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The subject equations are investigated with the aim of establishing some
general properties of the flow fields which they describe, including the existence
or non-existence of classes of exact solutions having certain formal properties.
The results include a number of geometric characteristics of the vector fields
involved, a suggestive reformulation of the partial differential equations re-
stricting carrier concentration and electrostatic potential, and several classes of
exact solutions involving arbitrary constants and/or functions. Of particular
interest is a family of solutions in closed form for the steady-state, no-recom-
bination case involving an arbitrary harmonic function in three dimensions.
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A. INTRODUCTION

HIS paper is concerned with the system of relations describing the flow
of holes and electrons in the interior of a homogeneous semiconductor
subject to the assumption of constant temperature, electrical neutrality,
and constant difference in concentrations of ionized donor and acceptor
centers. These relations are:

div ﬁ,, = —e¢ [U{ + g—f—)]

div []n = [m + a”:l
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o= —sne | pema o + L gaap | ®
° kT

lln = *,u,.el:ugrad"u - —8—grad n:l 4)

#— p = ny — po = N (a constant) (5)

np >0 (6)

= 1ls+ Il (7)

wherein
n: concentration of negative carriers (electrons)
p: concentration of positive carriers (holes)
ny: thermal equilibrium value of »
po: thermal equilibrium value of p

o

||p+ hole current density vector

]

|.: electron current density vector

l
o
||: total current density vector

{: time variable

e: magnitude of electronic charge

k: Boltzmann’s constant

up: hole mobility constant

un: electron mobility constant

T: absolute temperature (assumed constant with time and uniform)

U: potential of electrical intensity field

®: electron-hole recombination rate function (will usually be regarded

as depending on p — py and # — ny or equivalent variables).

These relations have fundamental application to transistor electronics,
photoelectric effects, and related phenomena. Detailed discussions of their
physical bases will be found in References 1 and 3. In brief, (1) and (2)
are conservation conditions for the positive and negative carriers; (3) and
(4) express the dependence of the local current densities on the electrostatic
potential gradient and on the carrier concentration gradients (i.e., on con-
duction and diffusion); (5) expresses the condition of electrical neutrality
under the assumption of a constant difference in concentrations of ionized
donor and acceptor centers; and (6) and (7) are self evident.

The present study is directed toward the discovery of (1) general proper-
ties of the flow fields inside semiconductors and (2) families of exact solu-
tions to the flow equations. The approach to the latter objective is through
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the “inverse method” which has proved very useful in the study of vari-
ous non-linear partial differential equation systems in mechanics. In the
inverse method, one proceeds by formal devices suggested by the equations
under study to try to find families of solutions to the equations which in-
volve arbitrary constants or, preferably, arbitrary functions. This is done
without reference to any preconceived boundary value problems. After a
pool of such families of solutions is available, it can be examined from the
point of view of finding boundary value problems of interest consistent
with any of the solutions in hand. The likelihood of finding solutions of
interest in this way is of course greatly enhanced when the solutions in-
volve arbitrary functions. Aside from providing solutions of some useful
boundary value problems, the solutions found by the inverse method
constitute a reference bank of non-trivial exact solutions against which
to check numerical methods and approximation schemes (based, for ex-
ample, on the assumption that a particular term can be neglected) for
solving problems of more immediate practical interest.

J. Bardeen has demonstrated (in Reference 2) how the steady-state be-
havior of contact-semiconductor combinations can be explained on the
basis of the characteristics of (1) the flow field inside the semiconductor
and (2) those of the barrier layer at the contact. The present study is con-
cerned in this connection only with the first of these influences. It provides,
for example, a complete solution for the spherically symmetric flotv field
without recombination for arbitrary currents—a generalization of the zero-
total current solution given by Bardeen. In the absence of surface recom-
bination this spherically symmetric solution provides the hemispherically
symmetric flow field in the neighborhood of a point contact on a plane
surface and remote from other electrodes or surfaces. This spherically sym-
metric solution is contained as a particular case in a family of solutions
involving an arbitrary harmonic function in three dimensions. Other choices
of the harmonic function can be made to yield flow fields associated with
numerous electrode configurations of immediate practical interest, for ex-
ample that of the type-A transistor.

The objective of the present paper is to find (or establish the non-exist-
ence of) broad classes of solutions, and not to undertake detailed studies of
any particular solutions. Such detailed studies of particular cases from the
family of solutions mentioned above (and from other families found in
this study) will form the subject matter of papers dealing with specific flow
field configurations. However, in order to illustrate the interpretation of
mathematical arbitrary constants in terms of basic physical parameters,
the analysis of the spherically symmetric solution mentioned above is car-
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ried up to the point of actual substitution of numerical values in the

formulae.

Note: In the following, functions and constants described as ‘“‘arbitrary”
are to be considered as being subject nevertheless to the restrictions
implied by (6). In any particular case it is an elementary matter to
determine these restrictions and we shall not usually carry out this
detail. Also, “arbitrary” functions are subject to appropriate dif-
ferentiability conditions readily evident in any particular case.

B. SoME PrROPERTIES OF THE CURRENT DENSITY VECTOR FIELDS

Several interesting properties of the current density vector fields || || »
and || are easily found from (3)-(3).
It is evident that (3) and (4) can be rewritten as

i k
|l = —eup p grad ('0 + TTm p) ®)

and

]

l|» = —epn n grad ('O — k?T In u). (9)
From (3), (4), and (7) we have

ﬁ = _e(}lnn + “PP) g[‘ad V + kT grﬂd ([-Inﬂ - “iﬂp) (10)

which because of (5) can be rewritten as

| = —¢ (ua n + up ) grad ['u — kT ey, n-HJtpP)] (11)
[ I—‘n+nu'p

Now (8), (9) and (11) are all of the form
u = ¢grady
and hence obviously satisfy the condition
u - curlu = 0.
Therefore we have

o o
Theorem 1: || ,, ||, and || are surface-normal vector fields.

From (8)-(10) we find, using (5)

curl ||, = —ep, grad p X grad U, (12)
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curl ]0|n = —eu, grad p X grad U, (13)
and
curl || = —e(u, + pp) grad p X grad 0, (14)
whence
[ Theorem 2:
curl rlp _ curl |D|,= _ curl |DJ )
Mp Mn Mo +

o o ]
| That is, curl ||, , curl ||, and curl || are constant multiples of one another.
and

[ Theorem 3: ||,, ||, and || are irrotational if and only if

grad p =0 (2 = p(0)
or grad U =0 (0 =0@)
or V = 0(p, ).

