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The circuits considered have N accessible terminals and are operated by
gangs of selector switches. Synthesis of any N-terminal switching function is
accomplished. The synthesis method is proved to be economical in the sense
that the switching functions which can be synthesized by any other method
using much fewer contacts comprise a vanishingly small fraction of the total
of all possible switching functions.

INTRODUCTION

In a recent issue of The Bell System Technical Journal', C. E. Shannon
discussed the synthesis of two-terminal relay contact networks. Some of
his results will be generalized in this paper to N-terminal networks which
use selector switches with any number of positions instead of the two of a
relay. The kind of circuit which will be considered may be visualized as a
black box with N accessible terminals and with M shafts extending from it.
Each shaft operates a selector switch (which will usually consist of several
simple selector switches ganged together) inside the box. The rotors and con-
tacts inside the box are connected electrically to one another and to the N
terminals so that each way of setting the M shafts determines a pattern of
interconnection of the N terminals.

We do not permit the black box to contain relay magnets or other devices
which would allow the circuit to operate sequentially. Because of this re-
striction our results apply only to the simplest kind of switching circuit in
which the state of the N terminals depends only on the present state of the
M shafts, and not on the past history of the shafts. We may then use the
term N-terminal swilching function to mean a rule which assigns to each way
of setting the M shafts a state of the terminals. We are concerned with the
problem of synthesis: given an N-terminal switching function f, to find a
switching circuit for which the states of the shafts and terminals correspond
in the way indicated by f.

Let 1, -+, pu be the numbers of positions which the M shafts can
assume. Then there are p, - - - py different states of the shafts and the shafts
have a memory?

! C. E. Shannon, B.S.T.J., 28, pp. 59-98 (1949).

2 C. E. Shannon, B.S5.T.J., 29, pp. 343-349 (1950).
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M
H= Zl log p;
bits (in this paper “log” stands for “logarithm to base 2”). The results to
follow include an estimate of the minimum number of contacts needed for
almost all N-terminal switching functions and a network synthesis method
which uses a number of contacts of the same order of magnitude as the
minimum number. The number of contacts needed for almost all N-terminal
N log N 27
H+ log N
“almost all” are used here in the sense that the fraction of switching func-
tions which can be synthesized using fewer contacts than the given number

tends to zero as H and/or N increases. The number of contacts used by the
2 H

switching functions is about when H and V are large. The words

synthesis method is about

where P is the number of positions on the
largest switch. The factor P can be reduced in most cases. The analogous ex-

. ) 211. n+3 .
pressions found in Shannon’s paper are W and —— where » is the number of
n

switching variables.

One of the most surprising facts about switching functions is that, if H
is moderately large, almost none of them can be synthesized without using
fantastically many contacts. This is already true of Shannon’s two-terminal
networks, and for N-terminal networks the situation is even worse. The
reader may first turn to page 685 where a numerical example illustrating
this phenomenon is given.

These paradoxical results are explained by noting that switching functions
in general are much different from the usual kinds of switching functions
which have practical applications. One concludes that the invention of better
methods for synthesizing any imaginable function whatsoever will be of
little help in practice. Almost all these functions are impossible to build
(because of contact cost) and would be of no use if built. Instead one must
try to isolate classes of useful switching functions which are easy to build.

Part I: Two-TERMINAL NETWORKS
Seleclor Swilches

A typical selector switch is shown in Fig. 1. Tt consists of a number of
rotors turned by a shaft which can be set in any one of p positions. In each
position of the shaft, certain of the rotors touch contacts, thereby closing
those branches in the network containing the touched contacts. However,
the only kinds of switches to be considered here are those with the property
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that, if a contact is touched by a rotor when the shaft is in position number 7,
then this contact remains untouched for all other positions of the shaft.

Networks built from two-position switches are analyzed with the aid of
Boolean Algebra. It is possible to construct an algebra which is appropriate
for selector switch circuits. A detailed account of this algebra has been
given by H. Piesch.?

