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Reduction of Skin Effect Losses by the Use of
Laminated Conductors

By A. M. CLOGSTON

It has recently been discovered that it is possible to reduce skin effect losses
in transmission lines by properly laminating the conductors and adjusting the
velocity of transmission of the waves. The theory for such laminated transmission
lines is presented in the case of planar systems for both infinitesimally thin
laminae and laminae of finite thickness. A transmission line completely filled
with laminated material is discussed. An analysis is given of the modes of trans-
mission in a laminated line, and of the problem of terminating such a line.

I. INTRODUCTION

It has long been recognized that an electromagnetic wave propagating
in the vicinity of an electrical conductor can penetrate only a limited distance
into the interior of the material. This phenomenon is known as “skin effect”
and is usually measured by a so-called “‘skin depth” é. If y is measured from
the surface of a conductor into its depth, the amplitude of the electro-
magnetic wave and the accompanying current density decreases as ¢ '°,
provided the conductor is several times & in thickness, so that fory = 8
the amplitude has fallen to 1/e = 0.367 times its value at the surface. The
skin depth § is given by

5=4/-2 (I-1)

wpo
where ¢ is the conductivity of the material, u is its permeability and w is
27 times the frequency f under consideration. Throughout this paper ration-
alized MKS units are used. -

From one point of view, skin effect serves a most useful purpose; for in-
stance, in shielding electrical equipment or reducing crosstalk between com-
munication circuits. On the other hand, the effect severely limits the high
frequency performance of many types of electrical apparatus, including in
particular the various kinds of transmission lines.

Surprisingly enough, it has been discovered that it is possible, within
limits, to increase the distance to which an electromagnetic wave penetrates
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into a conducting material. This is done essentially by fabricating the con-
ductor of many insulated laminae or filaments of conducting material ar-
ranged parallel to the direction of current flow. If the transverse dimensions
of the laminae or filaments are small compared to the skin depth § at the
frequency under consideration, and if the velocity of the electromagnetic
wave along the conductor is close to a certain critical value, the wave will
penetrate into the composite conductor a distance great enough to include
a thickness of conducting material many skin depths deep. Physically speak-
ing, the lateral change of the wave through the conducting regions is very
nearly cancelled by the change through the insulating regions.

In Fig. 1 there is shown a cross-section view of a coaxial cable with a

Fig. 1—Laminated transmission line.

laminated center conductor. The center conductor is formed of a non-con-
ducting core surrounded by alternate layers of a conductor of thickness W
and conductivity ¢, and an insulator of thickness ¢ and dielectric constant e.
The center conductor is embedded in an insulator of dielectric constant e
which is in turn encased in the outer conductor. We will assume all the
conductors and insulators to have the permeability uo of free space.

We will associate with the inner laminated conductor an average dielectric
constant! for transverse electric fields given by

E= ¢ (1 + -I;K) (1-2)

1 A similar average dielectric constant has been considered by Tokio Sakurai, J ournal
of Physical Society of Japan, Vol. 5, No. 6, pp. 394-398, Nov.~Dec. 1950.
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It will be shown in the following sections that the electromagnetic wave and
the accompanying currents will penetrate most deeply into the center con-
ductor if the wave travels through the line with a velocity

1
V= Vi (I-3)

One way to make the wave assume this velocity is to let the dielectric con-
stant ¢ have the value '

el=a=e(1+‘7") (1-4)

If the depth of the stack of laminations D is small compared to the dis-
tance between the stack and the outer conductor, and if the wave travels
with the velocity given in equation (I-3), it will be shown that the wave
decreases with distance into the center conductor as ¢/, where 8, is
given by

8o = VI + YW)E/W)s; WKLS (1-5)
1
Here 6 = m is the skin depth appropriate to the material of the con-

ducting laminae and the frequency f under consideration. Let us now also
associate with the center conductor an average longitudinal conductivity
given by

B W
TTW

g (I-6)

We will suppose for the present case that most of the attenuation of the
transmission line results from the currents flowing in the inner conductor.
It is easy to see that the attenuation of the line for very low frequencies will
be A/&D where A is a constant depending on the impedance of the line.
As the frequency increases, 8, decreases, and when 8, becomes several
times smaller than D it will be shown that the attenuation becomes A/&d,.
At still higher frequencies & will similarly become several times smaller than
W, and the attenuation then becomes A4/¢d. From these considerations, a
qualitative picture of the attenuation of the laminated line can be sketched
as in Fig. 2.

For comparison, we have also sketched in Fig. 2 the attenuation that
would be obtained if the laminations in Fig. 1 were replaced with solid metal.
At low frequencies, the attenuation of this line would clearly be A/oD.
When the frequency becomes high enough for & to be several times smaller
than D the attenuation will be shown to become A4/g3.

It will be observed how the attenuation of the unlaminated line remains
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constant over a low range of frequencies and then rises at a rate propor-
tional to the square root of the frequency. The laminated line has a higher
initial attenuation, but remains constant to higher frequencies. At high
enough frequencies the attenuation of the laminated line rises at a rate di-
rectly proportional to frequency for a while, and then eventually approaches
the attenuation of the unlaminated line.

The frgquency at which the attenuation of the laminated line begins to
increase is greater than the corresponding frequency for the conventional

line by a factor
a\ (D
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Fig. 2—Comparison of conventional and laminated transmission lines.

This is accomplished with an increase in initial attenuation by a factor

/i = (1 + !Ifl_/)

which we will see later will be about 3/2 in a typical case. We might make
a corresponding increase in the flat range of the conventional line by de-
creasing ¢ to a new value ;. In that case the attenuation would be increased

by a factor
a\ /D
V() ()

o\ /D
which may be very large since (E) (W) is just the number of laminations

of conductor or dielectric used on the center conductor.
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The flat range of the conventional line might be alternatively increased
to equal that of the laminated line by decreasing D to a new value D,. In
this case the attenuation would be increased by a factor

Vi)

just the square root of the factor achieved by changing e, but still a large
number.

