Waves in Electron Streams and Circuits
By J. R. PIERCE
(Manuscript Received Jan. 9, 1951)

This paper reviews some of the assumptions made and some of the general
problems involved in analyzing the behavior of electron streams coupled to cir-
cuits. It explains why a wave approach is used. The propagation constant of the
wave is obtained in terms of the properties of the electron stream and the im-
pedance of the circuit. Some general properties of waves are discussed. The im-
portance of fitting boundary conditions in the solution of an actual problem is
discussed, and examples, including that of “backward-gaining” waves, are dis-
cussed.

INTRODUCTION

Of recent years, a good deal of work has appeared concerning small
linear perturbations of uniform clouds of electrons and ions.*'* A number
of questions can be raised concerning the physical interpretations of such
mathematical labors.

First of all, for there to be a very direct physical interpretation, the
unperturbed state must exist at some time or place and then be modified
in the manner described by the perturbation. This condition is satisfied, for
instance, in the case of an electron stream of moderate current shot into a
long metal tube and confined by a longitudinal magnetic field. However, if
the current is made large enough, the uniform flow becomes unstable®: ¢ and
the method of perturbations can be used only to establish such instability
and not to determine what form the flow will assume. I feel some misgivings
about drawing physical interpretations from perturbations of uniform d-c.
plasmas and infinitely extending clouds of charge unless these unperturbed
states can be shown to exist physically, or unless the results can be shown

* A few late references only are given; others are quoted in those cited.

1D. Bohm and E. P. Gross, Theory of Plasma Oscillations: A. Origin of Medium-
Like Behavior, Plys. Rev., Vol. 75, pp. 1851-1864 (1949); B. Excitation and Damping
of Oscillations, Phys. Rev., Vol. 75, pp. 1864-1876 (1949). Effects of Plasma Boundaries
in Plasma Oscillations, Plys. Rev., Vol. 79, pp. 992-1001 (1950).

2]. A. Roberts, “Wave Amplification by Interaction with a Stream of Electrons,”
Phys. Rev., Vol. 76, pp. 340-344 (1949).

V. A, Bailey, “The Growth of Circularly Polarized Waves in the Sun's Atmosphere
and Their Escape into Space,” Plys. Rev., Vol. 78, pp. 428-443 (1950).

4 “Traveling Wave Tubes,” J. R. Pierce, Van Nostrand, 1950.

5 A. V. Haeff, “Space-Charge Effects in Electron Beams,” Proc. I.R.E., Vol. 27, pp.
586-602 (1939).

6 J. R. Pierce, “Limiting Stable Current in Electron Beams in the Presence of Ions,”

Jour. App. Phys., Vol. 15, pp. 721-726 (1944); and “Note on Stability of Electron Flow
in the Presence of Positive lons,” Jour. App. Phys., Vol. 21, p. 1063, Oct. 1950.
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to be approximations to those which would be obtained for more realistic
but mathematically more refractory situations.

Other misinterpretations have arisen through combining non-relativistic
equations of motion with Maxwell’s equations and then attaching signifi-
cance to terms of the order (v/c)2.7

Finally, granting that all else is well, it is unsafe to draw conclusions
from the examination of particular solutions of differential equations. In a
very simple example, it is impossible to determine the gain of an amplifier
tube which uses an electron stream simply by examining various “waves”
which can travel on the stream. In solving a physical problem, one must
not only solve the differential equation involved but he must satisfy the
appropriate boundary conditions as well.

In all, such confusion as there has been concerning waves in clouds of
electrons and ions seems to have arisen not through lack of mathematical
ambitiousness but rather through simple errors in physical interpretation.

The following material concerns itself with some particular types of
“waves” and with the importance and consequences of fitting boundary
conditions. The work treats a very easy case, simplified and abstracted
from a physically realizable system. The case was made so simple in order
to avoid painful mathematics which might obscure the actual points to be
made. The purpose is to explore this simple case thoroughly, avoiding basic
misunderstandings. If it is objected that matters so simple should not be
treated at such length, because no one could misunderstand them anyway,
T can only reply that T did misunderstand some of the matters recounted
herein.

I. Wy ArRe WAVES INTRODUCED?

We will consider the case of a narrow or thin beam of electrons across
which we can assume that the electric field is constant.T In our calculations
we assume that all electrons in a given very small region have the same
velocity, thus neglecting the thermal velocity distribution. We assume
that the flow is a smoothed-out jelly of charge,{ with the charge per unit
mass characteristic of electrons; thus, we neglect individual interactions
between electrons, and consider only a sort of average effect.

We will write the quantities involved in the following forms

velocity = v+

7L. R. Walker, “Note on Wave Amplification by Interaction with a Stream of Elec-
trons,” Phys. Rev., Vol. 76, pp. 1721-1722 (1949).

T This is in itsell a drastic abstraction. No attempt will be made to justify it here,
beyond saying that it is useful in considering the problems that follow.

1 Other drastic approximations for which no justification will be given.
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Here u, 1s a constant component and 7 is a small flucteating or a-c. com-
P :
ponent

charge density = p + po

where again po is the average or d-c. component, which will of course be
negative, and p is the a-c. component

convection current density
i— Iy

Here I, is the average or a c. current density and, as the electrons are
assumed to move in the +z direction, the current density in the +z direc-
tion is taken as — I, . In other work T have used i and J, as current rather
than as current density; I hope that this will cause no confusion.

