Zero Temperature Coefficient Quartz Crystals for Very
High Temperatures

By W. P. MASON

(Manuscript Received Nov. 15, 1950)

In order to determine the angles of cuts for low temperature coefficient crystals,
the elastic constants of quartz have been evaluated in the temperature range from
—100°C to +200°C. This has been done by measuring a series of rotated Y-cut
crystals in the thickness shear mode and a series of rotated X-cuts in the longi-
tudinal length mode. From the measurements, low temperature coefficients AT,
BT,CT, and DT type crystals can be determined which have their temperature of
zero temperature coeflicient at any prescribed temperature. Calculations are given
for the properties of crystals to operate at 200°C. The characteristics of an AT
type crystal have been investigated experimentally, and the measured results are
in reasonable agreement with the calculations. It is shown that there is a maxi-
mum temperature of 190°C for which an AT type crystal can have a zero temper-
ature coefficient.

I. InTRODUCTION

Most quartz crystals used to control the frequency of oscillators or time
measuring devices are used in places where the ambient temperature does
not exceed 60° to 70°C. The crystals are usually adjusted in angle so that
they have a zero temperature coefficient at a temperature of about 80°C
and they are temperature controlled at this temperature. However, a
class of uses occurs for which the ambient temperature may be considerably
higher and for these uses ordinary AT and BT crystals, for example, are
not satisfactory. This is evident from Figs. 1 and 2 which show the fre-
quency variations for these crystals over a temperature range from —100°C
to +200°C. For example, the flattest frequency temperature curve for the
AT cut occurs at an angle of +35°18’ rotation about the X axis from the
Y cut. By going to +35°36’ orientation about the X axis a minimum occurs
at 100°C. For the BT cut shown by Fig. 2 the angle of —49°16’ orienta-
tion gives nearly a parabolic shape centered at 20°C. By changing the orien-
tation to —47°22’ the parabola centers at 75°C.

Hence if one wishes to raise the temperature for which the zero tempera-
ture coefficient occurs he has to increase the rotation about X for the AT
cut and decrease it for the BT cut. The amount needed for either orienta-
tion can best be determined by evaluating the elastic constants as a func-
tion of orientation and temperature, and that is the main purpose of this
paper. The results are applied to determining the best angles of orientation
for the AT, BT, CT, and DT type crystals to obtain zero temperature coeffi-
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clents for any arbitrary temperature. These calculated values have been
checked experimentally for the AT type crystal and the angles and proper-
ties are approximated by the calculations. It is shown that there is a critical
angle of +36°26' which results in the highest temperature of 190°C for
which it is possible to obtain a zero temperature coefficient AT type crystal.

II. EvarvaTtioN oF THE ErasTic CONSTANTS AS A FuUNcTION
OF TEMPERATURE

A simple method for taking account of the temperature terms is to ex-
pand the frequencies for the known cuts in powers of the temperature
around some reference temperature. Since the data of Figs. 1 and 2 run
from —100°C to 4-200°C, a convenient temperature is 50°C. Then

f=fl+al —T) + a(l — To)* + as(T — To)*+ ---] (1)

Over this temperature range the frequencies measured can be accurately
represented by terms including the cubic as the highest. If 7% is taken as
50°C, equation (1) can be solved for the constants ay, as, and ¢; and we
find

1 8
- 3 [fzum - f-luu“] + 3 [fnn“ - f_25°]

@= 300 faor
J—100° _‘|‘f200° — fane
_ ‘_‘*—“‘2‘“— b0 (2)
@ 22,500 a0
an = (fﬂﬂﬂ“ —f_mo“) - 2[f1?5° _f—25°]
: 5,062,500 f50°

where the subscripts refer to the temperatures for which the frequencies
are measured. If we apply these equations to the AT crystal cut at 35°18’
and the BT at —49°16¢’, we find, for the frequencies, the equations

far = 1.661 X 1051 + .22 X 10-5(T — 50°)
+ 89 X 10-%T — 50)2 + 82 X 10~ — 50)3 + -] ‘)
2.547 X 10511 — 2.2 X 10-%(T — 50)
— 55.5 X 10~%(7 — 50)? — 73 X 107%(T — 50)* + ---]

f BT

In order to obtain the frequency and the variation of frequency with
angle, use is made of the equation for a thickness shear vibration