In the frequency range in which the attenuation of the laminated line is
governed by the skin depth 8., and is therefore increasing linearly with fre-
quency, this attenuation is less than the attenuation of the conventional
line by a factor

ad 1 /W

. V3 (5) (&-7)
It is interesting to note that the position of this region is governed by the
conductivity of the conducting laminations, but that the attenuation is
independent of the conductivity.

Considerable theoretical and experimental work has been carried out
on laminated transmission lines by the author’s colleagues. The following
report therefore will be limited to bringing out some of the fundamental
ideas in a simple way. We will for instance consider only planar systems so
that the results will be only approximately applicable to real transmission
lines. Other papers will more fully develop the formal theory, particularly
for cylindrical systems, and discuss the practical and experimental aspects
of the problem.

II. SkIN EfFrecT

We shall begin the discussion with this section by considering skin effect
in various kinds of conducting media. We will first derive the skin depth
equation (I-1) for an ordinary conductor like copper, and then discuss the
behavior of a composite conductor made up of many thin, insulated con-
ducting laminae. This second discussion will be first carried out for the case
of infinitesimally thin laminae, and then in Section III the effects of the
finite thickness of the conducting sheets will be considered.

Let us first set down and integrate Maxwell’s equations in a form that
will be useful in all our following discussions. Referring to the orthogonal
coordinate system in Fig. 3 we shall be concerned with fields that have no
variation along the z-axis and for which the z-component of electric field
is zero. The only component of magnetic field is then H, and the field equa-
tions become, in rationalized MKS units,
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OH: _ ;oD + J., (I1-1)
ay
_9H, _ iwDy, + Ty, (11-2)
dx
dE, OE. _ .
=0y iwB,, (I1-3)
8D, , D,
e + ay p (11-4)

In these equations H, B, D, E, J and p all have their usual meanings. A
positive time factor e has been introduced.

Y

Fig. 3—Rectangular coordinate system.

Let us for the moment suppose that we are dealing with an anisotropic
medium such that the following relations exist:

j, = O'zE;:; Jv = O'yEy (]:['5)
D; = e:E:; D, = ¢ E, (I1-6)
B, = ,uoH. (11-7)

Here the o’s are conductivities, the ¢'s dielectric constants, and pp is the
permeability of free space. Suppose also now that the fields all vary with «
according to a factor e~*=. If k has a positive real part we will be dealing
with a wave moving along the x-axis in a positive direction, and a negative
imaginary part will indicate that this wave is attenuated.

Using the above relations, one can easily find the following equations:

O'H,  iwe; + os

= We= T 9=, S ¥H, -8

oy oo oy [iwpaoy — wluoey + &) (I1-8)
1 oH,

BT et oy (-9

E, = _#* g, (I1-10)

wey + oy
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Let us imagine that we have a semi-infinite volume of material arranged as
shown in Fig. 4 where the z-axis is pointing out of the paper. If H., is the
value of H, at y = 0, it is clear from equation (16) that H. must depend
upon y according to

H, = Hype ™ (I1-11)
where
a = =+ M liwpo oy — w'koe, + k“] (11-12)
iwe, + oy - HOTV Hoty

and the sign is chosen so that the real part of « is positive.
We can now consider the case when the material under consideration is
an ordinary conductor such as copper or silver. In this case we must let

Fig. 4—Orientation of solid conductor.

o:= ay, = o and e: = ¢ = . Then « becomes (the subscript S stands for
solid)

as = =+ Viwpor — wiee + k2 (I1-13)

Now, under any practical circumstances the propagation constant & will
certainly not be more than a factor 100 larger than the propagation con-
stant of free space k = +/w’uoeo . This applies also to the factor \/we.

a

Wikoo .
p = — . For the metal copper, for instance,
W o€ wWe

Consider then the ratio

¢ = 5.80 X 107" mhos/meter and the dielectric constant of free space e =
.885 X 10, If we consider frequencies as high as 10,000 megacyll:és the
ratio is still as great as 10®. Thus, the second two factors under the square
root sign in equation (II-13) are entirely negligible and we have

as = £ Viepw (I1-14)
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=41 ‘f’% (11-15)
Finally we have
Real part (as) = % = 1/{9“206 (T1-16)

We can now turn our attention to the stack of laminations shown in
Fig. 5. There are shown a series of conducting sheets of conductivity ¢ and
thickness W, separated by a series of insulating sheets of thickness ¢ and
dielectric constant e. Suppose we let W and ¢ approach zero while main-
taining a constant ratio to obtain a homogeneous but anisotropic material

Fig. 5—Orientation of laminated conductor.

to which we can apply equation (IT-12). In order to obtain €, , 0y , & and o2
we can write

1 1 W t
- =4 — 11-17
oy + iwe, T i [ T + me] ( )
and
. 1 . .
: p= —— [Wo + 1 i
o: + twe Wi (Wo + { iwe (T1-18)
One then has approximately, letting ¢, = € and 0z = @
e (1 + %) (I1-19)

- W
g = g (m) (II-ZO)

)
€x = € (t_—m) (II—ZI)
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gy =0 (‘f) % (% + 1) (11-22)

As before, we; is completely negligible compared to &, and furthermore o, is
negligible compared to wée. We have therefore for @, (the subscript 0 stands
for zero thickness)

G L we\? W
ap = =+ 1:e [k — WwE + iwpeo (f) ( + l)il (I1-23)

This situation is rather surprising. Let us suppose conditions are such
that most of the energy of the wave is flowing in the region outside the
stack of laminations. If this region is filled with an insulator of dielectric
constant e;, £* will be very nearly equal to w?uoe; . Then oy will be given by

e s/ [ G

If € is made equal to & ay becomes

m||rh

S U (11-25)
O W
1 27
T4 W N (11-26)

where A is the longitudinal wavelength. Thus, under these conditions the
wave will penetrate into the laminations to a depth 5 (1 - ) before it
has decreased by a factor 1/e. This distance is of course enormous com-
pared to ordinary skin depth.

We will see in the next section that the finite thickness of the laminae
limits the penetration of the waves for ¢ = & to a distance much smaller
than that implied in equation (II-26) but still large compared to conven-
tional skin depths. In any case, we see in this simple way the suggestion of
a method for obtaining great penetrations and consequently considerably
reducing the attenuation of a transmission line. .