It is assumed that there is no average field. It is assumed that there is an
a-c. field in the z direction only, and this is called E.

We have two equations to work with. One is

d(v—l—:ﬁQ: e

di mE

Here ¢/m, the charge-to-mass ratio of the electron, is taken as a positive
quantity. The time derivative is that moving with an electron. We can in-
stead take derivatives at a fixed point

d(”“}"ﬂ'u) a(v + ) b+ ‘)a(ﬂ‘i‘uo)
dt at
which gives
av v
EY) T 3z
dg dup
+—m‘+(1’+“ﬂ)3z' (1-1)
av e
T Tl

The terms on the second line are zero because duo/dt = 0, due/dz = 0.
Further, let us consider a series of solutions of (1.1) for fields in which E
has the same form in time and space, but varies in magnitude. As E is made
smaller and smaller, v will become smaller and smaller, and the term vdv/ds,
which is a product of two a-c. quantities, will become relatively smaller
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than the other two terms involving ». In our small signal theory we neglect
the term v9v/dz, and write
dv dv e
a2 = —_F 1.2
T T (12)
We note, then, that this approximates the true equation for small values of
E and 7 only.
We have another equation

‘%(i — ) = —(% (p 4+ p) (1.3)

This is the equation of continuity, or of conservation of charge. If we
integrate it over a small distance Az we obtain

(= Weras = (i = 10, = =3 [(o + p)Ad

The quantity (p 4 po)As is the charge per unit cross section in the distance
Az. Thus, the right-hand side is the rate at which charge in the distance Az
decreases. The quantity on the left is obviously the rate at which charge
per unit cross section is flowing out of the space Az long.

If we carry out the operations in (1.3) we obtain

ds ds at at
As 01/0z = 0, dpp/dt = 0

di ap
= = 14
dz at (14
We need to add that the convection current is given by
i— Iy = (p+ po)(v+ 1)
0 0 0 (1.5)

i — Iy = pev + pus + porto + pv
The term pouy is a constant term and is to be identified with — 7,
—1Iy = potto (1.6)

The term pv is a product of a-c. quantities. Suppose we solve all our equa-
tions neglecting pv. Then, the error caused by this approximation will be
less as p and v are less, that is, at small signal levels. Thus, we write

1= pug + tpy 1.7
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We now have three approximate equations, which are good approxima-
tions at small signal levels

av adv e

(ﬁ"‘“ﬂ&—_aE (1.2)
d _ _ dp
9z ot 1.4
i = pug + Upo 1.7

We can eliminate p and v from these equations and obtain an equation re-
lating 7 and E. To do this we solve (1.7) for »

1. g
1= _—-1— —p
Po Po
differentiai-
d 1_6_1 iy dp
at Po Bt Po ot
use (1.4)

o _ 100w
at po Of po 02
differentiate (1.2) with respect to ¢,

3 adv + 1 E av __eBE
a1 \at v \ar) T Twma

and substitute for dv/d!, obtaining

% 3 2 ' e OE
Eﬁ+21‘0@+u0@= _’;POET (1.8)
This is an equation relating 7 and its derivatives with E. Tt is a linear equa-
tion; that is, i and its derivatives, and E appear to the first power only.
This is because we have neglected non-linear terms, saying that af low levels
they are small compared with the linear terms.

Now, the electron flow interacts with surroundings of some sort, or, we
shall say, with a circuit. Let us consider as an example of a circuit a trans-
mission line with a distributed capacitance C per unit length and a dis-
tributed inductance L per unit length, which will transmit a slow wave.
Suppose that the electron stream flows along very close to the line. Then
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if the current o7 of the electron stream, where ¢ is the area of electron flow,
changes with distance, a current J will flow into the line per unit length as
shown in Fig. 1.1 where

a1
J = —0 5; (1.9)

If V is the voltage on the line and I is the current in the line we write
al av 1
FEA TR
av al

i —L 3% (1.11)

(1.10)

CURRENT DENSITY

AT T =g

" L PER UNIT LENGTH

|: T T T == C PER UNIT LENGTH
+Z

Fig. 1.1—A transmission line with an electron beam very close to it.
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We can eliminate / by differentiating
o'l a'v '
dzat art dzat
v o'l
i 19V a'v
g — = — —— — C —
dzdt L o9z ar
We can further identify the field acting on the electrons as

E = _¥ (1.13)
0z

In (1.8), let us replace E by means of (1.13), and let us differentiate with
respect to z and again with respect to {. We obtain

f(ﬁ)+m f(ﬁ)+ﬁf(ﬁ)_e o'V
a2 \azat © 520t \azat ©922\azat)  m P azor
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We can substitute for 8%/dzd¢ from (1.12) and obtain

a'v a'v e o'V
2 2
"o o T 20 gy (1 — wlC = oo L “) FYEY:
a‘v a'v (t14)

Thus, we have obtained a linear partial differential equation in ¥, z and £.

