoint minimaization is also considered.

1. INTRODUCTION

The application of probability theory to telephone traffic problems
owes its origin to the pioneering work of A. K. Erlang, T. C. Fry, E. C.
Molina and others." * * Since then much has been written on these and
other related problems. On the other hand, except for several recent
papers on the subject,” ** 7 the literature on the application of proba-
bility theory to large size switching systems has been comparatively
meager, mainly because the sheer size and complexity of these systems
tend to render exact analysis unmanageable. .

To fix ideas, let us peer into a telephone central office and point our
attention at a single link (or crosspoint) in the system. As time progresses
the link becomes busy and idle in some fashion and gives rise to a se-
quence of pairs of observations:

(to , busy), (t; , change to idle), (ts , change to busy), - - -

Let x; be a function such that z, is 1 if the link is idle and is 0 if the link
is busy, then the sequence of pairs of observations corresponds to the
behavior of z, as ¢ changes. A plot of the values of z; versus ¢ would look
perhaps as shown in Fig. 1.1. The function @, (or the sequence of pairs
of observations) is one of a large family of possible functions for the link.
Since there are in general several thousand such links in a telephone
central office, a complete description would involve several thousand
families of functions x; . We may add that the situation is made some-
what worse by the fact that these links are not independent of each
other, for example, the establishment of a telephone conversation in-
volves in general not one but several links in series.
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In order to derive useful results, we shall consider a simplified model
in which the links are assumed to be independent and we shall further
restrict the families of functions z, to only those which obey certain
rules. The mathematical model used for a switching network is a prob-
ability linear-graph introduced in this paper. The basic steps we follow
in the analysis of switching networks consist of (1) representing a switch-
ing network by a probability linear-graph and (2) using the graph as a
probability model to calculate all characteristics of interest of the switch-
ing network. Once step (1) is effected, step (2) falls into the domain of
probability theory in which standard techniques are available.

In Section 2 of this paper, the more basic aspects of switching network
analysis are considered and properties of probability linear-graphs are
discussed. Those who are mainly interested in numerical results may
begin directly with Section 3 where representation of switching networks
by graphs, probability of blocking of various networks and the problem
of equivalent crosspoint minimization are presented. Using the graph
model, methods for calculating average retrial time for blocked calls
and network blocking due to excessive time required in the breakdown
of crosspoints in a gas tube network are then given in Section 4.

2. PROBABILITY LINEAR-GRAPHS

It would be appropriate for us to associate with each link a class of
hinary-valued functions w such that () = 0 or 1 (i.e. the link is either
busy or idle) at any given time ¢. It is more convenient, however, for us
to associate with each link a random variable z; (Reference 8, Chapter
17) such that at any given time ¢, z; = 0 or 1. Furthermore, we assume
that the random variable z, has a stationary probability distribution.*

Definition 2.1. A (two-terminal) probability linear-graph G (or simply
a graph if no confusion arises) is a finite, oriented, connected, cycle-free

* More strictly, we let @ be the space of all binary-valued functions » such
that w(t) = 0orl, —= <t < =, Let

{20, —» <t < =}
be a stochastic process with diserete probability distributions
Juoea, e n(8y, 02,0, 8a) = Prlz; = 8;,1=1,2, .- , 1)
5;=0o0rl,z=12---,n
where z, is the st* coordinate function of @; that is z,(w) = w(s). Furthermore,
we assume that this process is strictly stationary; that is
Tu, ey w8, 82, 00, 8n) = frgntsph. oo stupn(fr, 82, 200, 3n)

For each fixed w e, z: is a binary-valued function whose domainis —w» <t < «,
We then follow Reference 9 and call z; a random variable indexed by ¢ with a sta-

tionary probability distribution. For the existence and consistency of these
stochastic processes, see Reference 9, Chapter I.
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linear-graph* with at least two nodes such that (i) there exists a pair of
nodes, called respectively an originating and terminating node, of G;
this assignment being determined initially, (ii) with each linkt of G is
associated a random variable z,"”, the index 7 running over all links of G
such that z,'” are mutually independent and have stationary probability
distributions

f!:- tg, ooy ln“)(alaaﬂs san) = PT[I!‘,-(") = 6.1'rj = 1:21 :’"]
5;=00rl, j=12--,n

In what follows, by a directed path of G is meant a directed path be-
tween the originating and terminating nodes of G. Moreover, whenever
there is no confusion, the letter x will be used to denote the vector

(x‘(l)’ x‘(z): o)
Given a probability linear-graph, the usual problem is to find the

Xt

t
===

to tl t.a t3 t4

Fig. 1.1 — Observations of idle and busy conditions of a link.

probability distribution of some binary-valued function ¢ of inde-
pendent random variables z.'”. We begin this section by looking first
at the simplest cases.