The state of a switch with p positions can be associated with a switching
variable x which ranges over the values 1, 2, - -+, p. Then “x = k” means
the same as “the switch is in its £ position.” The state of a two-terminal
network, using M switches with #,, - -+, and pa positions, is a hindrance
function f(x;, -+, xa) of the M switching variables x;, -+ -, %y with x;

1

1C

—

SHAFT
Fig. 1—Selector switch.

ranging from 1 to p;. As usual f = 1 means the circuit is open and f =0

means the circuit is closed. Then f(x;, - -+ , %a) + g(a1, + -+ , xa) is the func-
tion representing the series connection of two networks whose functions are
fand g while f(x1, -+, ) glw1, -+, ) Tepresents the networks f and g

in parallel.
The circuit which consists of just a rotor which touches a contact in its
ith position has hindrance function
1 if x#1
0 if x=1i
3H. Piesch, Archiv fiir Electrotechnik, 33, pp. 674, 686 and pp. 733-746 (1939).

eix) =
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There is no simple identity which corresponds to the Boolean Algebra
expansion by sums. An identity analogous to the Boolean Algebra expansion
about x; by products is

1) Sy e aw) = ‘I_‘l[e.—cxo F Gy - 2]

where the range of x; is from 1 to p. To prove (1) we need only observe that
in the product all the terms for which 7 # x, have the value 1. The remain-
ing term, for which ¢+ = =, has the value f(x:, -- -, xy). The switching
interpretation of (1) is illustrated in Fig. 2. By repeated use of (1) it follows
that any function f(x;, - -+, xx) can be written as an expression involving

Fl,%2,7, %)

fl2xa %)

FpyXa,Xm)

Fig. 2—Expansion of f(xy, ..., xar) about x; .

parentheses, addition signs, multiplication signs, the e;(x;), and nothing
else. Such expressions may be regarded as Boolean functions with the e;(x;)
asvariables; they may be rearranged and factored according to the usual rules
of Boolean Algebra. However, one should keep in mind that the e;(x;) are
subject to the constraints that a selector switch can be in only one position
at any given time. The effect of these constraints is to add a cancellation law

en(x) +oex) =1 if h#i
The inverse e;(x;) of the Boolean variable e;(x;) is the Boolean function
1 when efx) =0

/
ei(x;) =
0 when eix) =1.
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Regarded as a hindrance function of the switching variable ;,

Then by (1),
ex(x;) = 11 enlxy).
h#ti

If the switch x; has p; positions, it takes p; — 1 contacts to build a circuit
with hindrance function e;(x;).

Synthesis

Suppose that M shafts, governed by switching variables xy, ---, %ar,
are given, together with a two-terminal hindrance function f(x1, -« -, Xpr)-
The synthesis problem is to design a network with hindrance function
f(x1, * -+, ®a), adding suitable rotors and contacts to form selector switches
from the given shafts.

One solution can be found immediately:

(i) As described above, express the hindrance function f(xy, -+, Xar)
as a Boolean function B(f,, ---, &) of Boolean variables &, -, &
(which are the e;(v;) with new labels). Here R = p1 + pa+ -+ + paur.

(ii) Any of the well known methods of synthesizing relay networks can
be used to design a network operated by the Boolean variables &, -+, &
and with hindrance function B, -+, ).

(iii) In the network found in (ii) replace each contact £ by the appropri-
ate e;(x;) and each back contact £, by the appropriate circuit ei(x;).

The solution found in (iii) will ordinarily use up a number of contacts
which is unnecessarily large by many orders of magnitude. From Shannon’s
theorems on relay networks we know that the probability is high, that as
many as

21\?

R

contacts will be needed in step (ii). The final circuit (iii) will have even more
contacts if some circuits e;(x;) are used.

