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A general method is developed for designing networks with assigned gain
or phase characteristics. It is based on the analogy between the gain and phase
of linear networks and two-dimensional potential and stream functions, pro-
duced by charges corresponding to the network singularities. These analogies
exist because the gain and phase functions are the real and imaginary parts of
analytic fuhctions of a complex frequency variable. Potential theory is used

here to determine charge arrays which correspond to physical network singu-
larities and also yield approximations to assigned potential or stream functions.

1. INTRODUCTION

HE problem of network synthesis is the inverse of the much simpler

problem of network analysis. If an exponential input voltage, Eexp (p1),
is applied to a given network consisting of a finite number of lumped linear
elements, we can always calculate the corresponding output voltage,
V exp (pt), in terms of the network constants. Then we define a transmission
function F(p) as the logarithm of the ratio V/E. In general I(p) is an ana-
lytic function in the complex p-plane. Its value on the real frequency axis,
p = iw, defines the gain and the phase shift of the network.

In the inverse problem we start with an assigned transmission function
F(p) and are required to find a network for which F(p) is the transmission
function. More frequently we have to design a network with assigned gain
or phase characteristics over a prescribed frequency range. Obviously, there
will be certain restrictions on the assigned transmission function if the
network is to be physically realizable. Further, the solution will not be
unique, though certain solutions may be more convenient than others.
Engineering and cost requirements usually impose severe limitations on
the number of elements that may be used in constructing a physical net-
work, hence it may not be possible to match the given function exactly
even within the prescribed range of frequencies. Thus from the practical
design point of view the problem of network synthesis may be formulated
as follows: To design a network with a reasonable number of lumped elements
such that its transmission function approximates a given transmission func-
tion lo a prescribed tolerance in a given frequency range.

The potential analogue method of network synthesis is a method of
approximating to the prescribed transmission function by considering charge
distributions in a complex plane and their associated potential and stream
functions. In other words, the fact that the prescribed function is usually
analytic means that its real and imaginary parts are potential functions
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which satisfy Laplace’s equation in two dimensions. Hence they may be
interpreted as potential and stream functions (interchangeably) of certain
charge distributions. In potential theory the problem of network analysis
corresponds to the problem of determining the potential of a given charge
distribution, while the problem of network synthesis corresponds to the
problem of determining an appropriate charge distribution when the poten-
tial is given.

This is one of the fundamental problems of potential theory, and it has
been widely discussed in the mathematical literature of the subject. The
usefulness of the potential analogue method of network synthesis derives
primarily from the fact that we may use the whole background of our knowl-
edge of potential theory and of the properties of electrostatic fields in for-
mulating the solution of the charge distribution problem. A general solu-
tion is obtained in terms of a continuous distribution of charge over a
contour (C) in the complex plane. This is the mathematical part of the
problem. Thereafter, the design problem is to approximate the continuous
distribution by means of a set of lumped charges which will have approxi-
mately the same potential function. The solution of this problem involves
a certain amount of ingenuity, and may at times seem to be more of an art
than a science. Once the lumped charge distribution has been determined,
the locations of the charges are interpreted as corresponding locations of
poles and zeros of the transmission function. Well-known methods of de-
signing a network with assigned poles and zeros may then be used, and
the problem regarded as solved.

We may note that neither the lumped charge distribution nor the con-
tour (C) is uniquely determined by a given transmission function. Physical
restrictions on the type of distribution which will lead to a realizable net-
work usually impose sufficient limitations on the charge distribution, but
the contour (C) remains to some extent at our disposal. If our first choice
of contour proves unsatisfactory we can always try another contour which
may give more suitable results. This introduces another important char-
acteristic of the potential analogue method, namely that we may use the
properties of conformal transformations to simplify the choice of contour.
Thus any simple closed contour in the complex p-plane may be mapped
on a unit circle in a second complex plane. The solution of the charge dis-
tribution problem on the unit circle is particularly simple, but it may not
lead to the most suitable network design formula. However, we may use
the inverse transformation to map the unit circle on some more convenient
contour and locate equivalent charges at corresponding points of the two
contours.

From the mathematical standpoint the use of continuous charge dis-
tribution instead of lumped charges corresponds to the use of integrals
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instead of finite sums. To the best of the author’s knowledge, the first appli-
cation of the continuous charge concept to network synthesis was by H. W,
Bode, who used the so-called “condenser plate” analogue to design phase
equalizers for experimental coaxial cable systems for television, in the
late nineteen-thirties. An extension of the “condenser plate” technique,
combining gain and phase equalization, is described in a patent issued
to Bode' in 1944. The integration idea was used independently by W.
Cauer,* in connection with applications of Poisson’s integrals to network
problems. Development of the potential analogue method was interrupted
by the war, but in the last few years there has been considerable activity
in this field.” The aim of the present paper is to systematize the development
of the potential analogue method, and to extend it in various directions in
order to obtain a more versatile design tool. Much of the material has been
presented orally at meetings of the Basic Science Division of the A LE.E.*

In principle, at least, the method may be used to simulate or equalize,
over a finite range of useful frequencies, any gain or phase characteristic

BIP.

NETWORK
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Fig. 1—A transducer used as a transmission circuit.

which may be represented by an analytic function. Network types to which
the method has been successfully applied include filters, equalizers, delay
networks and combinations of networks required for long communication
systems such as coaxial cables. As experience increases, the range of appli-
cations is still being extended.

2. ANaLyTIC PROPERTIES OF THE TRANSMISSION FUNCTION

We shall consider the transmission function of a typical transducer,
Iig. 1. The absolute value of the ratio of the output voltage to the input
voltage represents the gain in transmission through the network, while the
phase of the ratio represents the phase shift. If « is the gain in nepers and
G the phase shift in radians we have

V/E = e%™®, (1)
and we define the transmission function as the logarithm of this ratio,

Fiw) = log (V/E) = « + 3. (2)
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For a finite network with lumped elements the ratio V/E is a rational
fraction and the transmission function may be represented by an expres-
sion of the form

(p— p0(p — po)- -

(p — )P —p2)- - 3)
= log K + X log (p — pm) — 22 log (p — ),

where K is a constant which may usually be ignored in the analysis since

its value merely alters the level of gain or phase and does not affect their

variation with frequency. Ae have introduced the complex oscillation
constant

F(p) = log K

p=Et+ 1w 4)
instead of the real frequency variable, w, and equation (3) defines the trans-

mission function in the complex p-plane. If we separate the real and imagi-
nary parts of (3) we find analytic expressions for the gain and phase:

a=ay+ 2 log|p—pm|— 2log|p— pal,
B =B+ 2 ph(p — pm) — 2 ph(p — D).

The significance of the parameters pm and p is easily understood if we
note that when p = b we have @ = — o and therefore V/E = 0. Hence
the zeros of the rational fraction in (3) represent points of infinite loss of
the network. Similarly if p = pn then @ = « and we may have a finite
value of V when E is zero. Thus the poles of the rational fraction are the
natural oscillation constants or natural modes of the network. For brevity
we shall refer to pn and py as the zeros and poles of F(p) though they are
really logarithmic singularities of the transmission function.

The numerator and denominator of the rational fraction are finite poly-
nomials in p. If the network consists of real elements the coefficients in the
polynomials are real. Thus we have the first property of the transmission
function. The zeros and poles must be either real or conjugate complex. A
second essential property is that the real parts of the poles pn must be negalive
if the network is to be stable. And the third property that concerns us is
that there must be af least as many poles as zeros, that is, as many finite natu-
ral modes as points of infinite loss. This condition insures the proper be-
havior of the transmission function at asymptotically high frequencies.

Using these properties the gain and phase may be expressed in alterna-
tive forms. From the first property it follows immediately that the con-
jugate function [F(p)]* must be equal to the value of I when p = p*.
But p* = —p when p = iw, hence in this case

[F(p)I* = F(—p) = « — iB. (6)

I
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On the real frequency axis, therefore, we have

a = 3[I(p) + F(—p)] = even part of F, -
i8 = 1[F(p) — F(—p)] = odd part of F.

Specifically we may write

2a=2a0+210g|p:—p2|—Elog]p’;ﬂ—j)ﬂh
' "o (8)
260 + 2 h(——P’," P)—E h(PI: P),

where the singularities occur in pairs, one of each pair being the nzgative
of the other.
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Fig. 2—A point charge in the potential plane; (a) at the origin, (b) at the point 2, .

3. LocARITEMIC POTENTIALS

In two-dimensional potential theory we are really concerned with uni-
formly charged line filaments whose potentials and intensities are the same
in any plane perpendicular to the axis of the filament. Hence, it is conven-
ient to speak of a point charge ¢ in a two-dimensional plane (, ¥) and re-
gard the plane as the plane of a complex variable, 5 = & + 4y. The poten-
tial of a charge g at the origin in this plane, Fig. 2(a), is proportional to
the magnitude of the charge and to the logarithm of the distance from
the charge.

V = —qlog p + constant, 9

where the constant may have any convenient value. Note that we are using
arbitrary units of charge and potential; in a coherent system of electro-
magnetic units the logarithmic term would have a constant multiplier.
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For present purposes this would merely lead to a complication of the
argument.

