Distortion in Feedback Amplifiers

By R. W. KETCHLEDGE
(Manuseript received May 17, 1955)

Distortion in feedback amplifiers and other non-linear circuits is analyzed
for the case where the magnitude and phase of the feedback varies with fre-
quency. The analysis is limited to cases where the distortion products are
small compared to the fundamentals and where the non-linear element can be
described by a power series having only a few terms. However, many prac-
tical amplifiers are adequately described by the analysis. Formulae are de-
rived for a number of third-order products and their dependence wupon
various feedbacks at second order frequencies 18 demonstrated,

INTRODUCTION

Distortion in feedback amplifiers has previously been studied for the
case where the feedback is independent of frequency.! However, in many
practical cases, the variation of feedback with frequency produces sig-
nificant deviations from this simple theory.” The present analysis takes
into account the magnitude and phase of the feedback at all frequencies
in determining the amount of any particular modulation product. This
analysis has proved useful in the design of amplifiers for the L3 coaxial
carrier system’* * as well as in the analysis of a number of non-linear cir-
cuits. The method is most useful in eases where the distortion products
are small compared to the fundamental signals and where the non-linear
element can be described by a power series having only a few terms.
More complex cases can be treated but the labor involved is appreciably
greater., However, many practical feedback amplifiers are adequately
described by the analysis and, in addition, some understanding is ob-
tained as to the mechanisms involved. In particular, the dependence of
third order distortions-on the feedbacks at second order frequencies is
demonstrated and formulae are obtained.

THE PROBLEM

When a signal is sent through a non-linear element, such as a vacuum
tube, the output can usually be described as a power series of the input
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signal. This is especially true in wideband amplifiers where plate load
impedances are low and plate current is determined largely by grid-cath-
ode voltage. Often the non-linear element is contained within a feedback
loop such that a portion of the output is returned to the input. In this
situation the total input contains a power series of the original input
and the situation is considerably complicated. It is well-known,'* * for
example, that third harmonics can be produced not only by the cube
term of the power series but, with feedback, by the square term. The
square term produces second harmonic output which, after being fed
back, mixes again with the fundamental to form (via the square again)
third harmonics. Thus, the third harmonic output becomes dependent to
some degree on the feedback at the second harmonic. This relationship
becomes somewhat more complex when several fundamental inputs are
present simultaneously but, in general, the output of a particular third
order product depends on the feedback at, at least, some of the second
order product frequencies. Within the limitations of the simplifying
assumptions used, the present analysis evaluates these relationships.

THE METHOD AND THE ASSUMPTIONS

It is assumed that the non-linear element can be described by a power
series of the form

i=a1e+agez+a363+a4ei+ (1)
In a cireuit such as shown on Fig. 1, e represents incremental grid-cathode

voltage and 7, incremental plate current of a vacuum tube. If, as shown
on Fig. 1, a fraction of the output is returned to the input, then the grid-

Fig. 1 — Feedback Amplifier Equivalent Cireuit.
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cathode voltage becomes the difference between the applied and fed back
signals or,

e = ew — iZ (@)

While Z has the dimension of impedance, it is not limited to the 290
degrees of an ordinary two terminal impedance. In practice, mZ usually
represents the loop gain, (ug), of the feedback amplifier. Thus, Fig. 1 is
used to represent the voltage and current relationships of any feedback
amplifier.

Having expressed the output current as a power series of the grid-cath-
ode voltage (1) and having expressed the grid cathode voltage as the sum
of the input and fedback voltages, (2), the next step is to combine these
expressions. The method consists of first expressing the input voltage,
ein , in terms of its cosinusoidal components. The grid-cathode voltage is
expressed as a Fourier series of cosines having complex coefficients. The
frequencies in the series represent all combinations and harmonics of the
frequencies present in the input signal itself. The coefficients of the power
geries for the current, ai , as, as, etc., are known from the tube charac-
teristics. The problem concerns itself initially with finding the unknown
coefficients for the Fourier series representation of the grid-cathode
voltage.

The method is to first insert the Fourier series for e in the power series
to find a Fourier series for 7 in terms of the coefficients for e. Then,
equating the two sides of the equation, frequency by frequency, one ob-
tains a set of simultaneous equations which can be solved for the coeffi-
cients of ¢ and in turn for the coefficients of ¢. It so happens that with
the assumptions used here the equations can be solved individually.