The synthesis process which follows replaces the exponent R = DM pi
in the estimate of the number of contacts by the smaller number p
log #: . The reader may recognize the process as essentially the same as the
one given by Shannon for two-terminal relay networks. The network will
again take the form of a tree connected to a circuit which produces all
functions of the switching variables which govern it.
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If one expands f(x:, -+, €x) about 21, *++ , x; one finds
F= I lew) 4 elwd) + -+ + eclow)

(2) TiBys =2
+f(rtst Tty B Xkrl, Tt xM)]
where the multiple product is taken over the entire range of the variables
%1, - -, x. The different functions e,(x1) + e,(x2) + -+ + e.(xx) can all
be realized with one tree circuit as shown in Fig. 3. If the expansion had
been performed about all the variables a1, -+, xy, identity (2) would

(%) + ey(%z2) +...+1(xk)
&%) + ey(X2) +... +8a(%k)

epl(x,} + ep2(x2)+...+epk(xk)

Reommmm———
n

Ak

Fig. 3—Tree.

show that the desired function f could be synthesized by connecting one
terminal to the input lead of a tree and the other terminal to certain of
the tree’s output leads. The number of contacts used would have been
about 27" . The method which follows uses still fewer contacts.

The network which we use to synthesize the function f is shown in Fig. 4.
It consists of the tree of Fig. 3 with its output leads connected to the input
leads of a network on the right which is designed so that the hindrances
from its input leads to its output lead are the functions f(r, s, -+ , 2, 241,
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-, xx). For given values 7y, so, -*-, s of the switching variables
a1, -+, a of the tree, there is only one closed path through the tree; this
path ends at the output lead labelled e,,(x1) + - -+ + e:o(w).

The hindrance from this point to the output lead of the right-hand net-
work is the hindrance of the network of Fig. 4. This hindrance is
just f(ro, 5o, -+, %0, ¥xp1, - - -, Xa) (note that the connections to the dis-
junctive tree do not cause any interconnections among the other leads of
the right hand network), which proves that the network has the required
hindrance. By proper choice of the number £ of switches in the tree we
will obtain an economical design.

Network to Produce All Functions

To produce all of f(r, s, -+ - , %, %41, *** , ¥a) it suffices to build a circuit
which produces every function of (%41, -+ , %a). Let these variables be

EI(x11+---+E|(Nk) 'F(‘1"'1|1XK+|1"'1XM)

ey% )+ .. +8a(Xk) Fllyeor 52, XKty 0 2 XM)

TREE NETWORK

ep, (X ... +Epk(Xk) TR 2Pk ktty 2 %om)

Fig. 4—Network for f(z1, ..., 2ar).

relabelled y,, ---, 4. and have ranges p;, --+ , .. Let the largest of
P, +++, po be called P.

Theorem I. A nelwork which produces every function of (y1, -+, yL) can
be built with a number 1, of conlacls satisfying

3) P

The proof is by induction on L. Suppose that a network to produce every
function of (y, ---, y;1) has been built with y; i contacts and try to
build one for every function of (1, - - -, ¥;). The number of functions which
the network must produce is 2" "/ | for there are p, - - - p; different ways
of setting the switches and two choices (0 or 1) for the value of the function
for each state of the switches. Of these functions, the ;; network itself
provides 27'"'7i-! functions with no additional contacts (these are the func-
tions independent of y,). Any one of the remaining (2”*"~"# — 2"""~*) func-
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tions f can be obtained by connecting to the functions f(y, - -+ , ¥j=1, 1),

sy S, o0, ¥ia, pi) through e(yy), -+, €,;(v;) as shown in Fig. 5. In
this way a new network is found which produces all functions of the j vari-
ables and uses ¢; contacts where

@ Wi = i S PN i),
If we now assume that formula (3) holds for ;_; we obtain
Vi < P27

Thus the theorem will follow by induction when we prove (3) for the case
L = 1. Since ¢, = 0 (no contacts are needed to synthesize the two functions
0 and 1) the inequality (4) reduces, when L = 1, to

Y < P27 —2)

and the theorem is proved.

o
o
O 'F{Qn"',Uj-I,I) qu .
Yy, Yj-12) CONTACTS
o
o
[l
[ S——
& (y;)
Ty
o
Ef‘(gp:':JJ') |
S
Fig. 5—Network to produce all functions of (y1, ... , ¥).

