Hot Electrons in Germanium and Ohm’s Law
By W. SHOCKLEY

The data of E. J. Ryder on the mobility of electrons in electric fields up to
40,000 volts per cm are analyzed. The mobility decreases many fold due to the
influence of scattering by optical modes and due to increases of electron energy.
It is estimated that electron “temperatures’ as high as 4000°K have been pro-
duced in specimens having temperatures of atomic vibration of 300° K. The
critical drift velocity above which there are deviations from Ohm'’s law is about
2.6 X 10¢ cm/sec. This is three times higher than the elementary theory
and an explanation in terms of complex energy surfaces is proposed.
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1. INTRODUCTION: FUNDAMENTAL DEVIATIONS FROM OHM’S Law

HE starting point of many branches of physics is a linear relation.
Among the most prominent of these are Hooke’s law, which relates
stress and strain for solid bodies, Newton’s second law of motion F =
ma and Ohm’s law. In all of these cases, the linear relation is only an ap-
proximation that may be regarded as the first term in a Taylor’s expansion
of the functional relationship between the two variables. Important physi-
cal principles are brought to attention when the nonlinear range is reached.
Of the three laws mentioned, Newton's is, of course, the one in which the
failure of linearity is the most significant representing as it does the en-
trance of relativistic effects into the laws of motion.
The failure of Hooke’s law may be of either a primary or secondary form.
990
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If a solid contains voids, then under a certain pressure it will crumble and
fill the voids. This is a secondary effect. If the sample is homogeneous,
however, high pressures will produce fundamental deviations from Hooke’s
law, these deviations arising from the nonlinearity of the forces between
atoms. Studies of these nonlinear effects by Bridgman have, among other
things, put on a firmer basis the understanding of the forces between ions
in ionic crystals and the pressures of electron gases in metals.

Deviations from Ohm’s law for electronic conduction in semiconductors
are almost the rule rather than the exception, but the most familiar cases
are secondary rather than primary. The primary linear relation for the
conduction process is that between the drift velocity of an electron, or hole,
and the electric field that drives it. This relationship is

w = m (T) E, (1.1)

where the mobility puo(T") is a function of the temperature T of the specimen.
By a fundamental deviation from Ohm’s law we shall mean a deviation in this
linear relationship arising from the largeness of E rather than other causes.

Thermistor action is typical of a secondary deviation from Ohm’s law.
A thermistor is usually a two-terminal circuit element in which the current
flows through an electronic semiconductor. The semiconductor has the
property that its resistance decreases rapidly as the temperature increases;
and the physical basis for this decrease is an increase in the number of con-
ducting electrons (or holes or both) with increasing temperature. The
passage of current heats the thermistor and its resistance changes; conse-
quently the linear relation between current and voltage fails and in fact
there may result a decrease of voltage with increasing current so that a
differential negative resistance is observed. The electric fields are so low,
however, that equation (1.1) is valid provided the dependence of pp on the
temperature is taken into account. An experimental proof that no funda-
mental deviation of Ohm’s law occurs is furnished by applying a small
a-c. test signal on top of a d-c. bias that produces heating. If the frequency
is much higher than the thermal relaxation rate, the a-c. resistance is found
to be simply that expected for the observed temperature.

The principal nonlinearities of crystal rectifiers, or varistors, and of tran-
sistors are also secondary and are associated with changing numbers of
current carriers.

In this article we shall discuss some experimental evidence of funda-
mental deviations in Ohm’s law for electrons in #-type germanium obtained
by E. J. Ryder of Bell Telephone Laboratories.! We shall describe his ex-

tE. J. Ryder and W. Shockley, Phys. Rev. 81, 139 (1951).
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perimental techniques and results briefly in the next section and shall then
present some aspects of the quantitative theory that explains them, leaving
the bulk of the mathematical manipulations for the appendices.

Before discussing Ryder’s results, we may indicate why his procedure
succeeded whereas previous attempts, of which there have apparently been
a number, largely unpublished, have failed. Ryder’s work takes advantage
of three factors: (1) the availability of electrical pulses of microsecond dura-
tion, (2) the high resistivity of germanium, and (3) the high mobility of
electrons in germanium. Because of (3), it is possible to deliver energy to
electrons at relatively high rates by electric fields. In effect this “heats”
the electrons above the temperature of the crystal and lowers their mobility.
The generalized equation is then

vg = p(T, E)E (1.2)

where the fact that u depends on E represents the fundamental nonlinear-
ity. We shall show that Ryder’s techniques raise the “temperature” of the
electrons by a factor of about thirteen fold to above 4000°K. Since the re-
sistivity is high, say 10 ohm cm, the power delivered to the specimen is
sufficiently low that the heating in one pulse is negligible. The pulse repeti-
tion rate is then kept so low that accumulated heat is negligible also.

These conditions are enormously more favorable than those met with
in metals. In a metal the average electron energy is several electron volts;
in order to double this energy, each electron would acquire an added energy
roughly equal to the cohesive energy per atom of the crystal. Furthermore,
in a metal there is about one conduction electron per atom, compared with
1077 per atom in Ryder’s samples. Thus the stored energy due to “hot”
electrons in a metal would be enough to vaporize it, whereas in germanium,
or a similar semiconductor, a temperature of 10,000°K for the electrons
would be enough to raise the crystal less than 0.01°K. From this reasoning
it appears that it will be extremely difficult, if not impossible, to produce
significant fundamental deviations from Ohm’s law in metals and certainly
impossible to produce effects of the magnitude described below.

Tt should be pointed out that the behavior of electrons in crystals in
fields so high that equation (1) fails have been subject to both experimental
and theoretical investigation in connection with dielectric breakdown.?
The work does not apply to cases in which the specimens obey Ohm’s law
at low fields, however, and the experiments do not permit accurate deter-

2 See, for examnle, H. Frohlich and T. Seitz, Phys. Rev. 79, 526 (1950) and F. Seitz
Phys. Rev. 76, 1376 (1950). Much of the treatment presented in the Appendices is essen-
tiaily equivalent to that given in Seitz. In our Appendices, however, we give much more

emphasis to the low field case. The Seitz paper also contains a review of the literature
to which the reader is referred.
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minations of v; as a function of E. From the theoretical side also the empha-
sis has been on fields so high that the linear range is neglected so that the
transition from linear to nonlinear is not stressed.

The current theories of dielectric breakdown are based on the principle
of “secondary generation” or ‘‘electron multiplication.” Thus if an electron
acquires enough energy from the electric field, it will be capable of pro-
ducing secondaries by collision with bound electrons, and the repetition of
this process will lead to an avalanche. Our theory indicates that in ger-
manium, even at fields as high as 200,000 volts/cm, few electrons will have
enough energy to produce secondaries. At about those fields, however,
another phenomenon occurs.

In 1934 C. Zener® proposed that dielectric breakdown was due to a pri-
mary effect: the field induced generation of hole-electron pairs. His mathe-
matical theory is similar to that for field emission from cold metal points
and to that for radioactive decay. It involves the “tunnelling” of electrons
through regions in which their wave functions are attenuated, rather than
running, waves.

Zener’s theory does not seem to apply to breakdown; however, it does
apply to the high electric fields produced in rectifying p-n junctions in ger-
manium when these are biased in the reverse direction. Under these condi-
tions fields of the order of 200,000 volts/cm are produced. The mobilities
of electrons, or holes, in these fields have not been measured. It has been
shown,* however, that secondary production is very small. At these fields
a sort of “breakdown” effect occurs and above a critical value of the volt-
age a very rapid increase in current is observed. This current appears to
be of the nature predicted by Zener. It is stable at a given voltage, has a
small temperature coefficient and will probably be useful in semiconductor
analogues of ‘“‘voltage regulator tubes” and protective devices.

As is shown in the treatment given in qualitative terms in Section 3 and
in more detail in the Appendices, the explanation of the fundamental devia-
tions from Ohm’s law is based on the theory of electron waves. The investi-
gations described in this paper may thus be regarded as furnishing evidence
for the wave nature of conduction electrons in germanium and are thus re-
lated to the researches of C. J. Davisson, to whom this volume is dedicated,
and his collaborator, L. H. Germer. The Davisson-Germer experiments were
concerned chiefly with electron waves in free space and with high energy
electrons in crystals. Both of these cases are simpler than that dealt with in
this paper. Electrons in the conduction band in germanium appear to behave
as though they were in a multiply refracting medium in which they may have

3 C. Zener, Proc. Roy. Soc. 145, 523 (1934).
4 K. C. McAfee, E. J. Ryder, W. Shockley and M. Sparks, Phys. Rev. 83, 650 (1951).
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several velocities of propagation for any specified direction of propagation
and frequency. It is to be hoped that more detailed analyses of the data ob-
tained by Ryder, together with quantitative interpretations of certain ob-
servations of magnetoresistance, may lead to a unique evaluation of the
“refractive constants’ of the medium for the electron waves; this possibility
is discussed briefly in Section 5. The phenomena in the Zener current range
afford another new opportunity to study electron waves in crystals. The
waves involved in this effect are those with energies in the energy gap be-
tween the conduction band and the valence band; waves in this range have
received little attention from either the experimental or theoretical side.

2. E. J. RypER’S RESULTS

One of germanium’s most noted attributes is its ability to give am-
plification of electrical signals when made into a transistor. The basic phe-
nomenon for many types of transistors is that of “carrier injection.” As is

MEASUREMENT
CIRCUIT

PULSER ‘ & 3

1

Fig. 1—The principles of E. J. Ryder’s technique for observing conductivity in high
electric fields.

well known, germanium may carry current either by the electron mecha-
nism in which case it is called n-type germanium, or by the mechanism of
hole conduction in which case it is called p-type. If a suitably prepared
electrode is placed on an n-type specimen and current is caused to flow in
the sense that removes electrons from the specimen, then the process may
cause “hole injection.” In this case in addition to removing conduction
electrons from the germanium, electrons are removed from the valence
bonds so that holes are injected. This leads to nonlinear effects because,
as the current passes through the specimen, the number of carriers in the
specimen changes and so does its resistivity. :

In order to avoid the secondary deviations from Ohm’s law due to carrier
injection, Ryder has designed specimens of the form shown in Fig. 1. These
specimens have large ends to which the metal electrodes are attached. The
resistance arises chiefly from a thin section of the material connecting the
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large ends. Since the fields at the large ends are small, carrier injection is
largely suppressed; furthermore, the electric fields are applied for such a
short time during the pulse that, even if holes were injected at one of the
ends, they would not have time to reach the narrow section of the bridge
and modulate its conductivity during the period of the pulse.