The following interesting relations can be obtained from (8) and (9)
(they are really consequences of Theorem 1):

curl |Q|p = grad In p X ﬂ,, (15
and
curl Iol,, = grad In n X ﬂ,, (16)
Now from (3) — (5) we find
[lp X |ln = epnpakT(n + p) grad p X grad O (17a)
= JuappkT(n 4+ p) grad (n + p) X grad 0 (17b)
= lewu, kT grad (n + p)* X grad U (17¢)
= tepu,pp BT curl [(n + p)? grad V| (17d)
and
o 0“ kT
by Tl _ grad |:N‘U - —(n+ p):l (18)
Hp€ Hn€ €
and
o + lln = —(n + p) grad 0. (19)
pt Un€
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[Nole: As is suggested by (18) and (19), the total carrier concentration
P=n+p=N+2p=22—N@>|N|

will frequently appear as the “natural” concentration variable in
the relations with which we shall be working. Hence, expressions
involving p, or p and n will often be replaced in the sequel by their
equivalents in terms of the variable ®. It will be noted that

grad @ = 2 grad p = 2 grad'n.]
Equations (17) and (19) yield at once the following theorems:

[ Theorem 4: The vector field

o

o X ln = [I X Iln = [» X [l
is solenoidal.
[ Theorem 5: The vector field

(ﬂ? - J) is irrotational with a potential (—eNU + kT®).
L Hp Hn

[ Theorem 6: The vector field

=] o
(Ui’ 4 HJ) is surface-normal (to the surfaces of constant V).
Hp Mn

o o o
[leeorem 7: |ls, lla, ||, grad U, and grad p are coplanar vectors.

" Theorem 8: The flow lines of any two of the fields ||, ||, and | coincide
if and only if

grad p = 0 (¢ = p(®)
or grad U0 = 0 (U = V@)
B or V = V(p, §).
Also, from (17) and (19) we obtain the curious relations:
JX&=*ngad@X(ﬁ+Hl) (20a)
Lp M 2 By e
e c‘»n
= — k—T # curl (m' + “—) (20n)
2 p Hn

= — ﬂ‘ curl |:(P(—p + &‘)] (20¢)
2 » M
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Finally, by taking the divergence of (7) and making use first of (1) and
(2) and then of (5), we obtain
[Theorem 9: The vector field || is solenoidal
C. FORMULATION OF PARTIAL DIFFERENTIAL EQUATION SYSTEM

RESTRICTING ® AND U

A very convenient formulation of the partial differential equations re-
stricting @ and U is suggested by (18) and (19). Taking the divergence of
these equations and substituting (1) and (2) into the results we obtain

div grad (N‘U — E‘(P) - ( ®R + li{g)

(21)
and
div (® grad ) = 8 (G{ + % %)) (22)
wherein for brevity we have set
a = i + .1_
Kp Hn
and
1 1
f=—-

and shall henceforth assume 8 # 0, i.e., u, # u, . Equations (21) and (22)

yield immediately a derived equation not containing explicitly the terms
introduced by recombination and time variations

div grad (N’O _ T (P)

g div (® grad )
or

(23a)

or

div [(N + %‘@) grad U — k—f grad @] =0 (23b)

div ((@ + %V) grad [ ‘BkT (cP + M):D =0 (230

Either the set (21) and (22) or one of the forms of (23) together with either

(21) or (22) constitutes a basic set of two partial differential equations deter-
mining ® and V. We are here considering ® as ®(®)
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It will be observed that (23) is equivalent to the condition

div]|]=0 (24)
established as Theorem 9.
(In terms of ®, (10) becomes

| = — _LZ_LT’)I:(E(P + N) grad U — kTTgrad (P):l (25)

In most of the following sections we shall find it expedient to consider
separately the cases N # 0 and N = 0 (associated respectively with semi-
conductors of the extrinsic and intrinsic conductivity types). For the case
N £ 0, use will be made frequently of new dependent variables U and 3C
defined by:

__ kT
q = = @ (26)
kT
=7 ;ﬁ@—'u——'u. @27
That is,
_eN
=7 U (28)
V=43 (29)

will be substituted into relations involving @ and U to obtain the corre-
sponding relations in terms of U and 3JC. Incidentally, it will be noted that
L and 3C have the dimensions of voltage.

In terms of U and 3C the basic equations (21)—(23) can be written:

. eN U
div grad 3¢ = N [(R + == T at] (30)
. ﬂkT eN ou
div [u grad (U + 3¢)] = N [(R—l— T at:l (31)
div [grad e + ,BkT‘u grad (u + SC)] (32)

wherein ® will be considered as ®(WL).
It will be observed that, in the absence of recombination and time varia-
tion, (30)-(32) reduce to

div grad 3¢ = 0 (33)
and [V = 0]
div [U grad (U + 3¢)] = 0 (34)
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The elegant form of this set of equations furnished the original motivation
for the introduction of the variables U and 3. The comparable equations
for N = 0 are

divgrad ® = 0 (35)
(v =0
div [® grad U] = 0. (36)

D. THE ReEcomBINaTION RATE FUncrion ®

In order to avoid undue confusion in the sequel we shall at this point
make some clarifying remarks concerning the function ®. As was stated in
the Introduction, we basically regard 6t as a function of p — poand n — #n .
However, because of (5), any expression in p — po and # — #, can be re-
placed by one in which (say)  is the only field variable quantity. It is then
convenient to regard ® as a function of p and write it ®(p). When dealing
with expressions in terms of @ and of ‘U, it is convenient to regard ® as a
function of one of these variables and to indicate this fact by writing ®(®)
or ®(U). When we do this we do not mean that ®(®) (say) is the same
algebraic function of ® as ®() is of p, but rather that ®(p) is the function
of p obtained when one substitutes ® = N + 2p into ®(®).

For example, for constant mean lifetime recombinalion

@(p) = 1 (b — po) (37a)
&) = .- (@ - 0 (37b)
To
_eN .
@) = Trok T (u — W) (37¢c)
with 7y constant;
and for mass-action recombination
®(p) = ni [p(p + N) — pone] (38a)
©) = ———— (6" — &) (38b
R = (@ + N) & T O )
82N2 2 2
®(u) = BT (G0 & V) (u® — atg). (38¢)
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E. Appition oF ARBITRARY TIME FUNCTIONS TO U AND 3C

Since only the gradient of U appears in the basic equations (21) and (22),
it is evident that if

V= V(x, v, 2 1)

and

® = @,y 31

are a pair of functions satisfying (21) and (22), then so also are
D=V, y 31 + m)
and
® = ®(x,v,31)

where #(f) is an arbitrary time function.
And since U = U + I, if

e = Jc(x, v, 5, 1)
and
U = Ulx, v, 5, 1)
are a pair of functions satislying (30)-(32), so also are
3 = 1(x, v, 3, 1) + m(t)

and

a4 = Ulx, y, 3, £).