2.1 Series-Parallel Graphs.

Consider the series graph shown in Figure 2.1 with N 4+ 1 nodes
and N links. Let ¢; be the function given by

N
| o@) = 112

i=1
Physically, if we interpret 2"” = 1 as the event of link 7 being idle at
time ¢, then ¢,(x) = 1 corresponds to the event that there is at least one
directed path of G (in this case exactly one) idle at time ¢ In view of
this interpretation, ¢, is called the connection function of G. The prob-
* A linear-graph is finite if both the sets of nodes and branches are non-empty
and finite; it is connected if there exists at least one path (chain of branches)
between each pair of nodes; it is oriented if the branches are all directed; it is

cycle-free if there exists no directed path between any node and itself.
t Here, directed branches are called links.
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abilities

P.(1) = Prlg.(x) = 1] and P,(0) = Prle.(z) =01 =1— P.(1) (2.1)

are called respectively the linking and blocking probabilities of G. Clearly,
P.(1) = Prlg,(x) = 1] = Prlz," = 1,i = 1,2, -+, N]

— ﬁ Pr[:t:,m =1 = fIlfrw(l) (2'2)
Next, let
P, 4i(81, 82) = Prle.(x) = 81, erpe(x) = & (2.3)
then
P.opi(1,1) = Pz, =1, 2,.," = ;i =1,2,--+, N]
(2.4)

= II=Ilfr.r+t(1, 1)

Since z,"” have stationary distributions, P,(8), £.""(8) and P, +4.(8:, &)

(0] @) (N)
Xy Xy Xy
[ — O -
— — —-_—

Fia. 2.1 — A series graph with N links.

are all independent of r so that they may be written respectively P(5),
1(8) and P,(3: , 8,). Moreover,

P(1) = Py0,1) + Pi(1,1) = P,(1,0) + P(1, 1)

so that
P;(O, 1) = P;(l, O) = P(l) - P!(]-) 1)
N _ N (2.5)
= 11y = I177a, 1)
Finally , let the means of 2. and ¢, be denoted by
¢ = E@"), Q=El (2.6)
Then, for a series graph, the following relations obtain:
Q=1II¢" 2.7)
P, 1) = I17°0, 1) (2.8)
P(0,1) = P(1,0) = T[T ¢° - I[7°0,1) - (29)

P,0,0) =1 — 2I‘I,q“’ + II7°@, 1) (2.10)
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In the case of a parallel graph of N links (Figure 2.2), the connection
function ¢, is given by*

elz) = 1 — II 1 — ).
Using the same notations as before, we obtain, for the parallel graph
Q=1-ITa-¢" (2.11)
P.0,0) = H f+2(0, 0) (2.12)
P,0,1) = P(1,0) = II 1 —qg? - I; 720,00 (213)

P(1,1) =1 —2[T (0 — ¢ + I1£(0, 0) (2.14)

2.2 General Probability Linear-Graphs

Let us first make the notion of a connection function of a graph more

precise.
Let @ be a probability linear-graph with N links. Let B be the set of
all directed paths of G. Then each 8; e B is composed of series links of G

with associated link random variables z,"?, AL . To each B; ¢ B,
assign a new random variable y? _as afunction of 2,1, .- such
that y” = 1 if and only if 2P =1,k = 1,2, --- and otherwise

)

i’ = 0.

Definition 2.2. The graph G* composed of all parallel links 8, 8 € B
with link random variables 3, ., - - - is said to be the canonical form
of G. )

Definition 2.8. A binary-valued function ¢, (itself a random variable)
of the vector y = (3., v, ) such that ¢.(y) = 0 if and only if

— X¥

p— x[:l]

Fia. 2.2 — A parallel graph with N links.

* Note that by the change of variables z¢/() = 1 — x{? and .’ = 1 — ¢, the
situation here becomes identical with that for the series graphs.
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y = 0 and ¢.(y) = 1 otherwise is said to be the connection function
of G. The probabilities Prlg,(y) = 1] and Prle.(y) = 0] are called re-
spectively the linking and blocking probabilities of G. The conditional
probability Prle,+:(y) = 0| e.(y) = 0] is called the retrial distribution
of G.

We note that the physical interpretation of ¢, is as it should be;
e:(y) = 1 if there is at least one idle path through G and ¢.(y) = 0 if
otherwise. The physical interpretations of linking and blocking prob-
abilities and retrial distribution are self-evident.

We now let z denote the vector (z,”, 2., -+, ™) and let z.*
denote the values of x at time ¢. At a given time £, let J(8), 6 = 0 or 1,
be the set of values of & which makes ¢,(x) = 8. Since x, as a vector, has
a stationary distribution, it follows that

Pr[¢1|+h(x) = § y " ¢4n+h(x) = 611]
= Prlzi ¥ e J(B1), « -+, Tepn* € J(é‘n)]
= Pf[xh* € J(al): T, x‘n* € J(aﬂ)]
= PT[¢‘1($) =81, ] ¢!n(x) = aﬂ]

Thus, we have the elementary but important fact that
rrThearem 2.1. The connection function ¢, for a probability linear-graph
@ has a stationary distribution.

An immediate consequence of Theorem 2.1 is that the linking (or
blocking) probability of ¢ is independent of the time ¢ and is expressible
as a polynomial with integral coefficients in terms of the linking prob-
abilities ¢*? of the links of G. To put if differently, Theorem 2.1 asserts
that in order to compute the linking (or blocking) probability of G, it
suffices for us to consider the process as one consisting of repeated simul-
taneous tossing of N skewed coins, a process in which time does not
enter. It should be remarked that this fact has long been known to tele-
phone traffic engineers.

Another remark is in order here although a precise statement would be
needlessly long. In many cases, a graph G may contain several com-
ponents G; . If these components are well-defined, it is always possible
to replace them by single links whose associated random variables are
@? where ¢,'” is the connection function of G;. Actual computations
may be greatly simplified by a repeated application of this procedure.