The chief difficulty of the method resides in the fact that both the
power series and Fourier series are infinite and therefore a rigorous solu-
tion is impractical. Fortunately, simplifying assumptions permit limiting
the series in many practical cases without seriously degrading the ac-
curacy. The assumptions used here are as follows:

1. All distortion products are small compared to the fundamentals.

9. Third order distortion products are small compared to second order
produects.

3. The device non-linearity is adequately described by a simple three
term power series, Fourth order and higher powers are neglected.

4. Frequency components representing fourth order and higher inter-
actions are neglected.
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“SINGLE-FREQUENCY INPUT”
In the single-frequency case the input signal, e;, , is given simply by
ein = A cos af 3)

Since the input is a single frequency, the Fourier series representation of
the grid-cathode voltage, e, is known to contain merely the harmonics
of the input frequency. Thus,

=0

e = 2 kncos nat (4)
n=0
or
e = ko + ki cos at + k2 cos 2at + ks cos 3at - - - (5)

The next step is to insert (5) in (1) limiting (1) to the first three terms as
follows:

1= e + ae’ + ax’ (6)

In doing this it must be remembered that %, is complex and represents a
complex voltage. Therefore, the products are not the ordinary result of
the produet of two complex numbers where the magnitudes multiply and
and the angles add. Rather, these products, representing complex num-
bers pertaining to impedance, voltages or currents of different, or the
same, frequencies are formed by using the conjugate of any coefficient
whose frequency subtracts in the formation of the product frequency.

For example,
koky cos A cos B = Ly koky cos (A + B) + 14 ko cos (A — B) -
(7) = conjugate, A>B

If this rule were not followed at least the phases of the products would
be incorrect.

Performing the operation for ¢’ and combining terms of the same fre-
quency yields,

kﬁl -+ kzﬁz + kaﬁa
2

+ (2keoks + Yoki* + ksky) cos 2at + (2koks + Fiks) cos 3at
+ (ks + 18ks") cos 4at 4 koks cos Sat + L4ks® cos 6at

82 = ]6[)2 + —+ (+2kuk1 + Elfcg + Ezka) cos at

(8)
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A similar operation for ¢ yields

= ko + Yg[kokiky 4 kokaka + Koksksl + %Re[2ko(k12 + k' + k)
+ ks (Tcl + %) + Vgka(kaks + FiFe + Fuk)]

+ ((+3keks + BkoFaks + Bkokaks + 34k:'Fy + 34Fi'ks + 3kikokes
+ 34kiksks + 34k2'Fs)) cos at
+ ((48ko’ks + 35koks + Bkokks + 3gkikks + 35kikaks

+ 34ksFa + 34koksks)) cos 2at | (9)
+ ((Bko'ks + Skokks + V4ki' + 35kiferks + 34Fuks"
+ 34kokeaks + 34Fsks’)) cos 3ot
+ ((34koks® + Bkoksks + 34K’k 4+ 3sFikoks + 34Kaks”)) cos dat
+ ((Bkoksks + 34kiks + 34kiks® + 34Kiks")) cos Sat
+ ((3gkoks® + 34kikoks + V4ks")) cos 6at
+ (34kiks® + 34ksks) cos Tal + 34kaks’ cos 8at + Viks' cos 9at

We now introduce the assumptions. Specifically,
ki > ka>> ks, ki3> ko> ks (10)

and we neglect ki , ks , ete. The reduction in labor is apparent from in-
spection of equations 8 and 9. This snnpllﬁes equations (5), (8) and (9)
as follows:

e = ko + ki cos at + ko cos 2af + ks cos 3al (11)
¢ = LgkiFy + (2koks + Fuke) cos at + Yokt cos 2at + kik: cos 3t (12)

= Lkokiky + Re [kukl + Ykiks (k1 + El)] + 34k:"Fy cos ot

13)
+ (34koky® + 34kikiks) cos 2at 4+ }{;kl cos 3at
From (2) and (6) we know
e = A cos al — Zlame + axe’® + aze’] (14)
which may be written as
Acosal = (1 + Zae + Zase' + Zage® (15)

Using the values for e, ¢, ¢, given by (11), (12) and (13), in (15) and
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solving, frequency by frequency, yields for de
0= (1 + Zoal)ko + Zoﬂz}i;klﬁl