The analysis of this section, carried out by assuming the medium to be
anisotropic but homogeneous, can be given more physical meaning by
examining a little more closely how the fields vary through the laminations
shown in Fig. 5. From equations (II-8) and (T1-9) one finds for a general
case

dE, 1

9y = zwe,, ;{-_a'y liwpg oy — W oy + R *|\H, (I1-27)
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Let the value of H, at the interface of a conducting lamina and a dielectric
lamina be (H,) . From equation (II-27), one finds just within the conduct-
ing lamina

0E. _ .
"a— = WF(Hs)D, (II-2S)
Y
while just with the adjacent dielectric lamina
%5‘ = jwpg [1 - E] (H.)o- (I1-29)
y €

Thus, if the laminae are very thin, the change in E, across the conducting
lamina is

(AE:)m = dwpo(H )W (I1-30)

and the change in E, across the dielectric lamina is

(AE2)a = iwpo(H.)o (1 - %)t (11-31)

Therefore, when ¢, = ¢ (1 + ?) , the change in E, across the conducting

lamina is just balanced by the change in E. across the dielectric lamina.
This is the basic reason for the deep penetration of the fields into the lam-
inated structure. When € = ¢, there is no change in E; across the dielectric

w
lamina. In this case we note from equation (1I-24) that e = Wi

and we see that the waves will penetrate into the laminae an increased dis-
tance that is just accounted for by the spacing of the laminae. Thus, for
&1 = ¢, the attenuation of a laminated line will be unchanged if the laminae
are replaced by solid metal.

ITI. LamiNaTIONS OF FINITE THICKNESS

Let us refer again to Fig. 5 where a stack of conducting laminae of thick-
ness W and conductivity o are shown separated by insulating laminae of
thickness ¢ and dielectric constant e. First we shall inquire as to how the

fields change across the conducting laminations. According to equations
(11-8) and (II-9) one has

a°H,
6y

E;

= iwuocH, (I11-1)

_ 108,

s 3y (111-2)
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where we has been neglected against o as before. Now, letting n = V/iwpoo,
we can write within any conducting Jamina

H, = Ae™ 4+ Be™ (111-3)
E.=T[4e" — Be™] (I11-4)
o
If Hy and E, are the values of H, and E; at the lower surface of a particular
lamination, and if H, and E,; are their values at the upper surface of the

lamination, one can find from equations (III-3) and (ITI-4)

H, = H, cosh nW + E, : sinh g W (I11-5)

E, = H," sinh qW + E, cosh oW (IT1-6)
a
If we wish, this can be expressed as a matrix equation
H, cosh g Zsinh oW| | Ho
= n (I11-7)
E, : sinh qW cosh gW| | E,

For the dielectric laminae, equations (II-8) and (II-9) become
o’H,

= (k" — w’ue)H, (111-8)
. Ez = mie ag’. (III-Q)

Just as for the conducting laminae, let H; and E; be the values of H, and E,
at the lower surface of a dielectric lamination and let H, and E» be these
values at the top surface. Then, if £ = /% — @? e , one has

H, cosh &t twe sinh & H,
_ £ (TT1-10)
Ey _§_ sinh & cosh & | E;
we

From equations (III-7) and (III-10), we can find the variation of H, and
E, from the bottom surface of a conducting lamination designated as point
zero, to the top surface of the adjacent dielectric lamination designated as
point two. Thus,
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H, Tu Tnl |H
= I1I-11
{ 2} {Tn Tzz} {Eo} ( )
where the 77s are given below

Ty = cosh nW cosh & + %Z sinh 9 sinh & (I11-12)
. iwe .
Ty = - sinh 4W cosh & + T cosh nW sinh £t (I11-13)
b
Ty = wi cosh oW sinh g + " sinh ¥ cosh g (ITI-14)
€

To = & sinh oW sinh £ + cosh i cosh & (ITI-15)

1we 1)
Tt is easy to verify from the above that
TuTQo - Tl‘lT‘ll = 1 (111'16)
1f we now designate the lower surface of each conducting lamination suc-
cessively as points 0, 1, 2, 3, - -, we can write down the following simul-
taneous difference equations
Hn+1 = TuH, + TwE, (111-17)
Eop = Tull, + TE, (III-18)
The solutions of these difference equations are
= A" + Bg " (111-19)
Bo—aB - Tug o g/~ Tug (IT1-20)
Ty Ty,

where

8= (T“ + T”) + 1/(T“ + T ) 1 (2

Let us now proceed to determine the skin depth to be associated with the
stack of laminae in Fig. 5. Since we have assumed the stack to be very
deep, A must be taken zero in equations (ITI-19) and (II1-20), and the
fields vary into the stack according to a factor 7", so that

H,= Hp™ (I11-22)
If we now define

yo= W+ tn (I11-23)
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one has
Hy = Hg "+
_ Hoe_(1ﬂg,'(w+t))un (I11-24)
= Hue_awy"

where (the subscript w indicates a thickness W for the conducting laminae)

cos h (Tll + T22)

= — 3 (I1125)
From equations (ITT-12) and (ITI-15) one has
(=
2 (IT1-26)

= cosh W cosh & 4+ ; (u:e 7 + — E) sinh ¥ sinh &/

As a practical matter, only rarely will £* be greater than ten times wuce
and e greater than 10 &. Hence, ¢ will be no larger than 10 \/w?uge, . Fur-
thermore, we will see that / should not be very different in magnitude from

W, which must be smaller than 1/ ‘

. Thus, we can be sure that £f is
WHoT

229 a quantity which is, as before, much smaller than

unity. Under these condltlons, equation (ITI-26) becomes approximately

(T” + T_”) — cosh g + & (’“’—‘ T4 L E) sinh g (I11-27)
2 g £ dwen

= cosh qW + - (W) [‘i"f + (1 - “)] 7W sinh nW
€

where we have again let k* = w’uoe; as in equation (I1-24).