2.3 An Example of a Non-Stationary Process

In Section 2.1 we had stipulated that the link random variables of a
graph have stationary probability distributions. Let us now consider a
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(somewhat arbitrary) example in which the stationary property is
dropped.

Let £, be a single link and let 2 be the family of functions w associated
with this link such that for the internal 0 = A < T,

w(t) = 0; t<xn t=T
W) =1; T>t=\

Thus, we may index functions of @ by A. A subset & of @ is said to be
measurable if the corresponding indexing set A; is Borel measurable on
the interval [0, T") and in such cases, we identify the measure of @, with
the Borel measure of A, .

Let z, be the s™ coordinate function of Q; that is, z.(w) = w(s). Then,

i

P'r[:l:;= 1] ='T—,,

0t<T

and
Prlz, = 1] = 0 otherwise.

Hence the probability of blocking Py for £ is zero for ¢t < 0,¢ = T and
is t/T for 0 £ t < T. That is, the blocking probability is itself a func-
tion of ¢.

If we restrict our attention to the time interval [0, T'), we may define
the mean blocking P, as the time average of P on [0, T).

Then .

]_J_l_fr_tdg._.l/
]—TOT = 9

Suppose we ﬁow have two such links £ , {» , independent of each other,
in parallel. Then the blocking probability of the parallel graph is

P=PrP= 1)2
! T

The mean blocking for the parallel graph is

L7ty
P =_— —) dt=
P T Jo (T) %
Thus, it is erroneous here to say that the mean blocking of the parallel
graph is the square of the mean blocking of each path.

Strictly speaking, the assumption of stationary distributions for link
random variables is invalid in practice, since obviously a telephone cen-
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tral office handles more calls at noon than at midnight. However, it is
the busy-hour-traffic which concerns the telephone traffic engineers, so
that the assumption is in general a reasonable one.

24 Linking Probability

In this section, only linking (and blocking) probabilities of a prob-
ability linear-graph will be considered. Other characteristics of a graph
(retrial distribution, connection-time distribution ete.) will be studied

in a later section.

Let G be a probability linear-graph and let the random variables asso-
ciated with the links of @ be =z, 2, - -- where these random variables
are no longer functions of time. Let us view our probability process as
one consisting of repeated trials (or, say, tosses of batches of coins) in
which, for each trial, the probabilities* of success and failure for the

links are respectively
¢ = Priz" = 1], p? = Pl =0 =1 — ¢, (2.15)
i=12 -
Let ¢ be the connection function for G and denote by @ and P
Q = Prlp(z) =1, P=1—Q = Prlp(x) = 0] (2.16)

where z is the vector (z*, z®, -- ). Then @ and P are respectively the
linking and blocking probab]htles of G.
In the case G is a series graph of N links, we have, from Section 2.1,

Q= ﬁ ¢, P=1-@ (2.17)

i=1

Similarly, when @ is a parallel graph of N links,
N
=1-JTa-4¢", P=1-4q (2.18)
i=1

Thus for any series-parallel graph @, a combination of (2.17) and (2.18)
will yield the linking and blocking probabilities of G.

Example 2.1. Consider the series-parallel graph G' shown in Fig. 2.3
where the link random variables are denoted by

6V} (2) (10) (63} @) 10
L1, Ty 0, T1 5 T2, Tp "y "0y, IZ()

* p(9 is usually called the occupancy of link 7.
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and
2, I o
For any series path with random variables
n'?, "7, :va(i), 7 = 1', 2, ---,10,

the linking and blocking probabilities for this path are respectively
""" and 1 — ;""" g"” where @? = Pr[z," = 1] and similarly

for ¢'” and ¢;'”. Thus, for G,

10
P=TJI0Q-¢?e¢¢™, @=1-P

i=1

Numerically, suppose ' = g7 = ¢ = 24 for all 4, then

2\ 71 19)10
P= |:1 _(§>:| = (2—7- = 0.0298- --

This example illustrates the fact that linking and blocking probabili-
ties of a series-parallel graph can be found in a routine manner. Although
the same can be said for nonseries-parallel graphs, the computational
difficulties involved are of a different nature.

Let G be a probability linear-graph and let G* be its canonical form.
Denote the link random variables of G* by 3, ¥, --- and let Y be
the event " = 1. Then clearly, the linking probability @ of G is the
probability of the union of events Y or

Q= Pr[lfY“’] (2.19)

This last probability can be found in a standard manner (cf. Reference 8,
Chapter 4) since the joint probabilities Pr[ ;Y] are readily obtained
from the linking probabilities of the links of G.

{§)]
X3

o
—

—_—
0)
X

F1a. 2.3 — A series-parallel graph.
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A real computational difficulty arises at this point. If the number of
directed paths of G (or G*) is not small, then the expansion of @ in
terms of the aforementioned joint probabilities becomes formidable.

Example 2.2. In Figs. 2.4 and 2.5 are a non-series-parallel graph G
and its canonical form G*, respectively. In this case,

3
Q="PlY? y Y® u Y®] = X Pr(Y"] -

=1
: | \ | (2.20)
Z PT[Y(‘) n YU)] + Z PT[Y(‘) n Y(J') n Y(k)]
i, 7=1 i,7.k=1
i<y i<i<k

Since Pr{Y n ¥ q ---] can be found directly from @ (e.g. Pr[V" n
YO = qDg®q®g® "
799 q), wege

Q i ( (1) (2) + g(z) (3) (5) + q(a)qu))
(1) (2) @) {5) (1) @) (3) (i) @) _(3) (4 (5)
+q +99¢q)

—(g7q
+ (¢Pg® q(:n “¢®) (2.21)
In particular, if ¢ = ¢® = ¢ = ¢ = ¢® = ¢, then
Q=2¢"+4¢—-3"+¢ (2.22)
2.5 Generating Functions for Linking Probabilities.