+ Zoas (%k"ﬁlk' + Re [kokl2 + Lokik, (?ﬁ - Izé):])

For &

A = (1 + Ziadks 4+ Ziao(2koky + Tuks) + 34Z1ashi’Fex
For 2a

0 = (1 + Zoaks + Y5 Zsasks” + Zoas(3skoker” + 36kikiks)
For 3a

0 = (1 4 Zsaks + Zsaskiks + Y{Zsask:’
In order for assumptions 1 and 2 to be met, namely,
ki >k, ko >> ks, Ty > ko, ko >> ks,

it is necessary that

me > ase” > age’
or

ay 3> aze >> e’
Therefore, since

asky’ 3> agl’ko or agki’ks

Equation 18 can be solved directly for k. yielding

_1 oy 2
y 2T+ aZ.
and likewise
S azZo
ko a 1 -[— Glzu klkl

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

This procedure avoids a simultaneous solution of (16) to (19). Since, for

small distortion.

A

i ————
4 1+G1Z1

(26)
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and having k; and k. , one obtains

_ Zo A A
ko= =5 (1 ¥ alz[.)(l ¥ aizl)(l ¥ alzl) @7
ky = A oy I:% _ azzzu _ ﬂ.-32Z2 ]
! 1 + cth ! 4 1 + ﬂ.lzn 2(1 + Cth)
@)
() (Fam)
14+ aZ:/ \1 + a1z
_ (1 7] Zg A 2
ke =5 (1 ¥ a,lzz) (1 ¥ a,zl) (29)
. — Zy az 02222 ]( A )a
ks =1 + aiZ; [Z 2(1 + aiZo) \1 + a:iZ, (30)
The corresponding values for the output currents are readily obtained as,
. s A A
= 2(1 + a1Zy) (1 -+ Cth)(l + ﬂlzl) 31)
1: — [ (I]A + (% _ 0.22Zu _ (12223 )
! 1+ aZy 4 T+ aZe 200+ aZe)
i (32)
(o) ()] =
1 4+ aZy 14+ aZ, =
T = az ( A )2 cos 2at (33)
201 4+ a1Zs) \1 4+ a2
. 1 ag _ (12222 A 8
= 1 + a123 [Z 2(1 + G1Z2)] (1 + ﬂlzl) cos 3051: (34)

The expression for the fundamental output current includes the third
order distortion of fundamental frequency. This is often viewed as a
gain change and, in order to keep the polarity positive, will be expressed
as expansion or increase in gain. The expansion is defined here as the
ratio of the gain to the gain at small signal levels. The gain at small
signal levels is obviously found by

. alA
A —0, 7 — T ol cos atl (35)
and therefore,
. @
Expansion = Yy E— (36)

m cos at
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Thus,

Expansion = 1 + [% — ar’Zy _ ar'Zs ]
4a, a(l + a1 Zo) 2a:(1 + a1Zs)

(Faz)ivem)
1+0'.1Z1 1+a121

It should be pointed out that both this solution and the others to follow
can be applied to other non-linear circuits besides feedback amplifiers
so long as the assumptions used are adequately satisfied in practice.’
Fig. 2 shows a simple non-linear circuit consisting of the series combina-
tion of a generator, impedance, Z, and a non-linear element. If the
non-linear element can be adequately described by the power series of
(6), then the solution is the same as given above. Equation 2 is obviously
the same and therefore, so long as the assumptions of (10), ete., are satis-
fied, (31), (32), (33) and (34) represent accurate expressions of the
currents,

(37)

BALANCED PUSH-PULL AMPLIFIER

A balanced push-pull amplifier is not often thought of as a feedback
structure, However, Fig. 3 shows such a circuit having a cathode feed-
back impedance Z, common to both sides. The cathode impedance is
usually used for bias and sometimes to assist in balancing. This circuit
has been analyzed to determine the effect of second order distortions
which are fed back via the cathode impedance, Z, even though they do not
appear in the load. Note that for the perfectly balanced case odd order
components cancel and even orders add across the cathode impedance.
Thus, one might think of this as a structure with feedback only at even
order distortion components.

