Telephone Traffic Time Averages
By JOHN RIORDAN

(Manuscript Received April 25, 1951)

This paper describes the determination of the first four semi-invariants of the
distribution of the average, over an arbitrary time interval, of traffic carried by a
telephone system with an infinite number of trunks, during a period of statistical
equilibrium, Both finite and infinite numbers of independent call sources are con-
sidered, and the distribution function of call holding times is left general.

1. INTRODUCTION

OR mathematical studies of telephone traffic, like those of call loss or

delay which are used in trunking engineering, the traffic is considered
as a flow of probability in time. In the period of most importance, the busy
hour, this flow is usually regarded as stationary; that is to say, the proba-
bility of a given number of busy trunks, or the probability of delay of an
incoming call (or any other probability of the system which comes in ques-
tion) is taken as independent of the particular moment in the busy hour at
which the system is examined. The system is said to be in statistical equilib-
rium,

For such theoretical studies, the statistical quantities which determine
these probabilities; like the rate at which calls appear, are of course taken
as given, but in the application they must be determined by observations,
such as those being taken in the current extensive program of traffic meas-
urements. Here a difficulty appears. To abridge the extensive amount of
observational material, either measurements are made of traffic averages
over periods small compared to the busy hour (but not small enough to be
neglected) or the measurements of continuous recorders are averaged by
hand. It may be noticed here that for application of the results given below
the traffic averages obtained by measurements must be those of a con-
tinuous device which records all traffic changes and not, as in some measuring
devices, those obtained from a number of “looks” at points within the
averaging interval. But to use these measurements in determining the
traffic parameters by standard sampling theory, a corresponding theoretical
study of the averages is necessary.

Such a study, within limits to be described presently, is given here. No
attempt is made to describe the sampling studies possible from the results
reached. These seem to be of many kinds, not necessary to describe, but for
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concreteness it may be mentioned that the most important, at the moment,
seems to be that of setting confidence limits for the average traffic.

The most important of the limits to this study are those implied by the
assumptions of statistical equilibrium with fixed average, and an infinite
number of trunks. The former limits application to periods in which, roughly
speaking, average traffic is neither rising nor falling; the latter is justified
only by the extreme mathematical difficulties produced by assuming other-
wise. The traffic variable is the number of busy trunks in a period of statisti-
cal equilibrium. For pure chance call input, the call holding time character-
istic is left arbitrary throughout the development, but main interest lies in
the two extreme cases of constant holding time and exponential holding
time, which are examined in detail.* For calls from a limited number of
sources, results are obtained only for exponential holding time.

More precisely, if N{¢) is the random variable for the number of busy
trunks at time ¢, the variable studied, the average number of calls in an
interval of length T, is

M) = } fu NQ) dt (1)

The question is: What are the statistical properties of M (T)?

The results given are the first four cumulants (semi-invariants) of M(7T),
which seem to have the simplest expressions. For the convenience of the
reader it may be noticed that the first cumulant is the mean, the second
the second moment about the mean which is the variance, the third the
third moment about the mean, and the fourth the fourth moment about
the mean less three times the square of the variance.

In all cases the mean of M(7) is the mean of N (/) and for pure chance call
input is called b, the average number of calls in unit average holding time, /.

The other cumulants for pure chance call input, &, , have the general
expression

nln — 1
kn = b —
Tn

T

) f dxg() (T — x)x"; n=234
0

with

e =1 [0 a

*F. W. Rabe [6] has reported results for these two cases for relatively long averaging
intervals, which are verified below. I owe my interest in this problem to a report on Rabe’s
work made by Messrs. Gibson, Hayward and Seckler in a probability colloquium at Bell
Telephone Laboratories initiated and directed by Roger Wilkinson.
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and f(1) the probability that a call lasts at least , that is, the distribution
function of holding times. The specializations of this, for constant holding
time and exponential holding time, appear in section 4. The results for
finite source input have a similar character.

The procedure in obtaining these is as follows. The cumulants are de-
termined from the ordinary moments (about the origin) and the latter
are determined by the integration of expectations. Thus the first moment,
the mean is determined from

(D)) = & f BN dt = EING) @)

where E(x) is written for the expectation or mean of x.
Similarly the second moment is given by

E[M*(T)] = %2 fo fu EIN(t)N ()] di du (3)

and so on for higher moments. Correlation effects appear in (3) in
E[N(1)N(«)] and are included in the development by formulation of transi-
tion probabilities, that is, those probabilities determining the traffic flow
in time. The transition probability P;i(f) is defined as the probability of
transition in ¢ from j calls in progress (busy trunks) to & calls in progress,
and fixes the inter-relatedness of call probabilities at different time epochs.
Only for large values of { are these probabilities independent.

