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Tables and charts are given of mathematical functions related to the
potential of a line of point charges. The use of these functions is illustrated
by applications to semiconductor resistivity measurements and to calculations
of the base resistance of poinl-contact transistors.

INTRODUCTION

The “method of images” is a simple but elegant technique for the
solution of problems in potential theory. Formal solutions to problems
involving plane boundaries and point sources can usually be written
down immediately from obvious symmetry considerations. The solutions
thus obtained, however, are often infinite series whose convergence is
unsatisfactory for numerical calculations.

Many techniques have been devised for improving upon the con-
vergence of these infinite sums. It has generally been assumed that the
mathematician or engineer must select one of these techniques and apply
it to his own special problem. The object of this article is to make such
special treatment unnecessary in most cases. To this end, the potentials
of certain simple image systems are tabulated.

The use of the tabulations is illustrated by numerical solutions of
some problems in semiconductor engineering. Transistors and varistors
have become famous because of their non-ohmic properties. But solu-
tions to ohmic flow problems can be useful as first approximations in the
design of semiconductor devices and can be very aceurate approxima-
tions for suitably arranged measurements of the equilibrium resistivity
of semiconductors."* Plane boundaries occur-as the physical boundaries
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of the semiconductor and as junctions between regions of different con-
ductivities and conductivity types. Point sources are the simplest
idealizations of point contacts.

The four-point method to be described for the measurement of semi-
conductor resistivity is used in geophysics for measuring the resistivity
of the earth. The mathematical content of this article is applicable to
problems other than ohmic flow. The differential equations for ohmic
flow are identical with those of electrostaties, heat conduction, and the
hydrodynamics of an ideal fluid. In one of the examples given below,
the Coulomb energy of an ionic erystal is calculated.

SUPERPOSITION OF AN INFINITE NUMBER OF POINT SOURCES

The strength ¢ of a point source will be defined so that the potential
due to the source is g/r, where r is the distance from the source. Sources
of negative strength are often called “sinks”, but this special designation
will not be used in the discussion to follow. All the cases of ohmic flow to
be considered here involve point sources of current at a plane surface
and it will be shown that

Ip
7=3. (1)
where [ is the current into the plane surface of material of resistivity p.

According to the principle of superposition, the potential at a given
point due to some configuration of fixed sources is the sum of the po-
tentials that would be established at that point by the various sources
making up the configuration. The computations for many problems
could be accomplished easily if one could have a table of the potential
of a line of equally-spaced point sources of equal value g. But a divergent,
expression is obtained when one attempts to calculate the potential of
such an arrangement of sources by superposing the ¢/r potentials of
the sources. One way to avoid this divergence is to abandon the attempt
(implicit in the choice of g/r as the potential of a source) to make the
potential at infinity equal to zero. Potentials with respect to some ar-
bitrary point would be finite and could be tabulated.

However, having the potential at infinity equal to zero simplifies the
superposition of source systems. All of the problems that could be solved
with the potential of a line of point sources can be solved with either of
two related arrangements that permit setting the potential at infinity
equal to zero. Tabulations of the potentials of these arrangements will
be given.
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The first scheme that will be considered consists entirely of point
sources and is illustrated in Fig. 1. It consists of a line of equally spaced
point sources of equal strength ¢, and a parallel line of opposite sources,
except that one of the positive sources and the corresponding negative
source have been omitted. The potential at the point P (where the
omitted positive source would have been placed) is to be considered and
may be written

v(P) =130 (1)

where M is a dimensionless function of the ratio A = d/a of the distance
d between the lines of sources to the spacing a of the charges in the lines.
It is obvious that M(\) must vanish at X = 0.

The second scheme is illustrated in Fig. 2. It consists of a line of
equally spaced point sources embedded in a line source of equal and
opposite strength per unit length. The potential at the point @, lying on
a perpendicular to the line of charges, erected at one of the point sources
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Fig. 1 — Arrangement of sources Fig. 2 — Source distribution corre-
corresponding to the function M. The sponding to the function N. The po-

potential at point P is (g/a) M(d/a). tential at point P is (g/a) N (d/a).
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TaBLe I — VaLues or THE Funcrions M(A) anp N(A)

A M(\) NN A M\ N(\)
0.01 0.000120 90.557677 0.52 0.278275 0.105086
0.02 0.000481 41.943612 0.53 0.287536 0.097637
0.03 0.001081 26.087274 0.54 0.296876 0.090740
0.04 0.001921 18.328465 0.55 0.306292 0.084353
0.05 0.003000 13.773673 0.56 0.315780 0.078434
0.06 0.004317 10.803665 0.57 0.325338 0.072947
0.07 0.005872 8.720459 0.58 0.334961 0.067860
0.08 0.007662 7.209018 0.59 0.344647 0.063140
0.09 0.009686 6.053671 0.60 0.354392 0.058761
0.10 0.011943 5.151023