If we introduce polar coordinates, & = pe'¥, we may consider a complex
potential

W = —gq log 5 + constant = —q log p — ige + constant. (10)

The real part of this [unction is the potential and the imaginary part is
the stream function. If the charge is at a point 2z, , other than the origin,
Fig. 2(b), the corresponding complex potential is

W = —glog (z — z») + constant. (11)

For a set of point charges the total potential is simply the sum of the
individual potentials,

W = —2 gulog (z — 2.) + constant, (12)

while for a continuous distribution of charges over a contour (C) the sum
is replaced by an integral,

W= —f Q@) log (= — ¢) | dt |, (13)
()

where | d¢ | is an element of length on the contour.
In general we write
W=V+4ir (14)

where V is the potential and ¥ the stream function. We note that W in (12)
is analytic everywhere in the finite part of the sz-plane except at points
occupied by the charges. Similarly, IV in (13) is analytic everywhere except
on the contour (C) and at infinity.

We may use the theory of analytic functions of a complex variable to
obtain various properties of the potential and of the stream function. First,
we remark that the derivative of I/ is unique, and may be written in either
of the forms

aw _av , .o¥ _ 9¥ .4V
—_— = — p— = — — 11—, (15)
dz ox dx dy dy
whence V and ¥ satisfy the Cauchy-Riemann relations,
o oV o oV
ar 5: 8—}' = o (16)

The stream function and the potential are not independent; either is deter-
mined by the other except for a constant.

The components of the electric intensity are obtained from V by the
relation E = —grad V. Thus we find various alternative forms,
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Fig. 3—TFlux of electric intensily; (a) across an arc, (b) through a circle surrounding
a charge.

The stream functionW may be interpreted in terms of the flux of the field
intensity across a curve in the z-plane. The flux of a vector across a given
curve is the line integral of the normal component of the vector,

¢=fma, (18)

hence the flux of E crossing the curve of Fig. 3(a) between the points z,
and z is

b = fz(*Eudx—i"E,dy)
! e (19)
= fzu(— o dx — gi dy) = W(z) — ¥(z),

in the clockwise direction when viewed from z,. The flux depends only
on the values of ¥ at the ends of the curve.
For a point charge ¢ at the origin the stream function is

¥ = —gp -+ constant, (20)
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and the outward flux through a closed contour surrounding the charge,
Fig. 3b, is
B = —gpo + glon + 2m) = 2mq. 1)

The flux from a set of charges is additive, so that equation (21) is general,
when ¢ is interpreted as the total charge inside the contour.

/‘\

Tig. 4—Narrow closed contour surrounding an arc whose accumulated charge is g(z).

Consider now a charge distributed continuously on a contour (C), and
let g(z) be the total charge on the arc extending from z to . If we surround
this arc by an infinitely narrow closed contour, Fig. 4, we can pass from
2 to z on the enclosing contour in either a clockwise or a counterclockwise
manner, by traversing respectively part 1 or 2 of the contour, on one or
the other side of the enclosed arc of C. The flux leaving the enclosing contour
through part 2 is
' ®; = Wy(z0) — Wa(3), (22)
where ¥, is the stream function in the region on the corresponding side
of (C). Similarly the flux leaving the enclosing contour through part 1 is

By = ¥y(z) — ¥i(z), (23)
where ¥, is the stream function in the region on that side of (C). Since the

total flux, ®, + ®., is given by (21) we see that the stream function is
discontinuous across the line charge, and the amount of the discontinuity is

[¥1(z) —W1(z0)] — [Walz) — Walzo)] = 2mg(3)- (29)
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If C is a closed contour, and if the above arc corresponds to passage from
% to z in a counterclockwise direction around C, then¥; and ¥, in (24) cor-
respond respectively to the interior and exterior of C.

On the other hand the potential is continuous across the line charge.
To prove this we note that the potential is the real part of the complex
potential W in (13), and is therefore given by

V= — f 0@) log |z — ¢£|]d¢| + constant. (25)
)

The integral depends on the distance | z — ¢ | between a typical point ¢
on (C) and the given point z. For two points 2, and 22 just on opposite sides
of (C) the distance is the same, so that V(z:) = V(z).

4. ANALOGY BETWEEN TRANSMISSION FUNCTIONS AND
LoGARITEMIC POTENTIALS

Comparing equations (3) and (12) we see that the transmission function
F($) in the complex p-plane may be identified with the complex potential
W of a system of discrete charges. If we assume that unit positive charges
are located at the natural modes, p7 , of the network, and unit negative
charges at the infinite loss points, p,, , the complex potential in the p-plane is

W = —2log (p — pu) + 2 log (p — pm) + constant. (26)

The real part of this function is the potential and its imaginary part is the
stream function. Then, by the definition of gain and phase in equation (2),
the gain of the associated network is given by the potential on the imaginary
axis (the real frequency axis), and the phase by the corresponding stream
function.

The zeros and poles of F(#) locate the charges producing the complex
potential W, and they form a discrete set of points. When F(p) corresponds
to practical problems these points are usually arranged along well-defined
lines in the complex p-plane and not distributed at random throughout a
whole area. The corresponding potential W should then be that of a discrete
set of charges arranged along corresponding lines in the charge plane.
When the potential function is given in analytic form, however, it is usually
simpler to use known methods of potential theory to determine a continu-
ous charge distribution over a convenient contour. This continuous dis-
tribution may then be approximated by a set of equal lumped units of
charge spaced on the same contour. The difference between the actual
‘sources’ of F(p) and W is usually small, and by using distributed charges
much of the algebraic complexity associated with the design of complicated
networks may be avoided, at least in the earlier stages.
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When the assigned gain or phase is represented in analytic form it is
sometimes possible to determine a distributed charge over a suitably chosen
contour which matches the desired characteristic exactly. Then the only
approximations involved in obtaining a finite network are those which
arise from replacing the continuous charge distribution by a set of lumped
charges. The errors are easy to calculate and can usually be adjusted to
meet the allowable network tolerance.

It is important to stress that for physical networks the complex poten-
tial W must be generated by unit charges. Hence, if we have determined
a continuous charge distribution over a given contour in the complex
p-plane, we must choose our unit of charge to make the total charge on the
contour equal to an integral number of charge units. Then the contour can
be divided into segments each carrying a unit charge, and the lumped
charge distribution is obtained by locating one unit of charge at some
convenient point on each segment, usually at or near the center. The total
charge determines the number of lumped charges that may be used. This
limitation is not so restrictive as it might appear at first sight, since the
assigned transmission function frequently involves a constant parameter
in terms of which the unit of charge may be defined. It is also possible,
as we shall see later, to increase the total charge on the contour by special
devices, appropriate to different types of problem.

We assume that the gain, @, corresponds to the real potential, V', and
the phase, 8, to the stream function ¥; but it would be equally permissible
to interpret « as the strea n function of another complex potential, iW,
and then 8 would be the negative of the potential. It is usually more con-
venient to equate gain and potential, in network synthesis problems, and
we shall confine our analysis to this interpretation.

The desired for n of gain and phase may be given as a condition on their
variation with frequency. Since the electric intensity is the gradient of the
potential, we see from equations (17) that da/dw is analogous to the elec-
tric intensity in the direction of the negative frequency axis. Similarly, the
variation of 8 with frequency is analogous to the electric intensity in the
direction of the negative real p-axis, that is, at right angles to the frequency
axis. Thus we may summarize the analogies we shall use most frequently:

a) Transmission function and complex potential
b) Gain and potential
c) Phase and stream function

d) — gg and field along real frequency axis @7

B

e) — = and field across real frequency axis.
w
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The conditions imposed on the zeros and the poles of the transmission
function to make it physically realizable have their counterparts which
must be imposed on the charge distribution associated with the complex
potential if it is to be equivalent to a realizable network. Using the above
analogies they may be summarized as follows:

1) The charge distribution must be symmetrical about the real
axis in the complex plane.

2) The positive charges must be in the negative half of the plane.

3) The net charge must be non-negative.

4) If the contour is made up of disjoint curves in the plane there
must be an integral number of units of charge on each segment.

(28)

The first three conditions correspond exactly to the zero and pole li nita-
tions, while the last is a corollary of the unit charge limitation we have
already discussed.

5. CoNDENSER DELAY NETWORKS

As a simple example of the potential analogy we shall consider the design
of a network with constant phase delay in a prescribed frequency range.
Analytically the condition is that d8/dw should be constant for |w | < w,,
where wo has an assigned value. The corresponding function in the potential
plane is the field transverse to the imaginary axis. This suggests the field
between the plates of a parallel plate condenser, and we construct im ne-
diately the analogy illustrated in Fig. 5. The distributed charge is shown
in Fig. 5a, where we assume a constant charge density on each plate of the
condenser, the plates being parallel to the real frequency axis. The positive
charge is placed on the left-hand plate to satisfy the second condition of
the set (28).

As long as the distance between the plates is small compared with their
width the field between the plates is transverse, and substantially con-
stant, except for an edge effect which will diminish as the dimensions of
the plates are increased. If we could use infinite plates the field would be
exactly constant, and the continuous charge distribution on the plates
would match the network stipulation exactly. In practice we must use a
finite number of lumped charges; hence we choose the charge points shown
in Fig. 5b, where the crosses represent unit positive charges, the natural
modes of the network; and the circles represent unit negative charges, the
infinite loss points. To keep the end effects small it is desirable to extend
the plates considerably beyond the frequency wy .

We note that for the lumped charge distribution the field along the real
frequency axis vanishes, since each unit positive charge contribution is
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cancelled by the contribution from the opposite negative charge. Thus,
by our analogy, da/dw vanishes, and the constant phase delay network
has a constant gain at all frequencies.