Further causes of non-linearity can arise from inhomogeneities in the
germanium material itself. For example grain boundaries in polycrystalline
germanium are known to have added electrical resistance. Difficulties due
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Fig. 2—Currents and estimated drift velocities deduced from E. J. Ryder’s pulse data
on a snecimen of n-type germanium of 2.7 ohm-cm resistivity. [The fact that the numeri-
cal values of current density and drift velocity have the same digits is a consequence of
the accident that o = 1/2.7 = 0.37 is almost exactly 10~ times the mobility.]

to inhomogeneity have largely been eliminated in these experiments by
the use of highly homogeneous single-crystal germanium material fur-
nished by G. K. Teal and his collaborators.

Other experimental precautions are necessary, such as assuring a smooth
polished surface on the filament; if this is not done, apparently holes are
injected from the surface irregularities of the thin section between the
large ends. It is also necessary to make corrections for end effects since
some of the resistance arises within the large blocks themselves.

Some of the data obtained by Ryder are shown in Fig. 2. The drift ve-
locity, plotted as ordinate, is not measured directly but is inferred from
the measured currents through the specimen by the following reasoning:
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In a specimen at room temperature the drift velocity of electrons is given
by the equation

v = 3600 E cm/sec (2.1)

when E is expressed in volts per cm.5 At 100 volts per cm, for example,
(which is below the non-linear range) the velocity of electrons should be
3.6 X 105 This establishes the drift velocity scale for room temperature.
From other measurements of the germanium specimen of Fig. 2, it is con-
cluded that the number of electrons available for conduction is substan-
tially independent of temperature down to liquid air temperatures. Conse-
quently, for this temperature range the drift velocity should be directly
proportional to the current in the specimen. The other two sets of data
are accordingly simply scaled in proportion to their currents.

On the figure we also show extrapolated lines at 45 degrees corresponding
to Ohm’s law. From these we see that decreases in mobility of tenfold or
more have been produced in these experiments for high field conditions.

The data for each temperature fall approximately on three lines: The low
field or Ohm’s law region, an intermediate region over which v, is propor-
tional to E'? and p is proportional to E'/%, and a saturation region. The
break at low fields comes at drift velocity of about 3 X 10° cm/sec for all
three cases. This break, according to theory, should come when the drift
velocity is several times the speed of sound in germanium, the speed of
sound being about 5.4 X 105 cm/sec. The limiting drift velocity at higher
fields is associated with the energy required to excite a particular type of
atomic vibration, called an “optical mode.” It comes at approximately
the value of drift velocity predicted by theory.® The theoretical curves,
computed in the appendices, do not break into the sharp line section sug-
gested on Fig. 2. However, they show the distinct influences of separate
causes and fit the data reasonably well, as we shall show below in connection
with Fig. 5.

3. Tarory oF DEVIATIONS FrROM OmHmM's Law

3a. Electrons in n-Type Germanium’

The specimens we shall consider are of n-type germanium and have
resistivities of several ohm cm. The conductivity arises from the presence

8 1. R. Havnes and W. Shockley, Phys. Rev. 81, 835 (1951).

6 The observation and explanation of these general features was presented in our
first publications: E. J. Ryder and W. Shockley Pirys. Rev. 81, 139 (1951) and &2, 330
(1951).

1The material under this heading is treated in more detail in the author’s book,
“Electrons and Holes in Semiconductors,” D. van Nostrand (1950), Chapter I. This
book will be referred to subsequently as F and H in S.
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of donors: chemical impurities such as arsenic or antimony. These donors
substitute themselves for germanium atoms in the crystal structure, form
electron-pair bonds with their four neighbors and release their fifth valence
electron to the conduction band. The density of donors is about 10'3/cm®
or one per cube 10~% cm = 1000 A on an edge. The donors are fixed positive
charges and do not move in electric fields. Their charges neutralize those
of the electrons. The electrostatic energy of interaction between electrons
and donors leads to a deflection of the electron’s motion. For the tempera-
tures of Tig. 2, however, this effect is unimportant compared to the effect
of thermal vibrations of the atoms.

The electrons in the conduction band move in accordance with a wave
equation. They may, however, be thought of as particles. The justification
is that, under many experimental conditions, the wave functions will actu-
ally be wave packets. These wave packets, it can be shown, behave much
as particles and can be dealt with as particles, at least provided the phe-
nomena considered do not involve distances smaller than the size of the
wave packet.

Under conditions of thermal equilibrium we may think of the 10'8 elec-
trons in cach cubic centimeter as an clectron gas with the electrons (as
wave packets) moving at random with an average kinetic energy of motion
of (3/2)kT.

If the atoms of the crystal were held rigidly at rest in a perfectly regular
crystal structure, an electron wave, and a wave packet too, would be trans-
mitted through it with no scattering. At 300°K the vibrations are such that
the wave packet moves for only 2500 A before being scattered. At low tem-
peratures, the mean free path is longer and at liquid hydrogen tempera-
tures it is so long that thermal vibrations are less important than the
fields of the ionized donors. As stated above, however, we may neglect this
scattering by ions over the temperature range of Fig. 2.

Before proceeding with the discussion of the interactions of electrons
and thermal vibration we shall point out that two problems must be solved
before the dependence of mobility upon electric field can be explained:

First, the mechanisms of the individual processes must be analyzed.
This is the basic physical problem. In order to solve it we must apply quan-
tum mechanics to the model representing the electron moving in the crystal
and determine the probabilities of various types of transitions and some
appropriate averages.

Second, the statistical consequences must be worked out, On the basis
of the individual processes, the statistics of the assemblage of electrons
must be analyzed and a steady state solution found.

The first problem poses the more physical problems and is given the most
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attention. The second problem is more difficult mathematically. It is given
only an approximate treatment which is adequate, however, to indicate
that the solution to the first problem contains the necessary features to
explain the experiments.

3b. The Phonons

We must next consider how to describe the thermal vibrations and to
evaluate their interactions with the electrons. We shall present only the
principal results of the mathematical analysis here, leaving the details for
the appendices. The earliest treatment of thermal vibration in a crystal
was that of Einstein, who considered each atom to be a separate harmonic
oscillator. This model was improved on by Debye who treated the crystal
as an elastic continuum that could support running waves. Debye’s method
is regarded as essentially correct and we, therefore, resolve the atomic
motions into a set of running waves, or normal modes. There are three
times as many independent normal modes as there are atoms in the crystal,
or one per degree of freedom, and any possible atomic motion of the crystal
may be made up as a sort of Fourier series in these normal modes.

Each normal mode must be treated as a Planck oscillator and has a
system of energy levels with values

(n + 1/2)hy (3.1)

where » is its frequency of vibration. Each quantum of energy is referred
to as a phonon; if a normal mode makes a transition with én = +1, we say
a phonon has been emitted and if én = —1, we say one has been absorbed.

The description of the crystal in terms of phonons is in close analogy
with the description of electromagnetic waves in a cavity in terms of pho-
tons. For the case of light, the electromagnetic state of the cavity is deter-
mined by finding the normal modes, which are treated as quantized oscil-
lators, and transitions with &z = =1 correspond to photon emission and
absorption.

The normal modes for the crystal are unlike those for light. For low
frequencies the waves are essentially the microscopic transverse and longi-
tudinal waves of a solid. As the wave length becomes shorter, however,
the sound velocity varies and there is a limiting minimum wave length
which is about twice the spacing between atoms. In order to understand
the energy losses of electrons in high fields, we must consider the role of
this minimum wave length. For this purpose we shall describe the depend-
ence of frequency upon wave length for a longitudinal mode.

Accordingly we consider the frequency of the normal modes correspond-
ing to a longitudinal wave propagating along a cube axis. Rather than
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using the wave length A as a variable, we use the wave number or (1/)\).
For long waves the frequency is simply

v = ¢/A = c(1/N). (3.2)

This corresponds to the straight line portion for low frequencies in Fig. 3°
This portion extends to a wave length equal to twice the lattice constant a
of the crystal.

Figure 3 shows another curve which has a high frequency even for
(1/X) = 0 or infinite wave length. The presence of this branch of the ‘“vi-
brational spectrum” is due to the fact that the diamond structure has two
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Fig. 3— Frequency of longitudinal vibrations in [100] direction in the diamond struc-
ture. (In this particular direction of propagation the acoustical and optical branches
join smoothly at the same frequency; for other directions, there is a discontinuity in fre-
quency. The dependence of » upon 1/ is approximated by a sine wave.)

atoms per unit cell. (The diamond structure is made of two face centered
cubic arrays of atoms, juxtaposed so that each atom of one array is cen-
trally situated in respect to a tetrahedron of four atoms of the other array,
with which it forms four electron-pair bonds. The unit cell contains one
atom of each array.) As a consequence of this it is possible to have a vibra-
tion in which one atom vibrates in the plus x direction while the other atom
vibrates oppositely and to have this same motion occur in phase in every
unit cell. Such a vibration is considered to have infinite wave length, since
every unit cell does the same thing at the same time. It has the highest
possible frequency since the pattern of motion involves directly opposed
motions of nearest neighbors. If the motion is modified so as to have dif-
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ferent phases in adjoining unit cells, and thus to correspond to a finite wave
length, the frequency drops.

The opposed motions are referred to as “‘optical modes” by analogy
with polar crystals. In a crystal of sodium chloride there is one Cl~ and one
Na+ per unit cell. In the opposed type of motion, ions of like sign move
one way and opposite to those of the other sign. This relative motion of
charge polarizes the crystal and phonons of this type of vibration can ab-
sorb or emit light. Because of this optical activity the mode is termed
optical.

The name “optical” is carried over to valence crystals to describe the
opposed form of motion, although no polarization accompanies the dis-
placement in the latter case.