= 11/63? _ L)‘/c‘fﬂ cos” 0 4+ cis sin® @ — 2¢5; sin 6 cos 8 (4)
2V S, T .
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where { is the thickness of the crystal, p the density, 6 the angle of the
normal of the plate measured from the ¥ axis and cl3 , cis and cgs three of
the seven elastic constants of quartz measured at constant electric field.
This equation is valid for an infinite plate but is also a good approximation
for a crystal whose cross-sectional dimensions are 30 to 40 times the thick-
ness dimensions. Since there are three constants, the two measurements for
the AT and BT cuts will give only two relations and we need a measurement
for another angle. As discussed in Chapter X, Section 10.2 of “Piezoelectric
Crystals and Their Application to Ultrasonics,” ! the remaining cut can
be obtained by measuring the thickness shear mode of a ¥ cut plate or the
face shear mode of a ¥ cut crystal. The latter mode is considerably easier
to dimension in order to obtain a frequency corresponding to the shear
mode. Table I shows measurements for the frequency constant of a ¥
face shear mode for a crystal having the following dimensions: Length
along the X axis is 36.86 mm, width along the Z axis = 7.625 mm; thickness
along the ¥ axis is 0.990 mm. High harmonics were used and the frequency
constant was obtained by dividing the frequency by the overtone order.
This frequency is controlled by the ci; elastic constant according to the equa-
tion

1 E
f=%1/£§0rcf4=4fm2lz2p (5)

In calculating the cfy constant from the resonant frequencies measured,
a correction is introduced by the temperature expansion constants of the
crystal. This follows from equation (5) since /; the frequency determining
axis and p the density both change with temperature. From measurements
quoted by Sosman? for the expansion along the Z axis and perpendicular
to the Z axis, we find

I, = Il + 7.8 X 10-5(T — 50) + 2.8 X 10-%(T" — 50)?
— 15 X 10T — 50)* — -]

Ly = L1 + 14.6 X 10°%(T — 50) + 6.3 X 10=%(T — 50)* ©
— 1.9 X 10T — 50)* + .- - -]
Multiplying these together the volume expansion is
V = LIl = Ii[1 + 37 X 1075(T — 50) + 15.8 X 10~%(T — 50)*
— 5 X 107%(T — 50 + ---]
1 Pizoelecteric Crystals and Their Application to Ultrasonics, W. P. Mason, D. van

Nostrand Co. 1950, Section 10.2, page 204.
2 Sosman, The Properties of Silica, Chemical Catalogue Co., 1927, pp. 386, 387.
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Since the density is the inverse of the volume, the square of the frequency
constant for a crystal whose dimension is measured at 50°C must be multi-
plied by the factor

I, [

Ll L,

in order to correct for the effect of temperature expansion on the elastic
constant. This correction is shown by the third column of Table I. The
fourth column is then the value of ¢iy for the various temperatures. The
fifth column shows the values of the @;, @2 and a3 constants for the tem-
perature variation of ci .

Table I evaluates one of the elastic constants of the frequency equation
(4). To evaluate the other two constants, use is made of the frequency

TasLE I
Frequency Con-| Correction for c f.i dynes E
Temperature °C| stant Kilocycle temperature ex-| ——; Constants for ¢ 4, equation

Centimeteis pansion x‘i’(’)‘_m

—100 237.22 1.0029 59.82 ay = — 171 X 108

—25 236.26 1.0016 59.26 ap = — 212 X 107

50 235.07 1.000 58.58 a3 = — 65X 10712
+125 233.56 0.9984 57.75
200 231.78 0.9965 56.78

constants for the AT and BT cuts given by equation (3). Over a tempera-
ture range the thickness / is given by the equation

t = to(ly cos® @ + 12 sin® 0) (8)

where [ and I3 are the values of unit lengths along the ¥ and Z axis ex-
pressed as a function of temperature. Inserting the values of (6) and (7)
in equation (3), the elastic shear constants for the AT and BT cuts become

cst (AT) = 2.924 X 10"[1 — 12 X 10T — 50)
+ 12.8 X 10%(7" — 50)% + 172 X 107%(T — 50)3 + - -]

¥ (BT) = 6.877 X 10"[1 — 20 X 10-%T — 50) ©
— 176 X 10~%(T — 50)% — 238 X 10~%(T — 50)* + - - -]
From equation (4), the frequency equation, we have
GE(BT) = 0.4258¢% + 0.5742 & + 0.9890 c& w

cot (AT) = 0.6661 cps + 0.3339 cfy — 0.934 o

Since ciy is already known, tke two equations can be solved for cgp and
c1s and we find
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k= 0.8802 ¢of (BT) + 0.9328 cof (AT) — 0.8221 ciy "
= 0.6282 cif (BT) — 0.4016 coe (AT) — 0.2264 cfy (1)