These arbitrary additive functions with zero gradients are physically
trivial in that they merely reflect the arbitrariness of the reference voltage
level. They will, however, be retained for the sake of formal completeness
whenever they appear in the subsequent analyses.

F. SUMMARY OF SOLUTIONS FOR NO RECOMBINATION OR TIME VARIATION

The next ten sections of this paper (Sections G-Q) contain a sequence
of detailed analyses in which is determined the existence or non-existence of
solution fields having certain prescribed formal properties. In most of these
studies time variability and recombination are admitted and the analysis
includes the establishment of the class of recombination rate functions
® consistent with the property under consideration. In those cases where
solutions are found to exist, they are expressed in the simplest convenient
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terms: in closed form, or as solutions of an ordinary differential equation,
or as solutions of a single partial differential equation. The solutions found
usually involve arbitrary constants and/or arbitrary functions of various
kinds.

The present section is intended to provide a skimpy but compact sam-
pling of the results obtained in the next ten sections. It will be confined to
a simple listing of solutions found and furthermore will contain only the
forms to which these solutions reduce when recombination and time varia-
tion are excluded. (Some solutions are lost under this reduction.) A heading
will indicate the section(s) from which the solution comes as well as the
formal property associated with each solution.

For the sake of conciseness and simplicity the symbols denoting arbi-
trary constants and functions in this section are independent of those em-
ployed in the later sections. They are to be interpreted as follows:

A, B: arbitrary constants
h(x, ¥, 2): any harmonic function
(or with subscript)

(0, @): any giveﬁ solution field

[G. gradV = 0]

[g : f(x, ¥, 2)

[’U = h(x, y, 2)

[H,I. grad ® = 0]

® =4
[J. grad3C = 0, N # Q]
UV = A4+ Vilx,y,2)

Ne
® = 7 V(3,9

[K,L. U= 0(@®), N = 0]

B — k(x,, z)j'

’lJ=k(x,y,z)+AA[ 1

(4 #0)

o =N 40 [Bf_ ij’ %, Z)J
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(For definition of function A see Equation (87) and Figs. 1 and 2.)
[K,M. U =0(®),N = 0]

,:‘U=Alnh(x,y,z)+B

® = h(x, y, z)
[N, O. grad ®-grad 0 = 0]
UV = hy(x, y, 2)
= (%, y, 2)
provided

grad hl(x: Y z)-grad h2(x: Y Z) =
[N. grad W-grad 3¢ = 0, N = 0]

[ Vin(x, v, 2) + halx, v, 2)
Ne \/hl(x: Y, Z)

provided

Y

@

| grad iu(x, ¥, 2)-grad ho(x, y,2) = 0
[P. grad @-grad i = 0]

V=" + hix, y,2)
® =0
provided

grad ®-grad k(x, y, z) = 0.

G. Sorurions witH U = U({)

Our point of view in general is that ®@ and U (or U and J¢) are functions
of three space coordinates and time, so that U = V() implies for example
Jv a0 a0
that — = — = —— = 0. That is to say, we now seek solutions for which
dx ay dz
everywhere

grad ¥ = 0. (39)

From (21) and (22) this condition gives us the following restrictions on
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® (and none on V(!)):

div grad ® = 0 (40)
and
1 0@
®(®) + 391 = 0. (41)

By operating with div grad on (41) we obtain
®"(@) =0

(we consistently use primes to denote differentiation with respect to the
argument of a function of a single variable—e.g.,

PN dﬁ(@))
O =
whence,
2R(°) = A® + B (42)

(A, B: arbitrary constants). Substituting (42) into (41) we obtain

a@
a‘i‘fl@— B

whence
® = clx, v, 2)e * — B/4 (4 #0) (43a)
or
® = c(x,v,5) — Bl (4 =0). (43b)
From (36) it follows that
div grad ¢(x, 3, 2) = 0, (44)

that is, ¢ must be harmonic.

In brief, if ®(®) is of the form given in (42), any V(/) and (43) constitute
solutions to the flow equations for any harmonic ¢(x, ¥, z). Other forms of
®(®) admit no solutions with VU = V(?).

It is evident that when recombination is absent time variation is also
absent, and vice versa. The solutions reduce in this case to:

S

Il

C (C: arbitrary constant) (45)
c(x, v, ). (46)

Il

®
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H. Sorurions witH @ = ®(1), N # O

The condition
grad ® = 0
yields from (21) and (22)

(N +gG’) div grad U = 0

and

. 1d@
® div grad 0 = B l:(R(CP) + 3 E:I

Two cases arise for ® £ 0:

Case 1:
oo _BY
o
and
div grad 0 = — < ®R(®)
v gra =~ % BN
G) —_
23
Case 2:
1d@
®(®) + 3= 0
or
D—1= fz—(% (D: arbitrary constant)
and
div grad U = 0.

When recombination is absent, these cases reduce to:

®=E (E: arbitrary constant)

and (33).
When time variation is absent, Case 2 again yields (53) and (54).

1187

(49)

(50)

(51)

(52)

(53)

(54)

It should be recalled that U can depend on [ as well as x, y, z; so that
arbitrary functions of  play the role of arbitrary constants in (51) and (53),

whenever time variation is allowed.
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1. SoruTions witH P = P(f), N = 0

For N
dition ®

0, only Case 2 of the previous section occurs, because the con-
0 (implying no carriers!) is of no interest.

Il

J. Sorutrions witH 3¢ = Je(t), N # 0
For grad 3¢ = 0, (30) and (32) yield:

eN dU
LT = 5
/(W) + 5757 =0 (55)
and
div grad u* = 2 divu grad U = 0. (56)

Taking the div grad of (55) multiplied by U we obtain
div grad Uu®(@) = 0
whence, because of (56)

4k—; ar(u) = Fu’ + G (F, G: arbitrary constants)

or

4kT L qw) = Fu + Gu™, - (57)

Substituting this permitted form for the recombination rate function into
(55) we obtain

3‘\L

4 Fu' = —G (58)
whence
U = VJf(x, y,2¢ " — G/F  (F#0) (59a)
or .
=Vfx, y,2 — Gt (F=0). (59b)

From (56), f(x, ¥, 2) is subject to
div grad f(x, v, z) =0. (60)

In summary, if and only if ®() has the form (57), there are solutions
for which 3¢ = 3¢ (t) (arbitrary). The AU is given by (59) in which f is an
arbitrary harmonic function of x, y, .
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In terms of @ and ‘U these solutions are given by:

®R(P) = (P + (EN) f@ g (61)
¢ = Z_]a\; VG, 3, 9P = G/F (F=0) (62a)

or

eN  —
= k_T \/f(x’ ¥ z) — Gt (F = U), (62b)
and

= 5) + Vf(x, v, 2P — G/F (F # 0) (63a)

or

=5 +V/(x, v,2 — Gt (F=0). (63b)

For no recombination (® = 0), these results specialize to (59b), (60),
(62b), and (63b) with G set equal to zero. It should be noted (see (55)) that
absence of time variation implies absence also of recombination.