0.61 0.364193 0.054696
0.11 0.014432 4.430064 0.62 0.374047 0.050921
0.12 0.017150 3.843793 0.63 0.383952 0.047416
0.13 0.020096 3.359908 0.64 0.393903 0.044159
0.14 0.023266 2.955502 0.65 0.403900 0.041133
0.15 0.026660 2.613904 0.66 0.413937 0.038320
0.16 0.030273 2.322701 0.67 0.424014 0.035705
0.17 0.034105 2.072472 0.68 0.434127 0.033273
0.18 0.038151 1.855945 0.69 0.444273 0.031012
0.19 0.042410 1.667423 0.70 0.454451 0.028907
0.20 0.046877 1.502384

0.71 0.464658 0.026049
0.21 0.051550 1.357196 0.72 0.474890 0.025127
0.22 0.056426 1.228910 0.73 0.485148 0.023431
0.23 0.061501 1.115110 0.74 0.495426 0.021852
0.24 0.066773 1.013798 0.75 0.505725 0.020381
0.25 0.072237 0.923312 0.76 0.516041 0.019012
0.26 0.077889 0.842254 0.77 0.526373 0.017736
0.27 0.083726 0.769448 0.78 0.536718 0.016548
0.28 0.089746 0.703889 0.79 0.547074 0.015440
0.29 0.095942 0.644722 0.80 0.557441 0.014409
0.30 0.102312 0.591213

0.81 0.567816 0.013447
0.31 0.108852 0.542726 0.82 0.578196 0.012551
0.32 0.115557 0.498711 0.83 0.588582 0.011715
0.33 0.122425 0.458690 0.84 0.598970 0.010936
0.34 0.129450 0.422244 0.85 0.609360 0.010210
0.35 0.136629 0.389006 0.86 0.619750 0.009532
0.36 0.143958 0.358654 0.87 0.630138 0.008900
0.37 0.151432 0.330903 0.88 0.640523 0.008311
0.38 0.159048 0.305500 0.89 0.650904 0.007761
0.39 0.166801 0.282222 0.90 0.661279 0.007248
0.40 0.174687 0.260868

0.91 0.671647 0.006770
0.41 0.182703 0.241262 0.92 0.682007 0.006323
0.42 0.190844 0.223244 0.93 0.692358 0.005906
0.43 0.199107 0.206671 0.94 0.702698 0.005518
0.44 0.207486 0.191417 0.95 0.713027 0.005155
0.45 0.215979 0.177364 0.96 0.723344 0.004816
0.46 0.224582 0.164411 0.97 0.733647 0.004499
0.47 0.233289 0.152462 0.98 0.743935 0.004204
0.48 0.242098 0.141434 0.99 0.754209 0.003928
0.49 0.251005 0.131248 1.00 0.764466 0.003671
0.50 0. 260006 0.121836

1.01 0.774706 0.003431
0.51 0.269008 0.113135 1.02 0.784928 0.003206
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TaBLE I — VaLues or tHE Funcrions M(\) anp N(\) — (Continued)

A M(N) NN X J M(N) N(N)
1.03 | 0.795132 0.002996 1.54 | 1.280952 0.000100
1.04 | 0.805316 0.002801 1.55 | 1.280715 0.000093
1.05 | 0.815480 |  0.002618 1.56 | 1.208447 | 0.000087
1.06 | 0.825624 | 0.002447 1.57 | 1.307149 | 0.000082
1.07 | 0.835746 | 0.002287 1.58 | 1.315821 0.000077
1.08 | 0.845847 0.002138 1.59 | 1.324464 0.000072
1.09 | 0.855024 0.001999 1.60 | 1.333077 0.000067
1.10 | 0.865979 0.001869

1.61 1.341660 0.000063
1.11 0.876010 0.001748 1.62 1.350214 0. 000059
1.12 | 0.886018 0.001634 L.63 | 1.358739 0.000055
1.13 | 0.896000 0.001528 L6+ | 1.367234 0.000051
1.14 | 0.905058 |  0.001428 }-gg }ééﬂ?@ ggﬂwﬂgj;
1.15 | 0.915800 |  0.001336 . -B384137 .
116 | 0.925797 0.001219 1.67 | 1.392544 0.000042
1.17 0.935677 0.001168 1.68 1.400923 0. 000040
LIS | 0.945531 0.001092 1.69 1 1.400273 0.000037