Let us set
1 i
P = (W) (1 - 6) (I11-29)

;[_ - (1 + %) (1 _ f:)] (I11-30)

. . we
Then, again neglecting — , we have for a,,
a

(111-28)

G = 1_1_ cosh™ ! [cosh qW 4+ P(yW¥) sinh 5W] (IT1-31)
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By definition, nW = (1 + 1) % . We can therefore write approximately,

1 (w\* (WY

4 2
(nW) sinh W ~ — \’2;(%) + 2 (?) (I11-33)
Using expressions (ITI-32) and (III-33), equation (III-31) becomes
_ 1 -1
& = T tcosh

' ([1 - (1—4_61& (?)4] +i(1 + 2P) (%)2) (s

2
Provided that (1 + 2P) (%) <« 1, equation (ITI-34) can be expanded in

orders of magnitude. Thus, for

1 —‘—; < %—! (%)2 (I11-35)
we find approximately
. (E)
W+ \s (IT1-36)
(VTE VTR VI VAT
where
7= ﬁ6_4£ (%)2 (TT1-37)
and
g=1+42P (ITL-38)

The plus sign is to be used when g is positive and the minus sign when g is
negative.

Equations (ITI-36) for a,, and (IT-24) for ay are very similar. With a little
manipulation we can rewrite equation (II-24) as

w3 4/s(W/(E) D)+ ¢/ E+(-2)

=ig/-(5) () + /@ (-9))

(I11-39)
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Also equation (III-36) can be written

e =%1/§(1/-(WE+7’I)+1/(WWTJ)2+(I -4y
=/ ()t o/ () +(-2))

Equation (III-39) is a very good approximation for « for a stack of
infinitesimally thin laminae, but is inadequate for the discussion of situa-
tions where the finite value of W/§ is important. Equation (III-40) on
the other hand is a good approximation to & when W/§ is appreciable, but
the assumptions made in deriving (III-40) do not allow us to go cor-
rectly to the limit /6 = 0.

To estimate how small W must be before equation (III-40) fails, let us

w w
set(— Wi ) equal to (a) ( t) We will also set ¢, = & since it is
only then that these terms are important. In this case,

=1 1/ 12 £ (ITT-41)
a Mo

If we take & to be 5 times the dielectric constant e of free space, and take
"¢ = 5.8 X 10" mhos/meter for copper, we obtain W = 3.5 X 10~% cm. Thus,
for any practical purpose we can ignore the failure of equation (ITI-40) to
have the proper limit for W/§ = 0

By definition, the fields decrease into the stack according to e~2w¥. Let
us define the distance at which the fields have decreased by 1/e to be the
effective skin depth §,. Then we have

(I11-40)

= Real part (a,,)

W) TG

From equations (I1I-30) and (III-37) we find

() i)

For ¢, = & equations (ITI-43) and (I11-42) give us finally

buler = @) = \/5(1 + %) (i) 5 (II1-44)

L
5

/4
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With the results obtained in Sections IT and III, we can compare the
curves of attenuation as a function of frequency for conventional and lam-
inated lines. Let us consider a transmission line such as that shown in Fig. 1,
where we may imagine the center conductor to be either lamjnated as shown
or made of solid metal. Let us suppose, as in the introduction, that most of
the power loss is in the center conductor and that the distance between the
stack and outer conductor is large compared to the depth of the stack.
Clearly, the attenuation of the line will be proportional to the power per
unit area flowing into the center conductor for a given power flow in the
line. If H, is the transverse magnetic field and E, is the longitudinal electric
field, the power flow into the center conductor per unit area will be given by

1| H.|-|E.|cos® = } Real part (H.-EX) (I11-45)

where ® is the phase angle between H, and E. and (*) indicates the con-
jugate of a complex quantity. If C is the circumference of the center con-
ductor, and Z is the characteristic impedance of the line, the attenuation. of
the line will be given by

1 *
= . —— Real t (H:-E; 11-
v AN AE eal part (H.-E;) (111-46)
First, let us suppose that the inner conductor is solid and that the fre-
quency is very low. In that case, the uniform current density in the metal
will be H,/D, and therefore E. will be H./aD. Hence, for this case the
attenuation will be

1

3C7aD (T11-47)

¥.(f small) =
In a similar manner, the attenuation of the line when the center con-
ductor is laminated will be for very low frequencies

1
: = I-

Yw (f Small) 2075D (II '-1-8)

Next, let us consider the solid conductor again but for frequencies where

8 < D. Then we have from equations (I[-9) and (IT-15)

B--—1T'g (1T1-49)
)
Hence,
1 -
Ve (III—DO)

= 2CZab
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Finally, we desire the attenuation %, of the laminated line at elevated
frequencies. Therefore we need the relation between E; and H, at the first
surface of the stack which, for definiteness, we can take to be a metal lamina.
For a sufficiently deep stack, this ratio is the same at each successive cor-
responding point. Referring to equations (III-7) and (III-10) we wish to
find

R="2"2=— (IT1-51)

By eliminating among these equations and using the same approximations
made previously, we obtain
1 nW 1 — B cosh gl

= oWsinhoW B (111-52)

(W)

If use is now made of the relation 8 = ¢ , one finds to first order

R= -2 (111-53)

Therefore, for the attenuation one has,
1
2CZe

1
2CZas,,

Yo = Real part (ay)

(111-54)

which is equivalent to an expression used in the introduction with 1/2CZ
being the value of the constant A.

We have compared the attenuation of conventional and laminated lines
as a function of frequency for an insulator between inner and outer con-
ductors having the critical dielectric constant e, = & It is also of interest
to draw the comparison as a function of dielectric constant e; at a fixed
frequency. The ratio of the two attenuations will be

Yo _ g (IT1-55)
Ys w

This curve is drawn in Fig. 6 for W/é = 1/3 and /W = 1.
For ¢, = & we have,

% _ :/1_3 (%V) (I11-56)
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It will also be observed that for ¢ = €

¥
— = (IT1-57)
Ys
2.0
1.5
NN
o
5
o4
> 1.0
[=]
5
=}
z
w
-
[
a
0.5}
o]

DIELECTRIC CONSTANT, €

Fig. 6—Relative attenuation as a function of dielectric constant of material between
stack and outer conductor.

