On the Reflection of Electrons by Metallic Crystals
By L. A. MacCOLL

This paper gives the results of some calculations of the reflection coefficient
for electrons incident normally on a plane face of a metallic crystal. The physical
situation is treated as being one-dimensional; and it is assumed that the potential
energy of an electron is a sinusoidal function of distance inside the crystal, and
obeys the classical image force law outside the crystal. The reflection coefficient
is computed as a function of the energy of the incident electrons, over the range
from 0O to 20 electron volts, for a variety of values of the parameters which define
the model of the crystal.

1. FOREWORD

THE work which is presented in this paper was undertaken as a result
of conversations had with Dr. C. J. Davisson at various times during
the years 1938 and 1939, when he was investigating the reflection of elec-
trons impinging on the surface of a metallic crystal. The results for a simple
special case of the general problem were published in 1939". Thereafter the
work on the general problem continued intermittently, and it was almost
completed by the early part of 1942, when it was brought to a halt by the
onset of wartime activities. Since then nothing has been done on the prob-
lem, and the results already obtained have never been published in extenso.
However, C. Herring and M. H. Nichols have included an illuminating dis-
cussion of some of the more significant of the results in their recent mono-
graph on thermionic emission®.

Although the intervening years, by bringing new problems in physics to
the fore, have caused this work to lose some of the interest which it possessed
at the time it was being done, it still seems to be worth while to put the full
results upon record. The present occasion, when his friends and former col-
leagues are celebrating Dr. Davisson’s seventieth birthday, is an especially
appropriate one for this purpose.

2. FORMULATION OF THE PROBLEM

We consider electrons moving with energy E and impinging on a plane
face of a metallic crystal. (Fig. 1.) According to quantum mechanics there
is certain probability R, generally neither 0 nor 1, that an electron will be
reflected by the crystal, and caused to move backwards toward the source;
and there is the complementary probability 1 — R that the electron will

"1 Physical Review, v. 56, pp. 699-702. This paper will be referred to henceforth as

[LAM, 1939).
1 Reviews of Modern Physics, v. 21, pp. 185-270 (1949).
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penetrate the crystal, and flow away through the remainder of the circuit.
We call R the reflection coefficient, and we can define it alternatively as the
ratio of the intensity of the reflected electron beam to the intensity of the
incident beam.

We wish to calculate R as a function of E. In order to be able to do this
effectively, it is necessary to idealize the actual physical situation quite
drastically. (However, the idealization which we shall use preserves what
seem to be the most important features of the physical situation.) On the
other hand, once the idealization has been set up, the mathematical calcula-
tions themselves will be carried through without approximations®. Hence,
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Fig. 1—Reflection of an electron beam by a crystal. (Schematic representation).

any discrepancies between the theoretical results and the results of experi-
ment are to be attributed to the inadequacy of the model, and not to il-
legitimate steps in the mathematical work.

Our idealization of the physical situation can be described in the form of
the three following assumptions:

Assumption 1. The problem may be treated as one concerning one-dimen-
sional motion of electrons. Thus, we set up a rectangular coordinate system
in space; and we assume that the crystal occupies the half-space x < 0,
and that all of the point functions with which we are concerned depend
solely upon the coordinate x.

Assumplion T1. There exists a function V(x), such that an electron at the
point x has potential energy V(x); and the behavior of an electron is gov-
erned by the Schrédinger wave equation

3 Except, of course, simple arithmetical approximations, such as are involved in almost
all calculations.
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j_xlf +EE— VW = 0. (1)

(Here £ = 8x2m/k?, where £ is Planck’s constant, and m is the mass of an
electron.) This assumption deals in a summary way with various compli-
cated processes involving electrons in crystals. Discussions of the validity
of the assumption are to be found in various works on the electron theory
of metals.

Tig. 2—Assumed potential energy as a function of the coordinate x.

Assumption 111 Specifically, the function V(x) is given by the formulae

V(ix) = — Vo+ Visinalx — x), x < x
= = 62/(437), X 2 X0 (2)
Xo = EQ/(4V|)),

where e is the absolute value of the electronic charge, and ¥, V) and «
are suitable non-negative constints. (A graph of this function V(x) is
shown in Fig. 2.) According to this assumption, an electron in the region
x > x is subjected to the classical image force. This is known to be in good
agreement with the facts, at least if x is not too small.* Also, according to
the assumption, the potential energy of an electron in the depths of the
crystal is a periodic point function with a negative mean value. This part
of the assumption is as correct as any assumption can be which attempts to
account for the complicated actual processes in terms of a potential energy
function. However, our particular choice of a periodic function is based
largely upon mere considerations of mathematical convenience. Finally, we

* See Herring and Nichols, footnote 2, p. 245 et seq.
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observe that our V(x) is continuous, as physical considc..tions indicate

that it should be.