Proceeding in the same fashion as for the previous example and as-
suming perfect balance we write the power series for the plate currents

z

AR

-
L

NS 21

Fig. 2 — Non-linear circuit.
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in terms of the grid-cathode voltages as
o = @16 + Q2¢s + asea’
By = mey + aser + ey’
The input loops have the volt—é.ge relationships
ea = A cos at — Z(i; + %)
e = —A cosat — Z(ia + )

1273

(38a)
(38b)

(39a)
(39b)

Finally, the grid-cathode voltages are expressed in Fourier series form.

ea = Zkn cos net
e = Zjn cOS nat
Noting that the desired output is given by
output current = i, — 17
and observing that
A
h —A
it can be shown that the de output is
talde — Tblae = 0,
the fundamental is

3a _ 203z
4 1 + Zﬂlzu

2
— _ﬂ?ﬂ ) co8 at
1 + 2&122

ia|2a - ?:bl2a =0

z‘ala - T:blu = (2@]4‘1 + 2A24{ [

the second harmonic output current is

and the third harmonic output current is

2
az 202 Zz

-g- — -1_1_—2'(‘;]?2] cos 3al

T:niﬂu - T:blaat = A3 |:

(40a)
(40b)

(41)

(42a)
(42b)

(43)

(44)

(45)

(46)

The pattern here is the same as in the previous example, seconds are
fed back to form thirds. Thus, while the balance removes second order
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products from the output, nevertheless, the level of third order distortion
can be materially increased. Even if the cathode impedance, Z, is by-
passed, the de component can produce gain changes. This is equally
true of the ordinary single-sided cathode-biased amplifier, another
“non-feedback’ amplifier.

APPLICATIONS OF THE THEORY

During the development of the L3 coaxial system some work was done
on a non-linear circuit to generate modulation products. The experi-
mental results failed to check with existing theory by large factors
and the theory described here was developed to explain the difference.

Fig. 3 — Balanced push-pull amplifier.

The deviations were then easily understood as, for example, a lack of
feedback of direct current, a second-order product, yielding an expansion
to third harmonic ratio appreciably different from three to one. With
multiple frequency inputs the relative levels of other third order products
were similarly affected. Application of the new theory which takes into
account, the magnitude and phase of the feedback yielded entirely satis-
factory agreement.

The theory was later applied to various modulation characteristics of
the 1.3 coaxial-system line amplifier.® In one case an effect was predicted
by the theory which had not, at that time, been observed experimentally.
In the L3 line amplifier the vacuum tubes are operated with local de
feedback from large cathode bias resistors suitably bypassed. The nor-
mal feedback loop does not extend to de. The theory predicted that
the compression would be reduced if this cathode de feedback were
removed. Typical values for the power series coefficients of the output
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stage (437A tubes) are

a; = 0.045
as = 0.014
a; = —0.0057

Using equation 37 and the approximation of large second order feedback,
(arZo >> 1, aaZs >> 1), the expansion is found to be

. /7 1
=1—-=0.
expansion 0.240 (1 ¥ alzl) (1 + a1Z1)

When the de feedback is removed leaving the second harmonic value un-
changed, one calculates

" 3 = —_ A A
expansion = 1 — 0.1433 (1 T G}Zl) (1 + aIZ1)

The ratio of the calculated compression (negative expansion) increment is

0.240
0.1433

Thus the calculation indicates that removal of the de feedback would
reduce the compression produced by the amplifier by 4.4 db.

The incremental loss in gain of the amplifier was measured with both
normal operation and with the local de feedback removed. The removal
of the de feedback reduced the measured compression increment by the
ratio.

= 1673 = 4.4 db calculated

0.0945
0.058

Thus the predicted effect was verified and the amount confirmed. It
might be noted that the de feedback was retained in the design in
spite of the somewhat greater compression because of its great value in
stabilizing the current and transconductance of the tubes against aging
effects.

A third application of the theory has been in the design of the ambient
temperature compensation oscillator used in the pilot regulators of the
L3 coaxial system.’ Here it was necessary to obtain compression in an
amplifier whose tube had a positive a; and tended to expand. Gain could
not be expended on signal frequency feedback but, by the use of 20 db
of de feedback, compression from second order de feedback was made
greater than the expansion effect. Thus the amplifier compressed (lost

= 1.63 = 4.2 db measured
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gain) as the signal increased. This effect, while small, nevertheless solved
a serious motorboating problem. It also points up a technique by which
gain changes with level can be balanced out. If a tube having a positive
a3 is provided with an appropriate amount of second order feedback
(which always produces compression), then the two effects can be can-
celled. This yields a gain which, to a good approximation, is independent
of signal level. This is quite different from the technique of using a 90°
feedback to convert “u” gain changes into phase changes. Here there
need be no gain or phase changes produced and feedback at the signal
frequencies is unnecessary. However, the balance must be adjusted for
the particular tube’s modulation coefficients.