3c. The Selection Rules

We shall next consider the laws which govern the interchange of energy
between an electron and the phonons. There are two important laws, closely
analogous to the laws of conservation of energy and momentum for two
masses in collision. The quantity analogous to momentum for the phonon
is a vector, called P, , directed along the direction of propagation of the
phonon, and having a magnitude given by the relationship between mo-
mentum’ and wavelength

P, = h(1/N) = I/\, P, || propagation direction (3.3)

In a transition in which an electron exchanges energy with the phonons,
and changes its momentum from P; to Pa, so that én, = =1 for one of
the modes, one selection rule requires that

Py — Py + on,Py = 0. (3.4)

This is analogous to conservation of momentum; actually it is based on far
more subtle effects. The conservation of energy requires that

&y + dnydivy = & (3.5)
where
8 = Pi/2m, & = Pi/2m (3.6)

are the electron’s energies before and after collision. The mass  need not
be the mass of an electron but may instead be the “‘effective mass,” a mass-
like quantity of the same order as the electron mass which takes into ac-
count the influence of the periodic potential of the crystal structure upon
the electron wave packet.

The effective mass concept represents a simplification that may not
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necessarily be correct. In a cubic semiconductor, the electron waves can
ke “refracted” as are the longitudinal and transverse acoustical waves.
The deviations from Ohm’s law of TVig. 2 furnish evidence that the simpli-
fied assumption of equation (3.6) must in fact be replaced by the more
general possibility. We shall return briefly to this point in Section 5.

In addition to the conservation of energy and momentum, there are two
other approximate selection rules which, while not exact, are so nearly
fulfilled that no appreciable error is introduced by using them:

PHONON CONSTANT
ABSORPTION \ , ENERGY
PHONON ‘\ / AVERAGE ENERGY CONSTANT ENERGY AFTER
EMISSION™ \ ! +AFTER SCATTERING ENERGY®, < SCATTERING
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(a) SCATTERING BY PHONONS (b) SCATTERING BY ELASTIC

COLLISION OF MASSES

FFig. 4—Comparison of the scattering by acoustical phonons with the scattering of a
small mass in elastic collision with a larger mass.

Only 61, = =1 is allowed.
For the acoustical modes, only the longitudinal modes interact with
electrons. (This restriction does not apply to optical phonons.)
Figure 4 shows the allowed transitions for an electron with initial mo-
mentum Py in the x-direction. If the energy of the phonons were zero, the
allowed transitions would be to points on the sphere (or circle in Fig. 4)
with P, = P, . Since the energy of a phonon is

hvy = he/\ = cPy = ¢| Py — Py|, (3.7)

however, the end points lie on the surfaces shown.
These surfaces do not differ much from the sphere, as may be seen by
considering the final energy for an electron that reverses its motion by
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phonon absorption. For this case
P,=P,+ P, (3.8)
and
(Py — P})/2m = cP, (3.9)
so that the change in magnitude of momentum is
Py — Py = 2me. (3.10)
For an electron with energy 7 and “thermal velocity”
vp = (2kT/m)'?, (3.11)
corresponding to 107 cm/sec at 300°K, the fractional change in momentum is
(Py — P)/Py = 2¢/vr = 2 X 5.4 X 105/107 = 0.11. (3.12)

Thus the phonon absorption surface lies only 11% outside the constant
energy sphere. Figure 4 is drawn for the case of P, = 6 mc, or v; = vy for
32°K, for purposes of exaggerating the differences in the surfaces. (A fur-
ther discussion of Fig. 4 is given in the appendices.)

For transitions with optical phonons, in the range of interest, kv, is
nearly independent of P, . Furthermore, the optical phonons have hv, =
% 520°K so that they are nearly unexcited at room temperature and have
#y = 0 so that only én, = -1 is allowed. For this case transitions can
occur only if & is greater than /o, and the end surface is a sphere with

82 = 81 - iwop . (313)

We shall neglect the role of the optical phonons until after a comparison
between acoustical phonon processes and experiment has been made. We
shall then show that they play an essential role in explaining Ryder’s data.

3d. Energy Exchange and The Equivalent Sphere Problem

We shall here give in brief some results derived in the Appendices which
permit us to show the equivalence of the problem of acoustical phonon scat-
tering to a problem in gas discharges. This has two advantages: it enables
us to take over the solution to the statistical problem from gas discharge
theory, the second problem mentioned at the end of Section 3a, and to
concentrate on the problem of the mechanism. In addition the equivalence
makes it much easier to visualize the mechanism of energy losses.

According to the theory of phonon scattering, an electron is equally likely
to be scattered from its initial direction of motion to any other. This implies
that after an interaction the electron is equally likely to end in any unit
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area of the surfaces of Fig. 4. The probability of being scattered per unit time
is simply

l/Tl = 111/6 (3.14)

where 9, is the speed and { the mean free path; according to the theory { is
a function of the temperature 7" of the phonon system and is independent
of v; . The time 7, is the mean free time or average time between collisions.

Figure 4 shows the average energy after collision. The Figure represents
a case in which the average energy is somewhat smaller than the initial
energy. This will be the case for a high energy electron, that is one with an
energy greater than kT for the acoustical modes. The average loss in energy
for a high energy electron is found to be

(88) = —c*P3/2kT (3.15)

where P, is the momentum change in the collision. This formula is analogous
to the formula for energy loss if a l}ght mass m_ strikes a heavy stationary
mass M and transfers a momentum P, — P to it. The energy transfer
is given by (3.15) if

M = kT/c (3.16)
since then the kinetic energy of the large mass is simply
PY/2M = &P, /2kT. (3.17)

The value of the mass which satisfies equation (3.16) for room temperature
may be calculated from the previously quoted values of 77 and ¢:

M = kT/c* = mvz/2¢ = 170m, (3.18)

a value which may certainly be considered large compared to .

Equation (3.15) is not the complete expression for average energy change
for a collision with momentum change P, and another term representing
energy gain also occurs. If the complete expression is averaged over all final
directions of motion, it is found that the average change of energy, which is
obviously the average energy change per collision, is

(58) = 4mc*(1 — P/4mkT) = (4mkT/M) — (Pi/M). (3.19)

This is the correct expression for the average gain in energy per collision of
a light mass m colliding with a heavy mass M which is moving with the
thermal energy appropriate to temperature 7". This corresponds to a thermal
velocity of

v = (2RT/ M)V = 2% (3.20)
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for the large mass. The second term in (3.19) is just the average of (3.15)
over all directions of motion after collision and represents the energy loss
that would arise if M were initially stationary. The first term represents an
energy transfer from M to m due to the thermal motion of the large mass.

Furthermore, if the light and heavy masses are perfectly elastic spheres,
the scattering of m will be isotropic, just as is the case for the phonons. This
shows that there is an almost perfect correspondence between the two
mechanisms of scattering so that we are justified in using previously derived
results for the sphere case and applying them to the phonon case.

To complete the equivalence we should introduce a density of large spheres
so as to get the correct mean free path. There is nothing unique about this
procedure, as there is about the mass M and temperature T, and we may
make a large selection of choices for number of M-spheres per unit volume
and radii of interaction so as to obtain the desired mean free path. Once
any choice is made, of course, it will give the same mean free path inde-
pendent of electron energy and may be held constant independent of the
electric field.

3e. Acoustical Phonons and Eleclric Fields

We shall next give a very approximate treatment of mobility in low and
high electric fields. The emphasis will be upon the interplay of the physical
forces, the mathematical details being left to the Appendices or to references.

In the Ohm’s law range, the field E is so small that the electrons have
the temperature of the lattice. They have a velocity of motion of approxi-
mately

v = (2RT/m)\? (3.21)
and a mean free time between collisions of
= {fvr. (3.22)
The electric field accelerates the electron at a rate
a = gE/m (3.23)

and imparts a velocity ar in one mean free time. Since the collisions are
spherical, the effect of the field is wiped out after each collision. The drift
velocity is thus approximately

v = ar = (gf/myr)E. (3.24)

An exact treatment which averages over the Maxwellian velocity distribu-
tion gives a value smaller by 25% and leads to

w = 4qb/37"*moy . (3.25)
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Since theory shows that £ varies as 7", the mobility should vary as T,
This prediction is in good agreement with experimental findings over the
range of conditions for which the dominant scattering processes are those
considered here.
Next we consider the effect of very large fields. Under these conditions
an electron drifting in the direction of the field with drift velocity v, acquires
energy from the field at an average rate

(d&/d)aue o 8 = taqE. (3.26)

If this power is large enough, the electrons will be unable to dissipate energy
sufficiently rapidly to the phonons that they can maintain their normal tem-
perature. As a result their average energy mounts, after the field is initially
applied, until they can furnish energy to the phonons fast enough to main-
tain a steady state. Under these conditinns the sum of the two rates is zero

(dg/d[)duc to E + (ds/d[)duo to phonons = 0. (3.27)

If the field is high enough, there may be no steady state solution. This
can occur if the ability of the phonons to remove energy decreases with
increasing energy. Such cases play an essential role in the theory of dielectric
breakdown.® In them it is concluded that electrons will gain sufficient energy
from the field so that they can produce secondary electrons which repeat the
process thus producing avalanches. For the cases with which we are con-
cerned, theory indicates that the energy losses increase rapidly with the
energy of the electron while the power input decreases because of decreasing
mobility so that a steady state will thus occur.

In order to estimate the drift velocity for the steady state we must intro-
duce expressions for the two powers involved. For this purpose we assume
that an electron has on the average a speed #; and we calculate the power
to phonons as the average energy loss per collision for this velocity times
the rate of collision, ;/{. For v, >> vy, we can neglect the effect of motion of
the M spheres and thus obtain from (3.19)

(ds/d!)phunonu = - (7)1/5) mE”%/M- (3.28)

The mobility will be less because of the higher collision rate so that the drift
velocity in the field will be approximately

' vq = (ql/muv,)E. (3.29)
The power furnished hy E will be
(d&/dD) que 1o & = (¢*C/mv) E (3.30)

8 See the references to Frihlich and Seitz in Section 1.
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The steady state condition then leads to
o = (g(E/m)"(d/m)" (3.31)
and to
v = (qtE/m)" (m/M)"*
= (V/2eqlE/mvr)"? =2 (cuoB)™.