So far, nothing has been said about waves or wavelike behavior. We
might solve (1.14) for any boundary conditions on V' and its derivatives
that we chose, by any means, as by using a differential analyzer or a digital
computer. There is, however, a well-established technique for dealing with
linear partial differential equations with constant coefficients, such as (1.14)
is. Tt is known that they have solutions of the form

V = Aeivteits (1.15)

As (1.14) is an entirely real equation, if (1.15) is a solution, the real part
of (1.15) is also a solution, i.e.,
Re (Aeieteif?)
is a solution. Hence, we may regard the real part of the complex V' as the
true physical solution.
If we substitute (1.15) into (1.14) we obtain
ug B — 2uB’ + (1 — wglC — o % LB) w'g

L (1.16)

4 2uLCw’8 — LCw' = 0
Now (1.16) is an algebraic equation in w and 8. How are we to interpret it?
Suppose we are interested in devices driven from sinusoidal generators,
such as amplifiers.* This means that w is real, and that it is the radian fre-
quency of the applied signal. We may then regard (1.16) as an equation in
B8, and, as it is a fourth degree equation, there will in general be four roots.
We may regard these as pertaining to four waves, whose voltages vary as
V.= Alei(lﬂ“ £12)
V2 -4281‘(""—32')
Va — A‘ej(ul—ﬂ;g!}

V= A wi(ul—ﬁul

* We might, on the other hand, be interested in devices with an imposed spatial pat-
tern, as in a magnetron oscillator. In this case we might assume § asa given, real quantity
and solve for real or complex values of w.

I
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Each of these four components is a solution of the differential equation. The
solution of an actual physical problem will be the sum of the four compo-
nents, or, if we like, the real part of that sum, and the amplit:de factors
Ay — A4, which are in general complex, will depend «.: th~ particular
physical problem which is solved.

Wha* has been the purpose of this argument? First of all, it is intended
to indicate how the waves get into the picture. The differential equations
for a long beam of constant average velocity u, and charge density p, were
linearized by neglecting terms in which the products of a-c. quantities ap-
peared. By this means a linear partial differential equation with constant
coefficients which relates 7 and E was found. This was combined with the
linear partial differential equation for a uniform transmission-line circuit,
and an overall partial differential equation for V was obtained, linear and
with constant coefficients. Such an equation could be solved by any means,
but it is known to have wave-type solutions, and the solution of the original
physical problem must be a sum of all such solutions.

In general, we will not expect so simple a relation between 7 and V or E
as (1.12), that for a simple transmission line. Further, for broad electron
streams the electronic behavior cannot be expressz=d so simply as it has been
in (1.8). Nonetheless, we will find wave solutions in which all quantities vary
with time and distance as

e Jo te— 1Az

as long as
(1) the d-c. beam properties (the undisturbed electron flow) and the
circuit properties do not vary with z.
(2) the signal amplitude is low enough so that terms involving products
of a-c. quantities can be neglected.
When this is so, the solution of a physical problem can be expressed as
the sum, or the real part of the sum, of such wave solutions, taken with
the proper amplitudes.{

II. TaE ComPONENT WAVES

Once we are convinced that the solution of our problem can be expressed
as the sum of a number of waves which are solutions of a linear partial dif-
ferential equation, it is simplest to use this fact directly in finding certain
properties of the waves of which the solution is to be made up.

Let us, for instance, let E in (1.8) contain the factor

cful e—jﬁ:

T An additional overall condition is that the electron flow has no velocity distribution.
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In other words, let E in (1.8) be one of the wave components of a solution.
Then (1.8) becomes

(—w® + 2uwB — wf)i = —jo ?; poE

, ) ( e
i = —jwe| ——
m

4(5-9)

Here ¢, the dielectric constant of vacuum, has been introduced for reasons
which will become apparent later. Tt is further of interest to introduce other
simple parameters.

m|Z

) ”

Stk (2.2)

m €
% =8, (2.3)

Ug

[4)]
s Bo (2.4)

The quantity w, is called the plasma frequency (a radian frequency). wp
is positive because py is negative. fo would be the phase constant of a wave
traveling with the electron velocity. While 8, would be the phase constant
of a wave traveling with a phase velocity equal to the electron velocity,
and having a frequency w,, we may merely regard g, as a convenient
parameter which increases as the beam current is increased. In terms of

Bs and fo

: —Br .
i = — " _ (jweE) 2.5
(Bo — B)* (j @5)
This may seem a strange form in which to write the equation. It will
perhaps seem less strange, however, if we recall that the current density I

in a dielectric medium is given by
I = jweE

Thus, we see that for real values of 8 the electron convection current den-
sity 4 is that which would correspond to a negative dielectric constant or a
negative capacitance. Its magnitude depends on B, , which is proportional
to the d-c. beam current density; and the magnitude becomes very large
when the phase velocity of the wave approaches the velocity of the elec-
trons, that is when 8 approaches S .
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Suppose we consider a beam of area ¢. We can write the total electron
convection current I, in the form

I, =0;,=Y.E (2.6)
Y, = __(ﬂ—of‘f"g; @.7)

We will call ¥, the electronic admittance; it is measured in mho meters.

Later we will deal with waves in which the electron stream transfers
power to the circuit, and it is interesting to see under what conditions
this can take place. Let the amplitude of the wave under consideration vary
with distance as

e(ar-iﬂlll

We may take the complex nature of the propagation constant into account
by substituting in (2.7)

—jB = oy — jB
o (2.8)
B = jas+ B
This leads to
V., = —jweafy
¢ (Bﬂ - Bl - jal)z (2.9)

V. — weaﬁ§[2al(ﬁo — B — j(ﬁo - .31)2]
‘ [(Bo — B1)* + af]

The electron stream can transfer energy to the circuit only if the real
part of ¥, is negative (a negative conductance). For a wave which in-
creases in the direction of electron flow (the 4z direction), ey is positive
and the electronic conductance will be negative if 8; > B, ; that is, if the
electron velocity is greater than the phase velocity of the wave.®

For a wave which decreases in the +z direction, the conductance will
be negative if the electron velocity is smaller than the phase velocity of
the wave.