CONCLUSIONS

The analysis of cases with more than one input frequency are treated
in the Appendix. Formulas are derived for second and third order
products for up to three input frequencies. Certain of these results have
also been expressed in terms of modulated tones to determine gain
changes of sidebands relative to the carrier, etc. Comments on these
results are included below.

Examining (31) to (34) pertaining to the output current for a single
input frequency, it is interesting to note that, within the approximations,
second order output is not affected by the feedback at other product fre-
quencies. Of course, if the second order distortion, (31 and 33), were not
large compared to the thirds this would no longer be the case. Third
order outputs, (32), (34), show that the relative contributions of various
seconds in forming thirds is not equal. For expansion the dc effect is nor-
mally twice the second harmonic effect while for third harmonic only
the second harmonic contributes. Thus, the ratio of third harmonic to
expansion, normally thought of as 14, can vary widely depending on the
relative feedbacks at de and the second harmonie.

In general, it can be stated that the level of a given third order product
is not an accurate indication of other third order products nor is it always
a good indication of the same product at another set of frequencies.

In carrier systems products such as 2« — g anda + 8 — ytend to add by
voltage when the fundamentals (and their products) are closely spaced
because insufficient phase distortion occurs to break up the in-phase
addition among amplifiers. Thus, products of this type often tend to
dominate the linearity problem. These products involve frequency dif-
ferences a — 8 and 8 — v for example, which fall at low frequencies where the
second order feedback effects should be subject to control. Thus, by ap-
propriate use of phase shifts or small feedback or even small positive feed-
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back at these low (outside the band) frequencies it may, in some cases,
be possible to either reduce the level of these products or break up their
tendency to add by voltage.

In line with the above comment it should be noted that any tendency
towards instability of the feedback loop can lead to abnormally high dis-
tortion levels. A second order interaction frequency may suffer from a
Z/(1 + a:Z) factor in excess of 1/a, . Typically Z has an angle of 150
degrees or so in the cutoff region of a feedbagk loop. For large Z the factor
is 1/a; and independent of Z. However, where a1Z drops to, say, 2/+/3
the magnitude of Z/(1 + a:Z) becomes 2/a; at an angle of 60 degrees.
Whether this doubles the interaction effect depends, of course, on the
phase of the other terms but, in many cases, the effect will be appreciable.
This example was for a feedback loop of conservative design. Where
1 + a1Z approaches zero more closely the effect will be larger. Thus, an
amplifier having poor stability margins may exhibit unusual modulation
behavior for third order products involving second order differences
falling in the frequency range of the poor stability margin.

Even in cases where the amplifier is not considered as having feedback,
second order products may be returned to the input at frequencies out-
side the useful range to affect in-band products. This effect is perhaps
most obvious in the de¢ case where expansion or compression is most
likely to be affected. Such a dc feedback can, for example, cause the am-
plification of a short pulse to differ from that of a steady tone. Alterna-
tively, a suddenly applied tone may, at first, produce one output level
and then, following a transient dependent upon the cutoff of the de
feedback, settle down at a different level. Such effects are difficult to
predict rigorously since they involve essentially a large number of
input frequencies. However, the mechanisms involved are easily under-
stood.

In the case of the balanced push-pull amplifier and similar circuits,
second order distortion products can be fed back via stray paths without
feedback of fundamentals. This can produce significant increases in third
order distortion compared to a single-sided amplifier. This is analogous
to the well-known fact that putting feedback around an amplifier rarely
reduces third order products by the amount of the feedback. The reason
is the same, the circuit change allows seconds to feed back and make
thirds.
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APPENDIX

THREE FREQUENCY INPUT

In the case of three input frequencies the derivation of particular prod-

ucts is somewhat more complicated than in the case of a single frequency
input and the number of products of interest tends to be greater. How-
ever, the methods and the assumptions are essentially the same.