For the charge spacing illustrated in Fig. 5 the poles of the transmission
function are located at the positive charge points, Py = —a + b, v =
—m, --- 0, - m, while the infinite loss points are located at the negative
charge points, p, = a + ivb. Thus the required transmission function is

F(p) = constant -+ log ImI p— a — iub

Al e — b (29)
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Tig. 5—The condenser plate analogue; (a) distributed charge, (b) lumped charges.

If we allow the number of charges to become infinite, but still with con-
stant spacing b, the infinite product may be recognized as the ratio of sine

or cosine functions,*
sin, cos (P _b aqr)
: (30)

sin, COS (P + aw)

F = constant + log

b
* See, for instance, B. 0. Pierce’s “Short Table of Integrals,” page 96, equations
816, 817.
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where the sine or cosine is used according as the number of oscillation
constants is odd or even.

There are two sources of error in the finite representation (29): The first
is due to the finite extent of the charged plates, and may be called the
“truncation error.” Its effect will be important only near the ends of the
plates, which explains why it is advisable to prolong the charges beyond
the upper frequency bound wp. Its magnitude is exactly determined by
integrating the effect of uniform charge density, of magnitude 1/b, over
the region beyond the finite plates:

__d,B_Z-zr_ g -1 a 2. 1 a
== [btan w.+w+fvtan ws—w:l’ (31)

where -tw, are the real frequencies at the ends of the plates. The bracketed
expression represents the non-constant part of the phase delay, due to the
finite extent of the plates. Note that 2w, = #b = total extent of natural
mode intervals = plate width. The correction term becomes smaller as w,
increases.

The second source of error lies in the use of lumped charges instead of
a continuous charge distribution, and may be called the “granularity
error.” Its magnitude may be approximately determined from (30) if we
replace the sines and cosines by their exponential equivalents, differentiate
with respect to w, and assume that the error is small. We find.

g 2r | 4x 27 2re
a—-Ti?exp( )cosT,

2 (32)
where the plus and minus signs refer respectively to odd and even numbers
of modes.

We may assume that both errors are small, and that they act inde-
pendently, so that the total error is given approximately by the sum of the
non-constant factors in (31) and (32). We note that if we increase the plate
spacing, a, the granularity error becomes smaller while the truncation error
increases. This increase may be offset by increasing w,, but this means
extending the condenser plates and therefore adding additional lumped
charges, with consequent increase in network complexity. Thus the choice
of specific spacing and dimensions is likely to represent a balance between
granularity errors, truncation errors and network complexity.

The truncation errors may be somewhat reduced, with no increase in
network complexity, by increasing the charge densities near the edges of
the plates. Later we shall discuss a systematic method of adjusting the
charge distribution.
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6. FILTERS OR SELECTIVE NETWORKS

Filters offer another particularly simple illustration of the potential
analogy. The object of a filter is to transmit all frequencies in a prescribed
range and to block all other frequencies. This means that the potential
must be substantially constant in the pass-band, and large and negative
in the stop-band. Now the pdtential inside a conductor is constant, hence
charge distributions on conductors should yield transmission functions of
filters.

3 3
- .
[ ¢ <
w w
o o
POSITIVE CHARGE DOUBLED DENSITY
. DISTRIBUTED ON A IF'ELD QUTSIDE ON HALF, CONTOUR
CONDUCTING SHIELD SHIELD f
| ] -~
i X
[
\ x
Lk
x \\
ZERO FIELD GAIN
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—xX
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.
x
\x
,.' P g
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TO EACH AXIS APPROXIMATION
(3) CLOSED CONTOUR (b) HALF conTOUR

Fig. 6—Analogy between filters and conducting shields; (a) positive charge distributed
on symmetric shield, (b) lumped charge distribution on half of contour.

Figure 6 illustrates the analogy between filters and conductors, or shields.
The first condition in the set (28) requires that the shield must be symmetric
in the real p-axis. Symmetry about the w-axis is not necessary, but it is
usually advantageous. The third condition of (28) requires that the charge
on the shield should be positive, in the absence of external charges. Positive
charges determine the poles of F(p), and must therefore lie in the left half
of the p-plane if the network is to be physically realizable. In the shield,
on the other hand, there are positive charges in both halves of the p-plane,
so that we caraot use the charge distribution on the shield without modi-
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fication. The difficulty is readily resolved, however, if we note that the
charge on the shield is symmetric about the w-axis, and that the charges
on each half of the shield produce the same potential on the imaginary axis.
Hence the gain will be unchanged, if we use only the left half of the shield
and double the charge.

Even if the shield is not symmetrical about the w-axis we can still transfer
the positive charges on the right half of the plane to their mirror images
in the axis without changing the value of the potential on the axis. This

j REAL p REAL p
(38) SYMMETRICAL X
/x:;?-
[/

x
REAL p _\ \ REAL p
X

~x

,K’“-x-_x-x"x

X
X,
X

Wl

x

\\

x
x

H N
= 5 o

—

(b) DISSYMMETRICAL

Fig. 7—Lumped charge distribution for a given contour; (a) symmetrical, (b) dis-
symmetrical.

would give us a charge distribution over two separate contour branches,
as in Fig. 7, and would thus increase the network complexity. This explains
the desirability of using the type of shield which is symmetrical relative
to each axis.

So far we have considered conductors in the absence of external charges
(except at infinity). If the network is to have points of infinite loss at certain
finite frequencies we must have negative charges outside the shield, Fig. 8.
These charges alter the charge distribution on the shield, but the potential
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inside the shield is still constant. In the case of band-pass filters we can use
disjoint contours as in Fig. 9. These must be symmetric about the £-axis
and again we shall find it advantageous to have them symmetric also about
the w-axis. In all cases the net charge on the shield must be positive, and
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Fig. 8—Negative charges outside shield have no effect on potential inside.

we can state as a general filter principle that: The natural oscillalion con-
stants “shield” pass-bands from infinite loss points.

7. GAIN INVARIANT AND PHASE INVARIANT TRANSFORMATIONS

We have just seen that we can transfer positive charges (or poles) from
the right half of the p-plane to the left without changing the value of the
potential (or gain) on the real frequency axis. Similarly, there are trans-
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formations which leave the stream function (or phase) unaltered. These
invariant transformations are easy to understand if we consider the com-
ponents of the field intensity. As shown in Fig. 10a the field of any given
charge along the w-axis equals the field of an equal charge at the mirror
image of the given charge in the real frequency axis. By (27d) these two
charges thus give the same rate of change of a with frequency. Similarly
two opposite charges, Fig. 10b, at mirror image points have the same

T

REAL P

NI NV

Fig. 9—A disjoint contour.

transverse field intensity across the w-axis. Thus these charges produce
the same rate of change of g with frequency.

To summarize in terms of the transmission functions: 1) the zeros and
poles of F($) may be moved from the right half of the p-plane to the left
half, and vice versa, without changing the gain; 2) a singularity of I(p)
may be moved from one half of the p-plane to the other without changing
the phase, provided the type of singularity is reversed (that is, a zero be-
comes a pole and vice versa).
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8. GrEEN’s ForMULA

The simple examples we have just discussed could have been solved with-
out recourse to the potential analogous method, since the charge distribu-
tions were easy to recognize. In general, this is not the case, and we now
turn to systematic methods of determining the charge distribution when the
gain, @, is given as an analytic function of » in a prescribed frequency
range, | w| < wo. The corresponding transmission function is obtained if
we replace w by p/i and regard p as a complex variable. Then the mathe-
matical problem is to determine a charge distribution on some contour C
which will have this function F(p) as its complex potential.

The contour C is to a large extent arbitrary. We shall assume that it is
a simple closed curve in the p-plane, enclosing the frequency band of in-

REAL p REAL p

(@) GAIN INVARIANT TRANSFORMATION (D) PHASE INVARIANT TRANSFORMATION

Fig. 10—Illustrations for (a) gain invariant (b) phase invariant transformations.

terest, and subject only to the limitations that it must be symmetric in the
real p-axis, and that F(p) must be analytic inside C.

Then one very general solution of the charge distribution problem in
potential theory is given by Green’s formula,i which has the form

1 2 av
v(p) = i fc (Van log p — - log p) ds (33)

for the logarithmic potential in two dimensions. The integral expresses the
potential at any point P inside C in terms of the values of V' and of its
normal derivative on C. The differential ds is an element of length on C
and n is the normal drawn out of the region we are considering. At points

t See e.g. A. G. Webster, Partial Differential Equations of Mathematical Physics,
G. E. Stechert and Co., New York, 1927, p. 210,
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outside C the integral vanishes. In potential theory it is shown that the
potential 17 on C may be interpreted as a double layer of charge of strength
V, while the normal derivative of the potential on C may be interpreted
as a single layer of charge of density dV/dn. Thus Green’s formula ex-
presses the potential inside C as due to a single and double layer of charge
on C, the charges being determined by the known values of V inside C.

Green’s formula represents a very simple and general solution of the
charge distribution problem. The simplicity is due primarily to the con-
stancy of the potential outside C; and this in turn is made possible by the
double layer of charge, which supplies the discontinuity between the vari-
able interior and constant exterior potentials. Unfortunately, from the
network synthesis point of view, it is not a practical solution, for double
layers of charge lead to zero-pole combinations which are not eagily realiza-
ble. A double layer might be approximated by two closely-spaced strings
of positive and negative charges, but the resulting zeros and poles would
be in addition to the zeros and poles for the simple layer of charge. Hence
the associated network would be difficult to design, and would also be
unnecessarily complicated and wasteful of network elements.