The induction process we have just described will use up the smallest
number of contacts when the large switches are used up first and the small
switches last. If, in the process, p; > P41, then the number of contacts

which would have been saved by making switch y;.1 precede switch y; is
found to be

(ps — P27 128 — (P - 1),

By adding switches in order of decreasing size in the induction process, the
factor P in (3) can be reduced to nearly $;, the smallest of the L ranges.
This refinement is unnecessary for the theory which follows.
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The Tree

The number of contacts used in the tree of Fig. 3 is

1 1 1
e (14 24 R L S
P Pk( +Pk+Pk—1Pk+ + P Pz)

It can be shown that the most economical way to build the tree is to put
the small switches at the narrow end of the tree. If the smallest number of
positions of any of the switches in the tree is p1 then the number of contacts
in the tree is less than

Pt g
(5) mﬁ%h P

Upper Bound

Having counted the number of contacts which are used in the tree and
in the network which produces all functions in Fig. 4, it only remains to
decide how many of the given switches x;, -+, xx are to be put in each
of these two parts.

Theorem IT. Lel P be the largest of the numbers py , - - -, pu of values which

the variables x1, --- , %y can assume. Then any swilching function of
(21, -+, xu) can be synthesized using no more than
2H+1
6 P B e —
(6) (+QH~2MH

contacts when H > 4 bils.

To prove the theorem we consider two cases according as P is greater or
less than H — 2 log H.

Case 1: (P> H — 2log H)

In this case we use the synthesis process described above, putting all the
switches into the tree and none in the network which produces all functions.
The number of contacts used is less than 2:2" and the theorem follows
because

P>H—2logH.

Case 2: (P < H — 2log H)

In this case we use the synthesis process described above, putting into
the right-hand network a collection S of switches so chosen that 11. p: comes
as close as possible to H — 2 log H without actually exceeding it. Then if

II p:= (I — 2 log H)F,
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we have F < 1. Also, FF # 0 since any p; satisfies
pi < P<H-—2logH.

Since I # 0 it follows that F > 1/P. For if 0 < F < 1/P, adding another
switch to the collection S will increase ][, p: without making it exceed
H — 2log H.
Using (3) and (5), the number of contacts in the network is less than
- 2" P 2P
PZ(H 2logH}F < 4 H.
T (H — 2log H)F — H2+H— 2 log H 2

Since P < H — 2log H,

P 1 1
F"<E<H-—2]ogﬂ

and the theorem is proved.
Only a small fraction of the functions will use up this many contacts. In
any particular case, the number of contacts used will be about

1 1 2H+I
(3+3) 7o
F 2/H — 2logH
and, if many different sizes of switches are used in the network, one should

be able to make 1/F much closer to 1 than P. Even when all the switches
are the same size, one expects

levp
I
in about half the cases.

Part II: N-TErRMINAL NETWORKS
Synthesis

Let the accessible terminals be labelled 1, 2, --- | N. To each pair 4, j of
terminals of an V-terminal network there corresponds a hindrance function
Bij(xy, » -+, xy) which tells whether or not there is a closed path between
i and j. The B satisfies a consistency requirement

(7 “Bia+ B+ -+ + Bae + B; =0 implies B;; = 0",
The number of consistency requirements (7) is

i N1 eN!
2N —n1 T 2
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However, one can show that all the requirements (7) hold if and only if the
NN —1)(N —2)

7 requirements

“Bia+ B,; = 0 implies By; =0

hold.

NN -1)
2
determine a realizable N-terminal network. One way of synthesizing the
network is just to connect, between each pair , j of terminals, a two-terminal

network with hindrance function B;; . It follows from theorem II that
Theorem ITI. Any N-terminal swilching funclion of swilches with P or
fewer positions can be synthesized with no more than

N(N—I)(P—I—%) 2

H —2log
conlacts when H > 4 bils.