The input signal is assumed to be of the form

ein = A cos of + B cos gt + C cos vt a>f>y (A1)

and the power series for the tube is still

i = me + e’ + ae’ (A2)

The loop equation (Fig. 1) is unchanged,

€ = €in — iz (A3)

The Fourier series for the grid-cathode voltage is taken as

¢ =2 knpqcos(na+pB+qv), a>B>4 (A4)

nry

which may be written as

(4

= koo + k100 cos cf + ko,1,0 cos Bt 4 Ko,,1 cos yi

+ koo cos 2at + kos2,.0 cOs 28t + 1;;,0_2 cos 2yt

+ K110 c08 (@ — B)t + ki0—1c08 (@ — ¥)t + koa,—1cos (B —v)t  (AD)
+ K1 cos (@ + ) + Frpa cos (@ + v)t + ko cos (B + vt

+ k300 cos 3at + koo cos 38t + Kooz cos 3yl

+ kr111c08 (e + B+ ¥)t + k11,1 c08 (@ + 8 — v)t + ete., ete., ete.

In the above Fourier series for e, the dc through third order products

total 32 terms. Consequently, the formation of ¢’ involves 32 or approxi-
mately 1,000 multiplications. To form ¢’ requires 32° or approximately
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30,000 multiplications. Since the labor involved is obviously excessive
the technique used is to select only the dominant terms in forming the
desired products. In particular, the assumption that fundamentals are
large compared to second order products and that these, in turn, are large
compared to third order products is used repeatedly.

A typical third order product for a three frequency input is the one
having the frequency @ + 8 — <. In order to find the amplitude of this
product the dominant terms in both ¢’ and " are selected by inspection.
In ¢ the frequency, @« + 8 — v, can be formed by a large variety of
combinations. Some of these are

v and a+ B a+v and 2« + 8
a4+ B and «v de and a4+ 38—«
B—+v and a a+ B8 —v and dc

a and B — v 20d —v and a — 8

B and a — v a—fB and 2a — v
a—v and B ete.

204+ B8 and a4+ v

Recognizing that the dominant products are fundamentals X seconds
we can write the ' terms of frequency a 4+ 8 — v as follows:

¢ lata—y = 2k1,1,0k0,0,1 COS (o + B)t cos vt
+ 2ko,1,—1k1,0,0 cos (B — )t cos at (A6)
+ 2ky,0,—1k0,1,0 cOs (@ — )t cos fBt

When the indicated multiplications are carried out (A6) simplifies
to the form given below. Note that the conjugate is used whenever its
corresponding frequency subtracts in the formation of the desired
product.

€ |ats—y = [k 1.0k0.01 + Koa,—1k1,0,0 4 k1.0, —1ko10] cos (@ + B8 — y)t (A7)

In like manner the ¢° terms of frequency a 4+ 8 — v are observed to be
dominated by fundamentals X fundamentals X fundamentals. Namely,

a B v

< < W W R
™ R =R p =
R ™R R T
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Thus,
e’ In+B—1r = 9:1]61.0.01(‘0,1.0]55.1 cos (a + B — )i (A8)

The coefficients for the fundamentals themselves are easily approxi-
mated in the same manner as was used to arrive at (26). However, it is
still necessary to find the second order coefficients of ¢ used in forming
" in (A7). These second order products are dominated by fundamentals
z fundamentals and can therefore easily be shown to be

_GEZ

] — atf
C1,1,0 ———1 ¥ aZers kl.n.oko,m (AQ)
—a2Zp_y N
= A
ko1, TF e ko,1,0k0,0,1 (A10)
_ —HQZu—w s
k0,1 = TF aZ Fer0,0k0,01 (A11)

Since there is no original input signal of frequency a« + 8 — v, (A3)
can be written as

¢ = —Zargolare + ae® + ase’lassy (A12)

The subscript on both the impedance and the power series should be
interpreted respectively as the value at this particular frequency and the
content of this particular frequency. Inserting the appropriate values
for e, ¢* and ¢’ of frequency a + 8 — v in (A12) one obtains,