We can now state the mathematical problem befcre us in the following
terms:

V(x) being defined by (2), we are to obtain a solution ¢(x) of (1) satis-
fying the following conditions:

(a) In the region x > x, the function ¢(x) exp (— 21rrEt/iz) represents an
incident beam of electrons moving toward the left, and a reflected beam
of electrons moving toward the right.

(b) In the region x < x, the average electron flow, if it is not zero, is direc-
ted toward the left.

(c) The function ¥(x) and its derivative ¥'(x) are everywhere continuous.

Having obtained such a solution y(x), we are then to compute the ratio of

the intensity of the reflected electron beam to the intensity of the incident

beam. In particular, we are to study the dependence of this ratio upon the

quantities E, Vy, and V.

The paper [LAM, 1939] already referred to dealt with the special case in
which V; = 0, i.e. the case in which V(x) is assumed to be constant in the
region x < x,. Consequently, we are now concerned chiefly with the cases
in which V; > 0.

3. GENERALITIES CONCERNING THE CALCULATION OF R

In the region & > %, the wave equation (1) takes the form
2
dz"'-;— 'S [E+i]¢=0.
4x
The general solution of this equation is of the form

Y(x) = Aga(x) + Byalx),

where A and B are arbitrary constants, and ¥, (x) and y(x) are two particu-
lar solutions which we choose so that the functions ¢, (x) exp (—2=iEl/k)
and y¥.(x) exp (—2wiEl/h) represent beams of electrons, of unit intensity,
moving to the left and right, respectively.

In the region & < x, the wave equation takes the form

g + FE + Vo — Visinalx — x)ly = 0. ©)

We are concerned with a solution of this equation of the form

¥(x) = Cisl),

where C is a constant, and y3(x) is a particular solution such that the func-



892 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

tion y3(x) exp (—2wiEl/h) represents a state in which the average flow of
electrons in the crystal either vanishes or is directed toward the left.
The actual forms of the functions ¥1(x), ¥2(x), Y¥a(x) will be discussed
presently.
Now the continuity of the functions ¥(x) and ¢/(x) gives us the system
of equations

Ayn(xo) + Bya(xo) = Cs(xo)
A (x0) + By (x0) = Ci' (x0),

from which we can calculate the ratio B/A in terms of the ¥i(xa), ¥ (%0)-
Our required reflection coefficient R is | B/4 |*, and so we obtain the for-
mula

vitx) — B0 )
Ya(x) — a0 Yo (xo)

It was shown in [LAM, 1939] that the functionsyi(x) and ¥2(x) are given
by the formulae

Ya(x) = ),  Yalx) = Wau(—§),
where
£ = 2ikxEV?, A = —ikét/(8EYY),
and the symbols W), i(£), W, i(—§) denote the usual functions occurring
in the theory of the confluent hypergeometric functions*. The earlier work
gives us all the information concerning ¥ (x) and ¥»(x) that we shall require.

Hence, in order to calculate R, we have, in effect, only to identify a suitable
colution ¥3(x) of equation (3), and then to calculate ¥ (x0)/¥s(x0).

4. Tere SoruTtioN oF EqQuATION (3)

In order to facilitate the use of known results, it is convenient to write

2 2
ae -0 =27, H@rw=a, Lvi--mn
[+
Then equation (3) takes the form
2
%‘f + (63 + 26, cos 2z)¢ = 0. (39

This is one of the canonical forms of Mathieu’s differential equation, for

¢E. T. Whittaker and G. N. Watson, “Modern Analysis” (Chapter XVI), Cambridge
Univ. Press, 4th Ed., 1927.
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which an extensive theory exists. We shall recall a few of the chief facts
brought out in this theory.t

Unless the constants 6 and 6, satisfy some one of certain special rela-
tions, the general solution of equation (3') is of the form

¥ = Kie*f(z) + Ko *5f(—2),

where u is a constant determined by 6, and 6y, f(z) is a function which is
periodic with the period r, and the K’s are constants of integration.