Fig. 7—Plane parallel transmission line with laminated conductors.

TV. TransMISSION LINE WiTH LAMINATED CONDUCTORS

In the preceding sections, we have considered the case of a transmission
line with a depth of laminations small compared to the spacing of the con-
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ductors yet large compared to the effective skin depth §,. In the following
sections, we will deal with several situations in which the stacks are much
smaller in depth than §,. The size of the stack, then, reflected in the imag-
inary part of the propagation constant  has more effect on « than anything
else and we may consider W/é and, all the more, o, to be zero.

Under these conditions, we shall calculate the attenuation of the parallel
plane transmission line shown in Fig. 7. In that figure we have two parallel
plates or shields of conductivity ¢ separated a distance 2d. Inside each
plate there is a thickness s of laminated conductor of average conductivity
& and average transverse dielectric constant & The interior of the line is
filled with a dielectric of thickness 2k = 2(d — 5) and having a dielectric
constant ¢ . The calculations to be made will be valid down to some low
frequency at which the skin depth in the outer shields becomes equal to
their thickness.

With reference to equations (II-8) and (II-9), we can write down the
following expressions for the fields in the various parts of the line:

In shield: H, = Ae " ® (Tv-1)
E,= —A1gr® (1v-2)
a
N1 = \Viwgoo (Iv-3)
In laminae: H., = B cosh {(y — d) + C sinh {(y — d) (Iv-4)

E. = §_: [B sinh ¢ (y — d) 4 C cosh ¢ (y — d)] (Iv-5)

V;w_f (k2 — wpgé) (IV-G)

In dielectric: = cosh &y (Iv-7
-5 g

E. = — sinh £y (IV-8)

= VE - oue (Iv-9)

where 4, B and C are constants.
The fields H, and E; must match at the boundaries y = / and y=d
Imposing these conditions, we find the characteristic equation for deter-

mining £ to be
1+ (—‘f-)g tanh th
tanh {s = — Wasn (IV-10)

G ()

)
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The constants are also determined to be

h £k
B = cosh £ (1V-11)

cosh {s + %7 Sinh s
af

A =B

c=-2"pg (IV-12)
o

~ Just as before, it is obvious from equation (IV-6) that £ must be nearly
equal to w¥ye if the fields are to penetrate deeply into the laminations. Let
us guess on physical grounds that this can be accomplished by setting
e, = & Under these conditions from equation (IV-9) and (IV-6)

=4/ %5 (IV-13)

and

Thus; if ({'s) is not to be very large and (}—;) is not greater than 100, &k will

be a very small number. We can therefore set tanh th = th and rewrite

equation (IV-10) as
(’-‘) € + (") ns
(¢s) tanh (¢s) + 24— — 1 =0 (IV-14)

1+ (") ol
a
From equation (IV-3), nk = (1+ i);j . We shall imagine that % is many

times greater than the skin depth in the outer shield and may therefore
reduce equation (IV-14) to

5

1 —1/\ /o . &
@ tanh 6 + N () (&) & + n = 0 (IV-15)

where (¢s) has been set equal to §. Now, if s is also many times the skin
depth in the outer conductor, the second term in equation (IV-15) may be
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neglected compared to the first term. We have then, finally, for the char-
acteristic equation

f tanh 6 + % - 0 (IV-16)

For s much smaller than %, approximate solutions of equation (IV-16)
may be written

0 = —

s
7 (IV-17)

and

. s 1
0“ = inm I:l + ‘ij (n—‘rj-z:l n = 1, 2, 3, LR (IV-IS)

The fundamental solution (IV-17) obviously agrees with our assumption
that ({s) is not large. Similarly, the higher order solutions (IV-18) are con-
sistent with that assumption if » is not taken too large.

We may now return to equation (IV-6) and obtain approximate expres-
sions for k.

B 1
b = otk [1 + ! ] (IV-19)

iwyoé' 2sh

S 1 1 1 /nr\®
kn = Vwlue (1 + it [& + 2 (:) }) n=123--. (IV-20)

We see that %* is indeed approximately equal to w?u¢e. The imaginary parts
of (IV-19) and (IV-20) are negative and give us the desired attenuation for
the fundamental and higher modes of the line in nepers per meter.

11 B
I(ko) = — 2 s ,‘/ o (Iv-21)

I(k) = — & [2 4! (ﬂ-‘l’l‘)z] 1 ,‘/5 n=123 - (IV-22)
2sh s

a Ho

where we have assumed 6§ < s <l and ¢ = &

Let us first comment on the fact that there exist several modes of trans-
mission in this line. The fundamental mode with propagation constant ko
corresponds to the ordinary mode of transmission that would exist between
a pair of parallel plates such as shown in Fig. 8. The higher modes are
waves that are confined almost entirely to the laminations and are not
encountered in an ordinary transmission line. These modes will be more
fully discussed in Section VI.
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For comparison with equations (IV-21) and (IV-22), we shall next cal-
culate the attenuation of the parallel plate transmission line shown in Fig. 8.

Fig. 8—Plane parallel transmission line with solid conductors.

For the fields we have again

In shield:
H, = Ae " ? (IV-23)
E, = —A7¢me (IV-24)
a
1 = Viowo (IV-25)
In dielectric:
H, = cosh ty (IV-26)
E. = £ sinh &y (1v-27)
wey
E= VE — wlpoer (1V-28)

By matching the fields at y = d we readily obtain the characteristic equation
‘i(l)fl
(¢d) tanh (8d) + — 7d =0 (Iv-29)
a
which gives approximately

(£d)' = — ’%ﬁ nd (IV-30)

We also determine the constant 4 to be unity. Proceeding as before, we find
for the propagation constant

. .
k= v wiue I:l + m:l (Iv-31)
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and for the attenuation
1 1 we
k = _—— —_— — -
I(k) d1/8¢r (1v-32)

It is observed at once that the attenuation expressed in equation (IV-21)
is independent of frequency, while that given in equation (IV-32) increases

ATTENUATION IN NEPERS PER METER

FREQUENCY
Fig. 9—Comparison of conventional and laminated lines.