Let us now consider the interaction of our thin electron stream with the
circuit. Here there is some possibility of confusion. In (1.12) the field caused
by impressing a current on a circuit was calculated. This may be likened
to the voltage along an impedance Z caused by an impressed current I.

8 This is indicated by very elementary arguments (J. R. Pierce and L. M.
Field, “Traveling Wave Tubes,” Proc. I.R.E., Vol. 35, pp. 108-111, Feb. 1947). It is easy
to forget, however, and was recently pointed out to me, to my consternation, by Dr. L.

J. Chu.
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Figure 2.1 will help to make this clear. Here the impressed current I flows
to the right and back through the circuit of impedance Z. The voltage will
increase to the right and hence the field will be directed to the left.

In general, for an impressed current / we will write the field produced as

= —Z(, I (2.10)

Here Z(w, B) is a circuit impedance per unit length, which is usually a
function of @ and B. In terms of an admittance, the relation connecting
impressed current and field is

I=—Y(wB)E (2.11)

[l

Fig. 2.1—The valtage and field prodiced by a current impressed on an impedance Z.

This can also be made clearer by means of an illustration. Suppose that
the impressed current density in a very broad beam is i and the “circuit”
is merely free space. Then

p = @ i
W
and from Poisson’s equation
OE . o Bi
o8 _ _pgE=P_"F"
dz 9P € w €
1 = —jwek

But, the admittance of a unit cube is just jwe, and the current through
this admittance is juweE.

Thus, when we have calculated the field caused by an impressed con-
vection current, the admittance is the negative of the field divided by the
convection current.

In (2.5), 1, or rather, ¢i, where ¢ is the area of the beam, may be re-
garded as the impressed current. If ¥(w, B) is the circuit admittance, one
way of writing the condition for a natural mode of propagation of stream
and circuit is

oi = —Y(w, B)E (2.12)



WAVES IN ELECTRON STREAMS AND CIRCUITS 637

Another way of putting this is to say

Yo+ Y(o,8) =0 (2.13)
From (2.13) and (2.7) we obtain
B =B =+ By 4/—i°3ff— (2.14)

Y(w, B)

ELECTRON
STREAM

TS~ RESONATORS

Fig. 2.2—An electron stream passing through a series of resonators, as in a multireson-
ator klystron.

Suppose, for instance, that the circuit admittance is capacitive and is
equal to that for a longitudinal electric field in vacuum of area equal to
the beam area o. Then

¥(w, 8) = jwes mho meter
and we have two unattenuated waves

B=Bﬂiﬁp

We see that whenever (1) the circuit admittance is inductive or (2) the
circuit admittance has a dissipative component, 8 will be complex, and
there will be increasing and decreasing waves. Either of these conditions
can be achieved, for instance, by surrounding the electron stream by a suc-
cession of essentially uncoupled resonators, tuned to be inductive, or with
dissipation, as shown in Fig. 2.2. This is merely a continuous multi-resonator
klystron.

In a transmission-line type of circuit such as we have considered and
such as is used in the traveling-wave tube, for instance, the circuit admit-
tance depends strongly on the phase constant 8, and in solving (2.14) for
B8 we must take cognizance of this fact.

We can, for instance, derive the circuit admittance from (1.12). We
can use

E = j3V
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and rewrite (1.12) as
e I _ a?
gl = Ig (w’LC — B)E

Now, if the impressed current oi is zero, § must have a value §; such

that
B1 = +VwLC

Also, the characteristic impedance of the line, K, is

K = ++/L/C

In terms of these quantities

(81 — BYE

o = —J_
KB, p?

and the circuit admittance ¥ (w, B) is

Vo, 8) = =%
) (2.15)
Y(w, B) = T{ﬁ (81 — ") mho meter

Here K and B are positive quantities. We note that this admittance is
capacitive for 8 < By, that is, for waves with a phase velocity greater
than the natural phase velocity of the circuit, and inductive for 8 > B,
that is for waves with a phase velocity less than the natural phase velocity
of the circuit. This is easily explained. For small values of 8 the wavelength
of the impressed current is long, so that current flows into and out of the
circuit at widely separated points. Between such points the long section
of series inductance has a higher impedance than the shunt capacitance to
ground; the capacitive effect predominates and the circuit impedance is
capacitive. However, for large values of 8 current flows into and out of the
circuit at points close together. The short section of series inductance be-
tween such points provides a path of lower impedance than that through
the capacitances and ground; the inductive impedance predominates and
the circuit is inductive. Thus, for fast waves (8 small) the circuit is capaci-
tive and for slow waves (3 large) the circuit is inductive.

We can, then, immediately make one observation. For a lossless circuit,
any increasing or decreasing wave must have a phase velocity less than
the natural phase velocity of the circuit.