It is well-known, however, that ¥ and its normal derivative cannot both
be assigned independently on C, and that the potential inside C is deter-
mined when we know the values of ¥ alone on C. This would make it pos-
sible to eliminate the double layer of charge, if we could obtain the analytic
continuation of ¥ on both sides of C. Then we should have a potential
which is continuous across C, and this would be consistent with the exist-
ence of a simple layer of charge on C whose density is determined by the
discontinuity in the associated stream function, as we saw in Section 3.

We might remark that if V(P) is a given function of P outside C, the
integral (33) will again express V(P) at points outside C in terms of the
values of V and 9V /dn on C. In this case V(P) must vanish at infinity at
least as 1/p, and the value of the integral will be zero at all points inside C.
Hence if we retain both single and double layers of charge it is possible to
obtain a charge distribution on C for which the gain characteristics are
assigned over the enlire frequency axis. With simple layers the gain may
be assigned only over that part of the frequency axis which lies inside C.
Then we must accept its values on the remainder of the axis, though it
may be possible to control these values to some extent by varying the
contour C.

9. Tar Exterior Transmission Funcrion

We have just seen that for a simple layer of charge on C' we have to
determine the analytic continuation of the transmission function on both
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sides of C. Then the potential will be continuous across C while the stream
function will be discontinuous by an amount which is determined by the
charge on C in accordance with equation (24). If we write

Fi(p) = Vilp) + i¥(p) (34)
for our known function inside C, and a corresponding expression
F(p) = V(p) + i¥.(p) 35)

for the complex potential outside C, then V, is determined by V', while
¥, will be known if we know both¥; and ¢. Conversely, ¢ will be determined
if we know both ¥; and ¥, . Thus the problem of determining the charge
distribution on C may also be formulated as the problem of determining
the exterior stream function ¥, . To make the function ¥, unique we specify
that it must be analytic outside C, and must vanish at infinity at least as
1/p, except perhaps for a logarithmic term which corresponds to an equi-
potential charge density on C. If the net charge on C is zero¥, must vanish
at infinity.

Thus, if it is possible to solve this potential problem we have a corre-
sponding solution of the charge distribution problem. The existence of a
solution has been proved, and is known as Dirichlet’s principle, but its
solution has been formulated analytically only for circular contours. How-
ever, for circular contours in the p-plane simple methods of determining
W, are available, and we shall discuss these before giving the general solution.

10. Tue Power SerIES SoruTioN FOrR A CIRCULAR CONTOUR

When the interior transmission function is given as an analytic function
inside a circular contour, the exterior function may be determined by vari-
ous methods. An elementary method is based on power series expansions.
Since any analytic function of p can be expanded in a power series inside
a certain domain of convergence the method has quite general application.
To obtain the best form of power series applicable to our problem, we shall
start by considering the expansion of the complex potential for a given set
of lumped charges g, located on the circle at points pn,

F(p) = constant — > qu log (p — pa). (36)

Inside the circle we have | p | < pn for each of the charge points pn , and
therefore each of the logarithmic terms may be expanded as convergent

series in p/p. . Hence

F{p) = constant — Z gw log (—p.) — Z ga log (1 _ %)

constant — Zﬂ:qﬂl:-—i_ 2%;3‘_ :|,
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and for the inferior potential a suitable power series expansion is
Fi(p) = a0 + 25 amp" (37)

Outside the circle we have | # | > pn, so that the logarithmic terms may
be expanded in convergent series of p./p,

constant — Z qn log p — E g log (1 - i”)

b.;—bglogp-—an(—%‘—%_...)_

Hence a suitable power series expansion for the exterior potential is

()

Fo(p) = by — by log p + 21 bp ™. (38)

The constant b, represents the total charge on the circle. If there is no net
charge the logarithmic term vanishes and F.(p) is analytic outside C. It
will vanish at infinity if we also have by = 0, but for the moment we shall
retain both constants, and apply the boundary conditions on C to determine
the unknown constants b, from the known constants a, .

On the circle of radius w, we have

P = w(}g'.',, (39)
so that just inside C the interior potential is
Fi(®) = a0 + 2 anafe™, (40)

while just outside C the exterior potential is

Fe(’j) = b(’] - b(] log (wo CM) —|— E bm wo—me—imﬂ ) (41)

m=l

In our applications the constants ¢ and & are real, hence we may separate
the real and imaginary parts of (40) and (41), and find

Vi) = ao + 2 amwsy cos md, () = D anwg sin md, (42)

Ve®) = by — bolog | wa| + 2 buwo ™ cos md,

V() = —bot? — 2, by " sin md. (43)
The condition that V must be continuous across C determines the bd's:

bo— bolog |wo| = a0, b= wo'tm, m>0. (44)
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Then the charge distribution is determined by the discontinuity in ¥ across
C. Tf we measure the charge from the real axis, & = 0, we find from equa-
tion (24),

2rg(d) = D amwy sin md — [—bgd — D, buwo™ sin md]
= b + 2 (@nws + bnwp) sin md.

Hence we have two alternative formulations for g:

g@) = —— -|~ mewu sin s
T m=1
) 1< (43
o m o
~ o log |w9/w['; | -+ - 111E=:1 A wpy SN W .
We have substituted by = by log | wo | for the constant by , where wy is an
undetermined frequency. The total charge on the contour is

q(2m) = by = —aq/log | wofwo | - (46)
Since the total charge must be non-negative this 1mphes that b, = 0, but

ap may be either positive or negative, according as w[, is greater or less

than wp.
The gain and phase are determined by the values of F on the real fre-

quency axis, § = iw, hence, inside C,

o= a0+ 2. (=) amw™, Bi = Z_; (=)" taup ™, (47)

n=1

and outside C,

Olg

—by log |w/wos | + 2 (=) bewe™™"
n=1 (48)

8. = ibug — Zﬂ =) b2n+1wr-2n“1,

where the minus sign in 8, refers to points on the positive half of the w-axis,
and the plus sign to points on the negative half.

We note that « is an even function of w while 8 is an odd function. This
agrees with equation (7) and it means that if only the gain is prescribed
we know directly only the even coefficients, as,, in the power series ex-
pansion, of F;. Hence we know only the even part of Fi(p). But we have
seen that the singularities in the logarithmic expression for a occur in
pairs, one of each pair being the negative of the other. To determine the
complete transmission function F;(p) we must assign one of each pair of
singularities to F(p) and the other F(—p) in such a way that equatlons
(7) and (8) are satisfied.
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For the unil circle the exterior potential and charge equations take very
simple forms. Corresponding to the interior potential

Fi(p) = a0+ 2 amp™, (49)

we find

Fup) = —Qlog (p/wn) + 2 amp ™,
q(9) = 2Q_f + 11; Z @y, Sin md , (50)

where () is the total charge on the unit circle, Q = ao/log | wo | . The coeffi-
cients in all three series are identical.

\
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Fig. 11—Unit charges arranged symmetrically on a circle for the maximally flat filte
approximation.

As a simple example let us determine the charge distribution on the unit
circle which corresponds to a constant gain for |w| < wp, and to a phase
shift independent of w. By equation (49) this requires that @, = 0 when
m # 0, and hence the continuous charge distribution on the circle is simply

_ 0 <
- g: (31)

where Q) is the total charge on the circle. Equal increments in ¢ give equal
increments in the accumulated charge round the circle. If we ignore the
requirements of realizability this distributed charge may be approximated
by simply dividing the unit circle into 2m equal parts, and placing a unit
positive charge at each point of division, Fig. 11,

pe=2e"""  k=0,1,---2m — 1. (52)

q(9)
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The total charge is ) = 2m, and the transmission function for the lumped
charge distribution is

Fi(p) = constant — 2:2: log(p — p)- (53)
Since
(6 — po)(p — £1) -+ (b — pom—1) = P — 1, (54)
this is equivalent to
Fi(p) = constant — log (p*" — 1), (55)
at all points inside the circle | p| = 1. This is the transmission function

for the Butterworth “maximally-flat” filter.® As m increases F; is more
and more nearly constant inside C. But the objection to this solution is
that it involves poles (or positive charges) in the right half of the p-plane.
If the phase is of no importance we may use the gain invariant trans-
formation to transfer these poles to the left half of the plane, which is
equivalent to using only the left half of the contour, and doubling the
charge at each charge point. Then we have a physically realizable charge
distribution such that

_ Q o T o0 < 3
For integral values of Q we locate charge points at p = ¢”* | where
Ky ™ ™
g _ — - ‘!9‘ = —_—.
190 2 2Q y k41 ﬂk l' Q (57)

The shape of the gain characteristic for small values of Q = 2m is illus-
trated in Fig. 12. It approximates zero gain at frequencies inside the circle,
and the approximation improves as m increases, or as the frequency de-
creases. At frequencies outside the circle the gain becomes a high loss,
and the filter is of the low-pass type.

The transfer of poles from the right to the left half of the p-plane leaves
the gain unaltered, but it changes the phase delay, since the sign of the
phase contribution from each transferred charge is reversed. It is possible to
compensate for this change by adding a simple charge distribution such as
that shown in Fig. 13. Here the positive charges on the left are matched by
the negative charges on the right, so that the electrostatic field is zero along
the real frequency axis and the charges merely add a constant gain. The
contribution to the phase delay from each negative charge equals that from
the corresponding positive charge. Just as in the condenser plate analogue



LOSS IN DECIBELS

POTENTIAL ANALOGUE METHOD OF NETWORK SYNTHESIS

339

n
T

0

CONTOUR

INTEF{CEF’TV‘\I

o]

FREQUENCY, w
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Fig. 13—A symmetrical charge distribution about the real frequency axis used to
correct the phase delay.

of Fig. 5 the two sets of charges can be interpreted as equal and opposite
charge densities on the two halves of the contour, thus giving a constant
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phase delay. This method is of general application in changing the phase
delay, and the corresponding networks are easy to obtain.