as the square root of the frequency. If we take the ratio of equation (IV-32)
to equation (IV-21) we obtain

attenuation of regular line AL, e
= —_ —_— 1 -
attenuation of laminated line (d) (a) s 2 (IV-33)

“WO6) o

which is of course a thoroughly reasonable result. A sketch of the attenua-
tion curves for the two lines is shown in Fig. 9.
As a final point, we observe that the attenuation given in equation

1 -
(IV-21) is proportional to‘_', /& Therefore, for stacks in which the lamina-

tions have the dimensions shown in Fig. 5, the attenuation is seen from
equations (II-19) and (II-20) to be proportional to

)/t

. . .. |14 .
This expression has a minimum for 7= 2. Thus, the optimum arrange-
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ment is for the conductor to be twice the thickness of the dielectric. This
rule holds, of course, only as long as the effective skin depth defined in
equation (ITI-42) is greater than s. If use of the ratio t/W = 1/2 finds §,
smaller than s, the best thing to do is to increase /W until the effective
skin depth ., becomes equal to s.

V. TraNsMISSION LINE FILLED wITH LAMINATIONS

In the last section, we have calculated the attenuation of the transmission
line shown in Fig. 7. By reference to equation (IV-21), it is seen that this
attenuation decreases as s increases. Since we have assumed in deducing
equation (IV-21) that s < h, we cannot use that equation to find the atten-
uation for s = d. Nevertheless, the suggestion is evident that this case may
be particularly interesting.

Fig. 10—Plane parallel transmission line filled with laminations.

Accordingly, let us consider the transmission line shown in Fig. 10, where
the space between the outer shields has been completely filled with lamina-
tions. As before, we can write down the following fields:

In shield:
o, = Ag—ntyﬁd) (V-l)
E.= -4 (V-2)
7 = Viwwe (V'3)
In laminae:

H, = cosh ty (V4)

E; = gésinh &y (V-3)
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where A4 is some constant. Matching fields at y = d, we obtain the char-
acteristic equation

(¢d) tanh () = — % nd (V-6)

We might also have obtained this equation by placing # = 0 and s = d in
equation (IV-10).
We can verify that an approximate solution of equation (V-6) is

mra gl
(g-d) 2 l:l U'ﬂd:l n =-1, 3, 5, see (V_7)

Proceeding as before, we find for the propagation constant

N 1 nr\’
= \/m-poe I:l + 21-“#0& (2—d) ], (V-S)

and for the attenuation

k) = — 5 1/ E (’z%r) (V-9)

If we place # = 1 in equation (V-9) and compare the result with equation
(IV-21), we see that the attenuation of the transmission line has been indeed
decreased by completely filling it with laminations, and without sacrifice of
the frequency independent characteristic. Furthermore, it is no longer nec-
essary to supply a dielectric with dielectric constant equal to & This case
clearly represents something unfamiliar in the way of transmission lines.
We might in fact consider the laminated material as a new kind of trans-
mission medium.

In order to visualize this situation more completely, let us study the
distribution of fields and currents inside the transmission line. We will be
interested in H., E, which can be obtained from equations (II-10) and (V-S),
the current J = & E, the Poyntlng vector P = 1/2 Real part (EHY),

the total current I = ‘ f Jdy and the total power W = f Pdy. From
0

equation (V-7), we can take { equal approximately to pui and obtain

2d
= hry 2
H, = cos 5 (V-10)
E, = \/ o/t cos nry (V-11)

2d
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J=— (g%) sin % (V-12)
P = 1/2\‘/,.;(,/& cos’% (V-13)
I=1 (V-14)
W = 1/2 vV /ed (V-15)

For comparison let us write down these same quantities for the transmis-
sion line of Fig. 8. This can be done in an obvious way from equations
(IV-23) to (IV-28) and by use of the characteristic equation (IV-30). We
have then approximately,

1
H, = 7 (V-16)
E, = — /0 (V-17)
‘\/2 €
1 i
P 54/ . (V-18)
W=l /mg (V-19)
2 €]
and in the shield
1
J = — \75,,5"‘"‘” (V-20)
1
I= V3 (v-21)

If we let ¢ = & the second set of equations has been normalized to the
same transmitted power as the first set. A comparison of these equatlons
is shown in Fig. 11. The decreased attenuation of the laminated line, is 5t
course, accounted for by its much smaller current density, even though its
total current is bigger by a factorv/2. Only the fundamental mode of the
laminated line is considered in Fig. 11. The higher modes will be discussed
in the next section.

V1. MopEs oF TRANSMISSION

We have seen that both the transmission line partly filled with lamina-
tions as in Section IV, and the completely filled line described in Section V,
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have fundamental and higher modes of transmission. Let us now examine
this situation more closely.

r<—--Hgz OR ‘f Eg
- —
__________________________________ 4
T B
-d d '
¢ J
o
2d
1
|
|
i
i
]
I
1]
A |-d d —y

e L T T—p——

Fig. 11—Distribution of fields and current in transmission line filled with laminations.

First, in the case of the partially filled line, we can use the results of
Section IV to find the following approximate expressions for the current
density and magnetic field in the lamina:

.Io = - (VI-].)

Ju = (=)™ (’}‘) (nm)* %_ cos X (y — ) (VI-2)

5

G| -
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Fig. 12—Distribution of current in laminae of partially filled line for various modes
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Fig. 13—Distribution of magnetic field in laminae of partially filled line for various

modes.
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(Hao = — (v = d) (VI-3)

(H), = (=)™ (ﬂ—z) nm sin [(mr + %%r) Y : d:l (VI-4)

The current densities for # = 0, 1, 2 are shown in Fig. 12. We see that the
current density for # = 0 is all of one phase, while for the higher modes
the current density has one or more reversals of phase. For these higher

am
2

nly

Fig. 14—Current distribution in completely filled line for various modes.

modes, the net current in the laminae is essentially zero and consequently
we should expect only small fields in the interior of the line. This supposi-
tion is confirmed in Fig. 13, where the magnetic fields in the laminae are
drawn for n = 0, 1, 2. The fields for all the modes have a common value
unity at y = s, but for the higher modes the fields in the interior of the
laminae are much greater than unity.