Hence, the first task is to determine these simple transition probabilities,
then those of double and triple transitions, then the expected values of
pairs, triples and quadruples of numbers of busy trunks, and finally the
moments.

2. TRANSITION PROBABILITIES

For exponential holding time, and infinite sources, infinite trunks, these
probabilities have already been determined by Conny Palm [5]. Palm’s
work has been summarized both by Feller [1] and by Jensen [3], and de-
scribes the whole process, not merely the equilibrium condition. For the
equilibrium condition, a different procedure,* similar to that used by
Newland [4] for another purpose, allows the assumption of a more general
holding time characteristic.

* Thanks are due S. O. Rice for suggesting this, as well as for many corrections and

improvements. T also have had the advantage of a careful reading of the mss. by E. L.
Kaplan.



1132 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1951

For infinite sources, and calls arriving individually and collectively at
random with average density a, the well-known formula for the probability
that exactly & calls arrive in time interval ¢ is the Poisson

mi(l) = ¢ (at)*/ k! 4)

Then, if P;;(¢; k) is the conditional probability of transition from i to j
when & calls arrive in time ¢,

Py = ;ZOP.-,-(t;k)n(t) (5)

Consider P;;(t; 0), that is the (conditional) transition probabilities when
no calls arrive. Let the probability that a call lasts at least ¢ be f(£), so that
the average holding time / is given by

b= [ =l = | f6) du (©)

The 7 calls initially in process are independent of each other. Select one of
them and suppose the time from its arrival (its age) is {; . Then the proba-
bility that it will also exist ¢ units later is the conditional proba-
bility f(t + #)/f(t:). Since in equilibrium conditions all moments of arrival
have equal probability, the corresponding probability for an arbitrary call is

0 =[ et [ jwa=1"@waw

Hence the transitional probability P;;(; 0) is the binomial expression

Piy(t; 0) = (j-)g"(l — g (8)

and its generating function is
Pilt, %;0) = 2_Pis(t; 002 = [1 4 (x — 1)g]° 9

In (8) and (9), for brevity, the argument of g is omitted.
Now, suppose one call arrives in interval {. The moment of arrival is
uniformly distributed in #; that is, if #; is the moment of arrival,

Pru < wy < u + du) = du/l
and the probability that a call arriving at an arbitrary moment will be in
existence at time !/ is, say,

Q(‘t)=_/;lf”‘1)———ff(u)du=

Ba—ew (0
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The corresponding generating function is

1 =00+ 20 =1+ (v — D)

and, since calls arriving are independent, the generating function for &
calls arriving is

1+ (= — 1)

and .
Pit,x; k) = [1 + (2 — Dgl'lt + (x — DQI* (11)
Hence, finally by (5),

Pi(t;x) = 2 Py (!

P (at)"

T 1>g1"§ [+ (e — DoF E e

=1+ (x— l)glit?xp (x — 1) atQ
=4+ @—Dgexp(x—1)ah(l—g (12)

The last step uses (10).

This is the generating function for the simplest transition probabilities,
and is quite like Palm’s result; indeed, for exponential holding time g = f =

" The proba,blhtles themselves are obtained by expansion of the generat-
ing function in powers of x, or by substituting g for ¢ ~'* in Palm’s result.
But they are not needed here; the generating function is most apt for deter-
mining the averages of interest, as will appear.

Before going on to the other transition probabilities, it is interesting to
notice certain checks of equation (12). In statistical equilibrium the traffic
has Poisson density (Palm l.c.) that is, in the present notation

Pr(N(t) = k) = ¢ b*/k!

where & = ah. This of course is independent of time. Then, if ¥ (0) has this
density, so should N(f) as determined from N (0) and the transition proba-
bilities implicit in (12). This is verified by

—by

> Pt x)e b/l

exp (v — Db(1 — ) 2 [1 + (x — gl ¢

=explle — D61 — g — 0+ b+ (v — 1dg] (13)

exp (x — 1)b.
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Also, g(0) = 1 and g(e=) = 0 so that
PO, x) =1+ (v — 1)]i= «f (14)
Piwo,x) =exp(x— 1) (15)
showing that in zero time no transit to another state is possible, and in
infinite time the equilibrium probabilities are reached no matter what the
initial state has been.