The treatment® based on accurate statistics for the equivalent sphere model
leads to

(3.32)

ve = 1.23(cpuE)'2. (3.33)

The transition between the high field behavior and low field behavior
should occur in the neighborhood of a critical field E. at which both limiting
forms give the same v, :

vy = wkE. = 1.23(cpoE)'?, (3.34)

leading to
E. = 151¢/m (3.35)
and to a drift velocity, which shall be referred to as the critical velocity, of
v9c = 1.51¢ (3.36)

if Ohm’s law held to a field as high as E.. The drift velocity can be ex-
pressed in terms of E. by the equation

Va = #()(EE:)U‘! (3.37)

for values of E much greater than E,.

It is interesting to note that this initial field is just that which would give
electrons a drift velocity corresponding to the thermal motion of M-masses.
This seems a natural critical field. For it the effect of random motion of M
would be suppressed by the systematic drift velocity so that the transfer
of thermal energy to the electrons would be much reduced. This value of
E, corresponds to much smaller initial fields than are sometimes proposed.
For example, one frequently encounters proposals that Ohm’s law should
hold up to the condition that v = v,. This would correspond to 10 times
higher field at 300°K than that obtained. Another criterion is that the
energy gained in one mean free path, ¢fE, should be equal to k7. This is
substantially equivalent and corresponds to va = v7/2.

9 Druyvesteyn Physica 10, 61, 1930. This paper is reviewed by S. Chapman and T. G.

Cowling in “The Mathematical Theory of Non-Uniform Gases,”” Cambridge at the Uni-
versity Press, 1939, page 347. (The factor is 0.897 (18x/8)1/ = 1.23.)
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For comparison with experiment we note that for a value of
E = 4F, = 6.04c/py (3.37)
such that if Ohm’s law held
1g = 6.04c, (3.38)

the value of 7 should be less than half the value predicted by Ohm’s law.
We shall shortly discuss the discrepancy between this prediction and ex-
periment.

The ‘“temperature” of the electrons may be conveniently expressed in
terms of the ratio E/E, . Since the electrons for the high field case are not
in a Maxwellian distribution of velocities, one cannot define their “tem-
perature” unambiguously. As a measure of their temperature we shall take
their average kinetic energy divided by k. This leads to a ratio of electron
temperature T(E) to crystal temperature 7 of 207/3vy . Since to a first
approximation the ratio of mobilities at low and high fields is 4v,/37""v; ,
the ratio of temperatures is

tw sl w T
T 8 Lwu(E)/E 8E,
This ratio may also be thought of in terms of the square of the ratio of

drift velocity on the extrapolated Ohm’s law line to the drift velocity on the
E'? line:

(3.40)

T(E)/T = (3n/8)[wE/v(E)]. (3.41)

Either of these equations may be used to estimate electron temperature
from the data in the range in which the E'? formula is a good approximation.

4. CoMPARISON BETWEEN THEORY AND EXPERIMENT

4a. Discrepancy in Crilical Field

In Fig. 5 we repeat Ryder’s data of Fig. 2 together with data on an addi-
tional sample at 77°K. This new sample is considered more reliable than
the first since its low field resistivity varies in just the proper ratio [see
(3.25) and subsequent text] of (298/77)** compared to its valuz at room
temperature. Also we show the theoretical curves that will be discussed
below.

The deviations of the data from Ohm’s law do not occur at fields as low
as those predicted in Section 3e. For ¢ = 5.4 X 10% cm/sec., the critical
drift velocity should be

7. = 1.51¢ = 8.2 X 10° cm/sec. (4.1)
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It is seen that Ohm’s law is followed to several times higher velocities with
negligible deviations. The deviations should be a factor of 2 at the field
corresponding to

20 = 6.04c = 3.26 X 10° cm/sec. (4.2)

on the Ohm’s law line. The deviations are actually much less.

Another important difference between the data and the theory of Section
3 is that the experimental points do not continue on a straight line with
slope 1/2 but instead tend to flatten out with a roughly constant drift

velocity.
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Fig. 5—Comparison of E. J. Ryder's experimental data and the statistical theory of
Appendix A7.

Three theoretical curves are shown. These are based on an approximate
treatment that includes the effect of the optical transitions. Due to the ap-
proximation, the optical modes are neglected below the points marked
Op on the Figure. This approximation also leads to a discontinuity in slope
at these points; in a more accurate treatment, this bump would be smoothed
out. The optical modes play the least role for the curve at 77°K and for this
theory fits experiment within experimental accuracy if a value of

22 = 2.6 X 10° cm/sec. 4.3)
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is used. This value is 3.2 times larger than the value given by equation
(3.36) using ¢ = 5.4 X 10° cm/sec, the value appropriate for longitudinal
phonons.’® The interpretation of this discrepancy, which we refer to as the
“low field” discrepancy, is discussed in Section 5. It does not, of course,
imply an error in the value of the sound velocity, but instead an error in the
theory leading to the formula for critical velocity in terms of sound velocity.

Although an exact theory along the lines discussed in Section 5 has not
been developed, it appears evident that its chief effect will be to increase
energy interchange with the phonons by a factor of 3.2 squared or approxi-
mately 10. This increase can be effected in a mathematically equivalent way
by introducing an effective velocily for dealing with phonon energies which is
3.2 times larger than the true velocity of longitudinal waves. The approxi-
mate theory in the Appendices uses this procedure.

We may remark in passing that only two constants were arbitrarily chosen
to fit the curves to the data. One of these was the effective velocity ¢ = 1.73
X 10% cm/sec. which is 3.2 times larger than the speed of longitudinal waves.
The other was the mobility of electrons at room temperature. Three other
constants were chosen from independent estimates of the properties of the
crystal. One of these is /iv for the optical modes for which a value of £520°K
was used; another is the effective electron mass, for which the free electron
mass was used; and a third was the interaction constant for optical modes,
which was set equal to that for the acoustical modes. The meaning of these
terms is discussed in the Appendices.

4b. The Effect of the Optical Modes

We shall next discuss briefly the role of the optical modes Lefore remark-
ing on a theory of the low field discrepancy. .

As discussed above the optical modes can act only if & > /v, . Theory
indicates, however, that when they do come into action they are much more
effective than the acoustical modes. On the basis of these ideas, we can see
how they can act to give a limiting drift velocity that does not increase
with increasing electric field. I'or purposes of this illustration we shall imagine
that so high an electric field is applied that an electron may be accelerated
from Py = 0 to Py = (2mihv,,)"?, at which its energy equals /iv,,, in so short
a time that it is not scattered by acoustical modes. As soon as it reaches
P, , we assume that it is scattered by the optical modes, loses all its energy
and returns to zero energy. This process then repeats, the period being

10 This is the velocity of longitudinal waves in the [110] direction as reported by W. L.

Bond, W. P. Mason, H. J. McSkimin, K. M. Olsen and G. K. Teal, Pls. Reo. 73, 549 (1948).
Sce “Llectrons and Holes in Semiconductors,” page 528, for the reason for using this wave.
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P»/qE since dP,/dl = ¢E. The average momentum is evidently P»/2 and
the average velocity is

vy = Po/2m = (hve,/2m)'? (4.4)

and is independent of E. The optical modes correspond to a temperature of
about 520°K and this leads to

v = 6.3 X 10° cm/sec. (4.5)

in general agreement with the observed value.

The theory in the appendices indicates that both optical and acoustical
modes are active simultaneously and their interplay leads to the theoretical
curves shown. (In the Appendices a further discussion is presented and some
additional data are compared with theory.)

The tendency of the theoretical curves to fall below the data for 193°K
and 298°K for field values below the optical point is thought to arise largely
from the approximations employed in the theory. The approximations
neglect the ability of the optical modes to enable the electrons to lose energy
for fields below the indicated value. Actually some electrons will be scattered
by the optical modes and this will contribute in an important way to hold-
ing the temperature down and the mobility up. A correct treatment would,
therefore, raise the theoretical curve appreciably in the region where it
deviates most from the data.

4c. Electron “Temperalures”

From the theory it follows that the average electron energies correspond
to about 520°K at the points marked Op on Fig. 5. The highest point on the
208°K curve corresponds to ~700°K and the highest point on the 77°K
curve corresponds to 550°K. For this last case the electron temperature is
more than seven times as high as that of the atomic vibrations. In the ap-
pendix we quote some other earlier data of Ryder’s that indicates electron
temperatures of about 4000°K while the crystal itself remains at room
temperature.

5. An Expranation ofF THE Low FIELp DISCREPANCY

The failure to deviate from Ohm’s law at the low fields predicted indicates
that the electrons can dissipate their excess energy more effectively than
would be expected on the basis of their mobility. This conclusion is forced
on us by the observation that they apparently retain their thermal dis-
tribution and normal mobility to higher fields than predicted. It is not pos-
sible to explain the discrepancy by assuming a large or a small value for the
effective mass, since the value of the effective mass does not enter into the
final comparison with experiment.
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It 1s possible, however, to explain the discrepancy by assuming that the
effective mass is not single valued. This assumption corresponds to the case
in which the surface in the Brillouin zone belonging to a single energy is not
a sphere but instead a complex surface of two or three sheets. Such surfaces
have been found as a result of numerical calculations for certain crystals"
and it has also been shown that such surfaces are to be expected in general®
if the energy at the bottom of the conduction band is degenerate. It appears
necessary to assume that such complex surfaces occur in order to explain
magnetoresistance effects.!

In terms of Fig. 4, this theory replaces the circular energy contours by
deeply re-entrant curves. Transitions from peak to peak of the curves result
in large energy transfers to the phonons and hence more effective energy
losses. This effect can occur without a compensating change in the effective
mass involved in the mobility and, as a result, the critical field may be
increased by a large factor. A preliminary analysis indicates that in order
to increase the critical field by a factor of 3 a value of about 3 is also
required for the ratio of maximum to minimum momentum for the energy
sprface. A similar analysis of magnetoresistance leads to a factor about 50%
larger in order to account for the increases in transverse resistance of about
7-fold observed by Suhl.** At the time of writing, therefore, the author feels
that both the critical field data at low fields and the magnetoresistance data
require a modification of the effective mass picture and that the same modi-
fication may well explain both sets of data.

I am indebted to E. J. Ryder, whose experimental results provoked the
analysis presented in this paper, to . Seitz and J. Bardeen for several helpful
discussions, to Gregory Wannier for an introduction to the analogous case
in gas discharge theory and to Esther Conwell for help with the manuscript.