1.19 | 0.9553568 0.001022 170 | 1.417594 0000034

1.20 | 0.965158 0.000956 - | 125886 0.000032
| i . .
1.21 | 0.974930 |  0.000894 %ig Hﬁ;gg | g'gggggg
1.22 | 0.984675 | 0.000836 L e | : N
1.23 | 0.094302 0.000782 1.74 | 1.450508 0.000026
124 | 1.004080 0.000731 1.75 | 1.458772 0.000025
1.25 | 1.013740 0. 000684 1 %jgggfg o oooozs
1.26 1.023371 0.000640 1 -18 1483141 0000020
1.27 1.082974 0.000599 1 -ig 1491208 0000019
1.298 | 1.042547 0.000560 g ey :
129 1 052001 0000524 1.80 | 1.499248 0.000018
1.30 | 1.061606 | 0.000490 181 | 1.507260 0.000017
1.82 | 1.515244 0.000016
1.31 | 1.071001 0.000459 152 | 1 osaad 0000015
1.32 1.080547 0.000429 1.84 1.531132 0.000014
1.33 1.089973 0.000401 1.85 1.539036 0.000013
1.34 1.099369 | 0.000376 1.86 1.546912 0.000012
1.35 1.108735 0.000351 1.87 1.554762 0.000011
1.36 1.118072 0.000329 1.88 1.562585 0.000010
1.37 1.127378 0.000308 1.89 1.570381 0.000010
1.38 1.136654 0.000288 1.90 1.578151 0.000009
1.39 1.145900 | 0.000270 ' [ 1 ’
1.40 1.155115 0.000252 1.91 | 1.585805 0.000009
1.92 | 1.593612 0.000008
1.41 1.164300 0.000236 1.93 1.601304 0.000008
1.42 1.173455  0.000221 1.94 1.608970 0.000007
Hfi Hgf.é;l; | g.ggg?g; 1.95 | 1.616609 0.000007

At 1. ‘ .00019: 1.96 | 1.624224 0.000006
1.45 | 1.200738 = 0.000181 1.97 | 1.631812 0.000006
1.46 | 1.200772  0.000169 1.98 | 1.639376 0.000006
1.47 | 1.218775 0.000159 1.99 | 1.646013 | 0.000005
1.48 | 1.227740 0.000148 2.00 | 1.654426 | 0.000005
1.49 | 1.236691 0.000139
1.50 | 1.245604 0.000130 210 | 1.728200 0.000003

2.20 | 1.799596 0.000001
1.51 1.254486 0.000122 2.30 | 1.868737 0.000001
1.52 | 1.263338 0.000114 2.40 | 1.935741 0000000
1.53 | 1.272161 0.000106 2.50 | 2000718 | 0.000000
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may be written
V@ =L N0) @

if we continue to denote by a the spacing between the point sources and
now take d to be the distance between the point @ and the line. As A
becomes infinite, N goes to zero.

The potential of a line of point sources along a perpendicular to the
line erected at one of the point sources can be taken at

V= % I} — M()\)] 3)

where A = d/a and d is the distance from the line of sources.
Numerical values of M and N ecan be obtained with sufficient accuracy
for most purposes from the charts in Figs. 3 and 4. More accurate values
of M and N are given in Table I for various values of \.
A useful relation exists between the functions M and N. It is

M()\)+N()\)=%+21n)\—21n2+20, 4)
where (' is Euler’s constant, 0.577215665. That is
MQ) + NQ) = %—i— 2 In A — 0.231863031

The methods of computing M and N are described in the appendix.

SEMICOI}IDUC‘I’OR

Fig. 5 — Linear four-point probe.
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FOUR-POINT RESISTIVITY MEASUREMENTS

Resistivity measurements are regularly being made on germanium with
a four-point probe. The basic assumptions are that the resistivity is
uniform and that the potential distribution can be accurately approxi-
mated by that ealculated for ohmie flow. The results of caleulations for
some geometries have been presented by L. B. Valdes, along with a
discussion of the conditions for the validity of the assumption of ohmic
flow.! In brief, it is required that modulation of the conductivity by
injected minority carriers be kept negligible. It is also necessary that
the probes used to measure potential difference be sufficiently conducting
to pass the current drawn by the voltage measuring instrument. Both of
these requirements can usually be met, in the case of germanium, by
abrading the surface or by subjecting the contact between probe and
germanium to an electric discharge, 7.e., “forming” the contact.