Inserting the values from Table I and equation (9) the three elastic con-
stants become

¥ = 58.58 X 10"[1 — 171 X 10-%(T — 50)

— 212 X 10~%(T — 50)2 — 65 X 10~(T — 50)* 4 - - -]
cty = 40.26 X 10"[1 + 168 X 10-%(T — 50)
— 5 X 10T — 50)* — 167 X 10~%(T — 50)* + - -]
18.20 X 10'[1 + 90 X 10-%(T" — 50)
— 270 X 10-%(T — 50)% — 630 X 10~%(T — 50)3 + - -]

To determine the frequency and temperature coefficients for any angle,
one substitutes the values of the elastic constants and the temperature ex-
pansion coefficients in the frequency equation (4), which results in the
expression

72 = 101[(3.802 cos’0 + 5.526 sin’6 — 3.426 sin 0 cos 6) + 10-(T" — 50)
(668 cos” 6 — 828 sin’ @ — 336 sinf cosf — 13.5sin” 0 cos” @ — 46
sin® 0 cos 8] + 10-9(T" — 50)%[395 cos’ 6§ — 1160 sin” 0 + 354 (13)
sinf cos® — 12 sin® 6 cos® § — 24 sin® 6 cos 8] + 10-12(7" — 50)3
[310 cos® 0 — 884 sin® 6 + 1130 sin 8 cos 8] + —]

(12)

E
C14

1II. ProrERTIES 0F AT anD BT Cur CrystaLs HAVING ZERO
TEMPERATURE COEFFICIENTS AT HiGH TEMPERATURES

The process for obtaining high frequencies cuts of the AT and BT type
that will have zero temperature coefficients at a high temperature—for
example 200°C—is to substitute for T in equation (13) the value

T = 200° + AT (14)

Tnserting this value in (13) and collecting the results in powers of AT, we
find

2% 1071 = [3.913 cos’ § + 5.373 sin’ § — 3.465 sin f cos 8§ — 0.0023
sin@ cos’@ — 0.0075 sin® @ cos 6] + (AT) X 10-¢
[807 cos® 6 — 1236 sin® @ — 154 sin 6 cos 6 — 17 sin® 0
cos’ @ — 53 sin® @ cos 6] + (AT)? X 1079534 cos’ 6  (15)
— 1558 sin” @ + 862 sin @ cos § — 12 sin® 6 cos®§ — 24
sin 0 cos 8] + (AT)® X 10~310 cos’ # — 884 sin’ 8
4 1130 sin 6 cos 6]
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V. EVALUATION FOR THE REMAINDER OF THE ELASTIC
CONSTANTS OVER A WIDE TEMPERATURE RANGE

In order to evaluate the remainder of the elastic constants measure-
ments were made of the frequencies of a series of X-cut longitudinal crystals
over the same temperature range from —100°C to +200°C.* The longi-
tudinal crystals measured had their lengths at —30°, 0°, +30° and +60°
from the ¥ axis. For the four crystals measured the results are shown by
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Fig. 5—Frequency temperature curves for fundamental and third overtone for a crystal
cut at 36°45' rotation.

Table II. The analysis for f, = fso- and the three constants a;, a; and a3
are also shown.
To correct for the temperature expansion coefficients, the increase along
I, is given by the last equation of (16) while / &= 30° and / &= 60° are
I+ 30° = .25, 4 .75L. = L[1 + 12.9 X 10-%(T — 50)

+ 5.42 X 10-%(T — 50)2 — 1.8 X 107%(T — 50)* 4 ---]

19)
I+ 60° = .75L, + 251, = k[l + 9.5 X 10-%(T — 50) (
+ 3.68 X 10T — 50)? — 1.6 X 10T — 50)* + ---]
Since the frequency of a long thin bar is given by the equation
1 1 :
L = or sl (20)

I=uvm o e,

introducing the length correction from (19) and the density correction
from (7) one can correct for the effect of temperature expansion.