Let G be a graph with N links and let the links be designated by

X® x® ... X" Let B be the set of all directed paths of G. Then
each B; € B is composed of links X9?, X ...  X%%3 in geries. Let us
agree to denote the directed path 8; by the formal product

X(J]) _X(J'z) o X(J‘n,‘)‘

Fia. 24 — A nonseries-parallel graph.
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In this formal product, the X’s are considered as undefined real numbers
and are manipulated as such except for the reduction rule
XP. X0 =XV it j=k (2.23)
Otherwise, the operation - is ordinary multiplication.
Definition 2.4. A function 2 is said to be the generating function of G if
*
As) =1 =[] @ — X9 X9 ... xted.g) (2.24)
B

where II* denotes formal product under - such that the reduction rule
(2.23) 1s always carried out.

Example 2.3. Let us go back to Fig. 2.4. In this case, there are three
directed paths X" X, X@-X®-X* and X®-X® so that

}-‘2(8) = (XU).X(E) _|_ X(a),X(‘l) + X(‘Z)_X(3),X(5))S
_ (X(l).X(E)_X(B),X(ﬁ) _|_ X(l)'X(z)'X(a)'X“) (2.25)
+ YO.x® _X(4).X(5))82 + (X(l),X{ﬂ}_X(a)_Xu},X(s))sa

Note that if, in (2.25), each X*? is replaced by the real number ¢ and
s is set equal to 1, the resulting value of the generating function 2{de-
noted by 2*(1)] is

f’*(l) (q(l) (2 + qU) (-i) 6] + q(ﬂ)q(l))
(q(l)q(ﬂ)q(ﬂ)q(ﬁ) + q(l) (2) @) (4} + q(2)q(3)q(4]q(b)) (226)
+ (q(nq(z)q(mqtnq(m)

which is precisely the linking probability @ for the graph found previ-
ously (Example 2.2). In fact, this relation holds true in general.

F1G. 2.5 — Canonical form of graph shown in Figure 2.4.
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Theorem 2.2. Let G be a probability linear-graph and 2 its generating
function. Then 2*(1) is the linking probability @ of G.

Proof. Let B be the set of all directed paths of G and let 3™ be the
random variables associated with these directed paths. Let ¥ be the
event ¥ = 1. Then the coefficient of s™ in 2*(s) is

2 Pr(¥*aY®a...aY")

Cdpineadr
i1<ia<... <ir

except for a possible change in sign. Thus
Q*(1)]= 1 Pr(Y®) — 22 Pr(Y ™ nY"™) 4 ...

i1,1p
i1<iz
. : . (2.27)
+ 2 Py a¥@n..aY"™) =9
LS TLE TR in

i1<ia<... <ip

This completes the proof. |

F1a. 2.6 —'A general four-stage graph.

((R)
x4
—

—_—
x(az,a)

F1a. 2.7 — A simple four-stage graph.
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2.6 Some 4-Stage Graphs

By a four-stage graph is meant a graph of the form shown in Fig. 2.6
where the graph has four stages of nodes with ay = 1, as, agand ag = 1
nodes in each stage. It is clear from Fig. 2.6 that there are a; left links,
apcy middle links and oy right links.

The linking probability of a four-stage graph can theoretically be found
by a direct application of Theorem 2.2. The computation is simplified,
however, if additional information is given. For instance, consider

Ezample 2.4. Let G be the four-stage graph shown in Fig. 2.7 with
ar = a3 = 2 where

m @

B =0 =q
qz(l. 1) = q2(1'2) = q2(2. 1 — q2(2.2) =g (2-28)
qa(l) — qa(Z) = g

Then we may write
As) =1 — (1 — XX gus)- (1 — XXy gus)

; ) (2.29)
(1 = X1 @ X, s)- (1 — XX, qus)

so that,
Q = Q%1) = 4qpeqs — 2 gs(qn + @+ g5) + dg'0'e’ — a'e'e’

The same procedure can be applied to all such 4-stage graphs.

Example 2.5. Tn the special cases where the occupancies of the left,
middle and right links are equal respectively to pi, p. and p; (Example
2.4 is one of these), the following expression* has been obtained by D. H.
Evans for the blocking probability P of a 4-stage graph:

P = ';) (E:mﬂ) (1 _ pl)kpl(uz—i‘)[(l _ ps)p2k + pa]a,
This formula is of considerable value in a study of blocking in six-stage
switching networks by the author and D. H. Evans (unpublished).

In general, if the number of nodes of a four-stage graph is not small,
it would be unrealistic timewise to expand 2(s) to yield the linking prob-
ability Q of the graph. In such cases no good theoretical method has been
found which will conveniently yield the values of Q. It is possible, how-
ever, with the aid of Theorem 2.1, to devise an experiment which will
yield good approximations to @ without undue labor. In fact, this remark
applies to all probability linear-graphs.

* This expression is derived from a counting procedure different from the ap-

proach outlined here. Using still another approach, an extension of this result to a
more general class of 4-stage networks has been obtained by M. Goldman.
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We shall now proceed to describe switching networks as probability
linear-graphs.