I shall also take this opportunity to express my appreciation to C. J.
Davisson. The opportunity to work in his group was a large factor in my
decision to come to Bell Telephone Laboratories, where I enjoyed his stimu-
lating companionship while assigned to his group, and later as well.

APPENDICES

A.1 INTRODUCTION AND NOTATION

The problem of energy exchange between the electrons and the phonons
requires a somewhat more sophisticated treatment than does the problem
of mobility at low fields. In order to present the theory of energy exchange,

' W. Shockley, Phys. Rev. 50, 754 (1936).

12 W, Shockley, Phys. Rev. 78, 173 (1950).

13 W. Shockley, Phys. Rev. 79, 191 (1950).

Y H, Suhl, Phys. Rev. 78, 646 (1950). Suhl finds increases in resistance in transverse
fields as high as 7-fold.
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it is necessary to reproduce a large amount of the material dealt with in or-
dinary conductivity theory. We do this in a somewhat abbreviated form ex-
panding the exposition on the points particularly pertinent to the theory
of energy losses.

Tar convenience we reproduce here a number of the more important sym-
bols. The references indicated refer to places where they are discussed in the
text.

a = lattice constant; Fig. 3.
¢ = speed of longitudinal acoustical wave; Equ. (3.2).
cee = average longitudinal elastic constant; Equ. (A4.1).
¢ = base of Naperian logarithms.
E = electric field.

& = energy.

&1, and 82.; Equ. (A4.1) and (A7.9).

i = 27 h = Planck’s constant.

k = Boltzmann’s constant.

£ = mean free path for electron due to scattering by acoustic phonons;
(A4.3).

{,, = describes scattering by optical phonons; (A7.19).
m = effective mass of electron.
M = mass in equivalent mass treatment; (AS5.8).
P = “crystal momentum” of electron = Ji times its wave number.
V = volume of crystal.
A = dilation; (A4.1) and (A7.10).
v = frequency of normal mode.
vop = frequency of optical mode (used in Section 4 only); Equ. (4.5).

A.2 THE PrOBABILITY OF TRANSITION INTO ENERGY RANGE 38:

In this section we consider an electron initially with energy & and mo-
mentum P, which for convenience we take to be along the P,-axis, and
we evaluate the probability that it make a transition to states with ener-
gies in the range & to & + 88, We shall assume that the crystal is elas-
tically isotropic so that for the spherical energy surface approximation
employed, i.e. equation 3.6, the scattering will be symmetrical about the
P.-axis. The end states, P., may, therefore, be considered in groups lying
in the range d&,, d6 where 0 is the angle between P, and P,. These states
lie in a ring in P-space whose volume is

27Ps sin 6 Py d0 dPy = 2wmP» sin 0 df d&, (A2.1)
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The number of end states in df d&, space is thus'®
(V/h') 2rmPs sin 6 d6 d&; = p df d&, (A2.2)

(The density p introduced above is used below in calculating the transition
probability; since spin is conserved in the transitions of interest, the den-
sity of possible end states in phase space is 1/4 instead of 2//’.)

The transitions will occur between states of the entire system, electron
plus phonons, which conserve energy. The transition of the electron from
P, to P; requires a compensating change in the phonon field.'* The con-
servation laws allow two possibilities: (I) phonon emission; the longitudinal
acoustical mode with

Po = hky = — (P, — P) (A2.3)
undergoes a change
He — 115 + 1 (A2.4)
with a change in energy for the electron of
E— 8= —hw,= —lc/N = —cP, (A2.5)

where ¢ is the velocity of the longitudinal phonons that are chiefly respon-
sible for the scattering. These rela.tioiships lead to conservation of the
sum of P for the electron plus »_ #q Pa for the phonons. The other pos-
sibility is (IT) phonon absorplion, for this case

Py = kg = (P, — P) (A2:6)
ng—ng — 1 (A2.7)
82 —_ 81 = +6P3 (AZB)

again with conservation of the sum of P vectors.

If we denote by & the energy of the electron after collision plus the change
in phonon energy, then the requirement of equality for energy before and
after collision gives

& =8+ dnyclPy, =& (A2.9)

where 81z, = -1 is the phonon emission or « surface and én, = —1 is the
phonon absorption or B surface of Iig. 4.

13 The notation in this appendix follows closely that of W. Shockley, ‘“Electrons and
Holes in Semiconductors,” D. van Nostrand (1950) to which we shall refer as E and H
in S. See page 233 for a similar treatment of p.

16 This condition is analozous to one for the conservation of momentum but has a
different interpretation. See for example E and H in §, p. 519 equation (15).
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We shall next insert these symbols into the conventional expression for
transition probability. We consider a system described by one or more
sets of quantum numbers, say ¥, ¥2, - - , ¥» which may take on discrete
but closely spaced values so that the numbers of states lying in a range
dxy, -+, dx, is

olxy, -+, Xn) dovy -+ - dy- (A2.10)

The system may make a transition from an initial state ¢o and energy &
to another state ¢; of the same energy between which there is a matrix
element Uy The total probability of the system making a transition per

unit time to the range of quantum numbers dx. , dxy, -+ -, dx, is then"
Wi d.’l'z e d.‘b'ﬁ = (Z‘Tr/h) [ Uo,‘ |?‘ [p/(a&/axl)] d.t:g y Tt dx“ (A211)
where 38;/dx; is evaluated where &; = &; if for the range dxa, - -, dx, of

the other quantum numbers there is no x; value that gives & = &, then
the transition does not occur.

We shall apply this to our case letting 6 = x; and & = x. The expres-
sion 08;/dx, then becomes

a6 a8 P
ki (—) =dn,c (——’) (A2.12)
ax, af /g, ad /g,
where
a a = d
— [—— | — = 2 P2 _ 2 B 1/2
550 = 9| P2 = Prl = 55 (P2t Pi— 2P1 P cos 6) (A2.13)

= P, Pssin 0/P,.

We then obtain, for Wy, d€, , the probability per unit time of transition of
the electron from P, to states with energies between &; and &: + d8. , the
expression

Wiad€s = 2n/h) | U [*(V/h)2rmPysin @ X (P,/cén,P1Pssin 6) d&.
(V/2xh"Yym | U |2 (P,/cony P1) d€s (A2.14)
(V/2ah"ym | U [ (Py/Pi)(—dPs);

where the negative coefficient of dP, is without significance except for its
relationship to the selection of the limits of integration. In subsequent equa-
tions we shall disregard the sign convention which relates d&. to dP; no

17 See 1., I. Schiff “Quantum Mechanics,” McGraw-Hill Book Co. (1949), equation

(29.12). The additional factor 1/(88;/dx,) converts the p used here to that of Schiff, which
latter is number of states per unit energy range.
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error is introduced provided the subsequent integrations are always in the
direction of increasing values for the variables concerned.

A.3 T ALLowED RANGES FOR P,

An electron with an energy corresponding to room temperature can
change its energy by only a small fraction in a one phonon transition. The
extremes occur for # = 7 corresponding to complete reversal of direction.
For this case we have

& — & = (Ps — P)/2m = —dnycP,

(A3.1)
= —on.c(P: + Pv)
so that
Py — Py = —bn, 2mec = — 2n, Po. (A3.2)
Thus the limiting values of P differ from P, by
+2Py = £ 2mc (A3.3)

in keeping with the results shown in Fig. 4. [For v, = P\/m = 10" cm/sec,
corresponding to & = 0.025 electron volts, and ¢ = 5.4 X 10° cm/sec, it is
seen that Py and P; differ by 109;.] For this case the range of P, is

phonon emission, én, = +1, P, from 0 to 2(P, — P;)  (A3.4)
phonon absorption, éng = —1, Pgfrom 0 to 2(P; 4+ Po). (A3.5)

A singularity occurs for P, = Py. For this case phonon emission becomes
impossible and the inner curve of Fig. 4 shrinks to zero; in Fig. Al we show
the sequence of shrinkage. The value of &, for this condition corresponds to
thermal energy for a temperature of less than 1°K. Under the conditions
for which we shall compare theory and experiment, a negligible number of
electrons lie in this range. Accordingly we shall use the above limits in cal-
culations and neglect the small errors introduced.

A4 THE MATRIX ELEMENT AND THE MEAN FreEe PaTH
The matrix element may be written in the form™
| U | = &5 2ny + 1 4 8n,)Prc/4Vew (A4.1)

where &;, is the derivative of the edge of the conduction band in respect
to dilatation of the crystal and ¢, is the elastic constant for longitudinal

8 See E and H in S, page 528, equation 31. The second expression in equation 31
of this reference is in error by omission of a factor hwi, = cPs.
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Fig. A1—Initial and Final Values of P for Transitions which conserve energy.

(a) The two nearly sphencal surfaces for | Py | = 6 mc.
(b) The two surfaces for ll’. | = 3 mc.
(c) For an electron, with |P | = mc, energy loss is impossible.

(d) The case of | P} | =

waves. Inserting this in the expression (A2.14) for W12 d€,, we obtain
Wi d8s = (V/2whd) m [61aPrc/4Verd]
X (2ny + 1+ 8n,)(Py/P1) dP, (A4.2)
(1/0)(1/8mPy)(2ny + 1 + 812y)(cP/RT) P, dPy
where we have used the symbol £ to represent |

£ = 7h* coo/mEin kT (A4.3)

because, as we shall shortly show, £ is the mean free path for electrons.
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For the cases with which we shall be concerned, the values of 7, may
be approximated by classical equipartition. This may be seen from the
fact that largest energy phonons correspond approximately to an energy of

¢Py = 2cP, = (4cm/P))Pi/2m
(4¢/v)kT.

Their energies will, therefore, be considerably less than k7. For large in-
creases in electron energy in high fields, however, this approximation may
not be adequate. At room temperature ¢P,/kT = 0.2 and the critical
range will correspond approximately to an increase of about 10 fold of
electron temperature above the temperature of the crystal. Under these
conditions ¢P, deduced from equation (A4.4) will be about 2kT for the
most energetic phonons; for this condition, however, P, lies at the edge of
the Brillouin zone and dispersive effects must be considered. In this treat-
ment we shall not investigate further these limits and shall in general
assume that ¢, < kT

We shall next derive an expression for the mean free path and verify
that the scattering is isotropic. These results can be derived more simply
and directly from the matrix element by neglecting (Po/Py) and (cPa/kT)
from the outset. For the treatment of energy losses that follows, we cannot
make these approximations. We shall, however, make them in the re-
mainder of this section thus establishing that our more general formulation
reduces correctly to the more convenient and simpler formulation usually
used.