Finally, in a Markov process (ci. Feller [2], Chap. 15) the simple transi-
tion probabilities alone are needed since

Pty u) = Po(0)Pjr(u)
A test for this is the Chapman-Kolomogorov equation, namely

Pilt 4+ u) = 2 Pis(0) Pilu)

Using (12), the corresponding relation of generating functions is

[1 4 (e — Dglt + )] exp b — DI1 — gt + )]
=1+ (& — Dgg@)]  exp b(x — 1[1 — g(Dg(w)l;
so the process is Markovian only if
gt + u) = g(Dg(u)
which is true only for exponential holding time.

For the next transition probability P;.(¢, #), consider first the condition®
in which no call arrives in the whole interval { + u. As before

m@=@ku—mw

where for convenience g is written for g(/). For the next transit, however,
there is a difference, namely

> ki i—k
Pulu) = ({@) (g:") (1 — g;“)
¢ ¢

since giy./g: is the conditional probability that a call which has lasted ¢
will last % more; P;.(#) is the conditional probability of a transit from j
to k in u, given the transit ¢ to j in /.

The generating function for the double transition probabilities in this
case is, then,

Z ; Pialt,u;000 = 1+ (v — Dg + aly — Vgt (16)

Now suppose a single call arrives at random in interval {. As before, the
probability that it will occupy a trunk at time ¢ is Q) = &~'(1 — g(8)
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and the conditional probability that it will also occupy a trunk at time
L+ uis

}llf(t+1¢—x)dx+Q(1)

or

glu) — gt + u)
1 — g(1)

The corresponding generating function, with x and y the indicators of calls
at { and ¢ + u, resp. is

1 — Q1+ 0Ol — R, wlr + QOR({, u)xy

= R(l,u), say.

or
1+ (x— 1D — gO)h/t + x(y — Dlgw) — g(t + w)lh/t

The generating function for ¢ calls in this interval is this expression raised
to the ¢’th power, since calls arrive independently; and since ¢ calls arrive
with probability ¢ *'(af)’/c!, the generating function for calls arriving in
this interval is

20+ (v — DO+ xly — DORI'e " (at) /!

17)
= exp b[(x — D1 — g(1) + x(y — D(glu) — g( + w))]
For brevity  and R have been written for Q(/) and R(t, u).
Finally the generating function for calls arriving in ¢, t + #, is
exp b(y — 1)(1 — g(w)) (18)
Hence
202 P (b wx'y' = [1 4 (= D) + x(v — Delt + w)’
cexp b[(x — (1 — g) + (v — DA — glu) (19)

+ aly — D(glu) — gt + w))]
By similar argument, the generating function for triple transition proba-
bilities is
g, ; Z: Pijre(t, u, v)2'y"s’
=14+ (x — l)gr —+ ‘.1?(}’ — 1)gr+u -+ .\'y(: — l)gt+,,+l,]'.
cexpb((x — DA —g) + (v — DA — g +  (20)
(z— 1) (1 —g) + xly — Digu — gesa) +
y(z — 1)(g — guro)+ 3G — 1) (gurs — Gegutn))
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3. ExpEcTED CORRELATIONS

Correlation expectations, like E[NV(f)N(%)] in equation (3), are needed
for evaluation of the moments of M (T’). They may be determined from the
transition probability generating functions, if it is agreed, as a matter only
of convenience, that the time epochs /, %, v, etc. are in that order (t < u <
v < ---). Since, on the assumption of statistical equilibrium, the call
probabilities at the first epoch {, are independent of its value, as already
noticed, this value may be taken as zero without loss of generality.