The prototype geometry for four-point resistivity measurements is
given in Fig. 5, which is taken from Reference 1. The potentials at
probes 2 and 3 are

- 4__ 7

Vz—Sl S+ S;
. (5)

= _ 9 _ 4

Vi= 58 s

where g is the strength of a source corresponding to the current 7. By
By considering a hemispherical surface of infinitesimal radius r centered
on one of the current probes, one sees that

I =1><m'ea X K =—]421rr2g;,
p P 7

or
q = Ip/g'rr (6)
where p is the resistivity and £ = ¢/ r* is the magnitude of the electric

field.
The potential difference AV between probes 2 and 3 is

1 1 1 1
Av“q(§1+33_32+83“81+82) @

It will be assumed in the following examples that S, = S = S; = s
in which case

AV = q/s (8)
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so that
p = 2xs(AV/I). 9)

When the four-point probe is applied to a solid that is not approxi-
mately semi-infinite, a potential difference will still be observed when a
current flows, so we will define an ““apparent resistivity’” po by

po = 2ws(AV/I) (10)
The true resistivity will be given by
p = po/C.D. (11)

where C.D. is the correetion divisor for the particular case.

One of the simplest and most useful departures from the semi-infinite
geometry is the slab or slice of finite thickness, free of any conducting
coating on its faces (and resting on a non-conducting support during
the measurement). Fig. 6 shows the position of the probes and the
configuration of sources required for calculating the correction divisor.
The required configuration can be obtained by superimposing two of the
arrangements shown in Fig. 1 (one with opposite sign) i.e., upon the
source and sink used for the semi-infinite geometry. The additional
potential at one of the probes due to the additional sources is

2%, [M(2s/2w) — M (s/2w)]

and the additional potential at the other probe is equal and opposite,
so that the additional potential difference is

%[M(.%/Zw) — M(s/2w)]

In comparison to the potential difference for the semi-infinite case,
we find that AV is “too high” by a factor

op. =2 (442 [ (3)-n ()])
SR ELOREH

This expression is true in general, but is most convenient for slices that
are thick in comparison to the spacing of the probes, since the correction
terms are then small and errors in reading M from Fig. 3 do not matter
much. The correction divisor may be given in terms of the function N

(12)
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through use of equation (4). The result,

cn. =% [2 In 2 4 N(;i) — N(i):l (13)
w 2w w,

is most useful for thin slices. In fact, if the slice thickness w is less than
half the probe spacing s, C.D. & (2 In 2) s/w and equations (10) and (11)
give

p = mwAV/IIn 2 ~ 4.53wAV /1 (for w < 145) (14)

The correction divisor is given in a table in Fig. 6 for a number of ratios
of probe spacing to slice thickness. For larger values of this ratio than are

s/w C.D. s/w C.D. 5/w C.D.
0.1 1.0009 0.6 1.1512 1.2 1.7329
0.2 ‘ 1.0070 0.7 1.2225 1.4 1.9809
0.3 1.0227 0.8 1.3062 1.6 2.2410
0.4 | 1.0511 0.9 1.4008 1.8 2.5083
0.5 1.0939 1.0 1.5045 2.0 2.7799
2.5 3.4674

Fig. 6 — Linear probe on infinite slice with nonconducting faces (or on edge of
semi-infinite slice).
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found in the table, equation (14) may be used with sufficient accuracy
for all practical resistivity measurements.

In general, a large correction divisor is desirable because it indicates
that a relatively large potential difference is to be measured. For this
reason, the use of the four-point probe on thin slices should be and, in
fact, is found in practice to be quite satisfactory. However, if the slice
is provided with a conducting coating on one side, as in intermediate
stages of point-contact transistor fabrication, the measurement is apt
to be inaccurate. The correction divisor for this case is

CD. =1+ f—v[zM (i_u) - M (f_v) -M (4_}”)] (15)
CD. = % |:N (ﬁu) + N (:—U) — 2N (ﬁ%)} (16)

Fig. 7 illustrates this configuration and contains a table of the correction
divisor. It will be noted that the correction divisor is quite small if the

or

Jek

CONDUCTING

-~

~ BOTTOM
s/w C.D. s/w C.D. s/w C.D. o slw C.D.
0.1 | .9993 0.5 | .9329 1.0 | .6833 2.0 | .2283
0.2 | .9948 0.8 | .7960 1.5 | .4159 5.0 | .0034

Fig. 7 — Linear probe on infinite slice with conducting bottom face.
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Correction Divisor for Conducting Case