For the condition under which equilibrium applies we may approximate
12, as follows:

ny = 1/[(exp ¢P,/kT) —1] = (kT/cP,) — . (A4.5)

Ik

(A4.4)

Then, for the phonon emission or a case, the contribution to W, €. be-
comes

Wiad8s = (4mlP) 1 + (cPo/2kT)]|Py dP, (Ad.6a)
and for the phonon absorption case, it becomes
I’Vlg déa = (4:171'{1)1)_][1 - (CPﬁ/ZkT)]Pﬁ dPg. (A4.6b)

We shall use these expressions later for the calculation of energy exchange,
in which case the terms in ¢P,/2kT, which favor phonon emission, play an
important role. In order to check the expression for mean free path we neg-
lect these terms, however, and also approximate the integral of P, dP, by
2P; rather than 2(P; — P,). The total probability of transition from state



1018 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

P,, which should be taken to be 1/7, where 7, is the mean free time, is
then

1/m = W1 = (dmlP,)™ 4P = (Py/m)/{ = n/L. (A4.7)

This is just the relationship appropriate to the interpretation of £ as a mean
free path between collisions.” Tt does not follow that 7, is the relaxation
time for the current, however, unless the average velocity after collision
is zero. We shall next show that the average velocity after collision is zero
to the same degree of approximation used above by showing that scatter-
ing into any solid angle of directions is simply proportional to the solid
angle, i.e. the direction of motion after collision is random.

The conclusion that the scattering is nearly isotropic follows from the
approximate proportionality of probability to P,dP,. Since P is nearly equal
to P; and substantially independent of 8, we may write

PodP, = 3 d(P,)? = } d (2P} — 2P} cos 0)
— — P*dcos 6 = P;sin 0 do. (A4.8)

The last term is simply proportional to the solid angle lying in range df;
hence the end states are distributed with uniform probability over all direc-
tions and the scattering is isotropic.

A5. ApPROXIMATE EQuivaLENCE TO Erastic SPHERE MODEL

In this section we shall show that on the average the energy exchang®
between the electron and the phonons when the electron is scattered through
an angle @ is very similar in form to that corresponding to elastic collisions
between spheres with the phonons represented by a mass much greater
than the electrons. If dP, and dPg correspond to scattering through angles
between @ and 6 + d6, then the energy loss for phonon emission is ¢P. and
the energy gain for absorption is cPs. The relative probabilities of loss and
gain are given by equations (A4.6) and from these it is found that the
average energy gain is

(56) = cPsll — (cPs/2kT)|Ps dPg — cPull 4 (cPo/2kT)|PadPa
T T 1 = (cPs/2kT)|Ps dPs + [1 + (cPo/2kT)|Po dPa

N y ) . . (A5.1)
_ ([P3dPs — PadPu — (/2kT)(P3 dPs + PudPa)
(1 — (cPs/2kT)|Ps dPs + [1 + (cPo/2kT)|PadPu
Since we are concerned chiefly with cases in which Py K Py, P2 = Pi,
and ¢Pg/kT < 1, we may set

P, = Pg= Py= 2Py sin (6/2) (A5.2)
¥ See E and H in S, Chapter 11. '
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where P, corresponds to neglecting the energy change of the electron on
collision. This approximation is not good enough for the first term in (A5.1)
which involves Pg — P.. In order to evaluate this first term we note that
the relationships
Py = P,1 — (POPT/ngl)] (AS5.3a)
Pg = P,]1 + (P,P,/2P})] (A5.3b)
may be derived up to the first order in #y. This permits us to write
PsdPg — PidP, = (3) d [(Ps — P.)3P)] A
= d[PP/P] = 4(PoP,/PY) Py dP,. '

Hence
(88) = 2(cPo P2/ P%) — &*P%/2kT. (A5.5)

The second term is proportional to the (average change in momentum)?
for collision by angle 8. It thus corresponds to energy which would be trans-
ferred to an initially stationary mass M >> m by the colliding electron pro-
vided we take

M = ET/c (A5.6)

That this mass is much greater than the electron’s mass may be seen in
terms of o, the velocity of a thermal electron:

mvi/2 = kT. (A5.7)
From this we obtain

M = m(n/c)*/2 = 170m (A5.8)

at room temperature where v; = 10" cm/sec while ¢ = 5.4 X 10° cm/sec.
The first term may then be interpreted as follows:

2Py P3P} = 28mP%/PS = 2(kTm/M)(P’/P3) (A5.9)

Tf this is averaged over all angles 8, the P%/P} term becomes 2; the energy
gain is then just that picked up by a mass m colliding with a mass M moving
with a Maxwellian distribution at temperature T as may be seen as fol-
lows: For this case the velocity vy of M parallel to the line of centers on
collision imparts an added velocity 2vy to the electron and, on the average,
an energy

(Dm {(203)2) = 2m () = 2 mkT/M (A5.11)
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since M{(v%)/2 = kT/2. In addition, however, there is an effect due to
relative velocity: when vy is directed so as to increase the closing velocity,
the probability of collision is increased. Due to this effect, collisions with
higher relative velocity are favored and as a result the energy transferred
due to the vy effect is just doubled™ leading to a total contribution of

(energy transfer due to vy) = 4 mkT/M. (A5.10)

This is just to the first term of (AS.3) when averaged over all values of 6.

Thus the average of the gain in energy term in (A3.5) is just that corre-
sponding to interactions with heavy masses M in thermal agitation. The
difference is that in the sphere model the average energy gain term is inde-
pendent of 8, whereas in the phonon case it varies as P%/Pi and approaches
zero for forward scattering so that the dependence upon angle is different.
The energy loss term, however, is correctly represented by the sphere model.

The average value of (88) averaged over all values of @ is denoted by
(58)p,. Since P}, averaged over 0 is 2P3, we obtain

(58);-, = 4¢Py — 2P‘i’/kT

. \ (A5.12)
= dme" (1 — Pi/4 mkT).

From this expression it is seen that an electron with energy Pi/2m = 2kT
keeps the same energy on the average after M collision. We shall use ex-
pression (A3.12) in Section A.6.

For high electric fields, the electron energies are higher than thermal and
the loss terms predominate. Furthermore, the scattering in both cases is
nearly isotropic if M >> m and the colliding particles are spheres. Hence,
the analysis of kinetic theory of ionized gases can be applied to a high
degree of approximation to estimate electron behaviors.

Tt should be stressed that several approximations are involved in this
treatment. In particular it is assumed that (I) ¢cP, < k7' and that (IT)
P, >> P,. 1f this is true, then

vnfc = Pi/Py>> 1 (A5.13)

so that the approximation used in considering the heavy spheres to be
moving slowly holds and the mass of the heavy spheres is much greater
than the electron mass:

M/m = (kT/c")/(2kT/v}) = v1/2¢". (A5.14)

If conditions (I) and (II) are not satisfied, the approximations leading to
(A3.5) will require revision.

2 If ,, is the velocity towards centers, then the probability of collision is weighted by

[1 + (uy/ma)] and the term linear in vy in the energy, which is (3m)(4mavar), con-
tributes 2(v3,)m to the average transfer.
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A.6 APPROXIMATE TREATMENTS oF Moty v Hice FIELDs

A correct treatment of mobility in high electric fields E is based upon
finding the steady state distribution function f(2, E, T) which satisfies the
Boltzmann equation, i.e. a function for which the rate of change due to
acceleration by F just balances that due to scattering. This method leads
at once to rather formidable mathematics which may tend to obscure
somewhat the physical forces at work. We shall in this section derive re-
lationships between drift velocity and E on the basis of simpler models
and shall compare the results with the exact treatment as given in the
literature for the case of a gas.

For this purpose, we shall first suppose that the field in effect raises the
electrons to a temperature T, which is greater than the temperature T of the
phonon distribution. The electrons with temperature T, will have colli-
sions at a rate (7/T)"* greater than before and their mobility will be re-
duced from its equilibrium value yp to a new value p

p= (T/Te)" p. (A6.1)
The average rate at which the electric field does work on an electron is then
(d8/d!)ila = Force X Speed = quF=. (A6.2)

For steady state conditions this must be equal to minus the average rate
at which an electron gains energy from the phonons. Denoting this by
(d8/d!l) phonons We have

(da/d!)finld + (ds/d[)phononu = 0. (A6.3)

In order to calculate the average rate of energy loss to the phonons, we
consider the average energy gain of an electron of momentum P,. As given
by (A5.12):

(68)p, = 4mc [1 — (moi/4kT)]. (A6.4)

According to our assumption, the number of electrons in the velocity range
vtov + dvis N(v)dv = A exp (—mv’/2kT,)v*dv. These electrons suffer
collision at a rate v/{. Hence the average rate of energy gain is

(da/d!) phonons

I

[ 800/ av / f N() dv
(8/V1) (mc’ve/ O[1 — (v0/v2)"]

(A6.5)

where we have introduced

vr = (2kT/m)'?, v, = (2kT./m)"2, (A6.6)
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We see that for thermal equilibrium, with 7 = 7, and v = v, , this equation .
gives correctly the result that there is no net interchange of energy be-
tween electrons and phonons.
The equation for mobility for the case of phonon scattering is
o = 4q(.’/3\/;vrm. ' (A6.7)

This expression may be used to reduce the steady state equation:

0 = (ds/dl)ﬁe]d - (dg/dt)phouons

_ A6.8)
= (va/e)quol? + (8/~/m)(mc*v/ €) (ve/vr) (1 — (v/v2)’]
to
(0/2r)" — (v/va)" = (3m/32) (woE/c)", (A6.9)
This equation may be solved for v./vy:
(@/vr = VH L+ 1+ Gr/8)(uoF/c)])' (A6.10)

The drift velocity then becomes
v = pE = mE V/2/(1+ [1 + (3n/8)(uof/c)] )" (A6.11)
For E < ¢/uo, we have
7 = pokE. (AG6.12)
For E >> ¢/uo, we have?
va = (32/3m)1% (uoEc)"? = 1.36(uoEc)". (A6.13)
These equations define a critical field E, at which the two limiting cases
would give the same mobility:
E, = (32/3m)"2%c/po = 1.84c/po. (A6.14)

At this critical field, the drift velocity is less than the value on either limit-
ing form by a factor of

va/mbe = /2 / [1 + 5 = 0.785. (A6.15)
This reduction in mobility corresponds to an electron temperature of
T. = T/(0.785)* = 1.62T. (A6.16)

Expressed in terms of ¢ the drift velocity given by the limiting forms is

2, = 4 (extrapolated) = 1.84¢ (A6.17)

" This relationship has been published in Bulletin of Am. Phys. Soc., Vol. 26, No. 1,
paper 55.
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and the actual drift velocity is
va(E;) = 0.785 X 1.84c = 1.45¢. (A6.18)

If we introduce E. into the steady state equation (A6.9), and express
%/vr as a mobility ratio, we obtain

(o/w)* = (uo/w)* = (E/E,). (A6.19)

We give this equation in order to show the similarity of the Maxwellian
distribution case to the cruder case considered next.

