Electron Streams in a Diode*

By FRANK GRAY

A general solution of the electron stream equations is developed for a parallel
plane diode, under the assumption that the electron velocity is single valued. This
solution contains all particular solutions. It serves to unify the wave theory and
the particle theory of electron flow, and it is an approximation for multi-velocity
streams over a wide range of conditions.

INTRODUCTION

HE theory of an electron stream flowing in a diode has received much

attention;'® because the tetrodes, pentodes and other modern tubes
are cascade arrangements of individual diodes. The theory of the diode is
the foundation for considering the circuit characteristics and the noise
characteristics of these tubes. In earlier days when communication channels
were confined to relatively low frequencies, an electron could traverse
a diode in a short period of time compared to an oscillation of any electrical
signal, and the theory could be developed rather simply from the known
d-c equations. But in these days of high and ultra-high frequencies, the
situation is quite different. A signal voltage may oscillate several times
while an electron is traversing a diode, and the electron stream flows in
bunches or waves. The present article is primarily concerned with this more
complicated type of flow. It is confined to the case of parallel plane electrodes,
and developed under the usual assumption that the electron velocity is a
single valued function of space and time. It is shown to be an approximate
solution for physical electron streams over a wide range of conditions.

Particular solutions for an electron stream under small signal conditions
are given in various published articles. These theories approach the subject
in two different manners. In one approach attention is confined to the
motions of electrons as individual particles,'® and the other approach may
best be described as a wave theory of electron streams. But the two lines
of approach have not hitherto given identical results, and the disagreement
can probably be attributed to neglected factors in the wave theory.

The present article considers electron streams without regard to any other
than a mathematical approach to the subject. The differential equations
are linear in the derivatives, and they should therefore have a general
solution that contains all particular solutions. The theory seeks and obtains

* The paper was presented at a meeting of the American Physical Society in Columbus,
Ohio in 1945.
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this general solution.{ It involves a wave equation, and the results are in
exact agreement with the small-signal calculations for the motions of
electrons as individual particles. It is therefore believed that the general
solution reconciles the two lines of approach to the theory of electron
streams.

With this solution available, the situation is comparable to that encount-
ered in two-dimensional potential theory; assignment of definite functions
to two arbitrary functions gives a solution for a particular problem in
electron streams, but it is then difficult to determine just what problem
has been solved. In the case of small signals the general solution does not
greatly shorten the calculations, and it probably should not be regarded as
a labor saving tool in comparison to any particular solution when the latter
is already known. It is more probable that the broader solution will serve
as a guide for general reasonings about electron streams, and as a guide to
approximations that can be used in particular problems.

1. THE PARALLEL PLANE DioDE

The diode of this article is shown in Fig. 1. It is two parallel planes indi-

cated as (a) and (b), and separated by a distance l. The first plane (a) may
be a thermionic cathode that emits electrons, or it may be a grid through
which a stream of electrons is injected into the diode. The second plane (b)
may be a metallic plate that receives the electrons after they have traversed
the diode space, or it may be a grid that permits the electron stream to pass
out of the diode. The dimensions of the diode are assumed small compared
to the electromagnetic wave-length at any frequency involved, that is,
small compared to the velocity of light divided by the frequency; and the
separation of the planes is assumed small compared to their lateral dimen-
sions. Under these conditions the electric intensity is parallel to the z-axis,
and the electrons move in that direction only.
%, The electron stream injected through the first plane may vary with time,
both in charge density and electron velocity; and the voltages at the two
planes may also vary with time. The total current flowing in the diode space
is then the sum of two components: a conduction current resulting from the
motion of electrons, and a displacement current arising from the time rate
of change of electric intensity. The displacement current can flow even when
there are no electrons in the diode space; it is then the familiar a-c. current,
flowing between two plates of a condenser. But, when electrons are present,
the two currents interact with each other and they both flow in a compli-
cated manner.

t H. W. Konig also demonstrated the existence of a general solution; and he developed
the solution for the particular case of a sinusoidal current.?
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The determining conditions that can be measured in any physical circuit
associated with the diode are: the total current, the conduction current at
the first plane, and the electron velocity at that plane. Then, for conveniently
considering the diode as a circuit element, it has been shown by others® that
we should be able to calculate the conduction current at the second plane,
the electron velocity at that plane, and the resultant voltage across the
diode. From the viewpoint of circuit theory, these last three quantities may
be considered as dependent variables whose solutions should be sought in
terms of the initial conditions. But an electron stream flows according to
its own nature, with little regard for circuit theory, its fundamental equa-

CURRENT FLOW
-

ELECTRON MOTION
—

Fig. 1—Parallel plane diode with a first plane (a) and a second plane (b).

tions involve electric intensity and electron velocity as the dependent
variables, and the general theory must therefore be developed in terms of
these naturally occurring quantities. But it should be noted that the desired
circuit relations can always be calculated from these fundamental variables.