K. Sorurions WiTH U = U(®, £), GRAD ® = 0

In Theorems 3 and 8 of Section B we have shown that some very inter-
esting properties are implied by the condition

grad U X grad @ = 0. (64)

In sections G-I we have treated the cases grad VU = 0 and grad ® = 0.
We now turn to the remaining possibility leading to (64):

V = V(®, t) with grad @ = 0. (65)
Substitution of (65) into (23b) leads to

av kT
[(N + - 5 (P) 7 " ] div grad @

F:) o0 kT 2
+ — 30 [(N + - 3 (P) Frs _e] (grad ®)" = 0. (66)

Two cases arise.
Case I:

a o0 kT
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This condition clearly satisfies (66) and leads to

(e, ) = g) + gg‘ 1 + %\T (g(1): arbitrary function). (67)

The restriction on @ is then provided by the result of substituting (67)

into (21):
- Jo@) +32]. 9

, _BN )
div grad [G’ " In|®+ 3 a1

Any @ satisfying (68) constitutes with (67) a solution having the property
desired.
If (65) is substituted into (25) it will be found that the condition

)av ig_o

(N+ ® 36 .

B

[=]
is equivalent to || = 0, so that Case 1 is characterized by zero total current.
Case 2:

(N+ (P)aeu g#o_

B oF e
In this case (66) can be written in the form
div grad @ i a0 kT :‘
cYeft - — 2 ®
(grad @) 0P [(N T3 B ) P e o(@,0.  (69)

From (69) it follows that ® must be of the form @ (&, ) with
div grad #(x, v, 3, £) = 0. (70)

In summary we have

Theorem 10: If U = V(®, t) with grad @ = 0, then either || = 0 or U =
Ok, 1) and ® = ®(k, {) with div grad k(x, v, z, ) = 0.

We shall investigate the restrictions on the functions k(x, y, z, 1), O(h, 1),
and ®(h, ) in the next two sections.

Theorem 10 remains unchanged if recombination is absent. If time varia-
tion is absent, it simply drops / as a variable in the functions mentioned in
the theorem. If both recombination and time variation are absent, the
theorem can be strengthened to:

Theorem 11: If both recombination and time variation are absent and
UV = V(®), then U = V() and ® = ®(h) with div grad k(x, y, z) =
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L. Sorutions witH U = V(k, £), ® = ®(k, 1), GRAD @ # 0,
DIV GRAD bk = O, N # 0

For formal reasons we shall work, not with the conditions ® = ®(k, f)
and U = U(k, (), but with the equivalent conditions

U = WUk, {) and 3¢ = 3C(h, 1). (71)

The condition grad @ # 0 now implies Z—: #= 0.

Substitution of (79) into (30) and (32) yields—after use of (70):

a'se : o« eN dU | eN dU ok
ra——ki (grad h)" = N |:(R(‘U.) + 5T 31 + T o a] (72)
and
a ([ BrT ase aU
i B Rl i —)=0. 73
ok (l: ae cu'j| ol T 61;) (73)
From (73) we get
. o
ase _ jw (74)
AT
oe

(j () : arbitrary function)
which yields upon substitution into (72):

, au
] HORESR 7
ah | BT

e

(grad B)*
+ u (75)

o eN {ouadk  oU

ou nd " u

in which U, an’ and oo

are, of course, functions of / and of /.

In determining the combined implications of (75) and (70) three cases arise

9.

. a°3C
according to whether or not ——3

ah
Case I:

= 0 or grad (grad /)> = 0.

= =0, grad (grad h)* # 0.
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In this case no satisfactory interpretation has been found when time
variability is present.
When time variation is absent, we work with the conditions

w = wlk); 3¢ = 3c(h)
with
div grad k(z, y,2) = 0 (76)

and arrive at counterparts of (74) and (75):

!
g = H— uu (7 = ﬂ_kZ) (H: arbitrary constant) (77)

T+ U e
and
" 2 _ H — ‘IJ.‘IL' ! 2 __«

From (78) it is evident that ® # 0 implies 3¢” # 0 and grad % = 0. So
we have

e (R(‘Il.)
(grad h)* = (S%W) (79)
Y+ U
which is of the form
[grad A(x, v, 2)]* = ¢(k). - (79a)
Now from (79a) follows
grad & X grad (grad k) = 0 (80)

which implies that the vector lines of the field grad # are all straight. Since
k is harmonic, this restricts the choice of % to the potential fields associated
with a uniform parallel flow, a straight line source, or a point source. Hence,
for suitably chosen rectangular coordinates (x, ¥, z), circular cylindrical co-
ordinates (p, 6, z) or spherical polar coordinates (r, 6, ¢), the only possibili-
ties, are respectively

h=x— (grad h)? = 1 (81a)

or

h o= ln;1-—>(gradh)2=’1?=e”' (81b)
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or

p=1 -a (grad ) = 1 = i (81c)

-‘

The possibility & = x violates one defining condition for the present case
(i.e., grad (grad )* # 0) and hence will be left for consideration in Case 3.
The remaining two possibilities lead respectively to the following forms of
ordinary differential equation for the determination of WU(k):

S—auuw\ |« _
(m_) +5¢ ®w =0 (82b)
or
S —au")’
(W_—Fﬁ") +2 v E‘m(fu) 0. (82¢)

Given any (k) satisfying one of these equations, the associated 3C(k) is
obtained by integration from (77):

- (1) s

It is evident from (72) that Case 1 does not exist if both recombination
and time variation are absent.

(J: arbitrary constant). (83)

Case 2:
a'3e
o =0
Ly . ... d3C .
In considering this case we shall exclude the condition i 0 because it
has been included in Section J.
a”
W 0 we have
e = k()h + ) (k(#), £(t): arbitrary functions) (84)

with k& # 0. This shows that 3C itself is a harmonic function and we can with-
out loss of generality use it in place of /.