L/s

0.1 02 0.5 1.0 2.0 5.0 10.0

0.0 0.034 0.124 0.481 0.811 0.962 0.9971 0.9996

0.1 0.03 0.124 0.48 0.81 0.96 0.997 1.0001

¢ 0.2 0.03 0.125 0.48 0.81 0.96 1.002 1.0064

= 0.5 0.04 0.125 0.49 0.83 1.01 1.08 1.090

wo1.0 0.04 0.142 0.56 1.03 1.34 1.48 1.497

2.0 0.066 0.22 0.95 1.84 2.46 2.72 2.765

5.0 0.146 0.55 2.35 4.58 6.12 6.78 6.5894

Correction Divisor for Non Conducting Case
L/s

0 0.1 0.2 0.5 1.0 2.0 5.0 10.0
0.0 2,000 | 1.9661 | 1.8764| 1.5198 1.1890 1.0379| 1.0029| 1.0004
0.1 2,002 | 1.97 1.88 1.52 1.19 1.040 | 1.004 | 1.0017
0.2 2.016 1.98 1.89 1.53 1.20 1.052 | 1.014 [ 1.0094
s 0.5 2.188 | 2.15 2.06 1.70 1.35 1.176 | 1.109 | 1.0977
w 1.0 3.009 | 2.97 2.87 2.45 1.98 1.667 | 1.534 | 1.512
2.0 5.560 | 5.49 5.34 4.61 3.72 3.104 | 2.838 | 2.795
5.0 | 13.863 | 13.72 13.32 | 11.51 9.28 7.744 | 7.078 | 6.969
10.0 | 27.726 | 27.43 26.71 | 23.03 | 18.56 | 15.49 | 14.156 | 13.938

Fig. 8 — Semi-infinite slice — linear probe parallel to edge.

spacing between probe points is much larger than the slice thickness.
The two-point measurement to be described below seems preferable to
the four-point measurement in the case of thin slices with a conducting
coating, because less effort is required to maintain an accurate small
spacing between two points than between four points.
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The two cases that have been treated thus far were also given by
Valdes, but have been mentioned here as simple examples of the use of
the M and N functions. An example of a more complicated problem
is that of the linear four-point probe on a semi-infinite slice, parallel
to the edge of the slice, as shown in Fig. 8. It is useful to note that the

Correction Divisor for Nonconducting Edge

L/s

s/w —
0

0.1

1.4500
| 1.4501
1.4519
1.5285
2.0335
3.7236
9.2815
18.5630

SMN=OOoOO
coococun—o

—

1.3330
1.3331
1.3352
1.4163
1.9255
3.5660
8.8943
17.7886

0.2

1.2555
1.2556
1.2579
1.3476
1.8526
3.4486
8.6025]

0.5

1.1333
1.1336
1.1364
1.2307
1.7204
3.2262
8.0472

17.2050

1.0

2.0

5.0

10.0

L]

1.05695
1.05697
1.0637
1.1648
1.6380
3.0470
7.5901
15.1983

1.0194
1.0198
1.0255
1.1263
1.5690
2.9090
7.2542
14.5083

16.0944

1.0028
1.0035
1.0107
1.1029
1.5225
2.8160
7.0216

14.0431

1.0005
1.0015
1.0084
1.0967
1.5102
2.7913
6.9600!
13.9199

1.0000
1.0009
1.0070
1.0939
1.5045
2.7799
6.9315
13.8629

|

L/s

Correction Divisor for Conducting Edge

0

2
&

0.5500
0.5517
0.5620
0.6593
0.9754
1.8362
4.5815
9.1629

(=gl e
coocoUmN—O

—

0.1

0.6670
0.6687
0.6788
0.7714
1.0835
1.9938
4.9687
9.9373

0.2

0.7445
0.7462
0.7560
0.8402
1.1563
2,1113
5.26056
10.5209

0.5

0.8667
0.8683
0.8775
0.9571
1.2796
2.3336
5.8158
11.6315

Lo

0.9405
0.,9421
0.9502
1.0230
1.3709
2.5129
6.2638

2.0

0.9806
0.9820
0.9885
1.0615
1.4399
2.6508
6.6088
13.2176

12.5276

5.0

0.9972
0.9982
1.0033
1.0849
1.4864
2.7439
6.8413
13.8060

10.0

0.9995
1.0003
1.0056
1.0910
1.4988
2.7685
6.9030
13.8060

L]

1.0000
1.0009
1.0070
1.0939
1.5045
2.7799
6.9315
13.8629

Fig. 9 — Semi-infinite slice with probe perpendicular to edge (or quarter-
infinite slice with probe on a nonconducting edge).
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results from Fig. 6 can be incorporated into the calculations, for we may
let the correction divisor