1.1 Unirs AND SYMBOLS

The equations are written in practical electrical units, centimeters, grams
and seconds. In this system of units, the permittivity e of a vacuum is
10—

36w’
1.77 -10'. To conform with circuit convention, the total current and the

conduction current are measured in the negative a-direction, that is, opposite
to the motion of the electrons; all other directed quantities are measured in
the positive x-direction.

and the acceleration constant 7 of an electron is approximately
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The symbols are introduced and defined as needed. The following partial
list is included to give the reader a general idea of the symbolism:

General Symbols

o

Subscripts referring to the diode planes
Distance from the first plane
Length of diode space

Time

D-c. transit time to

D-c. transit-time across the diode
2r Frequency

V=1

juT

Space-charge density

D-c. space-charge factor

WD W E MY T TR R

o-u

36r
Acceleration constant of an electron 1.77-10%,

Permittivity of vacuum,

=

Symbols in Section 2—The General Solulion

Voltage

Electric intensity

Tdealized electron velocity

Conduction current density
Total current density

Ip D-c. component of 1

I, Oscillating component of T

S EE+fIdL

NOo gl =

S eE-I—fIAdt-

F1(S), F2(S) Arbitrary functions of S
A(S), B(S) Finite arbitrary functions of S.

Symbols in Section 3—Small Signal Theory

In this section the capital letters V, E, U, Q and I change their meaning
and indicate only the d-c. components of their quantities; and the small
letters 2, e, #, ¢ and i then indicate the amplitudes of the corresponding
a-c. components. This section also uses the following special symbols:

A, B Arbitrary constants
A*B*. .. .I* Coefficients for the circuit theory of a diode.
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Symbols in Section 4—Physical Eleclron Sireams

This section returns to the symbolism of the general theory; and the
capital letters E, U, Q and I indicate total quantities. Tt also uses the
following special symbols:

Actual electron velocity

Average of ¥

Mass density of electrons

Partial density in a range dv
Momentum density of electrons
Kinetic energy density of electrons.

SEVEIERSTE

2. THE GENERAL SOLUTION FOR AN ELECTRON STREAM

The present theory of electron streams is a solution of two partial dif-
ferential equations, in which electron velocity U and electnc intensity E
appear as the dependent variables.

The equation for electron velocity U is based on an idealism that is com-
monly used in vacuum tube theory. It assumes that the electron velocity
is a single-valued function of space and time or, stated in other words, it
assumes that all electrons in any plane normal to the x-axis have the same
velocity. The variable U may then be regarded as a continuous function of
x and ¢, which is everywhere equal to the velocities of the individual elec-
trons. The differential equation for U follows at once from the fundamental
mechanics of electron motion, which states that for any individual electron

au
Tt = nE (1)

where 7 is the acceleration constant of an electron, and the small relativity
terms are neglected. Then, since U is regarded as a continuous function of
%, its total derivatives may be written in terms of partial derivatives, and

au | oU @)

which is here regarded as the fundamental equation for electron velocity.
It is of course based on an idealizing assumption that imposes limitations
on the general theory, and these limitations are discussed in a concluding
section of the article, where it is shown that the idealized velocity is an ap-
‘proximation for the average velocity in physical electron streams.

The differential equation for the electric intensity E is given by the
theory of electromagnetism. It follows from this fundamental theory that
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the total current density I flowing in the diode is a function of time alone;
it has the same value at all planes along the x-axis, and is given by

I =—pU — ¢ ¥ (3)

The first term is the conduction current density, the second term is the

displacement current density, and I is measured according to circuit con-

ventions in the direction opposite to the motion of the electrons. The charge
density p is

dE

and its substitution in (3) gives
dE | AE I
i i T ®)

which is the differential equation for electric intensity.
Before passing, it should be noted that the conduction current density Q,
measured according to circuit conventions, is

JAE
Q= —pU = U Ey (6)
The two differential equations for U and E are now repeated as a group
U | aU

— 4+ —= = —3E 2
U+ U 2

0E | dE I

e T
dx + at € ©)

and in this group the total current density I may be regarded as any known
or arbitrarily assigned function of time. These are the basic equations whose
solution is sought in the present theory of electron streams. They are a de-
scription of the whole diode space, and they tell how U and E occur and
vary with time throughout that whole space. They are first order equations,
linear in their derivatives, and it is known from the theory of differential
equations that their general solution is the complete solution, and that it
will contain two arbitrary functions. So if we find a solution containing two
arbitrary functions, we may be quite sure that it is the complete solution.
The equations can be solved by the Lagrange method, as outlined in Ap-
pendix I. But that is a rather abstract operation, and the solution is here
obtained by another method that has more physical meaning and is really
equivalent to the Lagrange method.