In certain ranges of values of the #’s, the constant w is real, and in other
ranges it is pure imaginary. When p is real we can obviously take it to be
positive; and then, in order that ¥:(x) may be bounded in the range x < x,,
we must choose ¥s(x) to be the function **f(z). When u is pure imaginary,
we can take it to be i | u |; and then, in order that ys(x) shall represent a
state in which the flow of electrons is to the left in the crystal, we must
choose ¥3(x) to be the function e~#3f(—z).

When u is pure imaginary we have a non-vanishing flow of electrons to the
left in the crystal. Consequently, the intensity of the reflected beam must
be less than the intensity of the incident beam. Hence, under this condition
we must have R < 1. On the other hand, when p is real there is no average
electron flow in the crystal. Consequently, under this condition the inten-
sities of the incident and reflected beams must be equal, so that R = 1.
These considerations point to the importance of discussing, first of all, the
conditions under which  is real or pure imaginary.

Figure 3 shows a well known diagram, modified slightly to suit our present
purposes®. Here 6; and , are taken to be rectangular coordinates of a point
in a plane, and the plane is divided into regions of two kinds (shaded and
unshaded) by a system of curves. If the point (63, 6,) is in the interior of
one of the shaded regions, the above p is real; if the point is in the interior
of one of the unshaded regions, p is pure imaginary. (If (63, 6,) lies exactly
on the boundary of one of the regions, we have a somewhat more compli-
cated situation, which we do not need to consider here.) This diagram en-
ables us easily to determine, for any fixed values of ¥ and V1, the ranges of
values of Ein which we have R = 1. We shall call these ranges of values
of E the diffraction bands.

Now our problem has been reduced to that of computing R for values of E
which do not lie in diffraction bands. In treating this phase of the subject
we shall follow the course of the actual calculations, without any examina-
tion of ways in which the work might have been done more efficiently.

T See, for instance, E, T. Whittaker and G. N. Watson, footnote 4, Chapter XIX.

¢ See, for instance, N. W. McLachlan, “Theory and Application of Mathieu Func-
tions” (p. 40), Oxford University Press, 1947.
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Of the many methods which have been devised for finding solutions of
Mathieu’s differential equation, the one which is conceptually simplest is
that due to Bruns. This method can be described as follows:

-1 o 1 2 3 4 5 & 7 a8 o9 10 # 12 13
62
o
Fig. 3—Stability diagram for Mathieu’s differential equation.

Under the transformation

¥ = epr e(2)dz
70
the Mathieu equation (3") goes over into the Riccati equation
de N
Ez+qa2—|-€u+261c0522=0. (5)

We seek a solution of this equation in the form of a power series in the
parameter 6y, say

0(z) = @o(z) + Oipi(s) + 07 2(2) + ...,

and we easily find that the functions @o(2), @1(z), ¢2(z), ... must satisfy the
differential equations

oo+ ¢b + 65 =0,

@1 + 20001 + 2 cos 2z = 0,

{720} + 2@0@2 -+ <P§ = 0, (6)
@3 + 20003 + 2pipr = 0;

s + 20008 + 20103 + @2 = 0,

~

~
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Obviously, in order that we shall get the solution which we require, ¢(z)
must reduce to —iflp when V; = 0. Also ¢(z) must be periodic with the
period . These conditions, together with the equations (6), suffice to deter-

mine ¢o(z), ¢1(z), @2(z), - - - successively and uniquely. We easily obtain the
results:
23] (5) = — i.30,
() o 1 |: 321': _ B—‘ll’z ]
o= T it =6 1+ 6)
(7) B 1[ eﬁs + 2 _ —4iz ]
I T sl w2 —a) T -6 1+ 002+ 6)
(”) _ i[ elh'z + (4 _ 360)82:'3
PET T16i LT — 00P(2 — 603 — 60) | (1 — 60)*(1 + 60)80(2 — 60)
+ (4 + 38‘])8—2:'1 _ e--'ﬁl'a :I
(1 + 60)°(1 — 60)60(2 + 6) (1 4 60)%(2 + 60) (3 + 60) |’
@ = L [ (11 — 560)¢™
o 128i [ (1 — 60)(2 — 60)*(3 — 60) (4 — o)
+ 4(15 — 186, + 56;)¢"™ _2(8 — 3565 + 156r)

1 — 001 + 60)(2 — 0023 — 8080 (1 — 62)%(4 — 62)63

4(15 + 186, + 563)¢ "
(1 + 60)*(1 — 69)(2 + 60)*(3 + 60)bo

B (11 + 50))e ™" ]
(I + 60%(2 + 60)%(3 + 60) (4 + 60) |

The functions ¢5(z) and ¢s(z) have been computed also; but, because of
their complexity, they will not be exhibited here.