3. SWITCHING NETWORKS AS PROBABILITY LINEAR-GRAPHS
3.1 Probability of Blocking.

By a switching network is meant a crosspoint network in which each
input of the network can be connected to any output of the network by
the operation of appropriate sequences of crosspoints. A block diagram
representation of such networks is shown in Fig. 3.1. The first stage of
crosspoint switches has L, inputs and L; outputs which are inputs to the
second stage of switches. Thus these L, leads link stages 1 and 2 and are
therefore called L;-links. Similarly, the L;-links 0 < 7 < s link stages L;
and L;y; and the L, links are the outputs of the network which has s

stages.
Let L be a switching network with inputs and outputs indexed by
iand j;¢ = 1,2, -+, Ly,7=1, 2, ---, L,. Denote by P(7, j) the

probability of all paths from input 7 to output j busy. Then the blocking
probability P of L is defined here as*

Ls

LOLa ‘T:: > PG, 3.1)

Similarly the linking probability @ of L is
Q=1-—P (3.2)

For each pair (7, j), P(7, j) is found as the blocking probability of a
corresponding probability linear-graph.

In this section, we assume P(z, j) to be independent of 7 and 7 and
each crosspoint switch (switch with arrays of crosspoints) in the network
to be of nonblocking type.t There is no essential loss of generality in
the first condition; although without it, the evaluation of P would be-
come more tedious.

It remains for us to present the correspondence between a switching
network L and a probability linear-graph G. This description is best
given by examples. Choose an input 7 and an output j of L. Then the
paths from 7 to j would involve crosspoint switches and links between

-* This is one of several possible definitions of blocking probability of a network.
Tt Here we restriet our attention to networks consisting of switches of non-
blocking type (e.g., square switches or switches with more outputs than inputs).
Thus, ‘‘concentration’’ switches are excluded. The analysis of networks with
com:entmtlng stages involves deeper insight and will not be considered in this

paper.
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pairs of these switches. Represent the switches by nodes and the links by
directed branches. The resulting graph @ is the graph corresponding to
L.

We consider @ to be the model of L from which pertinent characteris-
ties of L can be extracted. Thus, we are identifying such quantities as
blocking probability, mean retrial time etc., of L with those of G.

Example 3.1. The 4-stage switching distribution network L shown in
Fig. 3.2 is common (with modifications) in telephone central offices.
Its corresponding probability linear-graph is shown in Fig. 3.3, with all
link occupancies p. The blocking probability P of L is therefore (see
Example 2.1).

P=[1-0-p7° (3.3)

Equation (3.3) is the simplest one of several formulas sometimes known
as Kittredge-Molina formulas for crosspoint, networks.

STAGE STAGE STAGE |
1 2 5

I
I
I
I
|

Lo L, Ls

Lo=1000 L4 =1000

Fia. 3.2 — A four-stage switching network.
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Ezample 3.2. Consider the partially-equipped, four-stage distribution
network, first suggested by C. A. Lovell, (Fig. 3.4) which would grow
with relative ease into the full distribution network of Example 3.1.
In this example, we prefer to overlook the fact that the third stage
switches are not of the non-blocking type. The corresponding graph is
shown in Fig. 3.5 and the blocking probability is

Pr=[1—-(@1—p)d — p)]° (3.4)

To calculate the link occupancies, let A be the offered traffic (in er-
langs) in Example 3.1 and for the purpose of comparison, let 0.4A be
the offered traffic in Example 3.2. Then

Al — P) _ 044(1 — Py) _044(1 — Py)
=Tww > P a0 P 1000 &Y
where in (3.5), the link occupancies depend themselves on the blocking
' p

—

Lo = 400 L4 =400

Fig. 3.4 — A partially equipped four-stage network,
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probabilities. As a first approximation, the factors (1 — P) and (1 — P1)
may be neglected. A comparison of (3.3) and (3.4) shows then that the
blocking of a partially equipped network is less than that of a fully
equipped network.

Ezample 3.3. The switching network shown in Fig. 3.6 is a particular
case of a class of non-blocking networks discovered by C. Clos.’® Its
corresponding graph is shown in Fig. 3.7 with blocking probability

P=[-0-p% (3.6)

Since it is known a priori that the actual blocking probability for the
network is identically zero, it is interesting to compare P given by (3.6)
with zero. We arrive at the following table:

=
o

SOOI~

—

Fia. 3.5 — Graph of network shown in Figure 3.4.

F1c. 3.6 — A three-stage non-blocking network.
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This example illustrates the effect of neglecting link dependence;
Equation (3.6) gives very high blocking for large p. In practice, however,
a value of p greater than 0.5 is rarely encountered so that even in this
case the approximation is not unreasonable. It should be remarked that
more suitable formulas for computing blocking in three-stage networks
have been developed by M. Karnaugh.

3.2 Applications to Equivalent Crosspoint Minimization.

As an application of the concepts developed here, we shall consider
the problem of equivalent crosspoint minimization for switching net-
works.

The case in mind is a four-stage network in which we assume:

A-1. The network is symmetrical with respect to its inputs and out-
puts; (i.e., the network configuration remains fixed when the inputs and
outputs of the network are interchanged).

A-2. Switches within each stage of the network are of identical size.

A-3. Stages 1’and 2 are combined into 8 identical frames (called pri-
mary frames) no two of which are interconnected.