836 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

For any individual electron, (2) and (5) may be written in the form of
total differential equations (7) and (8)

daUu
= - - 7
yT nE (N
dE
o 8
«— (8)
where for that individual electron
dx
U= (9)

and x is the coordinate of the electron. This group of total differential equa”
tions describes U and E only in the immediate vicinity of the one moving
electron, and it is therefore a restricted picture in comparison to the one
given by the original partial differential equations. Tt should, however, be
clearly understood that we are not seeking the solution of this group of total
differential equations; we are merely using them as aids for solving the
original equations.
Equation (8) may be written in the form

% [GE + f I dz:l —0 (10)

the bracketed term is regarded as a new variable S, that is,
S=eE—]—fIdl (11)

and (10) says that S is an invariant for any individual electron, it remains
constant as the electron moves along. The solution of (10) is

S = Cl (12)

where C, is any arbitrary constant.
Turning now to (7) it may be written in the form

%[?]:'"E[S_fqu (13)

and its solution for any particular electron—remembering that .S is an in-
variant for that electron—is

U=Cz—g[5‘£—f1dt] (14)
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where C. is an arbitrary constant. [In repeated integrations with respect to
time, the increment d¢ is written only once, it being understood that dt
is repeated in each integration.] Now any arbitrary function Fy of S is a
constant for the particular electron under consideration, so we may replace
C, by Fi(S) and write

U = FiS) — 3[53 - f I dt] (15)

For the same electron, (9) may now be written in the form

9@ _ ps) =7 [sz - ffI dt] (16)
dit €
and its solution is

v = Cs + Fy(S) —g[%‘ _ fffm] (17

where C; is an arbitrary constant that may again be replaced by an arbi-
trary function ¥, of S, and

x;Fz(S)+F1(S)t—';’[%f—ff Ia‘t:l (18)

By considering one individual electron we have thus arrived at two gen-
eral relations (15) and (18) which, taken together, describe U and E as
functions of x and . Now the reader will probably be much surprised, as
was the writer, to learn that these two equations when standing alone are
not solutions of the group of total differential equations (7), (8) and (9).
The solution of that group is (12), (15) and (18). In other words, the two
general relations are solutions of the total differential equations only in the
very special case of S equal to a constant. But this constant may have any
value, and the general relations therefore apply to all electrons in the diode
space.

We are therefore practically forced to the conclusion that (15) and (18)
are the solution of the broader group of partial differential equations (2)
and (5), and this turns out to be true. This solution, which is here rewritten,

U = Fy(S) — ";’ [S.z ~ ff} dt] ' (15)

v = By(S) + RS =" [S’; - ff Id!]

S=eE+fId:

(18)
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moreover contains two arbitrary functions, and it is therefore the general
and complete solution for an idealized stream flowing in a diode.

As the solution stands, [ is an arbitrary function of time, and Fy(S) and
F»(S) are perfectly arbitrary. They correspond to all possible determining
conditions: to all the d-c., a-c. and transient conditions that are possible
in the idealized diode, and to all the purely mathematical conditions that
cannot be realized in any physical sense.

With this complete solution available, the situation is analogous in many
respects to that encountered in the solution of potential problems in two-
dimensional space. We can find a particular solution by merely assigning
definite functions to the three arbitrary functions I(f), Fi(S) and F.(S);
but we then encounter the difficult task of finding out just what problem
has been solved.

As a simple example of the general method, the reader may be interested
in arbitrarily setting I, F1(S) and F:(S) equal to zero. He will then find that
the resulting expressions, (15) and (18), are actual solutions of the partial
differential equations, and that they represent a transient electron stream
that can flow for a short period of time in a diode space.

2.1 ToHE GENERAL SOLUTION IN THE PRESENCE OF A DIRECT CURRENT

In the majority of circuits that are of practical interest, there is a continu”
ous direct current flowing in a diode, and the arbitrary functions then as-
sume a more restricted form. In such cases the total current density I may
be considered as the sum of a d-c. component, which for the time being is
indicated as Ip, and a transient or alternating component 7 ,.