A similar treatment may be given for a hypothetical distribution of elec-
trons such that all have the same energy & and speed ». The effective mo-
bility of such a distribution is*

g = (gr/m) (1 + (%) dtnr/d(nv)

= 2qt/3vm = 7' ugur/20. (A6.20)
The steady state equation deduced from (A6.19) and (A6.4) is
(v"/207) [(/207) — 1] = (3m/64) (uoE/c)’ (A6.21)
For high fields we find that this steady state condition gives
va = (/3" (coE)'? = 1.01 (cpoE)V?, (A6.22)

a value somewhat smaller than that obtained from the Maxwellian approxi-
mation. This leads to a critical field of

E. = (7/3)"2¢/pp = 1.03 ¢/ o (A.623)

at which v, given by (A6.22) extrapolates to give the same value as uoE.
We may use this distribution and make it give identical results with the
Maxwellian distribution. If we use the steady state condition for low fields,
we find 2 = 2% vy and

p= = V)8 o = 0.625 . (A6.24)
In terms of this ug, the steady state equation becomes

(uo/m)* [Go/)? — 1] = (E/Ec)*, (46.25)
with

E; = (8/3)" ¢/uy = 1.63 ¢/ (A6.26)

It is evident that if we chose modified values of ¢ and £ so as to make
() become equal to wy and E.(c", ') = E.(c, {), then the monoenergetic

% See I and H in § problem 8 page 293.
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approximation will give the same results as the Maxwellian distribution.
We use this procedure in the following section.

As pointed out in Section A.3, the problem treated here is closely analo-
gous to electronic conduction in gasses. For this case, an exact treatment
has been given for high fields such that the motion of the large masses M
may be neglected. The drift velocity is found to be™

v = (§)¥4(n/4)"2(m/ M) (gE/m)""/T (). (A6.27)
Substituting #7/¢* for M and using (A6.7) to climinate £, we obtain
v = (1%/6)""T (}) (uoE)" =7
i = : (A6.28)
= 1.23 (uoEc)™.

This value lies intermediate between the two simple approximations con-
sidered above and leads to a critical field of

E. = 151 ¢/us (A6.29)

at a velocity of

e = poE. = 1.51 ¢, (A6.30)

Since the exact case gives 13 = ok for low fields and v = u(EE.)' for
large fields, it is evident that either the Maxwellian or single energy dis-
tribution will approximate it well (provided suitable choices of u or o and
E, or E. are made) except for a small error near E,.

The distribution in energy for the gas case leads to a probability of
finding the electron in a range » to » + dv proportional to

[exp - j: mo dv/ (kT + 3M(nt/3mv)2):l v dv (A6l.31)

For high fields this reduces to

lexp — (3m/4M)(v*m/qlE)]s* dv

It is seen that this distribution weights the low energies less heavily than
does the Maxwellian for the same average energy and thus gives a lower
mobility. It weights them more heavily than does the single energy and,
therefore, gives a higher mobility than it.

2 Druyvestevn Physica 10, 61 (1930). See also S. Chapman and T. G. Cowling, “The
Mathematical Theory of Non-Uniform Gases,” Cambridge at the University Press, 1939,
page 351.
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A.7 Tue Errect oF THE OpTicAL MODES
A.7a. Introduction

The treatment presented above is based entirely upon interaction with
the longitudinal acoustical modes of the crystal. Since the diamond struc-
ture has two atoms per unit cell, it is also possible to have “optical modes”
in which the two atoms vibrate in opposite directions. Such modes may
have long wave lengths; for example, do the same thing in each unit cell,
and thus correspond to small values of P,. Hence they may interact with
the electron waves with P, = P,. Their frequencies correspond roughly to
a wave length of about (}) the lattice constant in the [100] direction and
hence to a frequency of about

(4.92 X 109((3)5.6 X 1051 (2/x) = 1.12 X 108 sect  (A7.1)

The last factor of (2/7) is a crude allowance for dispersion, which leads to
a decreasing phase velocity at short wave lengths. This corresponds to an
energy

hv = k 520°K. (A7.2)

These optical phonons thus contain much more energy than the acousti-
cal phonons; the latter having at room temperature an energy of about

¢Py = 2(c/v)) (mPy/2) = (1/10)k 300° = k 30°K (A7.3)

[or about k£ 100°K if we use the higher effective value of ¢ discussed in
Section 4]. Furthermore, the opticai phonons will be only slightly excited;
thus collisions with them will in general involve phonon emission so that a
collision will on the average result in an energy loss of nearly 500%. This is
very large compared, for example, to the average loss of about 8 mc* = &
12° per collision for electrons with energies of 4kT.

A difficulty with the optical modes is that for the approximation of
spherical energy bands, which we have used in earlier parts of this paper,
they should have matrix elements which vanish when P; = 0. This con-
clusion is reached by considering the deformation potentials corresponding
to an optical displacement: this may be thought of as moving one of the
face-centered cubic sublattices of the diamond structure in respect to the
other. Since the initial position is one of tetrahedral symmetry, there can
be no first order change in the energy & at the bottom of the conduction
band. There may be a distortion of the energy spheres for higher energies,
however, and this can lead to matrix elements proportional to P; and transi-

tion probabilities proportional to P§ .

3 This view is in disagreement with the position stated by F. Seitz in his two papers
on mobhility. Phys. Rev. 73, 550 (1948) and 74, 1376 (1949). See for example the text
between equations (14) and (15) of the latter paper.
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On the other hand, if the band is degenerate and has energy surfaces
consisting, for example, of three sheets, then an optical displacement may
split the degeneracy and the shift in energy for 1 = 0 can be linear in the
displacement. (For example consider one wave function with angular de-
pendence of the form (cos  + sin 6 cos ¢ + sin 0 sin ) i.e. a p-type wave
function with its axis along [111]. Its energy should certainly change for
relative displacements of the two sublattices along the [111] direction since
positive and negative displacements are unsymmetrical in their distortion
in respect to this line.)

Chiefly from evidence on magneto-resistance, the writer is convinced
that the electron energy band is complex in form. Thus it would be expected
that the optical modes would have matrix elements for low values of Pi.
We shall assume that this is the case but shall not endeavor to deal with a
non-spherical band. This an inherently inconsistent approach, but should
give at least a semiquantitative agreement with an exact theory.

In order to illustrate the effect of the optical modes, we shall assume for
the moment that for high fields they are the dominant mechanism of scat-
tering and that the scattering is isotropic. If the mean free time between
collisions is 7, then the power input is

(d&/dl)sicra = ¢*7E*/m. (A7.4)

If the temperature is so low that the optical modes are only slightly ex-
cited, the transitions will in general absorb an optical phonon so that

(d&/dl)op = hv/T. (A7.5)
The steady state condition leads to the surprising but simple result that
vy = grE/m = (hv/m)\* (A7.6)

so that the drift velocity is independent of E.
1f we insert & 520°K for hw and the free electron mass for , v; becomes the
velocity of an electron with & 260°K of energy giving

vq = 0.88 X 10" cm/sec. (A7.7)

The limiting value on Fig. 2 for 298°K corresponds to extrapolating Ohm’s
law to about 1500 volts/cm or a drift velocity of 1500 X 3600 = 0.54 X 107.
The limiting value for 77°K is about twice as high. These values are seen
to be in reasonable agreement with the predicted value.

It should be pointed out, however, that the answer obtained for v de-
pends implicitly on the assumption that a relaxation time may be used in
the simple way employed above. To illustrate that the result is not com-
pletely general we refer the reader to equation (4.4) which was obtained
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on the basis of a somewhat different treatment. According to (4.4)
ve = (3) Qhv/m)'? = (hp/2m)"*

(A7.8)
= 0.63 X 10" cm/sec.

a result smaller than (A7.6) by a factor of 212,

A correct treatment of the optical modes together with acoustical modes
would involve solving the Boltzmann equation to find the steady state
distribution. This will obviously present problems of considerable com-
plexity. In particular scattering will suddenly begin to increase when the
electron acquires an energy, & > kv and it seems unlikely that analytic
solutions can be obtained. Even the Maxwellian distribution leads to
somewhat complicated integrals.

A.7b. Estimale of the Matrix Element

In order to proceed further we must estimate the order of magnitude of
the optical scattering matrix element. For this purpose we introduce a
“deformation potential” coefficient for the optical modes by the equation

8an = 08./0(x/xp) (A7.9)

where x is the displacement parallel to the x-axis of one sublattice in respect
to the other and w, is the a-component of relative displacement of the sub-
lattices for equilibrium conditions. The same reasoning as used in treating
mobility by deformation potentials™ may then be applied and the matrix
element evaluated by analogy with the dilatation waves. For the latter the
matrix element may be written in the form

| Ua | = &1.(a%)/2 (A7.10)

where A is the dilatation and (A?) is the average (dilatation)? for the
mode before and after transition.” Since half the energy in a running wave
is potential

Ye{d?) V = % hw X [average of (n + 3)]

(A7.11)
=Jw (2n + 14 én)/4.