C.D. = C.D. (for nonconducting infinite slices) &= AC.D., (17)

where the plus sign is used if the edge is nonconducting and the minus
sign if the edge is conducting (the faces of the slice are assumed to be
nonconducting in either case). Then

1 1
ACD. = — S
Vi + 4 Vet (18)
+ u[M v+ 1) — Mg + )]
or
2
ACD. = 4 [m AL NGV - NeVEF D] 09
/7
where
u=% and g=% (20)
w S

As shown in Fig. 8, L is the distance from the edge to the probe, s is
the spacing of the probes, and w is the slice thickness. A table of values
of the correction divisor is given in Fig. 8.

The situation shown in Fig. 9 is similar to that of Fig. 8 in that the
linear four-point probe is near the edge of a semi-infinite slice. But in
this case the probeis perpendicular to the edge and L is the distance from
the edge to the nearest point of the probe. Here again the correction
divisor can be written in terms of the result for infinite slices, equation
(17). It is found that

acp. = 2 (l Lol L )+ M) = M) — M(ﬁ)) 21)
2w\ae B ¥ o

or

ACD. = ;w (2ln 17‘; + N(a) + N(B) — N(v) — N(s)) (22)

where

a = (L + }gs)/w
B = (L + 5gs)/w
vy = (L+ 8w
6 = (L + 2s)/w

(23)
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Correction divisors can be compounded still further. For example,
the correction divisor for the quarter-infinite slice with probe on the
diagonal, shown in Fig. 10, may be written to make use of the results
for Fig. 9. That is,

C.D. = C.D. (Semi-infinite slice with probe perpendicular to (24)
non-conducting edge, see Fig. 9) =AC.D.

Again, the plus sign is taken if both edges are nonconducting, the minus
sign if both edges are conducting. If a, 8, v, and & are redefined by

@=L IFF SFIF

" 2w

8= VET 2+ &+ 307

1
v =5 VI + L+ 2

5= o VT F 397 T T+ A

2w

(25)

then AC.D. can be calculated by inserting equation (25) into equation
(21) or (22) and doubling the result. One numerical example will be

Fig. 10 — Linear probe on quarter-infinite slice.
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given. If s = L = w, C.D. = 2.1097 for nonconducting edges and 1.1665
for conducting edges.

It is evident that tabulation of correction divisors for situations with
two or more degrees of freedom is rather tedious. Yet the computation
of a correction divisor for a given set of dimensions may be very simple,
requiring nothing more than the reading of several values of M or N
from Fig. 3 or Fig. 4.

In a four-point resistivity measurement it is not necessary that the
points be equally spaced nor that they be colinear. Whatever the chosen
arrangement, the correction divisor can be calculated from the M and N
functions for any position of the probe on infinite, semi-infinite, or
quarter-infinite slices. Numerous less frequently encountered situations
may also be treated.

The square arrangement of probe points illustrated in Fig. 11 is useful.
When used on the surface of a semi-infinite solid, the resistivity is
given by

(26)

b/w ' 0.1 | 0.2 | 0.5 | 10 | 20 ’ 5.0 10.0

C.D.] 1.0005‘ 1.004 ‘ 1.057 J 1.344 r 2.378 ‘ 5.916 11.832

Fig. 11 — Square arrangement of points — infinite slice.
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where b is the length of the side of the square. When the square probe
is used on infinite slices with nonconducting faces, the resistivity cal-
culated from equation (26) must be corrected by dividing by

o1+ galn() ()]

CD. = (?;i\/ﬁ” |:1112 + N(Q%) — N (\/—bﬁw)] (28)

Some values of this correction divisor are given in Fig. 11. For thin slices,

o 2TV g 06w AT ('w<<%b) ' (29)

or

In2 T
BASE RESISTANCE OF A POINT CONTACT TRANSISTOR AND TWO-POINT
RESISTIVITY MEASURESENTS
The base resistance r of a transistor is defined by
1y = (0Ve/dlc)re (30)

where V, is the emitter voltage, I, is the collector current, and I, is
the emitter current. The main contribution to rs for a wide-spaced
point-contact transistor seems to be the ohmic resistivity of the semi-
conductor. In close-spaced point-contact transistors, the widening of

COLLECTOR

EMITTER
“u

R

~~MAKE CONTACT

s/w 0.1 0.2 0.5 1.0 2.0

C.F. 0.931 0.862 0.667 0.401 0.118

Fig. 12 — Base resistance of a point-contact transistor.
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the collector space-charge region and the modulation of conductivity by
carrier injection have important effects on r, ; it is necessary to cal-
culate the ohmie base resistance to evaluate these effects. The ohmic
base resistance for a transistor made on an infinite slice with a base
contact on the underside, as shown in Fig. 12, can be calculated from
the M or N functions. It is found that

(e G (@) ()
- a2

These results can be expressed in terms of a correction factor:

or

T, = E‘;r_s X C.F. (32)
where p/2xs is the ohmic base resistance for a transistor constructed on
a semi-infinite solid with base contact at infinity. Some values of the
correction factor are given in Fig. 12.