Then we have the condition that

In>0 (19)
and also the condition that U and x must be finite in any physical tube’

Now consider (15) for U and note that

fId.’t=IDt+fIAdt

. fflau=%‘2+ffmu

The bracketed factor in (15) thus contains power terms in /, which becomes
infinite as { approaches infinity. The function F;(S) must therefore be of
such form that it cancels these terms and causes U to remain finite. Inspec-
tion shows that Fi(S) must consequently be of the form

Fi(S) = A(S) + g+ S + 2252 (21)

(20)
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where A(S) is an arbitrary finite function of S, g is an arbitrary constant,
and the coefficients g, and g» have such values that the power terms in ¢
cancel out in (15). The finite function may, for example, be a sinusoidal
function of S, or a series of such sinusoidal terms. The values of the coeffi-
cients are easily calculated, and when the resultant expression for F(S) is
substituted in (15), it may be written:

o2
U=g+A(S)+3[i+ ff,dz] (22)
€ 2ID
where S is S with the I, term omitted, that is,
S=e&+ [La (23)

[n a similar manner it may be shown that, for x to be finite, (18) assumes the

form
A - cd
x =k + B(S) — LJFI—D@S —:’—[6%, - fffhdt:l 24)
where k is an arbitrary constant, and B(S) is any arbitrary finite function of
S. Then (22) and (24) constitute the general solution when a continuous
direct current is flowing in the diode. They are mathematical means for
shortening the calculations in the presence of the direct current.

It is believed that the general solution presented in this section will serve
as a guide for reasoning about electron streams, and as a guide that can be
used in particular problems. It should also be an aid for considering the
large signal theory of electron streams. But it is here advisable to confine
attention to a less ambitious program, and apply the method to the case
of small signals. The results will not be entirely new, but they will bring
out certain important features of the general solution.

3. THE SMALL SicNAL THEORY OF ELECTRON STREAMS

The small signal theory is developed as follows: The value of each depend-
ent variable, in any plane normal to the x-axis, is regarded as the sum of
two components: a value that does not vary with time and is therefore
called the d-c. component, and a value that does vary with time and is
called the a-c. component. All of these components may vary with x, that
is, with the exception of the total current density which is a function of
time alone. Corresponding to small signal circuit theory, it is also assumed
that the a-c. quantities are small compared to the d-c. quantities, and that
the squares and products of the a-c. quantities are negligible in comparison
to their first order values. For such signals the circuit equivalent of a diode
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is completely determined by its performance at single frequencies, and this
permits the solution to be developed in terms of simple sinusoidal functions
of time.

New symbols are needed for the small signal theory, and to avoid an undue
number of subscripts they are introduced in the following manner: In the
preceding general equations the dependent variables were indicated by
capital letters; in the following small signal theory, the same capital letters
are used to indicate the d-c. components, and the corresponding small
letters then indicate the complex amplitudes of the a-c. components. This
gives the following list of symbols:

DC Component Amplitude of AC

omponent
Total current density. ........................ ... I i
Conduction current density....................... Q q
Voltage. . .o s Vv v
Electric intensity. ... ............. i | E e
Electron velocity. . .......... ... . i | U u

This symbolism has the disadvantage of using e to indicate both electric
intensity and the base of the natural logarithms, but the duplication causes
no serious confusion, for the meaning of the symbol is always evident from
the text. As examples of the new nomenclature, the conduction current
density is now Q + ge™', and the electron velocity is U + ue™*. Tt should
be noted that the a-c. amplitude in each of these expressions is a complex
space-varying amplitude, which is sometimes called the space part of the a-c.
component.

Before passing it is well to write the following useful relations, which
follow immediately from the fundamental equations (5) and (6):

=1+ jwee
e (25)

o 1 —4)

€w
their substitution in (11) and (23) give
S =eE+ It — 1

w

(26)

S:eE—j—qu

&)

With this introduction to the change in symbolism, we now express the
general solution (22) and (24) in terms of the new symbols, and neglect all
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second order terms in the oscillating components. Each part of the general
solution then separates into two equations, one for the d-c. quantities, and
another for the a-c. quantities. The resulting equations for the d-c. com-
ponents are

U=g+ %32 (27)
vk —8E_ %E—a (28)
" and the equations for the a-c. components are
ue™t = A(S) — 'g[::TE g+ wi”:I ™! (29)
0=86) =LA@ +i Za+ Lil G0

where in the last equation g has been replaced by its value from (27).