We can make another observation as well; if the circuit has loss, ¥(w, 8)
will have a real component, and from (2.14) all the waves must have an
imaginary component of f§, that is, they must be increasing or decreasing.
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If we like, we can combine (2.15) with (2.14). Doing this directly, we
obtain

2

By
81 — 8%

Unless the electron velocity is near the wave velocity (8 near to ()
we will expect two sorts of solutions: one sort, for which g8 is near to S,
corresponding to “space-charge’” waves; and the other, for which 8 is near
to 4@, , corresponding to ‘“‘circuit” waves. If 8, is not near to 8;, we can
easily obtain approximate values of 8 for these two types of wave.

To obtain 8 for the space-charge waves we put 8 = B, on the right-
hand side of (2.16) and obtain

2
8= b By 4/ ST (2.17)

If (2.17) gives a value of 38 differing by a small fraction from g, , then (2.17)
is to be trusted.

To obtain § for the forward circuit wave we put 8 = B, on the left of
(2.16) and in the numerator on the right. This gives for the forward wave

2 1/2
B =B (1 - (‘;"fﬁg%) (2.18)

To obtain the backward wave, we put 8 = f; on the left of (2.16) and
in the numerator on the right, and obtain

wes KB 8 )”2
(B1 — Bo)?

Again, (2.18) and (2.19) are to be trusted as long as f as given by (2.18)
differs by a small fraction only from 3, .

We see that according to (2.19) the space-charge waves are unattenuated
(real B) for o < B:, that is, for electrons traveling faster than the circuit
phase velocity, while there are increasing and decreasing waves for 8, > 8, ,
that is, for electrons traveling more slowly than the circuit phase velocity.
We see from (2.18) and (2.19) that the circuit waves are unattenuated
(for lossless circuits), and travel a little more slowly than in the absence of
electrons.

Further, we see that (2.17) and (2.18) are not to be trusted when g,
is close to B3, , that is, when the electron velocity is near to the circuit phase
velocity. As a simple example, let

Bo = B (2.20)

(B — B’ = weaKB,B* (2.16)

B = —h (1 + (2.19)
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It will turn out that 8 will be very nearly equal to . Hence,
B=B+ 38— 8= —jBo+d (2.21)
Then, from (2.16) we have

s weaKBo(Bo + 1)
8= 2 A 528 + 0)

If we neglect 8 with respect to 8o in the sums inside the radical we obtain
the equation

8 = —jBifwesK (2.22)
B
i
&
“~

~—

~(Bp2 B weaK)V3

—

~ e

\‘—— P
Fig. 2.3—Values of & for the three forward waves of a traveling-wave tube when the
electron velocity is equal to the velocity of the undisturbed wave.

This yields the usual three forward waves of the traveling-wave tube.
8 = (BBlwecK) el rirtanm)s
5 = (BPiwesK) ™ (\/3/2 — j/2)
8y = (BBlweaK)*(—/3/2 — j/2)
5 = (BBlweaK)1(j)

We see that &, represents an increasing wave slower than the natural
phase velocity of the circuit, 3, represents a decreasing wave slower than
the natural phase velocity of the circuit, and 8; represents an unattenuated
wave faster than the natural phase velocity of the circuit. The 3 &’s are
illustrated in Fig. 2.3.

If By # B, and if B is complex (a lossy circuit) the equation for & is more
complicated, but & can be obtained numerically.

Tn addition to the three forward waves, that is, waves in the direction of
electron motion, there is a backward wave. This is very much out of syn-
chronism with the electron stream, and the backward wave is essentially
the same as the wave in the absence of electron flow.
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III. F1rTING BoUNDARY CONDITIONS; GAIN

So far the discussion has been concerned with a differential equation and
wave-type solutions of it. Let us now consider an overall problem. Suppose
that we inject an unmodulated electron stream into a circuit of some finite
length and apply a signal to the end of the circuit nearest the source of
electrons. Suppose that we adjust the output termination so that there is
no backward wave.* How will the field strength vary along the circuit?
To answer this question, we must find out what combination in phase and
amplitude of the three forward waves corresponds to these conditions.
In terms of solving differential equations, we must fit the boundary con-
ditions.

From Section I we have

av dv e
a—l + u a—z = ’—’-; E (1.2)
or
it
m
t=————F 31
(B0 — B) (3.1)
with which we couple
_‘.32
1= — 2 iweE 2.5
(60 - 519)21 ( )
In terms of
B = ﬁo + jﬁ
these relations become
1 e 1
(t—ta 1—"') v = SE (3.2)
—-7\. 1
(weﬁ:) 1= 52 E (3.3)

These relations hold for each of the waves separately. Now, let us denote
by E,, E;, E; the fields of the three waves, and by E the actual field on the
circuit. Then at the beginning of the circuit, where E is Eo, the applied
field, the amplitudes Eio, Ea , Es of E,, E, and Ey must satisfy

Ew+ En+ Ex = E . (3.4)

* This is a very special case, requiring a unique impedance terminating the +z end of
the output circuit. See Section V.
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Also, at the beginning of the helix, a-c. velocity and the a-c. convection
current must be zero. This means that

Elﬂ EEO E:!O
Lawo 4 Low B 5
3 + 5 > 0 (3.5)
EIO E‘Z{) gﬂ_ﬂ
EH 82 5 0 (3.6)

For the case we have considered, 81 = Bu, 81 real,
8, = 5,600
5 = 61 e+.f(2n'3)
and our equations become
-El[l + Exn + Ean = K
Ey + Ene®™ + Ej'® =0
Ew + Ex 1O Ei ¢ =0

We easily see that the solution is

Ey = Ex = Ey= 3 E (3.7
If E is the field at a distance z along the helix
E =} Ee ™" + ¢ + ) (3:8)
In Fig. 3.1,
20 loguo £ ‘

is plotted vs CN, a factor proportional to distance.