The network can also be synthesized using N trees, each of which pro-
duces all of the possible functions e (x1) 4 e.(xz) + -+ + e.(xs). Each
terminal is connected to the input lead of one of the trees; and the output
leads, to which the terminals are connected in any given state (x1, - -+, Xar),
are interconnected in the way one wants the terminals to be interconnected
in that state. The number of contacts used in this type of synthesis is less
than

Conversely, any set of hindrance functions which satisfy (7)

N2™t

The synthesis using two-terminal networks ordinarily requires fewer con-
tacts than the one using trees as long as

H—2logH>4N—-1)(P+}

An example illustrating the design of a typical three-terminal network is
given in the appendix.

Number of Funclions

Every N-terminal switching function determines a realizable matrix of
hindrance functions Bij(xy, -+ - , #a). It is important to know the number
of different switching functions of (x1, -+ - , ¥a).

A state of the N terminals is determined by specifying the groups of
terminals which are connected together. The number ¢(V) of such states
is the number of ways that N different objects can be distributed into
1,2, -+, or N parcels when the parcels are indistinguishable from one
another and po parcel is left empty.
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A switching function represents one of these ¢(N) different states for
each of the 2" different switch settings. Hence the number of switching
functions is

(@)™,
Although there is no simple formula for ¢(IV), a generating function for
$(N) is well known:*
e-1 S ¢(n)
(8) € = ﬂZ=D T Z.

A recursion formula which can be used to calculate ¢(N) is
N
9 SOV + 1) = 2 Craa(®).

When N is large ¢(V) can be estimated with the help of the upper and
lower bounds to be derived. These bounds will be of use to us later mainly

because they show that, for large IV, log (V) is approximately N log N.
Theorem I'V.

NI gN.flog, N
Ogl l“;ogc N
Proof. The maximum value of | ¢*™" | on the circle | 3| = rise” ™' . Using
(8) and Cauchy’s inequality for the N coefficient in a power series,
1 eT—1
(11) o(v) < Xi¢
;

for all > 0. The best estimate of ¢(V') will be obtained by minimizing (11)
on r. To do this one sets r = r, where

ree’® = N.

The simpler result (10) is obtained from (11) by setting

r=lo ———N
Be log. N
Theorem V.

¥
‘;1' < @(N) for all integers A.

Proof. Let Q(NV, A) be the number of ways that N different objects can
be distributed into 1, 2, - - - | or A4 indistinguishable parcels. Then Q(N, 4)A4!

(12)

4+ W. A. Whitworth, Choice and Chance, p. 88, Cambridge, Bell, 1901,
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must be greater than the number of ways N different objects can be placed
in A different boxes (labelled 1, --- , 4); ie.

AY <OV, HA < d(N)A!.

To obtain the best lower bound from (12) one may maximize on A. The
best value of A to use is one which comes close to satisfying

1\¥!
(1 + ;1) = A.

For large IV the solution is approximately
N
4=_——"".
log. N
To perform the minimization in theorem IV more carefully one would
solve

Aglog. Aoy =N

for A,. This is the minimizing equation given in theorem IV with
ro = log, Ay. Tt is also very nearly the minimizing equation given in
theorem V.
Then our proofs of theorems IV and V show that
A% o

< oN) < N1 S
4,0 S ¢ < NG

For large NV these bounds differ by a factor of about
2 N

‘r_——

e VvV log,_ N

More accurate information about the behavior of ¢(N) for large N is
provided by an asymptotic series found by L. F. Epstein.’ The first term in
his series is

N-a a—1

#(N) ~ ‘i/ £

log. a

where ¢ is found by solving
alog, (a4 1)=N.