Thus for the second moment it is sufficient to determine

e(u) = EINQON@)] = 3 ips 225P;(u) (21)
with p, = Pr[N(0) = i] = e tb?/i!
Write
Gu(x, y) = 22 pex® 22 Pis(u)y’
By (12), this is the same as
Gu(x, y) = expblx — 1+ 3y — 1+ (v — 1)y — 1)g(w)]

or
Hu(x,y) = Gu(x + 1,y + 1) = expb(x + y + xyg(u))
and
O'H
olu) = 920y lz,y=0 (22)
= b" + bg(u)

In the same way the second order correlation expectation, that is

E[N(O)N ()N (u + v)],

Il

o(u, v)

is obtained from

Guo(x, v, 5)

2o it 2 D0 Pijn(u, v)yiz*

I

and

Hyol®, v,2) = Guolx + 1,y+ 1,24 1)
= expb(x + v+ z + xyg(u) + yzg(v) + x(y + Daglu + 2))

Hence

o(u,v) = ¥ + Plg(u) + g0) + glu + 2)] + bg(u +2)  (23)
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Finally, the third order correlation turns out to be
e(u, v, w) = E[NO)N@)N(u + )N + v + w)]
= 0"+ bg(u) + g(v) + gw)
+ g + ) + gv + w) + glu + v + w))
+ ¥lg(u +v) + go + w) + 2g(u + v + w)]
+ blg(w)g(w) + glu + v)g(v + )
+ g(glu + v+ w)] + bglu + v + w)

As will appear, the arrangement of terms in (22), (23) and (24) corresponds
to the expansion of ordinary moments in terms of cumulants (semi-in-
variants); e.g. (24) corresponds to ny = b* 4 6b°ky + 4bky + 3k + ks
with k; the 7’th cumulant (for the Poisson of mean b, k; = b).

(24)

4, MOMENTS

Moments are obtained from these results by integrations. As already
noted, equation (2), the first moment is & for any holding time distribution.
Since there are two ways of ordering the epochs ¢, #, the second moment is

EIMA(T)] = %'[D dtj; duolt — u)

2b T t
=bz+1_"2 i dtfo du g(t — u) (25)

= bz+§—:fo dx g(x)(T — x)

The last step is by the formula for reversing the order of integration indi-

cated by ‘
T t T T
j dt f dy = f du f dt
0 0 0 u

The variance or second central moment, which is also the second cumulant
ks , is then

Var [M(T)] = E[(M(T) — )7

= Ebr(n)] - o (26)

=2 |t er -
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Since there are 3! = 6 ways of ordering 3 epochs, the third moment may

be written
6 T t u
173_[[, dtfo d'uj; dv o(t — u, u — v)

[ 6%’:]‘; dtj; dufu“dzs[g(t —w) + glu — 1) + gt — )]

65 T t u
+T—afu dtfoduj; dv gt — v)

Here the first triple integral is immediately evaluated by use of the identity

E[M(D)]

Il

2-/;Tdtﬂtdz¢£)udv[g(t—fa) + glu — v) + gt — v)]

T T T
= f f f dtdudvg(|t —v]|)
o Jo Jo

2T j:' dx g(x) (T — x)

[

= T ky/b

The last triple integral, by successive inversions of integration order, turns
out to be

T
l?T_bafo dx g(x)(T — x)x
Hence finally
EMY(T)) = b° + 3bky + % f dx g(x) (T — x)x (27)
0

and

ks = E[(M(T) — b)°]

I

EM(T)) — 3b EIM*(T)] + 2b°
EM T)] — 3bky — & (28)

I

%L dx g(x)(T — x)x
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The fourth moment is given by

) T t u v
EMY )] = %‘[ dt-fdu/ dvf dw ot — u,u — v, v — w)
0 0 0 0 *

=

+ 27_144{&3-[0 jﬂj; f[;dtdudvdw[g(f—u)—l—g(t—v)
+ gt — w) + glu — v) + glu — w) + glv — w)]

+b2f ffufvdldudwdw[g(f-—v)-I—g(u——w)+2g(i-—w)]

-l—.b2 f:_/:]l;u j;vdldfadz'dw[g(t—u)g(ﬂ—w)-l—

gt —vglu — w) + gt — w)glu — v)]

+ bf: jotjuu Lvd!tiudﬂdw[g(t — w)]}

Employing the identities
T T T T
4[ f f f di du dv dw [g(t — u) + gt — v) + gl — w)
+ glu — ) + glu — w) + g — w)]

T ¢ uw v
f f f f dtdudvdwg(|t — u|)
0 0 0 Jo

= 27" ]BT dy gx) (T — x) = T ky/b,

8 f’l' f.! [u fv dt dut dv dw [g(t —u) glv —w) + glt — v) glu — w)
+ gt — w) glu — v)]

=‘[]T.£Tﬁrﬁ?dldwdvdwg(|tHTtl)g(!U_wD
= 4’:[: dx g(x)(T — -x):r = T k3/b,

and successive inversion of order of integration, the final result turns out
to be
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E[M*(T)] = b* + 6b6°k, + 4bk; + 3k

125 fT 2
A g@)(T — x)x
and

ks = E((M(T) — b)'] — 3E[(M(T) — b)’]

12
T

j;T dx g(x)(T — )2

It is a tempting surmise that

_ouln—1) ’ _ n—8
bk, = b—]n—fo dr gx)(T — x) «

(29)

(30)

but this has not been proved. Note that for g(x) = 1, k, = b, the cumulant

of the Poisson, as it should.