Equations (74) and (75) now yield the two conditions on WU(3C, ¢), ®(W),
and 3C(x, y, 2, £):

. U
A S (85)
U+
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and
eN (o0 93C au
aL — == — — ] =0 86
®( )+2kT(63(3 ol + Bt) (86)
4
3 AL
1
2
L
! [——
AN
Alx) o /
-1 V4
-2 /
/ Atin|A-1] =x
-3 //
A
4 pd
-35 -30 -25 -20 -15 -0 -05 0 05 10 15 20 25 30 35
%
Fig. 1—The transcendental function A (x).
12
8
e A,y
4 =
_...-—"'/
A(x)0 =
Al
-4 ]
// A+in|A-1] =%
-8
<
»1—214 “1i2_ -1 -8 -6 -4 -2 0 2 4 6 8 10 12 14
%

Fig. 2—The transcendental function A (x).

For the integration of (85) we need the transcendental algebraic function
of a single real variable defined by

A(@) +In|A(x) — 1| = (87)

This function is plotted in Figs. 1 and 2. It will be observed that x is always
a single-valued function of A; while A is a single-valued function of x for
x > 0, a double-valued function for x = 0, and a triple-valued function for
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x < 0. The single-valued monotone functions A;, Az, and Aj; are defined
respectively by the restrictions A > 1,1 > A > 0, and A < 0. When A is
used without subscript it is implied that either A;, A, or As can be used.
It will be useful to remember that

’ _ A(x) —1
Ax) == A (88)
In terms of the function A, (85) integrates to
— i) — m() — 3¢
woe =0 - M [TO=F] L,y @

(m(t) : arbitrary function)

or
e, t) = m(t) — 3 G =" (89b)
The latter case (j = ) corresponds to U = U(#) and hence was included

in Section G. Therefore in the following we shall consider only j # 7.
Now by making use of (89a) and (88), (86) can be rewritten in the form:

2T uG(w) AL _oe  fm=0)
eNU—j+y (G—mMU—j+v o = %)
. . d
primes denoting here a)
We now observe that the right side of (90) is harmonic, while the left side

is a function only of 3¢ and f. From this it follows that the right side can be
written in the form:

93¢ + 7’(m — % _ m = ¢(1) [m - :}C:l + 7(2). (91)
ot J—= J—
From (90), (91) and (89a) follows
%\1; ®(u) = —- f: au
! J Y (92)

U—j+ q o )
- a (r-{—j_'y‘ll-i—qlnu_v 11.

Since (92) is of the form

®(u) = (W, 0),

The result of taking (gt) of the right side must be zero identi-
U = const
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cally in U. Making use of the algebraic lemma that

x

7 1’50

A-}—B.«c—l—%-}—(D—l—‘%)ln

implies A=B=C=D=E=0, we arrive at two possibilities:
Possibility 1:
gy =r()) =0 and j— v = Ke™t)
(K, L: arbitrary constants)
This yields from (92), (89a) and (91):

2kT ®(u) = Lu (93)
eN
a(ge, ) = Ke ™A [%e“ (m(1) — 3c):| (94)

and
gz, y,2,0) = € sz, 9,2) + ™ fe“ [Lm(t) 4 m’(t):] dt  (95)

where s(x, v, 2) is any harmonic function.
Possibility, 2:
(j() = M, q() = Q,7(t) = R)
(M, Q, R: arbitrary constants)
This yields from (92), (89a) and (91):

2kT _ UM+
N ®(w) = B
0 N (96)
-(R—i‘—ﬂf—_—?(u-‘i‘an M—T_lw)
W) = (f — ) A [M} (97)
M — v
and
1, v,5 0 = 1Y ul, y, 2)
(98)
+ em.'cM—w) fe—(q:.'(mr—v)) |:R + m’(t) + MQ— 5 m(t):l di

where #(x, ¥, ) is any harmonic function.
In the absence of recombination, Possibilities 1 and 2 lead to the same
result: Equation (97) and

3e(x, v, 2, 1) = u(x, y, 2) + m(/). (99)
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In the absence of time variation, (86) shows that recombination is neces-
sarily absent, too, so the results reduce to

w(ge) = AA (f’ - “C) (100)
A

with 3C(x, v, z) any harmonic function and A and B arbitrary constants.
This solution for the case grad 3¢ # 0, together with that given by (59b)
and (60) (with G = 0) for the case grad 3¢ = 0, constitute a veritable gold
mine of useful solutions because of the arbitrary harmonic function involved.
An example involving a particular choice of 3¢ will be examined in Section R.

Case 3:
2
% # 0, grad (grad h)® = 0.

In this case (grad %) is a function of ¢ so that (75) can be written in the
form

From this it follows (because div grad = 0) that
h(x, v, 3, £) = a(O)b(x, v, 2) + 2(0) (101)
with
div grad b(x, y, z) = 0. (102)
The condition grad (grad #)* = 0 now requires further that
grad (grad b)* = 0. (103)

But any b(x, y, 2) satisfying both (100) and (101) can, by suitable choice
of axes, be written

b= Sx (S: constant).

This leaves us with exactly the same totality of solutions as we could have
obtained by setting W = W(x, £), 3 = 3C(x, ) in the first place. So we replace
h by x in (74) and (75) and obtain:
. U
t) — U—
ome 70 " Vox (104)
ox Y+ U
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and

au
o |10~ ‘ua\,] eN au] (105)
axl v+ u [m(m) T %r az] =0

Any U(x, {) satisfying (105) can be substituted into (104) to obtain 3C(x, ¢)
from

. ou
@) —U—
5e(x, 1) = (1) + f nyuaT i (106)

()-'(t): arbitrary function).

If recombination is absent, ®(W) disappears from (105). If time variation

is absent, ?f disappears from (103) and j(£) and f(¢) are replaced by arbitrary
constants. In the latter case, the standard change of variables

du d d
reduces the solution of the second order equation (105) to the solution of a
first-order equation followed by a quadrature. If both recombination and
time variation are absent, the substitution (107) reduces the solution of (105)

to two quadratures.
A set of equations equivalent to the steady-state (g—! = 0) forms of (104)

and (105) has been the subject of an extensive numerical investigation by
W. van Roosbroeck (Reference 1) for the recombination rate functions
given in (37) and (38).