Figure 6 is a graph of ¢(V) vs. N using a log log scale for o(N). The
points are exact values and the curves show the upper and lower bounds.

s L. T. Epstein, J.M.P., 18, 3, pp. 153-173 (1939).
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Number of Graphs

Let G(N, K) be the number of topologically distinct linear graphs which
can be drawn interconnecting the N-terminals and using K branches.
G(N, K) counts all graphs including graphs with dangling branches and
disconnected pieces. It also counts graphs in which any or all of the N-
terminals are connected to no branches. Figures 7a, b, ¢, d, e show some
topologically distinct graphs which would be counted in finding G(3, 10).

101000 ~
°F 4
I - /
! /

NUMBER OF STATES, #(N)
£
N

B UPPER |/ & __LOWER

BOUND “-y BOUND

‘ 14

2 o

| | I 111 | | 111
6 810 20 40 60 80100 200 400 600 1000
NUMBER OF TERMINALS, N

Fig. 6—Number of possible states of N terminals.

10! | ?
1 2 4

Graph 71 is topologically identical with graph 7b and so is not to be counted
again, The first step toward finding a lower bound on the number of con-
tacts which almost all switching functions require is to find an upper bound
on GV, K).

Theorem V1.

G(N, K) < 2NN + 2K)" .
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Proof. Every linear graph can be constructed by the following process.
Let the branches be numbered 1, 2, ---, K and let the end points of the
5™ branch be called Ay and B, . There are K — 1 places where partition
marks can be inserted in the sequence A, ---, 4 and hence there are
257! ways of partitioning the Ay’s into groups of the form

GI: (AI,AZ) e )AG)
Gr= (a1, **~ :Ab)
Gy = (A1, =+, 40)

— 2 |
A
3! 7 L/.; ‘ ) 2%3
(a) (b) (c)
—
2 3

LA | N

1
(d) () (f)
Fig. 7—Examples of graphs.

There are 2V ways of selecting some of the terminals 1,2 ---, N. Suppose
that m of the terminals have been selected; then pick one of the partitions
of the Ay’s which has m or more groups Gi, -+ , Gmy. . Connect all the
end points in Gi to the first selected terminal, all the end points in G to
the second selected terminal, etc. Next connect the terminals in Gpi1, * -+,
Gy« together to form s nodes. The number of ways of performing all these
operations is less than

2N+K—I
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Connect B; to one of the N-terminals or to one of the nodes just made or
else use B; to make a new node. Connect B» to one of the terminals or
nodes or else use B to make a new node, etc. The number of ways of con-
necting By, -+, Bg is less than

(N+K+1)(N+K+2) -+ (N4 2K) < (N +2K)F,

which proves the theorem.

Since most graphs can be constructed in many different ways by this
process, theorem VI gives a very poor estimate of G(V, K). In the applica-
tion which we will make of G(IV, K) it is enough to know that log G(N, K)
behaves something like K log K. To prove that K log K cannot be replaced
by anything much smaller we now give a lower bound for G(V, K).

Theorem VII.

(¢(K))*
SRR < GV, K)

Proof. G(N, K) is larger than the number of graphs which can be drawn
without specifying certain nodes as terminals 1, 2, --- , N. Of these graphs
let us count only those which have the property that no cycle in the graph
has an odd number of branches. Another characterization of these graphs
is that their nodes can be divided into two classes A and B such that no
branch joins two nodes of the same class.

To construct such graphs we first number the branches 1, 2, --- , K and
give them an orientation (say by putting an arrow head at one end of each
branch). The front ends of the branches can be grouped together into nodes
in ¢(K) ways. Then the tail ends of the branches are grouped together in
one of ¢(K) ways. In this way a total of (¢(K))? different graphs can be
drawn, in which the branches are numbered and oriented. If we now ignore

the numbers on the branches we still have at least (qb;?r)_) " distinct graphs

with oriented branches. If the orientation is ignored, the number of topo-
logically different graphs which remain is greater than

(¢(K))*
KK "

Lower Bound
We have seen that any switching function can be realized with no more
than about
N* P2"
H — 2logH
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contacts. To show that this number cannot be improved very much we will
now show that almost all switching functions require a number of contacts
of this order of magnitude.