This leads to the form introduced in equation (A4.1). By analogy, for the
optical modes we should take

| Uy |2 = 83a{(x/20)2)/2 (A7.12)

% W. Shockley and J. Bardeen Phys. Rev. 77, 407-408 (1950) and J. Bardeen and
W. Shockley, Piiys. Rev. 80, 72 (1950).
% See E and H in S, page 528.
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where the stored energy for deformation (x/x) is
L oo (w/m0)* V (A7.13)

and the average value for a transition from 7 = 0 to n = 1 is /w for the
total energy and (3)/w for potential. This leads to

| Up [P = E2n Iv/2c00 V (A7.14)

As a first approximation we may take the stiffness between the planes of
atoms separated by x, as the same as the macroscopic value. This leads to

Cop = Cet (A715)

Furthermore, equal relative displacements of neighbors are produced by
equal values of A and x/xo. Hence approximately equal changes in energy
may occur so that we may assume that

‘B = E1ne (A7.16)
Under these conditions
| Usp [P = (hw/RT) | Ua [ (A7.17)

Since the energy of the optical modes is a maximum for P, = 0, it will
change only a small fraction for values of Py comparable to P.” (See Fig.3.)
Consequently, conservation of energy leads to transitions between P1 and
a sphere with Py = [2m(&1 — Jw)]"2. The probability is equal to each point
on the sphere and the transition probability is readily found™ to be

Yrep = (V | Uap [2m2/7ht)s (A7.18)

where 22 = Pa/m is the speed after collision. 1f we assume relationship
(A7.17) between matrix elements and introduce £ as defined in (A4.3), then

Yrap = (w/kT) v3/8 = 95/ lop (A7.19)

where £op is a sort of mean free path for optical scattering.
The dependence of 2; upon the velocity before collision 2, is obtained as
follows:
& = 61 — hw (A720)
vy = [2(81 — lw)/m]'*
R (A7.21)
= (‘ul - ﬂv)”z

8 See F, Seitz, “Modern Theory of Solids,” McGraw-Hill Book Co., 1940, p. 122,
2 See E and H in S of A2, p. 493, for a similar treatment.
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where v, is the velocity corresponding to fv:

2, = (2hy/m)\2, (A7.22)
The rate of energy loss to the optical modes is simply
Tvws/ lop. (A7.23)

A.7c. Approximate Sieady Slale Trealment

In order to test whether or not the role of optical modes can explain
Ryder’s data, we shall use a very crude method. We shall assume that the
electrons all have the same energy and shall calculate their mobility on the
basis of the mean free time at that energy; from this we calculate the power
input. We shall also calculate the power loss in the same way. It is obvious
that this treatment is a very poor approximation to the actual situation.
An electron which loses energy to the optical modes will, under most cir-
cumstances, have only a small fraction of its energy left afterwards; thus to
assume a monoenergetic distribution is unrealistic. However, the treatment
does bring into the analytic expressions the principal mechanisms and, as
we shall show, appears to account for the main experimental features.

The collision frequency or relaxation time for transitions involving the
optical modes is given in (A7.19) and the energy loss in (A7.23). We must
introduce corresponding expressions for the effect of the acoustical modes,
Since the single energy distribution is to be used over the entire range of
electric fields, we must introduce some approximations like those discussed
in connection with (A6.23) in order to make it converge on the correct be-
havior at E = 0. The particular choice selected is a compromise between the
energy loss formulae for the Maxwellian and single energy distributions:

(dS/df) acous.phonons = (4 mczﬂx/l)ll - (?-'1/?)1-)2]. (A7.24)
A simplified expression is also used for the mobility:
u = ql/mv = pwr/o. (A7.25)

The relationship between po and £ given by this differs by 25 per cent from
the correct relationship (A6.7); since o is an adjustable parameter in the
comparison between theory and experiment, (A7.23) does not introduce any
error at low fields. Equations (A7.24) and (A7.23) cause u to converge on yo
and &, on kT as E approaches zero. (It is probable that a slightly better fit
to the data would be obtained by using the procedure described with equa-
tion (A6.23); the calculations based on (A7.24) and (A7.23) were made be-
fore the (A6.23) procedure was worked out, however, and it was not consid-
ered worth while to rework them for this article.)
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Rewriting the equation for mobility in terms of the collision frequencies
1/7 = v/{ and 1/7,,, the power input from the electric field is

(d8/dN)raa = quE? = ¢*E/m [(1/7) + (1/70p)]
quoE?/ (v1/vz) [1 + (¢ fop) (22/1)]
where the o, term is omitted if 2, < v,. The power delivered by phonons is

(d8/dl) phonons = dmc? (v1/€) [L — (v1/v2)?] — hwwy/ Ly

(4g¢*/ o) (v1/vr) (A7.27)
X [1 = (0/or)2 — (hw/4mc") (4] Lop) (v2/01)]-

The two coefficients of (v2/2;) are both larger than unity according to the
analysis given above. We shall introduce the symbols 4 and B for them:
Accordingly

(A7.26)

Il

A= t/lop = h/kT, (A7.28)

the last equality following from (A7.19), and
B = hv/4 mc®. (A7.29)
If we take kv = k 520°K, m = the electron mass and ¢ = 5 X 10° cm/sec,

we find

B = 87. (A7.30)
As discussed in the text, the losses appear to be larger than can be ac-
counted for by these values of m and ¢. The critical drift velocity used in

the fit of Fig. 4 was 2.6 X 10° cm/sec and this corresponds to a value of ¢
of

¢ = 2,/1.51 = 1.72 X 10° cm/sec (A7.31)

according to the exact treatment based on the sphere model. (As stated in
the text this means an effectiveness of energy interchange about (1.72 X
105/5 X 10%)* = 10 times larger than the simple theory.)

Our simplified energy loss equation (A7.27) leads to

2. = 2 (A7.32)
so that we shall take

c =13 X 10° (A7.33)
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in this section so as to agree with the critical velocities observed in Fig. 2.
This leads to a value for B of

B = k 520°K/4m (1.3 X 105)2
(A7.31)
= 12.8
For A we shall take
A = 520/T (A7.35)

The only other adjustable parameter is uo. For this we shall use the value
based on Haynes’ drift mobility and acoustical scattering.

uo(T) = o (298°K)(298°K/T)*2
3600 (208°K/T)"?

(A7.36)

Il

This value automatically fits the room temperature data in the Ohm’s law
range. The 737 dependence then extrapolates it to the other ranges.
The steady state condition may then be written in the form

2(1 + Ay)(ABy + 42 — 1) = 2 (A7.37)
where

vy = (2hw/m)'? (A7.38)

x=0/0,y=1v/n=_1— )" (A7.39)

A = w/kT = (v,/vr) (A7.40)

B =128 (A7.41)

z = uo (TVE/2cA. - (A7.42)

This form lends itself to calculation of z as a function of x. The drift velocity
is then found to be given by

w = v5/2¢c = z/x(1 4+ Ay)
(A7.43)
= [(ABy + Ax* —1)/(1 + Ay)]'~

If A > 1, there are three distinct ranges of behavior for # versus z:
Range (I) uw = z/A?
For 5 — 0, 2> — 1/4, y = 0 and consequently,

w = zA" = v3/2c = oy E/2c (A7.44)
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so that the low field relationship
vy = uokE (A7.43)
is correctly given.

Range II, Ax* > landx < 1

In this range the electrons are at high temperature but not high enough
to excite the optical modes. For it

2 = Axt, x = g/40 (A7.46)
u = g4 or 22 = (2cupE)Y2 , (A7.47)

This corresponds to the square root range with a critical field of E, =
2¢/uo and v, = 2c.

Range IIT, x > 1

When « is greater than unity, the optical modes enter the picture. For
the three cases considered the values of A and AB are:

T7°K, A = 6.75, AB = 81,

I

103°K, A = 2.69, AB = 345, (A7.48)
206°K, A = 1.74,  AB = 22.3.

The large value of 4B means that as soon as y is appreciably greater than
zero, say 0.5 corresponding to x = 1.135, energy losses to optical modes

dominate. As y approaches unity, the value of « is approximately
w = [AB/(1 + A)"*
(A7.49)
= (hp/4mc)V/(1 + A1)

leading to
(A, B) = (w/m)"?/(1 + A7)

= o/[201 + 4],

(A7.50)

For the values of 4 and B given above, the ranges are not completely sepa-
rated. In Fig. A2 we show the theoretical curves used in Fig. 5, together
with the limiting lines just discussed.

For the middle or 193°K curve, we also show the fit that would be ob-
tained if ¢ = 5 X 10° cm/sec, corresponding to B = 87 as for (A7.30). It is
seen that this deviates much more from the data than does the curve based
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on ¢ = 1.3 X 10° corresponding to B = 12.8. The deviation between theory
and experiment would be still worse at 77°K, for which temperature the
curve of Iigure A2 fits the data well, as is shown in Iigure 5.
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Fig. A2—The theoretical curves and their limiting forms. Some of the data from Fig.
2 are repeatce] here and some additional data from the original publication (Ryder and
Shackley loc. cit.) are shown by crosses. A scale of values of x and of approximate *‘tem-
peratures” is also shown. The dashed curve for T = 193°K is drawn for the case of the
simple theory with ¢ = 5 X 10% cm/sec; the changeat 77°K would be even more marked.

Above range III, the Ax® term makes an appreciable contribution.
When Ax?® becomes large compared to B, the approximation of taking the
acoustical modes to be fully excited becomes questionable. This effect may
be estimated by comparing k7 and the energy in an acoustical transition.
The ratio is approximately

(A7.51)

300 126107 ©
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On Fig. A2 we show the values of x. Equ. (A7.51) leads to values of x < 3
for 298°K and x < 2 for 193°K. Although the approximation of i (acousti-
cal) < ET breaks down, extrapolating the acoustical scattering into the
higher range involves some compensating effects.

The effective “temperature” T, of the electrons may be taken on the basis
of this approximate treatment to be proportional to 9:. In order to make
T, become equal to T for zero field, we define 7' by the equation

T, = Toi/vy = 2* hv/k
= 520 a2

(A7.52)

Some temperatures deduced from this equation are also shown on Fig. A2.
Some of the data of Fig. 2 are also repeated in Fig. A2. In addition some
earlier data® are also shown. These data extend to a somewhat higher
range and appear to show the upward tendency predicted by the theory.
The scale of temperatures indicates that for the extreme conditions experi-
enced electron “temperatures” of about 4000°K have been produced.

w0 E. J. Ryder and W. Shockley, Pitys. Rev. 81, 139 (1950).