It is easily found that the expression V(o) /¥3(x0) appearing in equation
(4) has the value ¢(r/4)(e/2) in terms of our present notation®.

In principle we now have all the information we need to calculate the re-
flection coeflicient R. Furthermore, our experience showed that it is quite
easy to compute R by this method, provided that the value of E does not
lie too near an edge of a diffraction band. However, Brun’s method proved
to be unsuitable for calculating values of R for values of E in the neighbor-
hood of a diffraction band edge, and we were forced to seek another method
to obtain these values. After some tentative work with other methods, we

+

® We must take account of the fact that the symboels ¢/(x) and ¢(s), which we are using
for convenience, do not represent merely the same function with different arguments.
In fact, after the change of the independent variable from x to z we have the following
relation between the old and new ¢'s: [f(x)]oa = (o 4+ 25/a — 7/2a)]ola = [¥(2)]new.
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settled upon a method due to Whittaker, and this was used to complete the
calculations.

Whittaker’s method is described briefly in Whittaker and Watson’s
“Modern Analysis,” 4th Edition, p. 424. The method is developed more
fully in papers by Ince’. We shall confine ourselves here to some summary
indications of the nature of the method.
~ The method leads to representations of the solutions of Mathieu’s equa-
tion by formulae which differ in structure depending upon the part of the
(63, 6:) plane in which we are working. We shall give the formulae suitable
for use in the neighborhood of the point 63 = 1,0, = 0; the formulae for use
in other parts of the plane are given by Ince.

Given the values of 6 and 6;, we first determine a number & by means of
the implicit equation

2 3

=1+ 0, cos 2¢ + l( 2 + cos 40) -g-‘icosZa

6 (32
+5—12(§ llcos4cr)+

Then we seek a solution of equation (3’) in the form
¥ = e Y {aumy1 cos[(2n + 1)z — 0] + bonya sin [(2n + 1)z — o]},
n=0

where g, the @'s, and the b’s are constants. We substitute the expression for
¥ into the differential equation, and determine values of the constants by
imposing the condition that the resulting relation shall be an identity in z.
After some rather intricate algebram manipulations we finally arrive at the
following results:

/.t—g—lsm%‘—»i%gsinmr—%82::1 sindec 4 - -

a =0, h=1

a3=3;—i§sin20+szj;sm4 -+ 4(—%&511120—}-95136;)4.
= Gty Gy et

av=(13§%'jsin20+---

7 Monihly Notices, Royal Astronomical Society of London: v. 75, pp. 436-448; v. 76,
pp. 431-442.
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a = 0(6))
= 81+ 6—: cos 20 + Gf - 14—!—- 5 cos 4o
T8 64 g\ 3

01

74
+§(—§c0520+7c0360)+-

bs— Hl + 461 cos 20 + Bl (82 0540—E§)+---

(9) (8% (3)(8% 18
= mmE T (12) @ =2t
_ 6 -
b= moE T

The calculated terms which are exhibited here enable us to calculate the
solution ¥(z) to a certain accuracy, and this accuracy proved to be sufficient
for our purposes.

Although this method is very complicated analytically, it was found to
be quite convenient for purposes of numerical calculation.

5. THE REFLECTION COEFFICIENT FOR LARGE VALUES oF E

This work is concerned chiefly with the reflection coefficient for small
values of E (actually up to 20 electron volts). However, it is interesting that
we can obtain a simple approximate formula for R for indefinitely large
values of E in the intervals between the diffraction bands.

For this purpose we go back to Brun’s method, and we write the dependent
variable in equation (5) in the form ¢ = — iy + ». We find that the new
dependent variable o satisfies the equation

j_:’ — 2ifw + o° + 26, cos 2z = 0,

and we seek a solution of this equation in the form

w = w(2) + wl(z} + wz@(:)

The functions w.(z) are easily computed, and we finally arrive, in an entirely
straight-forward way, at the result

w(‘:r/4) = —ifp + ez + 4 + - (7)
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In [LAM, 1939] we derived an approximate formula for R when E is
large for the case in which V; = 0. The work involved in that derivation,
together with the equation (7), enables us to obtain the desired formula by
a simple calculation. The result obtained is the following:

. W [ _ aezvl]z
R= |~ a7 |- (®)

The range of validity of the approximate formula (8) has not been de-
termined. The nature of the derivation, and also the form of the result, leads
us to suspect that the approximation is good only so long as the ratio
V1/V, does not exceed some bound depending upon the other quantities
entering into the expression for R. The approximation certainly breaks
down when V,/V, reaches the value 4V/(a€¢?). However, this value is well
above any of the values with which we deal with in this work. Consequently,
we suspect that the formula can be used, to extrapolate our calculations of R
to higher values of E, without serious danger of error in the cases which we
consider here.