11. Tor INvERSION THEOREM FOR A CIRCULAR CONTOUR

An alternative derivation of the exterior stream function for a circular
contour of radius wo is based on the method of inversion, in which p is re-
placed by wiy/p, Fig. 14. This transformation maps the region inside C on
the region outside C and vice versa. Points on the circle remain on the circle
but are transformed to the conjugate complex points.

Now suppose that the transmission function F;(p) is defined inside the
circle as an analytic function of p, and that it satisfies the conditions for
physical realizability. Then if we have a unit charge at some complex point,

wo
C
Fe(P)=Fi(wd/p)
Fi(p) [Pl e
4
¥
[) REAL p
da=-0,
’
2
_%o
]F’z}— i
Pa

Fig. 14—The inversion theorem for a circular contour.

p on the circle there must be a like charge at the conjugate complex point,
#*, while the total charge must be non-negative. For simplicity we may
assume that the total charge is zero and then the exterior function F.(p)
must be analytic outside C. We wish to show that F(ws/p) may be inter-
preted as the exterior function. Obviously since F;(p) is analytic inside C
we must have F{(wi/p) analytic outside C. Hence it will represent the ex-
terior function outside C if it represents a function whose potential is the
analytic continuation of the potential inside C. :
On the circle we have

|pF = pp* = wi, or p* = wi/p. (58)
But we have already seen that when the complex zeros and poles occur in
conjugate pairs we must have [Fi(p)]* = F:(p*). Hence on the circle

Fi(ws/p) = Fi(p*) = [Fi(p)]* = Vi — i¥;. (59)
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This is the value of the transformed function as we approach the circle from
points just outside C, corresponding to the value V; 4 i¥; for points just
inside C. Thus the potential is continuous across C and consequently we have
proved that for all points outside C, the function

Fup) = Filwo/p) = Ve(p) + iW(p) (60)
is the exterior function for the circle.
We have just seen that on the circle ¥, = — ¥, hence equation (24)
for the integrated charge reduces to
1
q(¥) = ;[‘I’i(ﬂ) — ¥i(@)] + o, (61)

where () is a constant charge density, and the charge is measured from # .

12. CoNFORMAL TRANSFORMATIONS

From the network point of view, unfortunately, the simple solution for
a circular contour does not always lead to the best solution of the design
problem. Hence we must also consider more general contours. The potential
analogue method requires an ab initio choice of contour on which the zeros
and poles of the approximating transmission function are to be located.
Small changes in the contour shape should not be of great importance, but
it may happen that our initial choice leads to a very complicated network
when a much simpler one would satisfy the physical requirements. Experi-
ence is required to make the most effective use of the method, and various
simplifications may frequently be available. For instance, it may be possible
to split the assigned gain or phase functions into components, for some of
which the zeros and poles may be located by inspection. Then the potential
analogue is used to synthesize the remaining components.

There is, however, one limitation on the choice of contour which is inherent
in the potential interpretation, namely, that the transmission function must
be finite and analytic inside the contour. This is because the value of the po-
tential on C defines its values at all points inside C only if these values, and
their derivatives, are finite throughout the interior. We can see this intui-
tively when we remember that for a given charge distribution the potential
and its derivatives are finite at all points not occupied by the charges.

It happens that the type of contour most frequently used up to the present
has been the ellipse, and we shall discuss this contour in more detail later.
For the present we shall consider more generally any simple closed contour
in the complex p-plane, surrounding the frequency band of interest,
| w| < wp. The contour must be symmetric in the real p-axis, as we have
seen, but we shall not impose any other restrictions except the fundamental
one that the given complex potential must be analytic inside C.
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We now introduce the theory of conformal transformations, and use the
fundamental property that any simple closed curve in the finite p-plane
may be mapped, by an analytic transformation, on the unit circle in a second
complex plane, which we shall denote by the w-plane. Suppose that

p=T(w) (62)

is such a transformation. Primarily the transformation must be such that
points on the contour C in the p-plane become points on the unit circle,
C,, in the w-plane, but this is not sufficient to define ' uniquely. To make
the definition unique, in a way which we shall find convenient in solving
our potential problem, we impose the following conditions:

1) I'(w) maps C; on C

2) T'(w) maps the exterior of Cy on the exterior of C in a one-to-one
analytic manner

3) The point at infinity in the w-plane corresponds to the point at (63)

infinity in the p-plane
4) T'(+1) is real and positive.

Now if our assigned transmission function in the p-plane is

Fi(p) = Vip) + i%«(p) (64)
the assigned transmission function in the w-plane is
Fi(w) = Fir@)] = Vi) + i¥i() (65)

and our problem is to find the exterior function F.(w) in the w-plane. Un-
fortunately this problem cannot usually be solved by the simple inversion
theorem for the circle in the p-plane, because the transformation (62) intro-
duces singularities in F () which are in addition to the singularities due to
the poles and zeros of the original function. The second condition of the
set (63) requires that F.(«w) must be analytic outside Ci, but in general
F'i(w) is not analytic inside C; and the inversion theorem will therefore not
lead to an analytic form for F.(w). The second condition of the set (63) was
deliberately chosen to make the mapping Fi(w) of the unknown exterior
function F,(p) analytic outside Cy. The extra complexity of the potential
problem for the general contour C, as compared with the circle in the p-plane,
arises because it is not usually possible to define the transformation in such
a way that, simultaneously, the mapping F “(w) of the known interior func-
tion F;(p) is analytic inside C1. Two exceptions are when F «{(p) is constant
so that Fi(w) is also constant (the equipotential distribution), and when
T'(w) is a linear function (when the original contour in the p-plane is also
circular).
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Hence we must find a more general solution of the problem for the circle
before we can use the potential analogue method to its fullest extent. This
we shall do in the next section. For the moment let us assume that we have
solved the problem for the unit circle in the w-plane, and thus determined a
charge distribution on C; for which the potential is continuous across Cj.
Now, by our definition of T, points on C; correspond to points on C. Hence
we find the distribution on C by an inverse transformation in which the
charge at any point on C; becomes the same charge at the corresponding
point on C. This charge distribution on C has the required potential inside
C. It may be simpler in practice to determine a convenient lumped charge
distribution on C; and then transfer these lumped charges to the corre-
sponding points on C.

It remains to determine I'(w), satisfying the conditions (63). One method
is based on the remark above that if C is an equipotential in the p-plane
then C; is an equipotential in the w-plane. Hence T" might be defined as the
transformation that maps equipotential distributions on C as equipotential
distributions on C; . This transformation has been determined for many con-
tour shapes in the classical theory of equipotential distributions.

At the same time the precise shape of the contour is not usually critical
for network purposes, so that it may be simpler to choose a I'(w) directly and
determine the corresponding shape of the contour. A simple functional form
involving two or three parameters might be assumed, for example,

I'(w) = aw — f—y + ﬂ% (66)

where the parameters a, b, ¢ will be sufficient to give C any length and
breadth and a considerable further variation in shape. Illustrative shapes
for transformations of the type (66) are shown in Fig. 15. In practice the
special case of the ellipse, for which ¢ = 0, is often adequate.

13. PorssoN’s INTEGRALS

We turn now to a general solution of the exterior potential problem for
the unit circle in the w-plane, which may be used when the simple inversion
theorem is not applicable. For this purpose we start from Cauchy’s integral,

Fw) = b [ F g (67)

where C is a simple closed curve in the w-plane and the integration is.taken
clockwise round C. Tt is assumed that F,(w) vanishes at infinity at least
as 1/w, and then the integral expresses the value of an analytic function F,
at any point outside C in terms of its values on C.
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We are interested particularly in applying (67) to a point just outside
the unit circle in the w-plane. To do this we place the point w on the circle
and then keep it just outside the actual contour by introducing an infinitesi-
mal semicircular indentation as shown in Fig. 16. Over this semicircle the
integral may be evaluated by writing A\ — w = dei, where 4 is the infinitesi-
mal radius, and assuming that F,(\) is practically constant; then its value is

1 [T Fo(w)
2wi dele

REAL P

R TR
2Tw=32w-+%
T v b+ o

Fig. 15—TIllustrative contours for the transformation.

i6e™™ da = LF (w). (68)

p=I‘(w)=aw—£+u%

Then over the contour C’ which is the unit circle excluding the indentation,
(67) becomes

Fo(w) = dr. (69)

If we now interpret F,(\) as the exterior complex potential of our charge
distribution problem, on the circle, and introduce angular coordinates

A=¢?  w = el (70)

1 [ F)
7I'. C‘A— w
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the integral may be written

Fulo) = — :_rp 02' M e dv, (71)

eiﬂ — giqo

where P denotes the principal valuef of the integral, corresponding to the
contour C’; that is, with an infinitesimal segment at the singularity ¢ = ¢

A=elt?

Fig. 16—Unit circle contour with semicircular indentation at p.
omitted. In the integral (71) the value of V' ,(#) is known (since it is equal to
V(&) on C') and we shall now show how to determine ¥, from V,.

If we separate the real and imaginary parts of (71) we find

Vo) = =5 P [ [V.00) + W) cot 3 — p)] o,
) (72)
. (p)

;; P fn ’ [V(3) cot 3(8¢ — ) — V. (9)] db.