: 2
kip,(l + @Zayps) = —Zass— I:T‘_'i__a%;; ke1,0,0k0,1,0/0,0,1
2 2
— a2 7. — a2 S
T a7 Fordkeoik —— k ke A13
+ 1 + ﬂ-lz.s—-y ku.l,ﬂku,u.l 1,0,0 + 1 + alzu—-f 1 o,oko,o_l 0,1,0 ( )
6 _
+ ag i kl,o.uko.l,nfcu,u,l:l
Note that
. —Jy 1
latpry = 77— L (A14)
at+B—y
Thus,
; 1 [3a3 a2 Zarg ' Zs_,
oy = T 7 | o — —
Z‘! — 2 1 Za 1 a Z _
1+ o +ﬁ72 + a +8 + ads—y (A15)
[12] Z‘,,‘,,

- m] kl,n.oko,u_lku,l,o cos (C! + B8 — ’Y)t
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Approximating the fundamentals by
A

.00 1+ a1Za (A16)
B
ko0 = H'—ﬂ;_z—;v (A17)
c
koon = m (A18)
We obtain for the desired product
1 3a, 322Za+5 G22Zﬁ—v

fatpoy = | o2 —
o 14 ﬂ.lz,.+,g_~,|: 2 1+ alz.,+,g 1+ alz,g_.,

' Zay ]( A )( B )(‘ C ) (A19)
1 + G1Z,,_-, 1 + aIZa 1 + (th 1 + aIZ,,

cos (@ + B — )t

A similar derivation for the a + 8 + ¥ product yields the same expres-
sion except that the conjugate is removed and -+~ replaces —vy on the
impedance and frequency subscripts wherever —y appears above. Thus,

1 I:?)E; _ a22Z.,.+g _ a;Zg_H
14+ 6Zaipin L2 1+ @Zarg 1+ :iZpiy

6ty ]( A )( B X C ) (A20)
1 + a,IZ.,ﬂ 1 + alza 1 + alz,g 1 + ﬂqz-,,

cos (a + B + ¥t

Another product of interest for three frequency inputs is expansion.
As a typical case, the expansion of 8 in the presence of a, 8, and v is de-
rived below. The method used relies on the same assumptions. Since the
distortion product has the frequency g, in ¢, the following fundamentals
z seconds terms dominate.

latpty =

a and o —f de and B
a—f and « vy and B — ¥«
a+ B and « B —v and v

283 and B v and B4+«
and 28 B+~ and v

g and de
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This simplifies to
¢ s = [2ko,0.0k0,1.0 + ko 2.0k01.0 + K1 1,0k1,00 + K100k, 1,0
+ ko, —1ko,0,1 + ko110 0,1] COS BL

In ¢ fundamentals X fundamentals X fundamentals dominate as
follows,

(A21)

a B «a 3terms
¥ B v 3terms
B B B8 1term
This yields
¢ ls = 38krookiodkoro + 38ko0ikooskore + 34ko 10kore  (A22)

To proceed further again requires the determination of a number of
second order products appearing in ¢’. Note that these are the products
which when fed back will beat with fundamentals to form the desired
third order product. Since these second order products are dominated
again by fundamentals X fundamentals they are easily shown to be

—asZ — — —
ko,n,u = Wﬁ% (kl,ﬂ.ﬂkl.u.ﬂ + ko,l.uku,m + ]ﬂn.ﬂ 1]{:0,“,1) (A23)
_a222ﬁ 2
=~ = (K
ko,2,0 20 F aZap) (ko 1,0) (A24)
_ —2ats
k11,0 (—-——1 T aZurs) Fy,0,0k0,1,0 (A25)
ky,—1,0= ngﬂ— F1.0,0k0,1.0 (A26)
Y L+ aasg "
_ — 22y T ’
’50,1,—1 = m ku,l,oko,o,l (A.27)
kopn = ;@%H—T-kmokou (A28)
" 1+alzﬂ+7 e
The next step is to rewrite (A3) as
koo = B — Za(aiko10 + aze’ |5 + ase’ |s) (A29)

which reduces to

ko100 =

B Zs . . .
1+ aZs 1+ aZs (ase” |3 + ase” |5) (A30)
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Substituting the terms of ¢* and ¢’ of frequency 8 we obtain,

koo = B Zs I:(G"I\nl 0) ( —aZa (kv,0,0k1.0.0

U+ wmZy 1+ as L+ ad
+ ko,okoa.0 + Ko0akon) — Q% fiu.oko 10

+ ﬂafbn1n(/]mlﬂknlu + éklonklun + ; kﬂolkoul)]
Making use of values of the fundamentals as given in (16), (17), (18) and
the relationship

is = —"’_—"-‘-"Z; B (A32)

we find for the output current of frequency g

P mB [1 n 1 ( B )( B )(3!1';
L 1 + (hZﬁ ]. + alzg 1 + CI;Z,; 1 + {1123 -’-1?]