M. Sorvutions wWitH U = U(h, 1), ® = ®(h, {), GRAD ® # 0,
DivGrap h=0,N =0

For these conditions (21) and (23b) yield

? (grad " = 25| (®) + 3 ("L”"—”Jr ] o

61" oh ot

and

a[a® ae _o0
@[5}? BkT@ ](gradk) (108)
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Since we do not here allow grad & = 0, (108) implies

¥ [3—@ - E(!)]
37? = __‘MG)—_ v = '[ﬂe_g (g(#) : arbitrary function) (109)
o
Case I:
EX
e # 0, grad (grad h)* # O,

In this case, as in the associated case in Section L, the implications of
(107) together with

div grad h(x, y,2,1) =0

are not known when time variation is present.
When time variation is absent, we work with the conditions

®=@®Mh) and UV = V(h)
with
div grad h(x, y,3) = 0
and arrive at counterparts of (107) and (108):

1" 2 _ gf‘
@ -(grad k)" = o7 ®(®) (110)
and

(@’ - 1@13’)’ = 0. (111)
Y

Proceeding as in the analysis of Case 1 of Section L, we infer that s must
be of the kind given by (81b) or (81c). The associated second-order differ-
ential equations restricting ®(/) are then, respectively:

@' — g%,e_%(ﬁ(@) -0 (112a)
and
,  ael
e’ — T &(e) = 0. (112b)

The V(%) associated with any solution of (112) can be obtained by integra-
tion from

~ ‘y(P’ - D = .
V) = C + f — dh (C, D: arbitrary constants). (113)
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It will be noted from (110) that simultaneous absence of recombination
and time variation is inconsistent with the defining conditions of this case.

Case 2:

We shall exclude the possibility of g%) = 0 because it is included in Section

I. Then, proceeding as in Case 2 of Section L, we conclude that @ itself is
a harmonic function and can be used in place of A (107) and (109)
then become-

®(®) + 33 0 (114)
and

av _ 2l1 — ()]

e e (115)
or

V@, 1) =1 — )] @+ 3(t) (5(0): arbitrary function). (116)
e . . .
Because T harmonic and a function of ®, we have

0@

WRE) = — % = E® — I
at
(E, F: arbitrary constants)
whence
2R(®) = E® — I (117)
and
Olx, v, 5 ) = € Fmilx, 3, 5) — fE (Ex ) (118a)
aor
O, v, 5, 8) = mx, y,3) + Ft (£ =0) (118b)

where m(x, v, z) is an arbitrary karmenic function.
If recombination is absent, these results specialize to (116) and (118b)
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with // = 0. If time variation is absent it follows from (114) that recom-
bination is absent, too, and the results specialize to

V@) =G+ Hhe (119)

with ®(x, v, £) any harmonic function and G and i arbitrary constants.
These solutions play the same role for the intrinsic semiconductor (N = 0)
that (100) does for the extrinsic (N = 0).
Case 3:

?—G)#O rad (grad k)* =

an grac g

In this case it can be shown, just as in Case 3 of Section L, that no gen-

erality is lost by considering ® = ®(x, ) and U = U(x, {) in place of ®(k, )
and U(h, t). Equations (107) and (109) then become

F® _ ae 196
o [ @ +1 aJ (120)
and
e
50 T[a_x - g(’)]_ (121)
6'5 ®

Any solution of (120) when substituted into (121) gives an associated U
from

<z) — &)
- 122
'U(xr 0 = Q’(t) + ¥ f T dx. ( )
If recombination is absent, ® () merely vanishes from (120). If time varia-
tion is absent, the functions g(f) and §(/) are replaced by arbitrary constants
and the standard change of variables

u(®) for e
dx
p J (123)
u(@) ﬁ fOl' I\:

leads to a solution of (120) in two quadratures. An equivalent solution is
given by W. van Roosbroeck in Reference 1. From (120) it follows that
recombination and time variation cannot simultaneously be absent for
Case 3.
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N. CONSTRUCTION OF SOLUTIONS FROM ORTHOGONAL Harmonic FIELDS,
N#0

There are many known examples of pairs of harmonic functions /u(x, ¥, z)
and hs(x, v, z) that have orthogonal vector fields—that is, for which

grad Jn-grad e = 0 (124)

with grad &y 0 and grad & 5 0. [E.g., the real and imaginary parts of any
analytic function of a complex variable.] From any such pair of functions
we can construct the following solutions of (33) and (34):

U = hl; I = kz - h] (125)
and

UW=h; H=h. (126)
In terms of ® and U these solutions are

® = %ﬁhl; V=h (127)
and

Ne ,— —

¢ = o7 Vi V=Vh+h. (128)

The validity of the solution (125) is seen from (33) and this expanded
form of (34):

Q div grad U + grad U-grad (U + 3¢) = 0. (129)

Similarly, the validity of (126) follows from (33) together with a different
expansion of (34):

div grad U 4 2 grad U-grad 3¢ = 0. (130)

Tt is evident that a given /; and & can be interchanged in the above

solutions to yield different solutions, and also that any given i or /. can be

replaced by an arbitrary constant multiple of itself plus a second arbitrary
constant.

0. CONSTRUCTION OF SOLUTIONS FROM ORTHOGONAL Harmonic Frerps,
N=20

We can write the differential equation system for the intrinsic semi-
conductor [(35) and (36)] in the form:

divgrad ® = 0 (131)
@ div grad U + grad @-grad U = 0. (132)
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From these we verify the solution:
®=l; V=l (133)

for any harmonic # and k. satisfying (124).
The solutions given by (127) and (133) have the property

grad ®-grad U = 0

and so may be considered, in a sense, complementary to the solutions in
Sections L and M for which

grad @ X grad U = 0.

P. SuperrosiTioN oF A Harmonic 3€ Fierp, N, # 0

Inspection of the equation system [(33), (130)] reveals the following
superposition theorem for obtaining new solutions from some known solu-
- tions for lhe case of no recombination or time varialion:

Theorem 12: 1f [, 3C] is a known solution and if % is any harmonic func-
tion such that grad - grad # = 0, then [U, 3C + %] is also a solution.

Or, in terms of ® and U:

Theorem 12': Tf [®, ‘6] is a known solution and if / is any harmonic function
such that grad & grad = 0, then [®, T + 4] is also a solution.

In the latter form it is evident from Section O that the theorem holds also
for N = 0, but does not extend the results of Section O.