We see that initially the amplitude does not change. This is necessarily
so. The strength of the field can grow only through the electron stream
giving energy to the circuit. The electron stream can give energy to the
circuit only if it has an a-c. convection current. Initially the electron stream
is unmodulated and hence it can give energy to the circuit only after it has
traveled far enough to become modulated.

In the case we have considered, the amplitudes of the three wave com-
ponents of the field are initially equal. Now, E, increases with distance,
while E, decreases with distance and Ej is unattenuated. Hence, if the tube
is long enough, E» and E; will be negligible near the output of the tube;
and the field at the output, a distance ¢ from the input, will be very nearly

E = %Eoe—fﬂu(galt
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Under these circumstances the gain G in db will be very nearly

Il

G 20 logm

E ool
E ' = 20 IOg]_o %GR @b db

G = —o5 4 20 V3 g oy
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Fig. 3.1—Signal level along the helix of a traveling-wave tube.
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Fig. 4.1—A high-pass structure in which the phase velocity is in a direction opposite
to that of power flow.

IV. BACKWARD WAvVES AND OTHER PECULIAR WAVES

It is important to notice that, for the usual traveling-wave tube, it is
possible to express the overall gain in terms of the increasing wave alone
only because of the relative amplitudes of the three waves which make up
the solution of the particular problem considered. That this is by no means
a trivial point can be demonstrated by considering a case in which the
circuit is a high-pass filter, as shown in Fig. 4.1. For such a circuit, the
phase constant f; is negative for a wave excited at the left end of the line
which carries energy to the right. Such a wave will not interact with elec-
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trons moving to the right. A wave excited at the right with power flow to
the left has a positive value of 8 and will interact with electrons traveling
to the right. Let us consider such an interaction.

First, as to the §’s. We see that, for a wave which varies with distance as

g1z

where 8 is a positive number and has power flow to the left, the sign of V/I
must be the opposite of what it would be if the power flowed to the right.
This can be taken into account by reversing the sign of K in (2.19), and
making

8=+ jﬂf,ﬁlwwK (4.1)

where K is now taken as a positive number. We can then take

b = @eteer)™ (=3 4 j12)

8, = (B:B1 wesK)'"? (%3 + j/Z)
b = (8361 weaK)"*(—7)

Here §, represents a wave whose amplitude increases to the left, that is,
a wave which grows in the direction of energy flow. We might think that
this would immediately imply a gain similar to that obtained for energy
flow in the direction of electron motion, but this would be jumping at
conclusions.

Suppose we taken z = 0 at the left-hand or output end of the circuit.
There the electron stream enters unmodulated. There also we will assume
the circuit to be terminated so as to prevent reflection of power. At the right-
hand or input end of the circuit power will be fed in, giving an impressed
field E¢.

Suppose 6; , 8; and 8; are the appropriate &’s for this case. We see that our
boundary conditions are

I Be™ - B + Eye ™% = Ey

En Eoy Ey
Zw Lo _ o
01 + b2 T 83

EIO EZO Eﬂu
8 8 + 5 0
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We have a relation between the §’s
Y
5y = 5,7
by = § e Y
From this we easily we see that a solution of the last two equations is
Ey = En = Ey
Accordingly, the first equation becomes
Eoe ™ + o™ + o™ = By
Ege™ (4.2)
(eﬂ‘t + gji,d + e;‘s,()

Let us now assume that the tube is very long. We easily see that in this
case

Em =

|ej’ﬁlt | > | ejﬁgfl

l 8j51£ l > ] ﬂjﬁ;( |

So very nearly

E ol
Ey = Ey = Ey = L (4.2)
8 {
e 1
and the total field at the output end of the tube is
E = Eo+ En+ Ey = 3™ ™! (4.4)

This, however, is much smaller than the field E¢ at the input end of the
tube. )

What is the physical picture? The electrons are injected into the circuit
as an unmodulated stream. In order to fit the boundary conditions at this
point, the three waves must have comparable magnitudes at the point of
injection. If this is the output, then any wave which “grows” from input
toward output must be relatively very small at the input.

If boundary conditions are fitted for other cases, as, for an electron speed
not equal to the circuit phase velocity (80 # f1), it may be found that the
output may be a little greater than the input under some circumstances;
this represents a small gain achieved through a spatial interference of the
three wave components.
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A sure way of distinguishing conditions which will allow amplification
from conditions which will not is through a solution of the differential
equations together with a fitting of the boundary conditions. In the case of
backward waves there are, however, considerations concerning the source
of energy and its transfer to the circuit (or field) which are useful.

Suppose that an unmodulated electron stream enters a microwave ampli-
fier, travels for some distance through it, and emerges. If the electromag-
netic output power of the amplifier is greater than the input power, the
additional power must have come from the kinetic energy of the electron
stream. The average electron must leave the amplifier with less energy of
motion than it had on entering it.