_ as Zy _ 28 Zgg ) + 1 ( A )
(11(]. + G|Zﬂ) 2&1(1 + 012?3) 1 + GlZﬂ 1 + alZu

A 3, 1122Zu afZ.,M
A (2 - - A33
(1 + alzﬂ)(2a| 01(1 + a-lzu) al(l -l'- G1Z¢+ﬂ) ( )

) e )
al(l + alZ.,_p) 1 + G,1Z5 1 + alz—, 1 + alz,,

(:}ﬂ _ as Zy _ oy _ a5’ Zssy ):| cos Bt
20 a(l+aZo) ol +aZz,) all + aiZsy)

The gain expansion is readily obtained from the above using the rela-
tionship

gain expansion = —————— (A34)

It is interesting to note that the influences of the other two funda-
mentals involve feedbacks at sum and difference frequencies relative to
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B whereas the corresponding term for 8 involves the second harmonic and
de feedback. The latter also appears with the other fundamentals.

MODULATED CARRIER EXPANSION

The preceding analysis of three frequency inputs can also be applied
to the situation where the signal consists of an ordinary amplitude modu-
lated carrier. Such a modulated carrier consists of a carrier frequency
with two sideband frequencies, one above and one below the carrier. To
simplify the results given below it is assumed that the feedback is the
same for the sidebands as it is for the earrier. The index of modulation is
expressed as m and the modulating frequency is expressed as A. Thus,
in the notation of the preceding section one has the relationships

A=C=§”B (A35)
a=p8+A4A (A36)
y=8—A (A37)

Zgra = Zg = Zp_a

It is further assumed that the feedback is unchanged between the sec-
ond harmonics of the sidebands and carrier so that

Zogray = Zog = Zag-a) (A38)

Taking (A33) and equivalent expressions for i, and 7, it may be shown
that

gain expansion of the carrier = 1

1 B B 30,3
+ 1 + a;Z,s (1 + (l]_Zﬁ) (1 + aIZ,g) [4&1 (1 + )

_ ar'Zo (1 + mz) _ as' Zs (1 + m) (A39)
(11(1 + alzo) 2 al(l + alzzﬂ)

or (2)
T a(l F aiZy) \ 2
gain expansion of either sideband = 1

+ i () () [ (1 57)
14 aZg\1 + arZg 1+ aiZs 2a,

e (1 . w_;’) @By ( 3_m_=) (A40)
al(l + G]Zn) 2 (1 + a;ZZ,g) 8

_ azZa 1 Qs Zm (?Llf )
al(l - Gle) 01(1 + 0122,3) 4
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and the expansion of the modulation index is

gain expansion of sideband relative to carrier = 1

?

. ( B )("B' )[3@ L
1+ aZs\1 + a:iZs/ \1 + a1 Z;/ | 40, 4

_ 022228 (_1_ _ f) _ 022Zm (1 _ "_n_) (A4])
Gl(l Jr‘ alzglﬂ) 2 8 a1(1 + ﬂ;le) 2

2 2
~aiaz (3)]
al(l + ﬂ]ZQA) 4:

Note that the de term drops out of the expansion of the sidebands rela-
tive to the carrier because the de term affects them equally.

TWO FREQUENCY INPUT

The third order products, 2a + 8§, are often of importance in carrier
systems. They cannot be found simply by substitution of variables in
(A19) or (A20) since, for example, «, 8, v, can be formed in six ways and
o, a, 3, in only three. Thus, the a; term has a coefficient of 34 instead of
64. This is intended to sound a note of caution in merely changing
variables to find other products.

Carrying through the complete calculations for 2a¢ + B8 one obtains,

R A )( B )
B T e s \I & @Z.) \1 + aiZs

3 7 2y (A42)
as _ Ao Lisa _ a2’ Z asp ~

I:_'I 2(1 4+ a1Zs4) 1+ alzaﬁ] cos (2a — Bt

and

2a+-B 1 + alea+ﬂ 1 + a1Zu 1 + GIZ,G (A43)

[303 1 azzzia a2zzﬂ+5

D20+ ) 14 a12,+,5] cos (2 + Bt