A-4, The number of outputs in a switch in the first stage is equal to
the number of switches in each frame in the second stage, with each out-
put connected to a distinct switch in that frame.

A-5. The number of outputs in a switch in the second stage is 3, with
each output connected to a distinct (secondary) frame and with outputs
on distinet switches in the same primary frame connected to distinet
switches in the same (secondary) frame.

Under these assumptions, the network has the configuration shown in
Fig. 3.8. The problem is, given the offered traffic, the maximum allow-
able blocking P’ and the number of inputs L, , determine z, y, « and 8
so that the number of equivalent crosspoints C} is & minimum where Cy
' is given by

Cy = C + kLo + 2kiln + 2kl (3.7)

F1a. 3.7 — Graph of the three-stage non-blocking network.
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F1a. 3.9 — Graph of the general four-stage switching network.

1305

in which ko, k; and k. are given constants }vhich evaluate relative net-
work cost effects and C' is the number of crosspoints in the network.
The corresponding graph shown in Fig. 3.9 consists of y parallel paths

so that the blocking probability for the network is
P=(1- g'p)
As a first approximation, we have
91 = 1 —_—— q2 = 1 —_——

where
A= AQ - P)

3.8)

(3.9)

(3.10)
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and A is the offered erlangs. It then follows that

2(4") 2d" | 2k.A’
A1
T—ai—wmr  i-gTi—q W
Our problem is to find ¢:, ¢ and ¥ which will minimize Cp under the
condition

Co = Lo(ko + 2y) +

(1 - g'e) — @) =0 (3.12)
Using the Lagrangian multiplier method, we arrive at the following sys-
tem of four equations

(4" hd’

= h .
(1 — @)*(1 — )y + 1 — qr Q12 (3.13)
4’ Y
T L (T s (3.14)
(Al)aﬁ (P’)”"fnP' ~
T g Mg =2 (3.15)
1 — g’ — (P =0 (3.16)

in which the unknowns to be solved for are ¢, ¢, ¥ and . These can be
found numerically in specific problems.

It should be noted that in using the graph representation to find the
blocking probability of a switching network, we had tacitly assumed
that the switches should be of non-blocking type. But solutions to (3.13)-
(3.16) do not guarantee that this will be the case. Thus, the values of
z, 9, @ and 8 obtained from this minimization process should be regarded
as approximations.

We now consider the following special case which is of independent
interest. In equation (3.7), let ky = ky = k: = 0. This situation cor-
responds physically to the interpretation that the link costs are negli-
gible as compared to the crosspoint costs. Equations (3.13)-(3.16) then
become

(A.r)a,rz

=X 3.17
(1 — q)X(1 — go)V2y'2 0192 (3.17)
(a’y* .
(1 — q)(1 — q)*y? = At (3.18)
(Af)q"h'Z (Pf)l'rycnpf
2ho - (1 - ql)(l - Q&)”zyﬂﬂ y2 =0 (3]9)

1 — ¢’ — (P = 0. (3.20)
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From (3.17) and (3.18) it turns out that
n=q@=q (3.21)

so that the problem of solving four equations is now reduced to that of
solving a single equation

(A" |: =)t =g _
= g | ! g ] =2L,. (322

It is interesting to note that in this case, as an immediate consequence
of the minimization process, the second and third stage switches turn out
to be square switches and hence are of non-blocking type. We remark
also that a similar minimization process may be applied to three-stage
networks.

Example 3.4. Suppose it is desired to design a minimum crosspoint,
four-stage network with A = 400 erlangs, L, = 800 input lines and
P’ = 0.01. Solving Equation (3.22), we find

=15 ¢ =0.642
Therefore, from Equations (3.9) and (3.10), we get
a =8 =865=29, x =< 10.

For these values of «, 8, x and y, we find
C' = 46,200 crosspoints,

4, RETRIAL AND CONNECTION-TIME DISTRIBUTIONS
41 Retrial Distribution.

Given a switching network, it is of interest to know whether a path
which is blocked at some given time can be established some time
later and with what degree of success. More precisely, let L be a switch-
ing network and @ its corresponding graph. By the retrial distribution
(denoted by Pu(t)) of G is meant the conditional probability*

Pu(t) = Prlgrre = 0 [ e, = 0]

where ¢, is the connection function of G.

In order to find Py(t), we consider the following processt for the lmk
random variables:

1. The link random variables are mutually independent with common
probability distributions.

* The notation Pga:(t) is used for conditional probabilities whereas the nota-

tion Pe(8: , 82) is used for joint probabilities.
t This is a special case of stochastic processes discussed in Reference 1.
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2. If X is a link random variable, the conditional probability of a
change from z = 1 to 2 = 0 during (f, ¢ + h) is M 4 O(h), fromz = 0
tox = 1 during ({, t + h) is uh + 0(h). The conditional probability of
more than one change in (¢, ¢ + &) is 0(h); (i.e. the link holding and idle
time lengths are exponentially distributed with parameters p and \;
cf. Reference 8, Chapter 17).

We then obtain the following system of four differential equations for
each link random variable.