Theorem VIII. Let any € > O be given. The fraction of swilching functions
which can be synthesized using less than

=9 2" log ¢(N)
H + log log ¢(IV)

conlacls approaches zero uniformly as the number M of swilches becomes large.®

Proof. The number of switching functions which can be constructed with
K contacts or less is certainly smaller than the number of ways the K
branches of the G(N, K) graphs can be replaced by contacts e,(x;) or open
circuits; i.e. smaller than

G(N, K) (é i + l)x.

By theorem VI the fraction F(K) of the (p(NV ))2H switching functions which
can be built using K contacts or less satisfies

(13)

FK) < 27N + zK)‘(g b+ 1)‘ @)™

2N+K(lo¢ K+2+log g pi+1])—2'H log ¢
2 i=1

. where we have used

logs (N + 2K) < log: 2K + % logz ¢

N
S Jng 2K + E.

When K is the expression (13), one finds
log(Zp+1)+2
F(K) < 2 ()™ uricaroes ).
. logZp;  logZ pi
Since ~g = ]Bg- Tips
large, it follows that for sufficiently large M and any N

epproaches zero as the number of switches M gets

¢ The word uniformly is used to indicate that the fraction in question can be made
smaller than any given number & > 0 by making M larger than a certain number M (8)
which depends on & but nof on N.
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log (Zpi +1) +2 e
(14) HT loglogé (V) < 2"
Then
(15) F(K) < 2 (p(V))*"™"

which approaches zero uniformly as M increases.
For most of the switching functions of practical interest H is much
bigger than log log ¢(N). In these cases the number

NP2
H — 2logH

is larger than (13) by a factor of about NP/log N. In the case of two-ter-
minal relay circuits the corresponding factor found by Shannen was only 8.
It is not clear whether this difference indicates that there is a wider range
of complexity for N-terminal networks than for two-terminal networks or
that our methods for obtaining upper and lower bounds lose some of their
effectiveness as N increases. Nevertheless, (13) is surprisingly large, as we
shall see in the example which follows.

Example. Consider a telephone central office with 10,000 lines. If the
office must be able to connect the lines together in pairs in any arrangement
and to remember which line of a pair originated the call, a count of the
number of different states which must be produced reveals that the office
needs a memory of at least H = 64,000 bits, which can be supplied using
19,200 switches with 10 positions each. The number of other switching func-
tions that one might ask these 19,200 switches to perform is

019,200

$(10,000)* """ = (1071010 _ 40! approx.

To apply theorem VIII to these other functions we first note that (14) will
be satisfied as long as we pick e greater than .006. Then, substituting in
(13) and (15) we discover that the chance that one of these switching func-
tions chosen at random can be synthesized with less than about

19,000
10" contacts
is less than some number of the order of
—1p19.200

10

If the same calculation is repeated for a 10,000-line office which is capable
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of handling only 1,250 calls at one time we find

H = 22,000 bits,
# switches = 6,660
# functions = 101"
e = .015 or larger
# contacts = 109-6" or more for all but a fraction 10” 10%5%% of the functions.

Although these numbers of contacts appear incredible at first sight, there
is no reason to expect the number of contacts for almost all switching func-
tions to be a good indication of the number of contacts needed for the
switching functions of practical use. This phenomenon has been discussed
in detail by Shannon for the case of two-terminal networks. For N-terminal
networks there are at least two other factors which may be mentioned.

Almost all switching functions can assume states which are not typical of
the functions encountered in practice. For example, it can be shown that of
the ¢(N) possible ways of distributing N different things into parcels, al-
most all of them use a number of parcels which is near N/log, N. Thus, in
a typical state of a typical switching function the terminals are connected
together in groups which average about log.V terminals per group in size.
Telephone switching equipment ordinarily connects terminals together in
pairs or in small groups.