3 These measurements were made by T. G. Kinsley.
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Applying these corrections to the frequency equations of Table IT the
resulting compliance constants become

shen = 5= 1271 X 107171 4 16.5 X 10~%(T — 50°)

+ 58.5 X 10-%(T — 50°)% + 33 X 107%(T — 50)* + ---]
shoaex = 0.8159 X 10~22[1 + 96.4 X 10-%(T — 50)

+ 276.5 X 10-%(T — 50)* + 219.4 X 1077 — 50)* + - - -]
Stac_aoemy = 1.402 X 10121 4 1144 X 1057 — 50)

+ 178 X 10T — 50)2 — 91.6 X 10~*(T — 50)* + ---]
Shorem = 0.8614 X 10-12[1 + 186.4 X 10-%(T — 50)

+ 302.2 X 10-%(T — 50)2 + 385.3 X 107%(T — 50)* + ---]

The equation for the compliance constant so% for an X-cut crystal at an
angle 6 from the ¥ axis has been shown to be*

(21)

siF = 5% cos' 0 + s sin 0 — 251 cos’ Osin @
(22)
+ (255 + sia) sin® 6 cos’ 6

Solving for the constants in terms of the compliances for the four angles
measured we find

B E
B E LB Sao(4a0°) — Sea(—30°) | E E E
S$11 = S22(0°x) S14 = T— y 833 = S22(0°) + 2529 (4607
4 E 2 E E E 10 E 2 r
— $ S22(30°) T 3 S22(—80°) 3 (2813 + 6‘44) = — - S22(0°) — 7 S22(60°) (23)
3 3 3 3
28 g 26 g
+ 6322(4-30") + ) $92(~30°)

Hence adding the results we find
s5 = 1.271 X 1071 4 16.5 X 10-%T — 50°)
+ 58.5 X 10~%(T — 50)2 + 33 X 1071%(T — 50)* + - - -]
sE = 0971 X 10-2[1 + 134.5 X 10~%(7 — 50)
+ 144 X 10-%(T — 50)* + 570 X 10~1%(T — 50)* + - -]
s¥ = —0.4506 X 1021 + 139.5 X 10-%(7 — 50)
+ 40 X 10-%(T — 50)? — 54 X 10-2(T — 50)% + - - -]
1.785 X 1011 + 300 X 10-57 — 50)
+ 460 X 10-%(T — 50)? — 98 X 10~%(T — 50)* + ---]

4 See “Piezoelectric Crystals and Their Application to Ultrasonics,” page 204, equation
10.26.

(2515 + s13)
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All the compliance constants are now determined except sis, si3 and
st . From the relations for a crystal in the quartz class®

£ E
E Co6 B E E Ci4
St = 53 Ses = 2(s11 — s12) = —F 5 (25)
Ci4Ce — C14 C44 66 — C14

the remaining constants can be obtained. Inserting the values of cis , cgs
and ¢f; from (12), we find

1.986 X 10~2[1 4+ 201 X 10-%(T — 50°)
+ 200 X 10~%(T — 50)* — 26 X 10~%(T — 50)* + - - -]

si = 2.89 X 10721 — 138 X 10~%(T — 50°)

— 18 X 107%(T — 50)2 + 3 X 10T — 50)* + ---]
sty = —0.1005 X 10~2[1 — 678 X 10-8%(T — 50°)

— 2110 X 10-%T — 50)? + 610 X 10-2(T — 50)* + - - -]
sho= —0.174 X 10~2[1 — 1270 X 10~5%(T — 50°)
— 575 X 10-%(T — 50)2 — 215 X 10~(T — 50)* + - - -]

E
S44

(26)

It is sometimes desirable to use the ¢ values as a function of tempera-
ture. The remaining values can be obtained from the relations valid for
quartz®

3 sﬁ‘ b SE.:. E st st + st
26?1:"3_3+_.‘;2552=-§—i;613=—ﬁ;(,'ga:_ILLMJ (27)
o s o Ie) @ P
where
a = s33 (511 + 512) — st:; B = sk (sF — s%) — 255"
e = 1048 X 10v9]1 — 165 X 10-%(T — 50)

— 187 X 107%(T — 50)* — 410 X 107'*(T — 50)* 4 ---]

cfs = 9.6 X 10H9[1 — 510 X 10-5(T — 350)

— 2000 X 10-%(7 — 50)* 4+ 600 X 107157 — 50)3 + - - -] (28)
cti = 86.75 X 10+19]1 — 53.5 X 10-5(T — 50)

— 75 X 10T — 50)* — 15 X 1072(T — 50)% + ---]
cra = 6.15 X 10°[1 — 3030 X 10-%(T" — 50)

— 1500 X 10-*(T — 50)* 4 1910 X 10-*(T —50)* + - -]

5 See Piezoelectric Crystals and Their Application to Ultrasonics, page 207.
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VI. PreEDICTED ANGLES FOR CT axD DT FAcE SHEAR
CRYSTALS