6. THE CALCULATED RESULTS

The reflection coefficient depends upon the independent variable E, and
upon the three parameters Vy, ¥y, and a. The effects upon R of taking vari-
ous values of ¥y and V; seemed to be of greater interest than the effect of
taking various values of a; and, consequently, we confined ourselves in the
calculations to a single value of @, namely, @ = & X 1078 cm™!. This value
of & makes the period of V() in the crystal equal to 2 X 1078 cm.

We took six values of V), proceeding in equal steps from 10 electron volts
to 20 electron volts inclusive. These values adequately cover the range
which is of interest in connection with actual metals.

Including the calculations reported in [LAM, 1939], we have taken, for
each of the values of Vy, five values of V;, proceeding in equal steps from 0
to 0.4 Vy. Although it is somewhat difficult to say just what value of V; is
most appropriate to the case of a specific actual metal, it appears that these
values cover the range of values of interest adequately.

The results of the calculations are shown in a self-explanatory form by the
curves given in Figs. 4 to 9 inclusive. For the sake of unity, we have included
the results which were previously published in [LAM, 1939].

7. PrysicaL DiscussioN OoF THE RESULTS

The results do not call for much discussion, especially in view of the dis-
cussion which Herring and Nichols have given in the paper already referred
to. However, there are a few observations which should be made.
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For fixed values of ¥y and V, the reflection coefficient tends to decrease
with increasing E over most of the range between any two successive
diffraction bands. For fixed values of ¥y and E, E being in a range between
two diffraction bands, R tends to decrease with increasing V. This is a re-
sult which was not anticipated when the work was begun. As was expected,
we find a tendency for R to increase with Vy when E and Vy/V, are held
fixed.

The most interesting feature of the results is the behavior of R in the neigh-
borhoods of the edges of the diffraction bands. Unfortunately, the range of
values of E considered is not great enough to reveal this behavior very com-
pletely. (The failure to consider a greater range of values of E was the result
of our reluctance to embark again on the difficult numerical computations
relating to the Wi i(£) functions. Since the necessary computations
had been performed earlier for values of E up to 20 electron volts, we de-
cided, unfortunately as it now appears, to confine ourselves to this range.)

The behavior of the curves near the edges of the diffraction bands which
‘occur in the neighborhood of £ = 19 electron volts (when ¥V, is 18 or 20
electron volts) does not require much discussion. The reader will observe a
small dip in the curves for ¥V, = V,/10 just below these diffraction bands.
The accuracy of the computations is believed to be high enough that we are
justified in taking this dip to be entirely genuine.

When V, is 10, 12, or 14 electron volts the behavior of the curves for
values of E in the neighborhood of zero is rather complicated. Herring and
Nichols consider this behavior to be one of the most significant features of
the results, and they have given a full discussion of it from the physical
point of view.* In view of the availability of their discussion, we may con-
fine ourselves here to a few brief remarks.

In some of the cases which we are referring to now there are diffraction
bands extending from E = 0 to certain positive values of E. (These dif-
fraction bands are shown in a self-explanatory way in the figures.) When
such a diffraction band exists the complicated behavior of R for small val-
ues of E is a result of the existence of the diffraction band, and it is com-
parable with the behavior of R in the upper part of the range of values of
E in the case in which ¥y = 20 electron volts.

In the cases in which we do not have diffraction bands extending upward
from E = 0 we have to explain the complicated behavior of R in somewhat
different terms.

Assuming that we have such a case, let us momentarily ignore the fact
that the physically significant values of E are non-negative, and consider
E as an unrestricted real parameter. Under this convention concerning E,

* Herring and Nichols, footnote 2, pp. 248-249.
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we find that there is a diffraction band lying in the range of negative values
of E, and extending more or less near to the point E = 0%, We shall call this
a fictitious diffraction band. Now it is immediately clear that the complicated
behavior of our curves arises from the fact that the small positive (and hence
physically significant) values of E concerned are near the upper edge of the
fictitious diffraction band.

8 Specifically, what is meant is that there is such a range of values of E in which the
exponent pu is real.