In measuring the resistivity of a slice which has been provided with a
conducting coating on one face, it is better to use two points in the
geometry shown in Fig. 12 than to use a four-point probe, for the me-
chanical reason mentioned previously. The two-point probe also gives
better localization of the measurement and reversal of the current
affords a valuable check on the assumption of ohmic flow. Obviously,
the correction divisors for correcting such a resistivity measurement
for slice thickness are equal to the base resistance correction factors
given in Fig. 12.

FURTHER APPLICATIONS OF THE TABULATED FUNCTIONS

In the previous examples, the potential was required only along a
line perpendicular to a line of point sources and gpassing through one of
the sources. The tabulations are of more general usefulness. For example,
[M(XN) — 2M(2X)]q/a gives the potential of a line of point sources along
a perpendicular bisector of the line between adjacent sources (this po-
tential is zero when A = 0; the potential at infinity is — =),

The potential of a plane grid of equal point sources is easily obtained
from the tabulations. Suppose that the sources have a regular spacing a
in one direction and b in the perpendicular direction. There is no loss of
generality in assuming that b is greater than or equal to a. The potential
at a point a distance d from the plane of sources and on a perpendicular
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to the plane erected at one of the sources is
_q

where A = d/a, k = b/a, and

RO) = & — M) — M (}’_;)

-2 E [M (/N F n2) — M(nk)]

n=1
Equation (4) enables one to transform equation (35) into the following
rapidly converging expressions:

(35)

1 sinh #A/k
Rk(h) = X —_ M()\) — 2 h‘l—m
. (36)
-2 ; [N(nk) — N(+/N+ n%?)]
sinh wA/k
R:(\) = NQ) — 21 —k
(37)

— 20 — 2 3 [Nk) — N(vXE F nl)]

n=l

Fig. 13 — Linear probe on square filament.
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Equation (36) is best for small values of A, equation (37) for large values.
In either case, one need consider only n = 1 to get five-place accuracy.

The potential of a plane grid of sources may be used to calculate the
correction divisor for four-point resistivity measurements on filaments.
The case of square filaments is illustrated in Fig. 13; the correction divisor

for this case is
oD = 2 [Rz (f) — R (ﬁ)] (38)
w w w

For example, when s/w = 24, C.D. = 3.10. This value agrees very well
with some experiments in which the reading of a four-point probe on a
long germanium filament was compared with the resistivity determined
from the potential gradient in the filament when current flowed through
its entire length.

The usefulness of the tabulations for three-dimensional arrays of point
sources was tested by caleulating the Madelung constant « for the
Coulomb energy of an ionic erystal of the sodium chloride type. The
calculation involves summing the potentials of a number of lines of
sources of alternating sign; these potentials are obtained in the same
way as for the calculation of the base resistance of a point-contact
transistor. Nine terms must be considered to make full use of the ac-
curacy of the tables. It is found that

"‘=‘3]“2+4[N(1) —N(\./TE) —2N(1)+2N(\/75)

2

+N (g) —oN (l{)l:o) +on (‘/TI—E’) (39)

_ v (3 va) - v ]

and a value 1.74755 is obtained. The correct value is 1.747558.°

Plane boundaries between media of different but finite resistivities
(or different dielectric constants or different thermal conductivities) can
be treated by the method of images.! When infinite image systems arise
in this sort of problem, the tabulations given in this article can be
applied.