3.1 TaE D-c. COMPONENTS OF THE ELECTRON STREAM

We first consider the d-c. components in (27) and (28). It is easily shown

that they obey the primitive differential equations o
v _ .
ax
(31)
v~ 1y
ax

which are the static equations for a diode, when it is idling in the absence
of an a-c. signal. Their solutions are given in various published articles, and
they are available without further calculations.” * These d-c. components
are involved in the subsequent development of the a-c. theory, and the
latter requires certain d-c. relations. These relations are briefly presented
without derivations as follows:

The current density I and the d-c. voltages at the two diode planes are
assumed to be known quantities. Then the d-c. velocities at those planes
are also known quantities, because their values are given by the simple
relations

Us = v/29V,, Uy = A/ 29V, (32)

where it is assumed that the original source of electrons is at zero voltage.
The d-c. transit time plays an important role in the small signal theory.



842 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

The transit time = from the first plane to any coordinate x is

T dx
.= fo = (33)
and
ar 1
Friall (39

The total transit time T across the diode space also plays an important
role; it is usually expressed in terms of a so-called space charge factor {,

whose value is given by?®
Y 4
'e (1 3) 5T, (35)

Here I is the actual d-c. current; and I, is the maximum current that could
be projected across the diode when its planes are at the voltages Va and Vs,
that is, I, is the space charge limited current

5=k (\/_—+W) (36)

9 1
Then the total trinsit time T is given by
2]

R

It also follows that I can be expressed in the form

T =.

I = 3‘5 (Ua + Us) (38)

Certain equations for the d-c. electric intensity are also required. They are

E = E, _Er
1

E, = —T( Ub)+— (39)
1 IT

Eb=‘?-.( Ub)“—E

They complete the list of d-c. relations required in the following small
signal theory.
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3.2 THE A-c. COMPONENTS OF THE ELECTRON STREAM

We now return to the a-c. equations for the electron stream, (29) and
(30). In (29), the arbitrary function A(S) must obviously involve an ex-
ponential function of jwt, and it must therefore be of the form

AS) = 47 (40)
where A is an arbitrary constant. Then the substitution of (26) gives
A(S) = 4 exp. [jw(t + 5}3) + %ej"':[ (41)
The term in ¢/I is a second-order term that may be neglected, and % can
be replaced by its value from (39) that is,
eE  eEa
T-7T 7 42)

where 7 is the d-c. transit time to any coordinate x. The resultant exponential
factor in e—?—“ can then be included in the arbitrary constant 4, and this
gives

A(S) = A" (43)

The substitution of this function in (29) now gives the following relation
for the amplitudes of the a-c. components

u=Ae_j”'—J£3q—-q-i (44)
wl €w?
The arbitrary function B(S) may be treated in a similar manner, and (30)
then gives the complex amplitude of the conduction current density

_jUI _ f_g — juT _ i .
q-v(B AI)e Pt (45)

where B is another arbitrary constant.
The substitution of this value of ¢ in (25) and (44) also gives the ampli-
tudes of electron velocity and electric intensity.

[ ,nE _ neEz)] e T l: _ jﬂE:| -

_I _ @ — jwr il: TJI .
e_w[B AI]e +1 1+€_-m2U:|z 47)
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The amplitude of the a-c. voltage in the diode space is also required,
and it is derived from its expression

0= [ eds (48)
0
where ¢ has its value (47), and the integration can be performed by remem-
bering that g—: is 1/U. This gives

1= 1, + l [(jezIE — A J—I — jBI) (e — 1)
w

€w

. . IT\ .
-—JAIT—J"(x-{—n—,Z)z]
€W
We are now in a position to examine the character of the electron stream,

and for this purpose we write the conduction current density in its complete
form ge™’, that is,

qg.i'ut — ‘Eljl“ (B — 4 ?) BJAWU—‘P) _ 1}.[ ie.fwi (50)

ew'U

(49)

The phase angle of the first term involves the d-c.transit time 7, which is
a function of x, so this term is a wave traveling in the x-direction. Its ampli-
tude involves the d-c. quantities U/ and E, and its amplitude varies with x.
The velocity of the wave is given by

. ar\"!
el =|— 51
Wave velocity ( a;;) (51)
and from (34)
Wave Velocity = U (52)

That is the velocity of the conduction current wave is equal to the d-c. com-
ponent of electron velocity.

The second term in (30) is an oscillation that has the same phase through-
out the diode space, and its amplitude also varies with x. The a-c. conduction
current is thus a wave of electric charge traveling at a finite velocity plus an
oscillating charge that is in phase over the entire diode space.