Q. A Partiar DirrereNTIAL EqQuaTion IN TERMS OF 3C ALONE, NV 5 0

For N = 0, (21) provides a differential equation involving only one de-
pendent variable—®. We shall now derive an analogous—but vastly more

complicated—differential equation for the case N # 0, %i::-l = 0.
For this case (30) and (32) become

. a
div grad 3¢ = ¥ ®(u)
and
divI:grad i + %(u grad (U + JC)] =0,

or in terms of a familiar vector symbolism
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9 a
Vi = — KT(R(‘U,) (134)
and
v- [V:;c + 1—fuv'(fu + :1(:)] = 0. (135)
Y
Now let $(L) be the inverse function to ®(1), i.e. the function such that
S(R(W)) = .
Then from (134) we have
U = s(— Iiv’sc). (136)
o

Substitution of (136) into (135) yields after some computation

88’V (v'se) — i‘—: (88" + s™)(vv'ae)’

(137)
+ 8'vae- vV — = (8 + N)V'ie = 0
where §'(p) = & 5(y), etc.
dy ’
8, §', 8" are considered as given functions of <- y V”S{‘.).
o
The simplest meaningful choice of § is
s(—jfvzsc>=5}-(—ffv23c)+1§' (138)
a N a

(J, K: prescribed constants)

corresponding to constant mean lifetime recombination. For this 8, (137)

specializes to
F(R — Jvae)va(veace) — JH(Vvac)? (130
+ Jvie.vvsme — (v + K — Jvie)viae = 0.

If any 3¢ can be found satisfying (139), the associated U is given (from
(136)) by

@ = Jviae + K.
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R. SAMPLE APPLICATION OF THE RESULTS oF SECTION L: SPHERICAL
SymMETRY, N # 0

As an example of the solutions included in the results of Section L. we
consider the case of a spherically symmetric field about a point (or spherical)
source of current.

We take, as the most general harmonic function having spherical

symmetry,

=L-+M (140)

| =

(T, M : arbitrary constants).

For the time being we shall assume 7 ¢ 0 and M 3 0. Then from (100)
and (28) and (29) we have

ﬁ=§A(B—_-M—j—~—/I)+M+£ (141)
A r
and
_Ne - (B—M—1/r
® = ﬁ"AA( — ) (142)
In terms of U and @®, (3) and (4) can be written
!Dl,, = _—;‘”—e [(@ — N) grad U + "?T grad (9] (143)
and
ﬁn = _g"g |:((P + N) grad U — g grad (Pj| (144)
which yield upon substitution of (141) and (142):
= 2wV (A = 1) ki (143)
2 r’
and
lln = L eV i4"+1)1—1- (146)
S A T o

where T, is the unit radial vector. The total current density is obtained by
adding (151) and (152):

=]

|I = |:(#n + #p) A + (ﬂvn - #IJ)] (147)

NI'-
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The currents flowing are obtained from the current densities from the

relation
o
I = “ Qg

where € is the solid angle (with respect to the origin} within which the
flow field lies. (If the current source is surrounded by the homogeneous
semiconductor, & = 4ur; if it lies on a flat surface of a large slab, & = 2,

etc.) So we have

1 ~fe =
1 ~fe =
I, = EﬂpneNL (H‘A -+ l) (149)
1 -
I= EQGNL[(#!A + up) %-‘T + (ua — #1:)]- (150)

We shall now obtain expressions for the mathematical parameters E, 4,
L, and M in terms of meaningful physical quantities: I, , I , Vs and ®a.
(Subscript = refers to values of variables as r becomes very large.) We
shall take our reference voltage as the voltage “at infinity” so that V. = 0.
Setting 1/ = 0 in (141) and (142) we obtain
0 = AA (B ;, M ) + M

and

Ne ~ (B— M
“"‘"ﬁ"“( i )

from which follows (for 4 # 0)

B=Zm1’1—4+1‘ (151)
A
and

— kT

Fro= (148) and (149) we readily find (for L = 0):

A’ — Iﬂ‘.uprn + P'-nIp (153)
€ F’pIn - F'nIp
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and

T
L=t (154)

Finally we substitute (152) and (153) into (154) to get
B — EﬂpIﬂ + Ju-nIp In (N - G)m)_h'-pIn + (N + G’m)#’nfp
€ »UpIn - I-“n-[p AT(IJ’JJITI - ,U-nIp)

Equations (152)-(155) give the desired expressions for M, ;4:, L and B
in termsof 7, , I, , and ®,, for U, = 0if A = Oand L 5 0.
For A = 0 we can repeat the above steps using

(155)

V=28 (156)

and
=B - -1/ (157)

in place of (141) and (142). The result for Z % 0 and U, = 0 is

I, = —1Qu, eNL (158)
I, = 1Qu, eNL (159)
I = 3QeN (un — pp)L (160)
with _
B=0 (161)
M= — ]:-I—i; P (162)
and

— 2, 2. ppla — el

I = = =
Qu, eN Qu, eN Qup pneN

(163)

It is evident that 4 = 0 implies U = constant and u,f, + p.d, = 0.
The condition L = 0 makes 3¢ = constant, so we use (62b) and (63b)

and set
V=04+VR+ §/r (164)

and

@ = %ﬁ VR + §/r (0, R, S: arbitrary constants).  (165)
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From (143) and (144) we obtain
QN‘-"QF"D <

I, = — AT (166)
_ ONe'pa ¢
I, = T S (167)
and
QN
I= = (un + ) 5. (168)
From (164) and (165) we readily obtain for U, = 0:
kT
(N @ ) (169)
and
~ kT
Q = ~ ¥ P (170)

It is evident that L = 0 corresponds to the case 3¢ = constant and implies
#pIn - nU-ﬂIp = 0.

The foregoing now provides a formal solution with U, = 0 for every
assignment of values to @, I5, and I, . There remains the question of the
requirements imposed by the condition

np=>0
which is equivalent to
®>|N|. (171)
This implies first of all that ®, must be chosen >| ¥ | .
It is instructive to look first at the case L = 0. Equation (165) shows
immediately that (171) requires the choice of the positive sign for the radical

for N > 0 and the negative for N < 0 to avoid ®, < | N | . We further find
by substitution of (166) and (169) into (165) that (171) requires

, > [ I }Mp. (172)

QkTu, (@ — | N |7)

The bracketed factor is positive. Since we are interested only in non-negative
values of , (172) imposes no restriction if T, is zero or not of the same sign
as N. However, for N and I, of the same sign, (172) establishes an inner
radius inside which the solution does not satisfy (171). This may be regarded
as establishing the minimum radius for an inner spherical electrode for
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prescribed I, and ®,, or alternatively as limiting the possible choices of
I, and @ for prescribed inner electrode radius. Had we chosen the con-
stants Q, R and S so as to obtain prescribed values of ® and U at a pre-
selected electrode radius ry , restrictions analogous to (172) on the maximum
radius would appear.