For the completely filled line, we have from equation (V-12)

nw . uwy

Jn = — 57 s %

2 (VI-5)
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These current densities are drawn in Fig. 14 for n = 1 and » = 3. It will
be observed that in each case a net current flows in one sense on one side
of the center line and in the opposite sense on the other side of the line.

Y
- B TR ——
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| 3 Sl I
n=o0 2|d > i J—ﬁ
i CURRENT / 2',d
! DENSI‘I’Y—\ !
! > l
] [ =y
’_‘I ! i D
E / *77,—“
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(a) (d)
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I
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()
Fig. 15—Correspondence of modes between partially filled line and wholly filled line.

We can now profitably compare the modes for the two types of lines.
Clearly there should be a one to one correspondence of the modes since the
partially filled line can be made to approach the completely filled line con-
tinuously by adding more laminated material. This correspondence is shown
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schematically in Fig. 15. The modes we have discussed to this point have
all been antisymmetric in current density about the center plane. It will
be clear from Fig. 15 that there are in addition another set of modes sym-
metric in the current density. For the completely filled case these are the
modes # =2, 4, 6 ---, and for the partially filled case the modes n =
1,2,3,---.

An important point can now be made. For the completely filled case,
there are higher modes such as # = 3 where a net current flows on one side
of the center plane. The corresponding mode, however, for the partially
filled case with s << & has nearly zero net current on either side of the center
plane. Thus, for the partially filled case with s much smaller than % there
are no modes except the fundamental with large fields in the interior of
the line.

Fig. 16—Junction between two plane parallel transmission lines, one of which is filled
with laminations.

VII. TERMINATION OF A LAMINATED LINE

The discussion of modes of transmission in the last two sections enables
us now to consider what occurs at the junction of an unlaminated trans-
mission line and one partially or completely filled with laminated material.
We will, for simplicity, consider mainly the case of the completely filled
line as shown in Fig. 16. To the left of x = 0 there is an unlaminated line
such as shown in Fig. 8 filled with a dielectric of dielectric constant ¢ . To
the right of x = 0 there is a line of the type considered in Section V filled
with laminated material of average transverse dielectric constant & and
average longitudinal conductivity . We shall consider separately what
happens to a wave incident upon the boundary from left or right.

When expressing the fields in the unlaminated line, we shall have to in-
clude certain unpropagated modes which have not yet been discussed. These
modes must attenuate to the left, and can be written

H, = cos"—?’ P (VII-1)
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E, = — -i mr) gin 1Y grreld n=123:-- (VII-2)
iwep \ d d
E, = — L (ﬂ—ﬂ') cos Y grweld (VII-3)
twe \ d d

It has been assumed that the wavelength in the dielectric of the frequency
under consideration is much greater than d.

We shall first consider a wave incident upon the boundary from the left.
From equations (V-16), (V-17), (VI[-1) and (VII-3) we have for x < 0

H. = A¢ ™ 4+ Be™ + 3 C cos ’”T"”’ mmeld (VII-4)

Ey — VF-U [1‘18_ tkr Beik:r} _
€
(VII-5)

1 mm mm 1
— > Cu|— ) cos Y g
W€y m d d

where m = 1, 2, 3 --- and kisgiven by (IV-31). For x > 0 we have from
equations (V-10) and (V-11)

H. = ¥ D, cos 22 (VII-6)

= 1/ Ko Z Dy cos T-L—@ " ik (VII-D

where # = 1, 3,5 --- and k, is given by (V-R). At & = 0 the boundary
conditions give

A+ B+ 3 Cuc SE?E’_ZDH, _1y (VII-8)

1/@ 4 — 1 Z Con (m?r) mmy
€ uue. m d

w0 p nwy
@ Z " €08 54

(VII-9)

If € = &, it can be seen from (VII-8) and (VII-9) that B = C,, = 0. Thus
there is no reflected wave and no unpropagated waves are needed. Let us
consider only this case. The coefficients D, are determined by

ZD cos 1Y 5 d (VII-10)
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which yields
D, = 2 (—1)=ory (VII-11)
nmw

Referring to equation (V-15) we have for the power flow in the transmitted
wave,

W= 521 “ 3 D (VII-12)

84 — 1
= 42 ? = > - (VII-13)

Let us now find the ratio of the power transmitted in the fundamental
mode n = 1 to the total power transmitted, which is also the total incident
power as can be checked from equation (VII-12). We have

power in fundamental _ 8
total power e (VII-14)

Thus, in exciting the fundamental mode of the laminated line we have a
power loss which can be expressed in db as

2

db loss = 10 log %

(VII-15)
= 0912

Let us next consider a wave composed of the fundamental mode of the
laminated line incident upon the boundary from the right. For x < 0 we
have in this case

H, = Be™ + ZC cos ;ry gl (VII-16)

E, = —B ﬂ e 1 >c ( )cos MY gnreld(VII-17)
€1 10161 m d

where again m = 1, 2, 3, - -+ and %k is given by (IV-31). For x > 0

H, = Me™* co y 7+ Z N, cos fdl’ P (VII-18)

E, = - [ Me™* cos E g ZN cos ZL;’e""“] (VII-19)
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with &, given by (V-8) and # =1,3,5, --- . Atx = 0,
B-{—ZC cos 2T d Mcos—y-&—ZN cos”;iy
1 mw mry
B T (%) o2

= /‘/—|: M cos y+ZN cosﬂ;;y:l

Let us again let ¢, = & By adding and subtracting we find

1 mmw mvry nry
2 Cnog e =22 M.