An inspection of equations (46), (47) and (49) shows that the other a-c.
components are of the same general form; each of them is a wave traveling
in the a-direction plus an oscillation that is in phase over the entire diode.
This clear-cut disclosure of the dual nature of an electron stream is an im-
portant contribution of the general theory.
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The formal solution for small signals is really completed with the deriva-
tion of the preceding general equations for the a-c. amplitudes. But there
still remains the rather tedious process of deriving the relations for circuit
calculations as outlined in the following section, and they give a direct
comparison with previous theories of electron streams.

3.3 SmarL SicNAL EquaTtioNs ForR CIrRcUIT CALCULATIONS

Llewellyn® has shown that the treatment of a diode as a circuit element
requires certain variables at the second plane to be expressed in terms of their
values at the first plane; that is, the circuit theory requires three equations
of the form

v — v, = A% + B¥*q, + C*u,
gy = D*i + E*q, + F*u, (53)
w, = G¥*i 4+ H*q, + I*u,
where the starred coeflicients are known functions of the d-c. components.
The derivation of these relations from the preceding general equations is
outlined as follows: the first step is the evaluation of the arbitrary constants
A and B. This is done by substituting the values at the first plane in (44)
and (45), and then solving for A and B, which gives

A=+ T g L (54)
B=€-I—A—qua—$z (55)

These expressions, and the values at the second plane, are then substituted
in the equations for the a-c. amplitudes (45), (46) and (49); and they im-
mediately give the desired relations. They do, however, involve the incon-
venient electric intensities E, and E;,, and these quantities are replaced by
their values from (39).

These simple but rather tedious substitutions are illustrated by the fol-
lowing derivation of g,—, which is brief enough to be included for that
purpose. The first step is the substitution of the values at the second plane
in (43); this gives

ij EE', —f ‘UI .
=1 (B - - 56
® U,,( : A)e Uy (56)

where 8 is jwT. It is now advantageous to replace B by its value from (35),
and

_ . (Ea—E)\ , s, Us L R
@ = jwe (U—b) Ae v € gs + i (e i (537)
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The inconvenient electric intensities are now easily eliminated by substitu-
tions from the d-c. equations (39), which give

_I Be* nl
Uy ew?Us

The value of A4 is now introduced from (54), with E, again eliminated by (39),
and a grouping of terms then gives the final equation

4t —1)i+ (1 - "‘f) s + ‘SL us (59)
26U5

This equation gives the following values of starred coefficients:

A+ —" €. + (e — 1)i (58)

I
= =

D* = e B+ e — 1) (60)
_ ,,I:r*

E* - ( 2€U¢,)

F* = 18 e’

b

These coefficients may now be rewritten in any desired form; and, to con-
form with previous articles on electron streams, we replace w by its equiva-

lent expression iﬁ and we also express I in terms of the space charge
P T ! P P g

factor ¢ from (38), that is,
2et
I = ;I—ﬁ(Ua‘"l' Ub) (61)

These substitutions then give the coefficients in the form

B Us+ U\1 —¢? — ge?

D% = 2;( - ) .

E* = Uib [0y — £(Ua + U™ (62)
* — 26_; Uu + Uh) —fg

d nTz( Us pe

This is obviously a longer mode of expression, but it has two advantages:
it is convenient for circuit calculations, and it permits a direct comparison
with previous articles on electron streams.

The equations for u; and (v, — v,) are obtained by similar substitutions
in (46) and (49); and the three equations are then written in the symbolic
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form (53), with the values of the starred coefficients abbreviated and as-
sembled as follows:
o = 1— !‘,’_'a - ,BG_B
ar=1—¢" (63)
a=2—2"—p8— g’

., T i, 12&;)]
A —ZB(Ug"_Ub) [1 3(1 —5—3'

B* = %[(dl — Bag)Us — anlUy + anf(Ua + Uyl
24§
ct = - u.+U
= We+ U
_ 2&1" Uu + Ub
b = —BT( Us )
B* = %’ Uy — ¢(Ua + Ule™ (64)
. =gg(U,.+Ua) -
=T ) P
6 = = 2T (o1 — aB)Us — aala + asf(Us + U]
32Uy
e _ T (Ua+ U\ ("
= = 2—( Us )(1 0%

=L W, - . + e’
Uy

With the exception of a difference in symbols, these coefficients are iden-
tically the same as those obtained by Llewellyn and Peterson®: ® from cal-
culations on the motions of electrons as individual particles, and this cor-
respondence apparently reconciles the wave theory and the particle theory
of electron streams. The correspondence is largely the result of a new
feature in the wave theory, that is, the expression of the electron stream
as the sum of two components, a wave travelling with a finite velocity and
an oscillation that is in phase over the entire diode space.