For the case A = 0 the restriction analogous to (172) is

r> — [ﬂquT(@w e ):II,,. (173)

Since the bracketed factor is positive, (173) provides no restriction for
I, > 0, but for I, < 0 establishes a minimum radius of the kind just dis-
cussed.

For L, A # 0, the analog of (172) and (173) is

r > E/ A
= o (HTOL\ L (RTIN (174)
NeA ( Ned
where 4 and L are given by (153) and (154) and A~ denotes the inverse
function of A—i.e.,,

AA(x)] =«
or
AA) =A+In|A—1].

Equation (174) is a minimum radius restriction of the same kind as those
obtaining for 1 = 0,and L = 0, but the relationship between the minimum
radius rq and @, , I, and 7, is considerably more complicated than in the
more degenerate cases.

It will be noted that the relation

lﬂ"(&,_A(BﬂM)
eN 4 1

A
(with A, B, M givenintermsof @, , I, I, by (152), (153), and (154)) deter-
mines which function (A;, As, or Ag) is to be used for A in any given case,
because any assigned value (# 0) is taken on by one and only one of
(Al ] A2 ) A3)-

If surface recombination is negligible as well as interior recombination,
this spherically symmetric solution is of use in the study of “point” con-
tacts on a plane surface of a semiconductor. [Fig. 3 and Ref. 2.]

The results of this section can easily be duplicated for any other choice
of the harmonic function 3C to obtain a great variety of specimen solutions.
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Solutions based on 3¢’s having a single source singularity (such as the ex-
ample above) will contain four mathematical parameters, and hence will
permit arbitrary selection (subject to (6)) of the physical parameters, I,
I., ®., and V.. However, solutions based on 3C’s having more than one
source singularity will provide only a subset of the possible assignments of
the physical parameters. For example, the harmonic function associated
with the electrostatic field produced by two separate point charges each equi-
distant from two parallel infinite plane conductors provides solutions of

N, \ v 1 ' + 7
~ \ \ ! / /s
~ AN k \ / ! i -
~ N \ \ ! / -
7
> ~ Y \ ] -
. ~ \ \ / II J -
s. N \ \ ! / // PR
~ N L / ’ e
s N, N ' ’ -
N ~, LY I / -
~ N \ ! - - -
- N N \ / - -
~—— ~o AR [y -~ -
~——— ~ NNV /s e -
~. N I -
~~ <o S e -
- S ] I -
T~ \\\\\Irc'l’/z -
-~ -

AT 7

Fig. 3—Point source flow field, useful in connection with point contact theory

Tig. 4—Two-source flow field between conducting planes, useful in connection with
Type A transistor theory.

interest in connection with the type A transistor configuration (Fig. 4).

However, the family of solutions obtained contains only a five-parameter
subset of the six-parameter family obtainable by arbitrary assignment of

Ilﬂ’ IP'-'; T y Inz, P, and U, .
S. SAMPLE APPLICATION OF THE RESULTS OF SECTION M: SPHERICAL
SymMMETRY, N = 0

We now round out the considerations of Section R by exhibiting the
related solutions for ¥ = 0 (i.e., the intrinsic semiconductor).
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In accordance with the results of Section M, we choose for ® the most
general harmonic function with spherical symmetry:

®=A % + B (A, B: arbitrary constants). (175)

From (119) then, for A # 0

U=Em(ﬁé+8)+é (176)

and from (175), (176), (143), and (144)
I, = %n,u,,eﬁ (E’ + kTT) (177)
I = L Quned (ﬁ - g) (178)
I= %ﬂefi |:(uu + ) H — (un — ) %] (179)

From (177) and (178) we obtain
A= ’1“791 ”p ; :;I (180)
and

i = RT pnlp 4 ppln (181)

e pul, — up I’
and from (175) and (176) for U, = 0:
B =@, (182)

and

R

P iy L (183)

G=—-HWnB=
The condition ®, > | N | = 0 introduces the restriction (for A # 0):

1
2 a5 wdp — wpl)
12 g | el = ) (184)
Evidently this implies no real restriction for p.f, — p,l. < 0 (i.e., A <o),
but introduces a minimum radius—of the same kind we have already dis-
cussed—when pnfp, — ppl, > 0 (ie, 4 > 0).
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For ﬁ = 0, @ is constant and, by Section I, 0 is harmonic. So we set

®=0F.,>0

and

and obtain from (143) and (144)

I, = 3Qu, eCO,
and

I, = 30u,eCO., .
From (187) and (188):

- 21;; 2Iﬂ _.u'nIp+ﬂ'pIn

- Qu ,e®,, - Qu,e®,, T Qu, ppe®,
and from (186) for U, = 0,

-

D =0.
Evidently A = 0 is associated with the condition
pnlp — ppln = 0.

T. Summary LI1ST OF SYMBOLS

Coordinate Systems:

(x, y, z): ordinary rectangular cartesian coordinates.
(p, 0, z): ordinary circular cylindrical coordinates.
(r, 8, ¢): ordinary spherical polar coordinates.

T : unit radial vector in (r, 6, ¢).

i : time variable.

Physical Variables:

n : concentration of negative carriers (electrons).
p : concentration of positive carriers (holes).
@: total carrier concentration = n + p.

M:E?(P (N # 0).

Y
®: recombination rate function.
U electrostatic potential.

(185)

(186)

(187)

(188)

(189)

(190)
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:EU—‘U=U—§€U‘ (N = 0).

: total current density vector.

° a8

_—o

|+ electron current density vector.

(=]

||p: hole current density vector.
subscript ““0”: designates thermal equilibrium values.
subscript “e"’: designates values “at infinity”.

Physical Constants:

T': absolute temperature.

¢ :magnitude of electronic charge.

k : Boltzmann’s constant.

un: electron mobility constant.

ip: hole mobility constant.

a:=1/p, + 1/u..

B:= 1/up — 1/u,. (Assumed > 0)

T:Eﬁk_T
ce
Ni=n — po.

Other Constanis and Functions:

A, B, -, Z ((except I, N, and T)),

&J BJ Tty ZJ

A, B, .-+, Z: arbitrary constants

a] b’ e ’ z ((except e? hl k) nl PJ r’ tJ x] y’ z))’

d, b, --- , 2 arbitrary functions of variables designated (e.g., j()).

h, by, hy : harmonic functions of variables designated at place of usage.

A: A(w) is defined by the relation A(x) + In|A(x) — 1| = .
(See Figs. 1 and 2.)
§: $(U) is defined by $[R(W)] = .
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