Since we have assumed that F.(w) vanishes at infinity the integrals of V,
and ¥, round the circle will be zero, and (72) reduces to

Vig) = — L p f W.(9) cot 3(9 — ) 9
2n o
1 2r (73)
¥, (¢) = 7 Pf V() cot (& — o) do.
LT 0
Further it is easy to verify that
2r
P [ cot 3@~ g)ds =0, (74)
0

t E. T. Whittaker and G. N, Watson, Modern Analysis, Cambridge, 1920, p. 75.
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go that the integrals in (73) will not be altered if we introduce a constant
multiple of cot 3( — ¢) in each integrand. This enables us to replace the
improper integrals by convergent integrals, and find Poisson’s inlegrals ina
form particularly well adapted to the network problem:

1 2

Vo) = =5 | [T.(2) — Wilo)] cot 30 — o) d¥,

Vo) = L [ Vi) = Vile)] cot 3 — o) do.

2w Jo

(75)

It may be helpful to engineers to note the similarity between these in-
tegrals and well-known integrals connecting gain and phase, which are of
course the real and imaginary parts of complex transmission functions.
Actually, the only essential difference is the shape of the contour on which
the relations hold—here a circle, as opposed to the imaginary p-plane axis
for the gain-phase relations.

Poisson’s equations analogous to (75) may be found for points outside
the unit circle by separating the real and imaginary parts of the original
integral (67). The resulting integrals are convergent and there is no need
to modify the integrands nor to indent the contour.

14. Usk oF ToF INVERSION THEOREM FOR NON-CIRCULAR CONTOURS

We have seen that in the w-plane the interior function Fi(w) is not in
general analytic inside Cy, so that the inversion theorem cannot be used
directly. In other words, if F'i(w) has singularities inside C; then Fi(1/w)
will have singularities outside C, and therefore cannot be the exterior po-
tential F,’.(w).

Thus, in general, we may have to use Poisson’s integral to determine
the exterior stream function. The inversion theorem may still be applied,
however, if it is possible to separate the interior function into two parts,
one of which, F,, is analytic inside C,. while the other, Iy, is analytic
outside C;. We write

Fiw) = Fa(w) + Fy(w), (76)

and note that F,(1/w) is analytic outside C; . Since Fy(w) is also analytic
outside €, the exterior function is given immediately by

Fi(w) = Fo(1/w) + Fyw), (77)

where the transformation has to be applied only to F, .
This represents at times a real simplification of the charge distribution
problem, since Fu(w) is the same on both sides of the contour and therefore
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does not contribute to the discontinuity in the stream function. In fact the
charge distribution on C; is now determined by

¢0) = L) — 0] + 05, (78)

where Q(: represents a constant charge density in the w-plane, and ¥, is
that part of the stream function on the circle contributed by F,(w).
Certain functions F*;(p) lead to very simple separation formulas for any
contour shape, provided I'(w) has been expressed in analytic form. A simple
example is the linear phase function,
Fip) = —Kp, (79)
for which
Fiw) = —KT'(w). (80)
By the definition of I'(w) this function has a pole at infinity, but is otherwise
analytic outside (. Inside C, it will have poles at any poles of T'(w). We
can separate out that part of F(w) which is analytic inside C, by considering
the value of the derivative dI"/dw at w = =. This will have a finite value
I‘; , and we write

Fiw) = (—KT)w + [—KT(w) 4+ (KTw)w). (81)

The first factor is analytic inside C; and the second outside Cy, hence the
exterior function is

Fow) = —

KT,

w

+ [—KT(w) + (KTy)wl, (82)

while at the charge point w = ¢™ the integrated charge is

!

-

KT, .
¢ = — —Zsind + 0. (83)
™
A more general example of the use of the separation theorem will be
found in the next section.

15. Errieric CONTOURS

The unit circle Cy in the w-plane is mapped on the p-plane ellipse C of
Fig. 17 by the transformation

N w ok
p =T = (E - i_u) , (84)

where the major axis of the ellipse is along the real frequency axis with foci

. . . o1 .
at Z=iwg , the intercepts on the w-axis are at :I:%n.:.](;E + k), and the inter-

. 1 . . .
cepts on the £-axis are at :I:%wu(k — k). This transformation will map the

outside of Cy on the outside of C if we and k are real positive constants with
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k < 1. The eccentricity of the ellipse varies with %; in the limit # — 1 the
ellipse degenerates to the segment of the real frequency axis |w| < wo.

Now for a given transmission function inside C, Fi(p), the complex po-
tential inside C; is F ',-(w) = F,I'(w)]. In general this function will have
singularities inside C;, but when F,(p) may be expanded in a power series
in p we may use the separation theorem of the last section to obtain a simple
formula for the charge distribution on C; . For instance, let F,(#) be a poly-
nomial in p,

F:(P) = Z ﬂnPn: (85)

n

Fllw) = Z(%)[: - %] (86)

When the binomial is expanded in a power series the terms involving positive

then

+iwg

(o]

REAL p

A—lwo

p PLANE
Fig. 17—Elliptic contour in the p-plane.

powers of w will belong to F,(w), while the terms involving negative powers
will belong to Fy(w). Hence the parts of F i(w) analytic respectively inside
and outside C, are

rw = 2o [ G) ) + G -]
o - S(3)[(-2) - (-1) &
GO
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When 7 is odd each series ends in the first power of its argument; when # is
even F, ends in a constant (which may be ignored in determining the charge
distribution) while F} ends in a term in w .

We have seen that the charge distribution on C; is determined by Fa(w),
and from equation (78) we find

¢@) = 1Zan(ﬂ)"[sm ny_sin(n =29 ] (88)
T 2 k k=t

Corresponding to each power p" in Fi(p) we have a finite Fourier sine series
for ¢'(#). Conversely, the powers of p from 0 to #, for each value of 7, may
be summed in such proportions that the resulting »#** degree polynomials,
F(p), correspond to charge distributions sin ## on C1. The actual form of
these polynomials may be determined by considering the formulas we have
just derived.

sin nd
Tk
is C(w/k)", and this is matched by the term Cn(—k/w)" in Fy(w). Hence the
interior function for this charge is

Fi{w) = C,.[(%')n + (— g)"] | (89)

Now on the real frequency axis, p = iw, the solution of equation (84) for w
in terms of w is

If the charge distribution is C, , the corresponding term in Fa(w)

w= ked, &=sin" 2. (90)
«@o

This means that the real frequency axis in the p-plane in the region | w | < wp
corresponds to a semicircle of radius k in the w-plane. Substituting from (90)
in (89) we have

Fi(iw) = Cale™ + (=)™ ™). (91)

Hence, corresponding to a charge distribution

J@) =3 ¢y o
n=1 27l'k

in the w-plane, we have, on the real frequency axis in the p-plane.

LS e + (=) ¢ + ¢

Fi(iw) 52~

]

(92)

I

oo ]
>~ Com cos 2mé + i > Comyr sin 2m + 1) 3
m=0

m=0
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We write this result alternatively in the form

]‘ 1 rw) ZC“».TOm (‘-'-’) + ?Zcﬂrfi+l T2m+1(w) (()3)
where 7y, is the Tchebycheff polynomial of even order,
Tom(w) = cos [2m sin™ (w/wo)] (94)

and T, may be interpreted as a modified Tchebycheff polynomial of odd
order, particularly adapted to network synthesis problems,

Toms1(w) = sin [(2m + 1) sin™ (w/wo)]. (95)

It is easy to verify that the 7’s are in fact polynomials in w/w, . For the
first few values of 2 we find

2
w

To=1 Ti=%, T2=1—2(‘—°—)
wo

Wy

T, = 3_0 - 4(;;)3 -1 8( ) + 8( )4, etc.

In dealing with prescribed gain and phase functions for elliptic contours,
the simplest procedure is to expand the gain, not in an even power series,
but in a series of even Tchebycheff polynomials, while the phase is expanded
in a series of odd Tchebycheff polynomials. Such expansions are always
possible for analytic functions, and it should be pointed out that their
region of convergence is greater than that for a simple power series. An addi-
tional advantage of using the polynomials instead of the power series is that
the T’s are orthogonal in the frequency range | w | < wy, while the various
terms of the power series are not. This increases the rapidity of convergence
and leads to a more efficient solution of the design problem.

A simple illustration of the effect of contour shape on the accuracy of
the lumped charge approximation to the transmission function is shown in
Fig. 18. This refers to the constant gain filter we discussed, for a circular
contour, in Section 10. The granularity error for the circle (curve 1) is very
small at low frequencies, while for the two ellipses (curves 2 and 3) it is small,
but oscillatory, and the oscillations become larger as the ellipse becomes nar-
rower. On the other hand, at frequencies near the upper limit w, of the fre-
quency band, the granularity error is much smaller for the ellipses than
for the circle; in other words, the cut-off frequency iz more sharply defined.

(96)

16. Tee ExpansioN THEOREM FOR GENERAL CONTOURS

The term by term correspondence between the Fourier expansion of the
charge on C; and the expansion of the gain and phase functions as series
of polynomials holds also for general contour shapes. In the general case
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the polynomials are not of the Tchebycheff type, and as a rule they are not
orthogonal.