CONCLUSION

The potential of a line of point sources can be obtained from either
of the functions M and N, which have been defined and tabulated. In
addition to the tabulated functions, only elementary functions are re-
quired for this purpose.
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The functions M and N represent the potentials of definite source
systems. This fact enables one to visualize the construction of solutions
to potential problems involving lines of point sources.
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APPENDIX

From Fig. 1, the superposition principle, and the usual g/r potential
of a point source, it may be seen that

M) =2 f} (-:; - 7:1() (40)

n=1 n? + A2

According to the binomial theorem,

1 — 1 - 1 3\ 1 5
m=nl+(— é)na)\z-l—(-*;—z)(—i)z—'n A (41)

so that
MQ) = =2 Z.:: |:(— %)n_a?\? + (— %)(— g)f}—r n oA ] (42)
or '
MQO) = r@N — 3G + -, (43)
where
¢lo) = i;l n’ (44)

is the Riemann zeta function. Equation (43) indicates a convenient
approximation to M (M) for very small A:

M) =~ (3N = 1.202\° (45)

The binomial expansion, equation (41), converges more rapidly, the
higher the value of n. It is, therefore, worthwhile to split up the sum in
equation (40) into two parts. The first part will be a sum of the terms
from n = 1 to n = m, calculated with the original expression for the
summand. The second part will be a summation from n = m + 1 to
n = o of the binomial expansion of the summand. It is expedient to
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take m = 1 for A < 1. Thus,

M) =2 — 201 + N7 4 AN — 344" + 544" )
— 354, A" + 63 28A117\ — 2318 AN -

where

Table II gives numerical values of the coefficients of equation (46).°
Table I is based mainly on ealculations with m = 3. These were done
at the Laboratories’ IBM installation.

TaBLE Il — NumeRricAL VALUES oF CoOEBFFICIENTS IN EQUATION (46)

M) =2 — 2(1 + 2)~Y* 4+ 20205 69032\ — 02769 58163\*
+ 00521 82984A° — 00109 83398\8 + .00024 32335510
— .00005 53648\12 + ...

TasLe IIT — SoMme VALUES OF THE DERIVATIVE M ’(7\)

by | MY(N) H A | o)

0.05 0.11982 : 1.30 | 0.95001
0.10 023734 } 1.35 ‘ 0.93512
0.15 ! 0.35040 1.40 i 0.92004
0.20 0.45709 1.45 0.90489
0.25 . 0.55586 1.50 [ 0.88975
0.30 | 0.64556 1.55 0.87471
0.35 . 0.72545 160 0.85082
0.40 I 0.79519 1.6 [ .84513
0.45 ' 086714 1.70 | 0.83068
0.50 | 0.90467 1.75 0.81649
0.55 0.04528 1.80 ? 0.80250
0.60 | 0.97736 1.85 0.78000
0.65 1.00174 1.90 | 0.77568
0.70 1.01926 1.95 0.76270
0.75 | 1.03077 2.00 | 0.75003
0.80 | 1.03709 2.05 { 0.73768
0.85 - 1.03900 2.10 - 0.72564
0.90 | 1.03719 2.15 | 0.71301
0.95 1.03229 2.20 | 0.70249
1.00 | 1.02187 2.25 | 0.69136
1.05 \ 1.01541 2.30 | 0.68053
1.10 1.00431 ! 2.35 0.66999
1.15 | 0.99195 | 2.40 | 0.65072
1.20 0.07862 ” 2.45 0.64973
1 ! 2.50 0.64000

.25 ' 0.96457
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TasLE IV — SoME VaLuks of THE DERIVATIVE N'(A\)

A —N'() A ~N'0N)
1.00 0.02487 1.55 0.00063
1.05 0.01766 1.60 0.00046
1.10 0.01257 1.65 0.00033
1.15 0.00896 1.70 0.00024
1.20 0.00640 1.75 0.00019
1.25 0.00457 1.80 0.00012
1.30 0.00326 1.85 0.00009
1.35 0.00233 1.90 0.00006
1.40 0.00167 1.95 0.00004
1.45 0.00120 2.00 0.00003
1.50 0.00086

Although equation (46) certainly converges for all values of A less
than 2, it is not efficient for X > 1. For X > 1, it is better to work with
the function N. According to Madelung,’

N(\) = 2r El iH " (12rn\) _ (48)
where iH," (4z) is the Hankel function tabulated in Jahnke & Emde.”
The functions M(A) and N(\) are tabulated in Table 1. M(A) and
N(A) are connected by equation (4). Because of the overlapping regions
of M-values for which the expressions for M and N converge with reason-
able rapidity, it is possible to tabulate both M and N for all values of
\. However, for satisfactory graphical interpolation, it is necessary to
use the smaller of the two functions, so that A/ is given in Fig. 3 for small
values of A and N is given in Fig. 4 for large values of \. Table IIT gives
some values of the derivative, M’(\). The field E of a line of point charges
can be caleulated from M’ in accordance with the equation obtained by
differentiating equation (3) with respect to d. Thus

1
E=14 [ﬁ - M'o\):] (49)
The derivative N’()) is tabulated in Table IV.
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