We can say a little more. Let us call the total velocity of electrons, a-c.
and d-c., u. Then we have, corresponding to (1.1)

au + Bu __¢€ E
m

(4.5)
du

=+ 5 ( )= —ZE
m
We will consider an amplifier in which the » and E at any z-position
are truly periodic. Let us integrate over the period of a cycle, 7, and divide
by =
t+r tr
wtld Ta=1 E (4.6)

t 70z J, T Jt

As % will be the same at ¢ and { + 7, the first term on the left is zero,
and we have

dw=E @7)
dz
Here 2 and E are time averages.

The field E is produced in a linear circuit by (1) the application of an
a-c. signal, (2) by the presence of the electron stream. Certainly, the applied
signal can produce no average field in a linear circuit. Further, unless elec-
trons are turned back, the average electron convection current is inde-
pendent of r-f level. In a linear circuit the average field must be propor-
tional to the average impressed current, so the average field E must be
zero or independent of r-f level. Thus, the time average of u? at a given.
point must be independent of r-f level.*

This means that the electron stream cannot be slowed down bodily by

* L. A. MacColl pointed this out to the writer.
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the r-f field. Energy is extracted from the stream only by a bunching process
in which in the emerging beam the charge density is higher when the veloc-
ity is below average than it is when the velocity is above average. In other
words, the kinetic energy averaged over electrons is reduced, even though
the time average of u? is not changed. This means that the emerging beam
must be strongly bunched if much power is to be abstracted.

In the conventional traveling-wave tube all is well. At the input the
r-f field is small and the beam is unbunched. At the output the r-f field is
high, and the beam is strongly bunched, having lost energy to the cigcuit.

Imagine a tube using a backward wave, however. The electrons are in-
jected unbunched at the output, where the signal level is high. They emerge
at the input where the signal level is low. If the tube is to give high power,
the stream must emerge strongly bunched. The disturbance in the electron
stream cannot gradually increase as the field amplitude increases.

© J% J% J% J%

Fig. 4.2—A ladder network.

We have seen that one cannot draw conclusions about gain just by look-
ing at the propagation constants of the waves. Waves are merely solutions
of a differential equation connected with a physical system. To find the
properties of the system one must examine, not various solutions of the dif-
ferential equation, but the particular solution (which may be a combina-
tion of simple solutions) which applies to the system in question.

As a further example, we will examine another system whose differential
equations yield “‘growing” solutions which turn out to be backward waves.
Consider the ladder network of Fig. 4.2. This propagates an unattenuated
wave if X, and X, have opposite signs, (X; inductive and X, capacitive,
for instance). If, however, X; and X, are both capacitive or both inductive,
then a wave excited in the circuit decays exponentially with distance. If
we speak in terms of 8, then

—jbL = —ay

.31 = —‘jﬂh
where ¢ is a real number.
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The characteristic impedance K is reactive, inductive if both impedances
are inductive and capacitive if both impedances are capacitive. Let

K = jXo

where X, is a real number. Then a positive value of X, means inductive
elements, and a negative value capacitive elements.
The space-charge waves are given by (2.17)

B = Bo % B, 4/ Zic Ko P B (4.8)
o + B

We see that the waves are unattenuated for negative, capacitive values
of Xy, and are increasing and decreasing for positive, inductive values
of Xo. It can be shown that the increasing space-charge waves can be used
to obtain gain.

The forward circuit waves are given by using K = jXo, 81 = —jos in
(2.16), 8 = —jay on the left and in the numerator on the right and § = —ja
in the denominator on the right.

@ =a (1 4+ ceoXoay )m (4.9)
' (jeu + Bo)? ’

As @ = jB, the variation with distance is as

8—&!

The backward wave is given by using 8 = ey on the left of (2.16) and in
the numerator on the right
o _ wea‘Xume, )”2
a = —a (1 ——(J'O‘L — B0)? (4.9)
1f « differs little from =0y , we can expand the square root in (4.6) and
(4.7), separate real and imaginary parts, and write:
Forward wave:

w }32 Xuﬂx(ﬁg - i wao'ﬁ »BoXoOu)
14 % P (4.10)
! ( 2(.60 + ﬂ‘l) (ﬁa 1)

o =

Backward wave:

P Xoa(B; — e1) | jweafy Xoai
= (14 S0 + o ) (4.11)
* “‘( 28 + o) CHE)

The circuit “waves” which were rapidly attenuated in the absence of
electrons (8, = 0) are a little more or less rapidly attenuated in the presence
of electrons (more or less depending on whether X is positive or negative,
and on the relative magnitudes of 8o and ay), and they now have a phase
constant, that is, an imaginary component of the propagation constant.
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The phase velocity may be either positive or negative, depending on the
sign of X . This added feature gives the solution a more “wavelike” quality,
but physically we have merely a slight perturbation of the disturbance
natural to the non-propagating ladder network.

In the absence of electrons, there is no real power flow in the modes of
propagation of a purely reactive ladder network in which the shunt and
series reactances have the same sign. Such a network can of course transmit
power to a resistive load, but it transmits no power when terminated in its
(reactive) characteristic impedance.