Lo

MY _

1 mm
2B+.;kzm:Cm7 d 2MC05§[2
From (VII-23) it is clear that
_1 f ‘ y
2B = ¥ _dZMcosszy

or
B-2m
T

Thus, we have for the transmitted power

W.=d /" B
= 4/&(%)211[“’
€] \T

un
W_E M

and for the incident power

The ratio of transmitted power to incident power is therefore

W, 8

W

(VII-20)

(VII-21)

(VII-22)

(VII-23)

(VII-24)

(VII-25)

(VII-206)

(VII-27)

just as in equation (VII-14). There is thus the same power loss in crossing
the boundary in either direction. It is interesting to note, however, that in
the second case the non-propagating modes in the unlaminated line are

excited.
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From equations (VII-22), (VII-23) and (VII-25) we can find

nwy 2 Ty .
); Nocos 55 = M (Tr cos M) (VII-28)
and consequently
8
No=M (; — 1), (VII-29)
and
8 1 (n—1)/2
N. = M;E; (= 1) \ n#= 1. (VII-30)

The reflected power is found as before to be for the fundamental mode of

the laminated line
Cd S e (8 :
Wa =~ M|, -1 (VII-31)
2 € a?

and for the higher modes

> W _ ‘E’MEZ i)z
w2 € w1 \nm?/ "’

; (VII-32)
= IV@M‘&“(I - é)
2 € m= T
We can now easily check that
WeyWo o Lssgy =8
Wi W, W, %=1 L
(VII-33)

2
+(8.,—1) +§5(1—§;)=1
- m "

The case of the partially filled line can be studied in a manner similar to
the above discussion, and will show smaller power losses for waves trans-
mitted through the boundary. The problem is further complicated by the
presence of unpropagated modes in the partially filled line similar to those
in the unlaminated line,

APPENDIX A

Prane WavEs

It is interesting to inquire about the waves that exist in a laminated
medium of infinite extent. Let us return to equation (II-23). It is easy to
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show that ap is zero for k given approximately by

B = Aok [1 - ill’f(ﬂ’f)] (A-1)

2t \e

For ap = 0, E. is of course zero. We thus have a plane wave propagating
through the medium with a wavelength appropriate to the average dielectric
constant & and with a very small attenuation proportional to the square of
the frequency. Equation (A-1) can be obtained from equation (45) in
Sakurai’s paper.?

If we wish next to observe the effect of finite thickness laminations, we
can require o, to be zero in equation (II1-34). In this case we obtain

[ _ .1 w (WY
k—\/w.unfl:l *ﬁW—H(&)] e

Again the attenuation is proportional to the square of the frequency. The
attenuation given by equation (A-2) is equal to that obtained from equa-

tion (A-1) if
_1 W\ e
W—;,‘/lZ(l-f—T)m (A-3)

For copper, equation (A-3) requires W to be of the order of 10~* cm. Under
ordinary circumstances, therefore, the attenuation given in equation (A-1)
is much smaller than that obtained when consideration is given to the finite
thickness of the laminations.

APPENDIX B

TransMIssIoN LiNE FILLED wiTH LAMINATIONS OF FINITE WIDTH

Let us consider the transmission line shown in Fig. 17. As before we have
a set of metal laminae of width W and conductivity ¢ separated by insulat-
ing laminae of width ¢ and dielectric constant e. The laminae will be num-
bered as shown in the figure from 1 to N. Let us define r and p by
the relations
B —Tu 1/8 — T
T, 0 PT T
Then, from equations (ITI-19) and (III-20), we can write for the z-com-
ponent of magnetic field and the x-component of electric field,

H, = Ap"+ Bg™ (B-2)
E, = rAB~ + pBg—™ (B-3)
2 Tokio Sakurai, loc. cit., page 398.

(B-1)
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From equations (II-9) and (TI-15) we clearly have

Ev _ _gp. B _
i R; T R (B-4)
QU 141 . . -
where R = — and o, = —5 It is easy now to obtain the characteristic
a
equation
Rg™ REY Y g
R R -1 -
r 0o -1 0o | 0 (B-5)
0 P 0 -1

N

TFig. 17—Transmission line completely filled with laminations.

After expansion and use of expressions (B-1), the characteristic equation
is found to take the form

R T,
coth (N In g) = L‘;Jr—“ (B-6)
x(5-9)

which can be written, using the relation In 8 = o, (W 4+ £),
2 sinh aw(W + 1) coth (2das) = RT1s + ;‘e Ta (B-7)

Let us now assume, as in Section III, that | £ | and | nI¥ | are much smaller
than unity. Equation (B-7) can then be written

(2a,d) coth (2aud) = — (WWTt) (%))

: (2(P +1) + i% (3P + 1) (%)2) o
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The quantity on the right of equation (B-8) is of the order of d/3. We
write, therefore,

(2aud) coth (2aud) = 0 (%) (B-9)

Qatud) = mi [1 0 (’f_i):l (B-10)

Thus we have approximately

cosh aw (W 4+ 8) = 1 — E(W(WJ ) [1 + 0( )])2 (B-11)

Furthermore, from equation (III-34)

coshaw (W 4+ 1) =1 — 1 +64P( ) +il+ ZP)( )2 (B-12)

and

We can now equate equations (B-11) and (B-12) and after suitable manip-
ulation obtain

o (1= ) 6] o
W

)
where we have now dropped a term of order (E) compared to unity.

Equation (B-13) is of considerable interest. It is observed that for
(%—/) X (%) the attenuation becomes that given in equation (V-8) for

w
]
approaches that given in equation (A-2) for an unbounded array of finite
laminae. This can be considered in two ways. Let us ask for the condition
that the two terms contributing to the attenuation in (B-13) are equal. We
find for this to be true that

d = ’25\/3 (1 + 1%/) (V‘:?) 5 (B-14)

In other words, at a given frequency, the attenuation of the line can be
little reduced by making d larger than the value given in equation (B-14)

infinitely thin laminae. For ( ) > ( d) on the other hand, the attenuation
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which will be recognized as approximately the skin depth given in equa-
tion (ITI-44).

Alternatively, we see that the attenuation as a function of frequency
remains constant from low frequencies up to the point where § satisfies
equation (B-14). At higher frequencies, the attenuation increases para-
bolically. At frequencies where 6 << W, the attenuation will clearly corre-
spond to propagation in a parallel plate transmission line of width ¢ and
will therefore increase with the square root of the frequency. This behavior
is similar to that discussed in Section I for a line with a thin stack of lam-
inations on its inner conductor.