A big difference between the design of two-terminal networks and of N-
terminal networks is that, in the former case, one wants to obtain one
specific switching function while, in the latter case, one is usually satisfied
with a network which can produce certain desired states. There are many
switching functions which all produce the same states but for different
settings of the switches. For example, if the 27 desired states are all dif-
ferent, the designer will be content with any one of (29)! different switch-
ing functions. We believe that it actually would require something like
10867 contacts to build a central office if the designer first listed all the
desired states at random Sy, Sz, -+, Sr and then required the office to
be in state S; for switch setting (1, 1, -, 1), in .S, for the switch setting
(1,1, -+, 2), ete.

Number of Selector Swilch Rolors

Since our estimate (13) of the number of contacts is the same whether
the memory H is stored in two-position switches or in larger selector switches,
one might hope that the selector switch circuits could be built using fewer
rotors than the corresponding two-position switch circuits. We believe that
this is not true. A typical node in one of the graphs constructed by the
process of theorem VI has only about three or four branches connected to
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it. This is so regardless of how large K is. If the rotor of a selector switch
is connected to such a node, the chance is great that none of the other
branches at the node are operated by this same switching variable. Hence
we suspect that a typical switching network requires almost as mnay rotors
as contacts.
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TaBLE I
z y s f(x, v, ) Jit] Jia Sn
0 0 1 (12) (3) 0 1 1
0 0 2 (123) 0 0 0
0 0 3 1) (2) (3) 1 1 1
0 0 4 (13) (2) 1 0 1
0 1 1 (13) (2) 1 0 1
0 1 2 (1) (23) 1 1 0
0 1 3 123) 0 0 0
0 1 4 (1) (23) 1 1 0
1 0 1 (1) (23) 1 1 0
1 0 2 ) (2) 1 0 1
1 0 3 (1) (2) (3) 1 1 1
1 0 4 | (12) (3) 0 1 1
1 1 1 ‘ (123) 0 0 0
1 1 2 (123) 0 0 0
1 1 3 (1) (23) 1 1 0
1 1 4 1) (2) (3) 1 1 1
APPENDIX

To illustrate how the network synthesis method operates in a typical
case consider a three-terminal network using three switches x, v, z. Switches
x and y have two positions 0 and 1, and z has four positions 1, 2, 3, 4. A
three-terminal switching function f(x, ¥, z) is defined by means of the first
four columns of Table I. The sixteen entries in column four represent the
states of the terminals which the network must produce for the correspond-
ing switch settings given in the columns labelled x, y, z. In column four,
parentheses are used to group terminals which are connected together; for
example f(1, 0, 4) is the state in which terminals 1 and 2 are connected
together and 3 is left free.

A network with switching function f(x, ¥, z) will be designed by connect-
ing two-terminal networks between the pairs of terminals 1, 2; 2, 3; and 1, 3.
The hindrance functions of these three two-terminal networks will be called
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fi2, fa3, and fiz . We determine them, as shown in the last three columns of
Table I, by setting fi; = 0 whenever terminals ¢ and j are to be connected
and f;; = 1 otherwise. Our methods of two-terminal network synthesis will
produce the f;; networks.

Our criterion (P > H — log H) for deciding which of the two synthesis
methods to use (case 1 or case 2 of theorem II) is not the best rule when H
is as small as it is in this example. By actually trying the different ways of
apportioning switches with 2, 2, and 4 positions between a tree and a net-
work to produce all functions, one finds that the most economical way is to

Fig. 8—Network with the 3-terminal switching function f(x, ¥, 5) of Table 1.

put a two-position switch, say =, into a network which provides all functions
of 2 (0, 1, x, and #'), and the other switches into a tree. When this pro-
cedure is adopted we next express f;; in the form of identity (2). For example

fis = Iy + e@)]ly + e + ally + @) + 2lly + (@) + 2l + a@)]

The synthesis method described in the text then leads directly to a net-
work for fi; which is shown joining terminals 1 and 3 in Fig. 8. The net-
work for fi which is shown in Fig. 8 was obtained by the same process.
For the sake of illustration the fo; network was found using a tree only.