For the two cases of chief interest, constant and exponential holding

times, the function g(x), i average holding time units (that is, x =
given by

c.h.t. gy =1 — = <1
=0 x>1
e.h.t. g(x) = e*

and the results are as follows:

Constant Holding Time

Cumulant T<1 T>1
ke b(1 — T/3) bT1(1 — 1/37)
ks b(1 — T/2) bT2(1 — 1/27)
ky b(1 — 37/5) bT3(1 — 3/57)
Exponential Holding Time
k2 2TT — 1+ e77]
ks GOT-3T — 2 + (T + 2)e7]
ky 1207427 — 6 + (T2 + 4T + 6)e 7]

t/h) is

It may be worth noting that, if the surmise is correct, for constant holding

time

kn

n—1 '
b[l—mT] Tr<i1

_ b n—11
TT_1|:1 11—|—1-T:| £l
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and for exponential holding time
n(n — 1)
Tn

where in the last term (T" 4+ «)" % is a symbolic expression or shorthand for

n—2

(T+a)" =2 (” 2) T 4

0 m

and o = (m + 1)1 eg.
T+ ) =T+ 67° 4 18T + 24

For small values of T, the two cases coalesce (¢* =~ 1 — x)andatT = 0
approach & as they should. For large values of 7', and constant holding
time,

B, = b [(n— D17 — (n— DI+ 7 (T + o)™

by~ b/T™, (n=234);
for exponential holding time
ko ~ nlb/Tn 1, (n=2,3,4).

For n = 2, these results agree with Rabe [6].

As T increases, for either holding time, the cumulants are progressively
smaller, and the approximation of the distribution of M (7) by a normal
curve (which has all cumulants, except the first and second, zero) improves.
This is what follows from the central limit theorem if the subdivision of T'
into a large number of intervals results in mutually independent random
variables (cf. Rice [7] 3.9).

Figure 1 shows a comparison of the variances (ks) for the two holding
time cases. Figure 2 shows a comparison of the cumulants %, , &3 and %4 for
constant holding time, and Fig. 3 shows the same thing for exponential
holding time.

5. FnitE SourcEs—ExPoONENTIAL Horpine TiME

The generating function for transitional probabilities for N subscribers,
each originating calls independently with probability A, and for exponential
holding time, as given by Jensen (l.c.) is as follows:

Pit, x) = 1 + qlx — DIt + qlx — P~ (31)
with
@ =p— pe &
p=p+q “

p=1—g=N0+
vy=1/h
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It should be noticed that for { = », g = g1 = p and
Py, x) = [1 4 p(x — 1)]¥ (32)

The right hand side is the binomial generating function and, as independent
of 4, is the generating function for the statistical equilibrium probabilities;
that is

Priv@ = = (f ) g
Also the process is Markovian since

; x Z Pi;(0) Pau) = Z;P;,-(t)[l + gl — DI [1 + goule — DI*

= [1 + (gou + g — qrego) (x — 1]
1+ (gou + gorgre — goegon) (x — DI
and
Qeu T quegue = quedo = quetu
Gou + Qoeqre — GoeGou = Go,evu

Here it has been convenient to indicate by the double subscript the de-
pendence of ¢ and ¢; on a time variable.

Moments are obtained by the process given in detail for the infinite
source case. For brevity it is convenient to use the binomial cumulants
which are as follows

k2 = Npg
Npqlg — 1)
ks = Npg(1 — 6pq)
and the modified time variable T, = (A + )T Then the results are
by = 2T7k[Ty — 1+ ¢
ks = 6T [Ty — 2 4 (Ty + 2)¢™™
ks = 1277 (ks + 2N )27y — 6 4 (T1+ 4T1 4 6)e” "]
— kN[l — (TT4 2)e ™+ 7))

K3

These of course bear a strong resemblance to the infinite source case (ex-
ponential holding time), to which they converge.
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