Py'(t) = —uPu(t) + NPau(l)-
Po'(t) = —NPu(t) + pPuw(l)- (4.1)
Py'(t) = —upPu(t) + MPull)-
Pu'(t) = —=N\Pu(f) + pPu(d)-
with initial conditions
Py(0) = Pu(0) = 1, Py(0) = Pu(0) =0

The solution to this system of equations is (cf. Reference 1)

-

A —(ut _
Pu(®) = _i;(%_ =p + g "

po— e — )t
Pul) = =75 —=9¢-2"

A — g O o ‘ (4.2)
Pult) = Nt =p—pe )

N~V _

Pn(t) = % =q+ pe ()t

where p is the occupancy of the link and ¢ = 1 — p. Since
PJ(1,1) =1 — 2P(0) + P,0,0)
Pi0,0) = 2P(0) 4+ Py(1,1) — 1 (4.3)
P,(1,0) = P,(0,1) = P(0) — P{0,0) = P(1) — P,(1, 1)

retrial distributions for series-parallel graphs can be found directly from
(4.3) or (2.7)—(2.10) and (2.11)—(2.14).

Example 4.1. Consider the switching network shown in Fig. 3.2 the
corresponding graph of which was shown in Fig. 3.3. For this graph we
find, for each path, [say path (i)]

P2, 1) = PP, (1) = ¢°(g + pe "0’ (4.4)
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Hence, for the entire graph, from (4.3) and (3.3)
Py0,0) = [2(1 — ¢') + ¢'(g + pe *™) = 1°  (45)
= (1 — 2¢° + [g(g + pe™ ™"

To fix ideas, let the “average holding time” 1/u = 200 sec., and link
occupancy p = 4. Then, since

Ag = pp, (4.6)
we get
1 2
= —— = — 4-7
For these values of p and p, we get
|1 é % 1 —(31400)1)3]10
Pt(O; 0) = [ﬂ + o7 (3 g € (4-8)

4.2. Mean Retrial Time

Let us now consider the following problem. We begin with the hypothe-
sis that all paths from a given input to a given output of a switching net-
work are busy initially. If a retrial is made every x seconds until one
path is found free, what is the expected number of seconds #. for the
establishment of a path?

To solve this problem, let G be the graph corresponding to the switch-
ing network with connection funetion ¢, with probability distributions
P, @, P00, 0, P,(0, 1), P,(1, 0) and P,(1, 1). We use the notation
Ps,5,(1) to mean the transition probability of ¢, = 8 at time t glven
@: = & initially. Let m.(n) be the probability of success at the n™ trial,
given that all paths are busy initially. Then

e = 3 o) (49)

Since
ma(k) = (Po(2))* " Pu(x); E=1,2, (4.10)
we find

xP

€T
1—mw=P—ﬂmm(“”

i, = z k2(Poo(%)) ™ Pu(z) =

where P is the blocking probability of the networlk.
We shall call 7, the mean retrial time (in interval of z seconds). In
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particular, if retrials are made in arbitrarily small time interval, the
limit lim,.qf; , when existent, is called the limiting retrial time t. Physi-
cally, ? is the expected number of seconds the first path becomes free
given that all paths are busy initially. From (4.11), we find

t=limp —?P(o‘ 0~ T[4 : (4.12)
x>0 z\\Yy [___ P;_.-(O, 0)] .
dx =0

Example 4.2. Going back to Example 4.1, P,(0, 0), which is the joint
probability of the network blocked initially and also blocked x seconds
later, was given by (4.8):

|1 8 /2 1 —(3/4un)x)3:|m

Differentiating P.(0, 0) with respect to = and setting x = 0, we find the
limiting retrial time as given by (4.12) is 31.67 seconds. On the other
hand, if a retrial is made once every second (that is, x = 1), the mean
retrial time as given by (4.11) is 32.26 seconds.

We remark that together with the method of Section 2, the same
procedure can be applied to non:series-parallel graphs such as those shown
in Figures 2.4 and 2.7.

4.3 Connection-Time Distributions

Up to now we have not paid attention to the physical structure of the
crosspoints in a switching network. If the crosspoints are made up of
active elements such as gas diodes, the following problem then presents
itself. It is known that it takes a certain time for a gas tube to break
down after a voltage higher than the breakdown voltage is applied. In a
switching network, the establishment of a path in general involves the
breakdown of several such crosspoints in series and it is important that
the breakdown time of a path must be reasonably short lest the system
bogs down from this inherent delay.

There is experimental evidence that the breakdown time of a gas tube
has roughly an exponential distribution. Thus, if X is a random variable
representing the breakdown time of a tube (for a fixed applied voltage),
then we postulate

PriX gz]=1—¢" (4.13)
where

—t

BX) == (4.14)

QI



ANALYSIS OF SWITCHING NETWORKS 1311

We shall assume that the tubes behave independently and have identical
breakdown time characteristics and that the voltage across each tube
before breakdown remains a fixed constant regardless of the behavior of
the other tubes. The reason for imposing the latter condition is clear
since the mean breakdown time 1/« depends upon the voltage applied.

Let L be a gas tube switching network and G its corresponding graph
with connection function ¢, . Let ¢ be a random variable representing
the breakdown time of G. We define the conneciion-time distribution ®
of L to mean the joint probability.

® = Prlp, = Land ¢y = i (4.15)

i.e., the joint probability of finding at least one idle path and the break-
down time of some idle path less than or equal to ¢. It is also desirable
to denote by ¥ the probability

T =1—®=Prlgs=00r (g, = 1L and ¢ = {)] (4.16)

In a graph @, the tubes are represented by nodes of G. The number of
‘nodes in a path in @ then represents the number of tubes in series in the
path.