By its definition in (63) I'(w) can always be expanded in a series of the
form

I'(w) = I‘:.c'zc' =+ ge + Zgn'w_", (97)

valid on and cutside C; . It follows that $”, which transforms into [I'(w)]",
can always be expanded as an »"" degree polynomial in w plus a power series
in 1/, and these correspond to F.(w) and Fi(w) respectively. The charge

3
£
Wo
2F
w
-
@
o £o
w
o
z
wn
w
(e}
- 1
3
2
0 ————
0 FREQUENCY, w Wy

Fig. 18—Tllustrating the effect of contour shape on the accuracy of the approximate
transmission function for a flat filter.

on € corresponding to p* is determined by F.(w) and is therefore a finite
FFourier sine series, similar to (88) except for more general coefficients. Con-
versely, we can always construct a polynomial in p of degree », by choosing
appropriate coefficients for the various powers of p, in such a way that the
charge on C, is merely sin #d. In other words if

¢'(9) = sin nd
then

F(p) = Pr.(p)
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where Pr.(p) is a polynomial of degree n whose coefficients depend only on

I'(w), that is on the shape of the contour.
By summing the above relations for all values of # we have the general

expansion theorem,
Fi(p) = 22 Ca Pralp),
7@ = 2 C, sin nd.
Thus if the assigned gain and phase functions can be expanded in terms

of the polynomials Pr,(p), appropriate to the given contour, then the
Fourier expansion of the charge on Cy can be written down immediately.

(98)

17. Hicu-pASS AND BAND-PASS FILTERS

So far we have assumed that the contour in the p-plane is a simple closed
curve. This is adequate as long as the positive frequencies of interest extend

REAL p

Tig. 19—Appropriate contour for a high-pass filter.

from zero to a finite upper bound, wo, as in low-pass filters. For high-pass
filters, in which the positive frequencies extend from a lower bound, wo,
to infinity, an appropriate shape of contour is shown in Fig. 19. However,
high-pass problems can always be reduced to the low-pass type by simply
using 1/p as the variable instead of p.
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In band-pass filters, whose positive frequencies of interest extend between
two finite values, wy < w < w;, we must be able to use a contour of the type
shown in Fig. 20a. This consists of two disjoint closed curves, one above and
one below the real axis (real p). The physical requirements are satisfied
if the curves are symmetric about the real p-axis, but as usual it is advan-
tageous to make them symmetric also about the real w-axis. For then, if a
point p, lies on one of the curves, the point —p, will lie on the other. This
makes it possible to map the disjoint contour C on a single closed curve C.
in the p*plane, the y-plane of Fig. 20b, by means of the transformation
p = A/y. The single contour C; may now be mapped on the unit circle in

Cc
Csa Cy
\ REAL D REAL 4 REAL w
\
_py
(&) p PLANE (b) y PLANE = P2 PLANE (C) w PLANE

Fig. 20—Contours for a band-pass filter; (a) disjoint contour symmetric about both
axes in p-plane, (b) single contour in p>-plane, (¢) unit circle in w-plane.

the w-plane, Fig. 20c, by means of a second transformation y = I'i(w).
Combining the transformations we have

P =Tiw), p=Ti(w) (99)

as the transformation which maps C on C; .

The conditions on the function I'y(w) are the same as in (63) except that,
since C» is in the left half of the y-plane and does not cut the positive real
axis, the fourth condition must be replaced by a similar requirement.

T'y(+ 1) — I'y(— 1) is real and positive.

Now the presence of the square root in the transformation (99) may
introduce branch points in the w-plane corresponding to the branch points
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at zero and infinity in the y-plane. There will be no branch points if the
original transmission function F;(p) is an even function of p, for then the
exterior function F7,(p) will also be an even function. In this case the simple
closed curve analysis does not have to be modified. The usual method can
be used to determine W, (w) in the w-plane, and the charge distribution on
C: determined.

When F,(p) is an odd function, however, we have to proceed more care-
fully, since the transformation now introduces branch points in the w-plane
corresponding to a factor /T (w). In this case we assume that I'y(w) is given
in analytic form, and determine the root W, of T'y(w) = 0 which lies outside
C1. Then it will be possible to express F '() in the form

G(w)
Fiw) = V1 — w/wn

where G(w) is analytic outside Cy, and has the proper behavior at infinity.
From the conditions imposed on T'; it can be shown that w, is real; hence we
introduce a rationalizing factor

M) = 1/(1 — ‘—"-)(1 _ LY, (101)
wq ww

and multiply both sides of equation (100) by M (w). This leads to
M@ F () = 4/ 1= L G) = Hw), (102)
W,

where H(w) is analytic outside C,. On Cy, |w| = 1, so that M (w) is real
and on C; the potential and stream functions are defined by

M(w) V.(w) = Re H(w),
M(w) Vi(w) = Im H(w).
Thus the real part of H(w) is determined by the known potentmi Vi(w);

this determines in turn the imaginary part of H(w) and hence ¥, (w) is de-
termined.

When F(p) is neither even nor odd we divide it into even and odd parts
and treat each part separately. If only the gain is important we need retain
only the even part, or if only the phase is important we consider only the

odd part.

(100)

(103)

18. ExXAMPLES

So far we have been describing the potential analogue method in general
terms, and developing a systematic design procedure applicable to a wide
range of problems. The method involves a certain arbitrariness, in the initial
choice of contour, and there may also be some doubt in the reader’s mind as
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to the accuracy of the final result, since a general theory of granularity errors
has not been developed. Hence in this section we shall consider the applica-
tion of the method to some actual engineering problems. This should aid the
reader in using the method himself, and should also help to convince him
of its validity.

Example 1. The Gaussian Filler

It is required to design a low-pass filter whose voltage transfer ratio is
exp (—bw?®) and which has constant phase delay in the prescribed frequency
range. For convenience we choose our unit of frequency to make the cut-off
frequency equal to unity, and then we choose our contour C to be anellipse
in the p-plane passing through the points p = +34, +i.

The assigned transmission function in the p-plane is

Fl(?) = bpz — Bp,
and the transformation which maps C on the unit circle in the w-plane is

3w 1
p-—-—I‘('ﬂ’.)-— Z _E’.

In the w-plane the transmission function is

p 9’ 3 1 3w 1
Fitw) = 5(71—6— - §+ ﬁg) - 13(? - 4_w)’

and the part of F % analytic inside Cy is

Hence, by the separation theorem, the required continuous charge distribu-
tion on Cy is

% 3B . 0o
"Y) = — - il
¢ () T 29 o smz?+21r,
where we have assumed a total charge Q on the circle.
In practice the values of b and () are usually assigned, while the magnitude

of the phase delay is at our disposal. Hence we choose 3 large enough to insure
that ¢’(#) is a monotonic decreasing function for 0 < ¢ < ;:' This makes it

possible to divide the continuous charge into a set of unit steps, such that
these steps are negative in the right half plane, and therefore correspond to
zeros of the transmission function. A typical set of numerical values is

: _13

b=‘§, Q=3, .6 31F
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For these values we find unit increments in ¢" at the zeros (negative steps)
0, +25°47, 4-55°.76; and at the poles (positive steps) =120°.65, +142°.89,
+158°.99 and =4173°17. These five zeros and eight poles on the unit
circle in the w-plane are now mapped back to the corresponding points on
the ellipse in the p-plane, where they give the location of the zeros and
poles of the approximate transmission function. Figure 21 illustrates the
accuracy of the resulting approximation to the prescribed gain and phase.
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Fig. 21—Gain and phase curves for the Gaussian filter.

Example 2. The Coaxial Cable Equalizer

A section of coaxial line of finite conductivity has an insertion loss pro-
portional to v/ w. The problem is to design a network which will equalize
this distortion, that is, a network which has a transmission function

F‘(}'J) = ‘k\/lj7

in the frequency range |« | < 1.

This example is included partly because of its engineering importance,
but also because it gives us the opportunity to introduce a particular type
of contour, the equipotential contour. This consists of fitting the contour C
to an equipolential of the transmission function, except for an arc at infinity
(if C were everywhere equipotential F;(p) could only be constant). Thus
the contour is not closed in the finite part of the plane, but is supposed to
be closed through an arc at infinity so chosen that the charges on this arc
will not produce any appreciable effect in the finite part of the plane.
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For the cable function we introduce polar coordinates, = pe’, in the
p-plane, so that
F'(p) - kplg'ﬂ efp.&,
V‘I(P) = kpln'E cos %‘P: ‘III(P) = kp”? sin %W;
and it is easy to see that the equipotentials are parabolas in the p-plane, as
illustrated in Fig. 22a. Along the equipotential V; = k+/a the stream

function is
V(p) = £ kvp —a

where the positive sign refers to that part of the parabola which lies above
the real p-axis and the negative sign to the part below the real p-axis. The
closure of the contour at infinity is shown in Fig. 22h.

Fig. 22—The cable transmission function K +/5; (a) equipotential contours are parab-
olas, (b) contour closed at infinity through a circular arc.

If charge is placed on the equipotential in such a way that ¥,/2r repre-
sents the integrated charge density, then the correct potential and stream
function will be produced everywhere to the right of the contour and the
potential to the left of the contour will be the constant £#4/a. To keep the
contour from crossing the Im p-axis we must take ¢ = 0. Then the parabola
degenerates into the negative real p-axis and charge is distributed with inte-
grated density function

Qp) = —g\/g

on the axis.
The lumped charge approximation consists of placing zeros at points
pn = —pn where Q(pn) = n —3%;i.e. zeros are to be placed at

2
bn = -(n—%)z%, n=123-.
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The gain and phase for this infinite array of zeros are obtained from the
function

» k2
os TL[ 1+ -2

log cos (ikp'"®)

Il

=kp'" Flog (1 + ¢ —2%01%y | const.