In the presence of electrons, there is a small power flow in the circuit.
We can easily evaluate this. If, in (1.11), we assume a variation of the quan-
tities with time and distance as

g orgiot
we obtain
@
I= jol. Vv
Here wL stands for the series reactance, which we may call X;
ol =X,

A positive value of X; means series inductance. For non-propagating lad-
ders, X; and the characteristic reactance X, have the same sign.
We then have

The quantity —ja/X; as evaluated in the presence of electrons will be
the “hot” characteristic admittance.
The complex power flow P is
P=VI*
So, in this case
o *
Je
P=-"_ VV*
Xy
Now, the “backward” wave, for which « is given by (4.12), “increases”
in the direction of electron flow. For it, the real part of the power Re P is
given by
weo’,Bf, af Xo
(.Bg + a‘f)Xl
Note that X, and X; must have the same sign. Thus, the power flow for
the wave which “increases” in the direction of electron flow is always in
the direction opposite to the electron flow. The circuit power does not flow
in the direction of increasing amplitude for the wave which “grows” in the

Re P/VV* = — (4.12)
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direction of electron flow. We might have deduced this from the fact that
the phase velocity for the wave is greater than the electron velocity (see
(2.9)).

While the wave which increases in the direction contrary to electron
flow has its power flow in the direction of increasing amplitude, it is a back-
ward wave and hence not suitable for producing gain.

The disturbance on the non-propagating ladder is closely related to a
passive or cut-off mode of a waveguide excited at a frequency less than the
cutoff frequency for the mode in question. In this case, the analogue of the
circuit power VI* is the integral of the Poynting vector over the guide
cross section. When electrons flow through a waveguide these cut-off modes
are perturbed much as indicated by (4.19) and (4.12). Because the per-
turbed modes have a “wavelike” character in that the propagation con-
stant is no longer purely real, and because the amplitude may increase in
the direction of electromagnetic power flow, some workers have proposed
to obtain gain from these “‘growing waves.”

V. FURTHER CONSIDERATIONS CONCERNING BoUNDARY CONDITIONS

How necessary is it to fit boundary conditions in order to deduce what
will happen? The suspect waves we have examined so far might be rejected
as increasing in a direction contrary to the direction of electron flow,* or
as having electromagnetic power flow in a direction opposite to the direc-
tion of growth. Can we find some method for separating waves useful in
producing gain from waves which are not, without consideration, explicit
or implicit, of boundary conditions?

Let us consider the problem of fitting boundary conditions for a circuit
plus an electron stream. Imagine that the end of the circuit near to the
electron source (“near” end) is connected to a load impedance Z and that
the end away from the electron source (‘‘far” end) is driven by a voltage V.
Let the wave which increases most rapidly in the direction of electron
flow vary in amplitude as exp (az). Suppose that the length of the circuit
is great, so that «L is a large number and exp (al) is a very large number.

At the near end the various wave components must be so related that ¢
and v are zero and that the circuit voltage is ZI. At the near end, all four
waves must be used to fit the boundary conditions at a given voltage level.
Disallowing very special values of Z, we would expect that at the near end
the four waves will have comparable amplitudes (the amplitudes are re-
lated by linear simultaneous equations). Thus, at the far end of the circuit,
the wave which increases most rapidly with distance should strongly pre-
dominate. It seems that the most rapidly increasing wave is naturally con-
nected with excitation of the circuit at the far end.

* Though rejected only through considering boundary conditions.
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On the other hand, assume that the far end of the circuit is terminated
in some impedance Z. Consider the case in which the electron stream is
velocity modulated at the source end and no exciting voltage is applied
at the far end. We would expect that the required boundary conditions at
the source end could be satisfied by using the waves excepting the one which
increases most rapidly with distance. At the far end, to make V = I7 it is
necessary to add a component of the wave which increases most rapidly with
distance, a component of magnitude comparable to the sum of other com-
ponents present af the far end. However, this added component is so small
at the near end that there it can be disregarded. Thus, the manifestation
of large forward gain comes not from the mere presence of a wave which
increases in the forward direction, but from special properties of the waves
and/or the terminating impedances which can be determined with cer-
tainty only by fitting boundary conditions.

Are not these arguments at variance with the usual analyses of opera-
tion of the traveling-wave tube? Suppose, for instance, that the helix is
terminated in an arbitrary impedance at the input (near) end and that a
voltage V is applied at the output (far) end. What wave will predominate?
For a lossless helix, the true answer is that the increasing (forward) wave,
not the unattenuated backward wave, will predominate. This can be
avoided only by (1) choosing a particular (matched) value of source im-
pedance or (2) making the helix lossy enough so that the backward wave
“increases” more rapidly in the 4z direction than any forward wave does.
In tubes with a uniform loss along the helix, expedient (2) is adopted;
when a center lossy section is used, both (1) and (2) are invoked, (1) in
the output section and (2) in the center lossy section.

It is dangerous to consider the solutions of the linear differential equa-
tions of a physical system singly rather than in the combination which
satisfies the boundary conditions. This sort of reasoning might lead one to
believe that the problem of obtaining high voltages can be solved by find-
ing a solution of Laplace’s equation (say V = 1/r) for which the potential
goes to infinity at some point.

Cautions against neglecting the problem of boundary conditions apply
equally well to problems of instability (increase of disturbances with time)
as to problems of amplification. Thus, electron flow may be unstable when
none of the waves grows with time for real values of 8% On the other hand,
in criticizing the work of Bohm and Gross,! R. Q. Twiss has shown® that
electron flow is not necessarily unstable merely because some of the waves
grow exponentially with time for real values of .

* R. Q. Twiss, “On the Theory of Plasma Oscillations” Services Electronics Research
Laboratory, Extracts from Quarterly Report No. 20, Oct. 1950, pp. 14-28.