The other two cuts of primary interest for frequency controlled oscillators
are the CT and DT low frequency face shear modes. An exact solution
for the frequency vibration of a face shear mode has not yet been obtained,
but Hight and Willard® 7 have pointed out an empirical relation that agrees
with the measured frequencies over the entire range of angles of rotated ¥
cut crystals. This relation is for a square crystal

1.23 1
f= - 1/ —z7 (29)
PS56

where [ is one edge dimension and s; the shear elastic constant pertaining
to the face shear mode. In terms of the orientation angle®

sk = sk cos’ 0 4+ s¢s sin® @ + 4513 sin @ cos 0 (30)

Introducing the values of i, sse and si from equations (24) and (26)
the frequency becomes

fZ %10 =
14.27
[(1.986 cos® @ + 2.89 sin® # — 1.802 sin @ cos )
+ (399 cos® § — 398 sin® § — 251.5 sin @ cos 6) (31)

% 107%(T — 50) + (397 cos® @ — 52 sin® 6
— 72 sin 8 cos 8) X 107°(T — 50)* 4+ (—52 cos’ @
+ 8.7 sin® 0 + 98 sin 8 cos 6) X 107 (T — 50)° + ---

Since the formula is very approximate the small correction due to tem-
perature expansions has been neglected. With this equation the indicated
angles for zero temperature coefficient—which are obtained by setting the

6 A Simplified Circuit for Frequency Substandards Employing a New Type of Low
Frequency Zero-Temperature-Coefficient Quartz Crystal, S. C. Hight and G. W. Willard,
Proc. I.R.E., Vol. 25, No. 5, pp. 549-563, May 1937. The factor 1.23 agrees better with
experiment than the value 1.25 given in the paper.

7 Since this paper was written a much more nearly exact solution of a face shear mode
vibration has been obtained by R.D. Mindlin and H. T. O’Neil. This solution is an ex-
tension of the thickness shear vibration of a crystal published by Mindlin (Journal of
Applied Physics, probably March issue 1951). For a square plate there are two solutions
wﬁich are very close in frequency. For case A which corresponds to / of equation (29) ly-
ing along the X direction the empirical factor F becomes

2 ’
F = 12718 — 03471g — .03727g* where g = — L
12 555
and sy’ and sss” are the elastic compliances corresponding to the rotated cuts. For the B

2
case which corresponds to / lying along 2’ the same formula holds but g = % ':_’—',
rs 55
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multiplier of (7" — 50) equal to zero and solving for the rotation angles
6, and G—are

6, = +36°20' and 6, = —53°50' (32)
as compared to the experimental values of +38°20" and — 52°, which repre-
sents a shift of about +2° orientation for both angles. At these calculated
angles the frequencies are within about 1.5 per cent of the experimental
values and the curvature constants agree approximately with the measured
values.

To obtain the angles for any other temperatures, for example 200°C,
we substitute
T = 200 + AT (33)
and obtain the expansion in powers of AT. For 200°C this results in
fm X 107 =
14.27
[2.055 cos’ @ + 2.829 sin® § — 1.840 sin 6 cos 0]
+ [514 cos’ § — 413 sin® 6 — 266 sin 6 cos 6] X 10°AT  (34)
+ [373 cos’ § — 48 sin® § — 28 sin 6 cos 6] X 107°(AT)*
+ [—52 cos’ @ + 8.7 sin® 8 + 98 sin 6 cos 6]
X 107*(AT)?)
The zero temperature coefficient angles are obtained by setting the coeffi-
cients of AT equal to zero giving

514 cos® @ — 413 sin® @ — 266 sinf cos 8§ = 0 (35)
Solving for 8 we find

# = +39°50" and —56° (36)
If we add 2° to each of these in order to correct for the difference between
the formula and the measured results at 50°C, the most probable angles for
zero coefficients at 200°C are

0 = +41°50" and —54° (37)

At these angles the indicated frequencies and variations of frequencies
with temperature should be

9 = 41°51;
]
| = &if—m [l — 63 X 107°(AT)* — 8 X 107*AT) + -]
§ = —545 (38)
2.04 X 10°

f=""0— [ =14 X 107AT)* + 8 X 107*AT)" + --]
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While these results are probably not very exact on account of the lack of
an exact solution for the frequency of a face shear plate, they indicate the
angles and approximate variations with temperature for high temperature
plates. So far no experimental results have been obtained for crystals of
this type.