Thus the correct function kp!/? is obtained modified by a term of the order
!t representing ‘‘granularity error”.
The solution as it stands is impractical for three reasons:
(i) an infinite number of singularities are used.
(i) the singularities are all zeros so that one cannot satisfy the physical
realizability requirements.
(iii) the granularity error becomes appreciable at low frequencies.

Objections (ii) and (iii) may be avoided by choosing two numbers ki,
ko such that # = ks — ki and making lumped charge apprommatlons for
kap!? and kip? separately. That is, we put zeros at —(n — 125/ ks and
poles at — (n — 3)?/k.%. By choosing ki and ks large enough we obtain a
very fine-grained approximation to the ideal (continuous) charge distribu-
tion and can make the frequency at which granularity effects become bother-
some as low as desired. Moreover since poles as well as zeros are used, we are
now in a better position to satisfy the physical realizability requirements.
When designing the network in this way it is convenient to make kao/ky a
rational number with numerator and denominator as small as possible. If
the numerator and denominator are g» and ¢, then every zero p, , for which
2% — 1 is a multiple of g2, is cancelled by a pole which falls at the same
place.

The most obvious way to remedy defect (i) is to use just the first V zeros
and the first V poles, picking V large enough so that the infinite set of zeros
and poles which are being ignored produce only a negligible effect in the
frequency band of interest |w | < 1. To get an idea of how large N must
be, we evaluate the integral

= klog (1 + p/7)
o=l T

which represents the gain and phase contributed by all the charge from
p = —R to p = —= in the continuous distribution. The substitution
r = a2 transforms the integral into an easily handled form and we find

f(p) = — [\/—log(l-l— )—2\/ptan \/5/765],

so that f(p) is about & p/m+/R when | R/p | is large.
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In practice we soon find that we must use an unnecessarily large number .V
of zeros and poles to get good accuracy from the simple trick just described.
A better plan is to keep just those zeros and poles which lie within some more
moderate distance from the origin, say R = 2. Then the remaining gain and
phase f(p) must be approximated by other means. This offers no special
difficulty; the disagreeable p'* type singularity at the origin has already been
produced, leaving f(p) a relatively slowly varying function over the band
|w| < 1. One way of approximating f(p) by the log of a rational function
with the desired number of zeros and poles is first to find a polynomial
approximation to ¢/ and then pick the rational function which has the
same first few terms in its power series as the polynomial. In the design
carried out at BTL the polynomial approximation was performed by a
method using Tchebycheff polynomials. This method will be the subject of
a later paper. For purposes of illustration we may equally well imagine f(p)
to be produced by placing charge on an elliptic contour surrounding the
interval |w| < 1.

The following numerical example will give the reader some idea of how well
the method works in actual practice. The cable had a loss of 5.368 nepers
(46 db) at @ = 1 and it was required that the cable be equalized to within
005 db from w = .02 to w = 1. Using zeros only on the negative real axis,
the granularity error would have been much too high. Sufficiently low
granularity error was obtained by putting poles at

p = —.0068498 (2n — 1)*
and zeros at

p = —.0034948 (21 — 1)".

This choice of position of zeros and poles makes every seventh zero cancel
every fifth pole. In the final design only 6 of these zeros and 6 of the poles
were used. The remaining gain and phase were produced, to the desired
accuracy, by a pair of real poles at p = —1.5 and four pairs of conjugate
complex poles lying close to an elliptic contour about the frequency band
of interest.

ExampLE 3. DELAY EQUALIZER

A problem of frequent occurrence is that of “delay equalizing” a given
network with known singularities. From the potential analogue point of
view the problem is, given the location and sign of certain lumped charges,
to find a distribution Qy(s) of charge on a contour C which produces no other
effect on the real frequency axis in the range of interest but to cancel the
transverse component of the electric field of the given charges. The distribu-
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tion of charge Qi(s) as it stands gives rise to non-physical networks with
poles in the right half-plane. However it is possible to add to Q1(s) a dis-
tribution of charge producing a high enough uniform cross-axis field (flat
delay) so that the total charge distribution Q(s) yields physical networks.

For the time being consider just the equalization of one singularity. If
we solve this simple problem the Q,(s) for the general case of any number of
singularities can be obtained by adding up the charge distributions for the
individual singularities. For the sake of concreteness imagine the singularity
to be a unit positive charge at po = —a + b in the left hand p-plane. What
is needed is a distribution gi(s) of charge on C which produces inside the
contour the complex potential

—110 i
2%+

corresponding to a charge —} at po and a charge +3 at — o . By the phase
invariant transformation, these two charges give the same field across the
w-axis as a unit negative charge at po , while along the axis their fields cancel.
Note that we have reversed the sign of the charge at po . This is because the
shielding distribution on C due to any set of exterior charges must be such
that its potential inside C exactly cancels the potential of the charges, that
is, it matches the potential that would be obtained if the signs of all charges
were reversed.

Now the complex potential of a point charge Q) at — po , outsideC, is (p) =
—Q log (p — po). When this is mapped on the w-plane by a transformation
p = T'(w) which maps C on the unit circle C; the transformed function may
be separated into two parts, analytic respectively inside and outside C1,

w

Faw) = —Qlog o — w),  Fu(w) = —Q log 0= L),

w —
where 7y is the w-plane mapping of po, defined by po = T'(wy), and wp is
outside C; . We have seen that the mapping of the charge distribution ¢(p)
on C into the charge distribution ¢’(w) on Cy is determined by Fu(w), and in
the present case Fo(w) represents the complex potential of a point charge Q
located at 1, . It follows that the required shielding distribution on C in the
presence of exterior charges maps into the shielding distribution on C; in
the presence of the mappings exferior to C of the exterior p-plane charges.

Thus in the w-plane our equalization problem is to determine the shielding
distribution on C; due to a charge 3% at w, and a charge —3% at W, , where
—pa = T(my). Since we are considering only one singularity in the p-plane,
and ignoring the physical requirement of an equal singularity at the con-
jugate complex point, we cannot apply the simple form of the inversion
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theorem to F,(w) directly. We could modify the theorem without difficulty
but we may also solve the problem by using the well-known electrostatic
method of images.} The complex potential for the required shielding dis-
tribution is

1 W — Wy 1 w— W

/ - == =
Wiw) = 210g T - 2lt;)g 1
e B

and the shielding charge distribution is obtained by evaluating the imaginary
part of W', If the contour C is symmetric with respect to the real frequency
axis, symmetry considerations in the w-plane will show that @ = —wy
then the charge distribution may be written in the explicit form

_ 1 ‘ -1 A(R2 - 1)
a(0) = 5 tan |:B(R‘3 +1) = 2R sin ‘J’

where wy = —A 4 ¢B and R* = A* + B This (integrated) charge distri-
bution, when mapped back on the original p-plane contour C, becomes the
shielding distribution g,(s) sought. If the singularity were a zero instead of a
pole, ¢: would be given by the same expression with a factor —1.

The procedure for delay equalizing a group of singularities can be out-
lined as follows:
(1) Find a conformal mapping of the outside of C on the outside of the

unit circle.

(2) Compute

Ql = Z‘_:gll

as a function of 8. Here the sum runs over all the given singularities and

qui is the distribution which equalizes the i-th singularity (computed

from an expression like that for ¢; given above).
(3) Since () puts some poles in the right half-plane, compute

Q= 01— Dsin,

choosing the constant D large enough to make all the poles of the distribution
Q lie in the left half-plane. The only effect of the distribution D sin @ is to
add flat delay.
(4) Approximate Q0 by a function with unit steps, say at 61, 62, - -, Oy .
(5) Map the singularities found in (4) on the p-plane to obtain the equalizer

singularities.

Tigures 23, 24, and 25 illustrate a delay equalizer design taken from

actual practice. Figure 23a shows the p-plane locations of the singularities

t L. Page, Introduction to Theoretical Physics, D. Van Nostrand and Co., New York,
1935, p. 404.
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(all poles) of a high-pass filter.T The contour C is shown surrounding the
band of interest. There are really two contours, one surrounding a band of
positive frequencies and another surrounding a band of negative frequencies.
To obtain an exact solution for the charge distribution using two contours
would be very troublesome. Fortunately the two contours are far enough

a.5
FILTER
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3.0 \
t — |
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U,
2.5 EQ
//
1.5
8 1o \
z
9 \
% 0.5 \\
g [ FILTER
= 0 T
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\ 4
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3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
FREQUENCY IN MEGACYCLES PER SECOND

Fig. 25—Curves showing phase delay of filter, equalizer and their combination.

apart so that the charges on one produce only small effects inside the other.
The charge distribution on the upper contour was found by replacing the
lower contour charges by a single large pair of positive and negative charges.

The delay to be produced by the equalizer varies slowly across the band

1 The zeros (not shown) of the filter are on the imaginary axis below the pass band.
They are ignored because they contribute no delay.



364 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1951

except near the low-frequency end. In view of the success of the condenser
plate contour for producing flat delay, it was felt that C should be chosen
to be nearly rectangular. An actual rectangle could have been used for C,
but the mapping to a circle involves unwieldy expressions containing elliptic
functions. The contour shown was used instead because it is nearly rectangu-
lar and because it has a simple mapping function

p =610 4 17750 — 105 _ 02

(here p is expressed directly in megacycles). This contour was obtained by
plotting a few of the contours for different numerical values of the constants
in the above mapping function. The w-plane images of the singularities and
of the lower contour are shown in Fig. 23b.

The charge Q as a function of 8 is shown in Fig. 24 together with the
step function approximation. Figure 25 shows the delay produced by the
filter and equalizer together.
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