To be concrete, let us now consider the network shown in Fig. 3.2
with its associated graph shown in Fig. 3.3. We shall study two methods
of establishing paths through the network.

1. End-Matching. A voltage is applied to both ends of the network
simultaneously (across a single input and a single output). We wish to
find ® (or ¥) of the network.

First, let us digress to state a useful lemma the proof of which can be
found in probability texts.

Lemma 4.1. Let X;, X5, -+, X, be mutually independent random
variables with common distribution
PriX;=zx]l=1— ¢ z=0 (4.17)
then the distribution of the sum X; + Xo + -+ + X, is
—al — (at)
PrXi+ Xot -+ XaStH)=1—6%2 2 (418)
=0

Reproducing the graph, Fig. 3.3, we have, for a single path
Pr{(path busy) or (path idle and breakdown time = ¢)]
= Pr[path busy] + Prlpath idle and breakdown time = ] (4.19)
Now a path is idle only if all three links making up the path are idle so
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that, from Lemma 4.1,*

Pr[path idle and breakdown time = {] = Pr[path idle]

(4.20)
+ Pgiven path iate [breakdown time = ] = ¢%¢** E (at)
7=0 .
Hence, (4.19) is given by the expression
3 i
—a t
(1 —¢) + q ‘_Zﬂ (‘;,) (4.21)
i= H

For ten independent paths in parallel, it is clear
W = Prlo, =00r (p; = 1 and ¢ = 1)]

= {Pr[(one path busy) or (one path idle and breakdown time
z )" (422)

Il
1
L
—
|
2,
_|_.
w
I
2
M-
—
-
=
1
=
=]

and

3 3,-at (O!t)j 1
P=1—V¥= 1—[(1—q)+ “Z - (4.23)
=0
We shall defer numerical examples in order to arrive at a comparison

with the next case.

2. Center-Matching. In this method, the marks propagate in both direc-
tions and are matched in the center links (see Fig. 4.1).

In this case, we need to consider the left side and right side breakdown
times individually and then combine them. For a single path, we may
write

Prlpath idle and breakdown time = {] = I-II (4.24)
where
I = Prlpath idle] ‘ (4.25)
II = PT‘givEn path idle {breakdown time é t]
The conditional probability II can be written as a product
IT = {Prgiven patn iate [breakdown time of left side =< {]}
(4.26)

+ { Prgiven path iale [breakdown time of right side = ¢]},

* We shall use the notations Pr[B | A] and Prgivenevent 4 [event B] inter-
changeably.
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so that, from Lemma 1,

I =( _ ey @Y (4.27)

=0 Jj!

Combining as before, we obtain

[1-4(. - > @] (428)

=1=v (4.29)

We shall consider the following numerical example. For a 10,000-line
telephone central office, it is reasonable to assume, from the point of view
of control circuits, that the connection time of a call should not exceed
5 milliseconds. Using this value for ¢ and letting ¢ = 0.7, we find for
several values of mean tube breakdown time (0.5, 1, 5 and 10 milli-
seconds) the probabilities ¥ shown in Table 4.1.

This table shows that for the network in question, in order to meet the
5 millisecond time requirement, the tubes must have a mean breakdown
time of much less than 1 millisecond to insure reasonable blocking.

4.4 Remarks and Conclusions.

From the discussion of the last section it is clear that, for a gas tube
switching network, blocking probability alone is insufficient as a design

MATCHING
CIRCUITS

— —

Fig. 4.1 — Graph of four-stage gas tube network with center matching.

TaBLE 4.1
Mean Tub i
Blfﬁhi%vg:?ﬂ 'g;r%?‘jn at End-Matching ¥ | Center-Matching ¥ PrEll;Z\'i:killli]tgy P
0.5 10 0.0158 0.0153 0.015
1 5 0.0548 0.0225 0.015
5 1 0.937 0.785 0.015
10 0.5 0.99 0.97 0.015
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criterion, since it neglects completely the control circuit requirements.
It is more natural to use the joint probability ¥ (which is the probability
of either no path available or, when there are paths available, the break-
down time exceeds ¢) as the generalized blocking for design considera-
tions. Table 4.1 shows how radically different ¥ can be from the block-
ing probability P.

We may consider the converse situation. Suppose, for the 10,000-line
office considered before, in addition to restricting the connection time to
not over 5 milliseconds, we further demand that the generalized blocking
¥ must not be higher than some fixed value (say 0.02). Then, from the
discussion given here, it is possible to determine the maximum gas tube
breakdown time allowable. Thus, generalized blocking can be used as a
eriterion in determining the choice of the type of gas tubes suitable for
the switching network in question.

The fact that it takes time to establish a path in a gas tube network
has a definite bearing on the retrial distribution discussed in Section 4.1.
Because of it, the mean retrial time on blocked calls will be modified;
that is, the retrial distribution of a network depends in part on the
characteristics of the gas tubes used in the network.

In this paper we have attempted to study switching networks in terms
of a simplified model. Because of the elementary character of the model
chosen, many problems are left unsettled. For example, from the point
of view of applicability, one would want to know how our results would
alter if the assumption of independence among links is dropped. To go a
step further, except for Section 4.3, switching networks in this paper have
been considered as isolated entities by themselves. A more realistic study
should consist of viewing a switching network together with its asso-
ciated control circuits which entails great difficulties at this time. Any
progress in this direction is, of course, highly desirable.
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