Llewellyn and Peterson have derived the circuit equivalents of electronic
tubes from the values of the starred coefficients, and these equivalents are
well known in the electronic art.8 The present section confirms these rela-
tions, as derived for an idealized electron stream. The validity of this
idealization is considered in the following section.



848 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

4. PavsicAL ELECTRON STREAMS

[This section returns to the symbolism of the general theory; and the
capital letters, V, E, U, Q and I now indicate total values.]

The preceding general solution for an electron stream is based on ideal-
ism, namely, the assumption that the electron velocity is a single-valued
function of space and time. The stream then obeys the differential equations
(2) and (5), and the theory is a general solution of these fundamental
equations. But it is well known that the velocity in a physical electron stream
is not single valued:~% Electrons are emitted from their original source
with slightly different velocities; and some electrons acquire energy from
the high-frequency electric field and overtake their slower neighbors. These
factors cause the velocity to be a multi-valued function of space, and the
electrons have various velocities in any plane normal to the axis of the
diode. The present section derives the differential equations for a multi-
velocity stream, and compares them with the idealized equations (2) and
(5).

For this purpose, the actual velocity of an electron is indicated as v. It is
also convenient to develop the equations in terms of mass, so we let N equal
the mass density of electrons at any coordinate x. The fractional mass
density of electrons with velocities lying in any range from v tov + dv may
likewise be expressed as ndv, where » is a function of v, ¥ and #; and it fol-

lows that
o0
N= [ wb (65)
The momentum density P of the electrons is then given by
+oo
p={ i (66)
and their kinetic energy density K is
4w 2
K=[ "a (67)
It also follows that the average electron velocity U is given by
- P
v=5 (68)

This is the new mechanical variable in the theory of physical electron

streams.
The differential equation for the electric intensity is now easily derived

from the fundamental electromagnetic equation
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6E

= -0=-1 (69)

The con 'uction current density () is

—eN — §E
Q:—E€=—-L¢'ﬂz—lUf'ﬁ.PJ (7)
m .

and its sub:titution in (69) gives

I O |
e (71)
U 5!' €
which is the analogue of (5).

The mechanical equation for the physical stream is obtained from the
Liouville theorem. In the diode regions with which we shall be concerned,
the individual electrons are so far apart that their microscopic forces are
negligible, the electrons flow freely under the action of the macroscopic
forces, and they therefore obey the Liouville theorem for particle motion.
This theorem states that

dn
— =20 72
- (72)
that is, » remains constant as we travel along with any particular electron.
This equation may also be written in terms of partial derivatives of n

éndx  dndv |, én
sedt Tooa Tat T 3)

and the substitution of the values of the total derivatives then gives

on Bf 5_11 _ (74)

v bx

The mechanical relations are obtained by integrating this equation with
respect to v. It is first multiplied by dv and then integrated as follows:

+o0 +o0 +a
f anudu—nEf 5”6 +f aja’yf() (73)
The second integral reduces to the difference in the values of # at v = 4 o=,
and v = — o, It vanishes because there are no electrons with infinite

velocities. The differential operators may also he moved outside the other

integrals, to give
I s [T
S;.[ nudv + 57.[ ndv = 0 (76)
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then from (65) and (66)
5N P

Equation (74) is next multiplied by vdv, and a similar integration gives
8P 6K
w5 = ZNE — 2 3 (78)

With these relations we are now in a position to derive the differential
equation for U.
This mechanical equation is obtained by first writing the obvious equality

~6U | 8U P
U o + o + ( N) (79)
Then partial differentiation of the last term gives
i EU — EL’ 18P P&N
Jr + N Nt (80)

and, when the resultant time derivatives are replaced by (77) and (78)

gl o

fs_g’ 28K  P§P
bz Y, 8%

—nE - - —

Ndx ' Neox (81)

the substitution of ¥ U for P then gives the final differential equation for
U, which may be written in the form

— _,
78U | oU e 25[K_1ﬂ]

(82)

T T N 2

It is the analogue of equation (2).

The two sets of equations are now assembled and written in a form suit-
able for comparison. The equations for the idealized stream are

Ve Tw~ "« (5)
18U | 8U

_3E | oF I

E—i_ﬁ_ € (7)
1607 2 5 NUZ:| 83U _
; x+_a_x[K = +ﬁ_ nE (82)
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When U is set equal to U, the first equations in the two sets are identical;
and in this respect the theory of the idealized stream corresponds to that
of the physical stream. But the second equation for the physical stream then
differs from its analogue by the inclusion of an additional term

26, NU
Na-[f‘ - T] (83)

The bracketed quantity in this term is the difference between the actual
kinetic energy density and the kinetic energy density calculated as if the
electrons were all moving with their average velocity /. It is often a small
term that can be neglected, and the physical stream is then approximately
described by the idealized equations (2) and (5).

It is, however, rather obvious that there are cases in which this approxi-
mation cannot be made. It is invalid in the region between a thermionic
cathode and its voltage minimum, where the electrons are traveling in both

NU?
directions along the x-axis, and cause K and - to have appreciably dif-

ferent values. So, when the first plane of the diode is a space-change-limited
cathode, the idealized theory can apply only in the region beyond the
voltage minimum. This difficulty is usually overcome by considering the
virtual cathode as the first plane of the diode. In all other regions the
electrons are normally traveling in one direction only, and the idealized
equations are then an approximation for the physical stream over a wide
range of conditions.

The nature of this approximation is seen more clearly by considering the
electrons to be uniformly distributed over a velocity range s, where s is a
function of x and 7. Then the mechanical equation (82) is

160" | 185" | 8U

29 T8 Tw - "E (84)

2

iy . . 8,
Under the usual conditions encountered in electronic tubes, 3 is small

2
compared to 2 and its gradient may be neglected in comparison to that

of U?
7
The approximation can also be considered in a more rigorous manner as

follows: The velocity spread s may be expressed in electron volts by the
relation

(85)
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where ¢ is the spread measured in electron volts, and V' is the voltage in
the stream. Then (84) may be written in the form '

8U | SU _ iV _n b (¢_)26V i
Uit w =% svati\v)m 60

The last term is small compared to % % and may be neglected, and it fol-

lows that the idealized theory is an approximation for physical electron
streams when

1o 8¢ « (87)

8V 1575 Bx

it being understood that the inequality holds for the gradients of the d-c.
components, and also for the gradients of the a-c. components of ¢ and V.
This requirement is satisfied over a wide range of conditions, and the ideal-
ized equations are applicable in a corresponding manner.*

Tt is thought that these considerations explain why the single-velocity
theory of electron streams is so successful in explaining the characteristics
of electronic tubes.®- ?

CONCLUSION

Tt is believed that the preceding pages serve to unify our theories of elec-
tron streams in some such manner as follows:

(1) They develop the general solution for a single velocity stream, and
this solution contains all particular solutions.

(2) The small signal theory is considered in detail as a special case of the
general solution, and the a-c. stream is shown to be the sum of two com-
ponents: a wave traveling with a finite velocity plus an oscillation that is in
phase over the entire diode space.

(3) The wave expression gives identically the same results as previous
calculations based on the motions of electrons as individual particles.

(4) The idealized stream is shown to be an approximation for multi-
velocity streams over a wide range of conditions, and this correspondence
explains why the single velocity theory is so successful in describing the
characteristics of electronic tubes.
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APPENDIX I—-THE LAGRANGE SOLUTION

Lagrange has shown that any partial differential equation of the first
order, linear in its derivatives, is equivalent to a group of total differential
equations. The Lagrange equations corresponding to (2) and (5) are

dx  di dU
U 1 —4E (88)
dv _dl _ edE
vTiT oI (89)
or, taken together,
dy _ di _ dU _ edE (90)

U 1 —qE —I

Now we can find three independent solutions of this group. One solution is

eE + ffdt = ¢ (91)

The first member of this solution is indicated as S; then the other solutions

are
”S’ f f rdi = (92)

Ur—”_s’_ [ ] 1 - ff Id!] (93)

Since each of these quantities is a constant, we may set any one of them
equal to an arbitrary function of another, and the resulting equation is also
a solution of (90). We can, however, obtain only two independent solutions
in this manner, and we naturally choose the two simplest combinations, that
is,

U+'%St—gffIdt=F,(S) (94)

¥ — Ul — ”2_‘2';‘2 + :l[: ff 1dt — fff[d!.] — RS (95)

where F1(.S) and F.(S) are arbitrary functions of S. These equations contain
two arbitrary functions; they are solutions of the Lagrange equations (88)
and (89), and they therefore constitute the general and complete solution of
the partial differential equations (2) and (5). With the exception of a slight
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difference in form, this solution is identically the same as the one given in
Section 2.
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