Transverse Fields in Traveling-Wave Tubes

By J. R. PIERCE

Traveling-wave tubes will have gain even if the r-{ field at the mean position
of the electron stream is purely transverse. The addition of a longitudinal mag-
netic focusing field reduces the gain due to transverse fields and increases the
electron velocity for optimum gain.

LL slow electromagnetic waves have both longitudinal and transverse
electric field components. Sometimes either the longitudinal or the
transverse field may go to zero along a line or plane parallel to the direction
of propagation. For instance, for the slow mode of propagation there is no
transverse field on the axis of a helically-conducting sheet. Still, over any
plane normal to the direction of propagation there are bound to be both
longitudinal and transverse field components.

If a very strong longitudinal magnetic field is used in connection with a
traveling-wave tube, the transverse motions of electrons may be so restricted
as to be of little importance. With weak focusing fields, however, the trans-
verse motion of electrons may be important in producing gain. The trans-
verse fields can force the electrons sidewise, and thus change the
longitudinal fields acting on them in such a way as to abstract energy from
the electron stream.! This is closely analagous to the action of the longi-
tudinal fields in displacing electrons forward or backward into regions of
greater or lesser longitudinal field.

The purpose of this paper is to analyze the behavior of traveling-wave
tubes in which transverse fields are important. The attack will be similar
to that used previously.

1. Circurr THEORY

In this paper we shall consider only the electric field associated with the
slow mode of propagation along the circuit having a speed close to the elec-
tron speed, and we shall neglect other field components attributable to local
space charge. The writer believes the results so obtained to be valid at low
currents but in error at high currents, and an acceptable guide at currents
usually encountered.

In an earlier paper® a relation was found between the longitudinal field E.
excited in a mode of propagation of a transmission system and the longitud-

! See, for instance, J. R. Pierce and W. G. Shepherd, “Reflex Oscillators,” B. S. T. J.,
Vol. 26, No. 3, pp. 666-670 (July, 1947).

2 J. R. Pierce, “Theory of the Beam-Type Traveling-Wave Tube,” Proc. I. R. E., Vol.
35, pp. 111-123, Feb. 1947.
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inal exciting current g. Both E;and g vary as (exp jw!) (exp — I'z). The
relation is

Ty
B =qyxm _ 13 (1)

Here Iy is the propagation constant of the transmission mode considered and
is defined in such a sense that for unattenuated propagation, I'y = jBy where
fo is a positive number. The quantity ¥, is defined as

2P
Yo = EE (2)

Here P is complex power transmitted by the mode and E; is the field asso-
ciated with the mode.

In generalizing (1), let us consider the combination of equations (1) and
2
P = LB (3)

R L s
Now, suppose there is motion of the electrons not only in the z direction but
in a direction normal to the z direction, which we will call the y direction.
We shall have two extra first-order terms of the same general nature as
qu, which contribute to the power, giving
D r

= é_ BaEyz + qu:) Iﬁgﬁ (4)
Here g. is the a-c convection current in the z direction, —1I, is the d-c con-
vection current in the z direction (assumed to be the only d-c convection
current), ¥ is a small displacement, ¢, is the convection current in the y
direction and E, is the field in the y direction.

We will now specialize this expression. Suppose we consider a two-dimen-
sional transverse magnetic wave propagating in the z direction with a phase
velocity v such that v* << ¢ Then over a restricted region the electric

field can be represented quite accurately as the gradient of a scaler potential
of

P*

(quf + (—=To)y

V = exp (—Tz)(4 exp (jTy) + B exp (—jTy)). (5)
Here A and B are constants. Using our notation, in which the field is
understood to include the factor exp (—I'z), we obtain

E. =T (4 exp (jTy) + B exp (—jTy)) (6)
% = jT%(A exp (jTy) — Bexp (—il'y)) (7)

E, = —jT(4 exp (jT'y) — Bexp (—jT'y)). (8)
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In other words

0L, _

—TE,. 9
= : ©

This relation will also be approximately correct remote from the axis in an
axially symmetrical tube. Here we let v represent a displacement in the r -
direction.

We may also define a quantity « so that

E, = jaF, (10)

Y — (A4 exp (jT'y) — Bexp (—jTy)) (11)
Ayexp (jTy) + Bexp (—jTy)
For an active mode, such as the one we consider, the chief component of
4I' is a positive real number. Hence, for large positive values of vy, the
quantity e approaches a value

a=1, (12)
This is characteristic of a plane symmetrical field far from the axis and also

of an axially symmetrical field far from the axis.
Using (9) and (12) we rewrite (4)

P* = 1ESg. — jo*(T*Lyy + g,)] (13)
We see from this that, according to our assumptions, for the mode considered,
I'y

E. = (g — jo*(T'* Iy + ¢,)) (14)

Yo (I* — T0)
We will henceforward assume that @ and ¢ are so nearly real that we can

regard them as real quantities, giving

L

%(T* — T4)

This is, then, the circu’t equation which we will use.

Ez = [Q= - ja(r* Iﬂy + (;y)} (15)

2. ELEcTrONICS EQUATIONS

We will assume an unperturbed motion of velocity #, in the = direction,
parallel to a uniform magnetic field of strength B. Products of a-c quantities
will be neglected.

In the x direction, perpendicular to the y and z direction

ds

di
Assume that £ = Oaty = (0. Then

&= —qBy. (17)

= —qBy. (16)
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In the y direction we have

= n(Bi — jaE.)
dt
Now
dy _ay , dyds
a "o Tad
dy . .
= -T
dl (73 )y
_ L
TS

We obtain from (20) and (18), and (17)

(8 — T)% = —wBly —

Uy

Bo = —.

Uy

We may note that B is the electron cyclotron frequency. Now,

T ez dl

V= u(j8 — Ty

From (24) and (22) we obtain

_ —jnek.
uil(j8 — T)° + Bil
—jna(j8 — 1)E;
Hn[(]ﬁ - F) + 6[}1

We will have for g,
)'
iy
_ J"’IaIu(j.d - I)E
W= adlGe — T + 8l

gy = —lo =

It is easily shown that

nk,

fTus - 1)

ek

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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If po is the d-c linear charge density and p the a-c linear charge density

N (]
Po = “o. (30)
If g, is the z component of convention current, we have
gz = poz + uop
3 (31)
= L -+ g p.
Uy
We also have
e _ %
az  at (32)
I'g. = jwp.
From (31) and (32) we obtain
—jB1sz2
? = o—— . 33
LT -D (33)
Thus
j'nveIl] E,
e = B, i 34
* = ui(jg — 1) (34)
3. ComBINED EquaTtIioN
Combining (34), (28) and (25) with (15), we obtain
_oaly Ty [ B eXI* — (B — P))} (35)
o Yo(T* = T0) L (8 — 15~ (B — 1) + 3]
We now introduce new parameters
.1 _ EE:
E " pn " wr w0
3 KI
©= (m)' (37)

Here Py is the power transmitted by the circuit for a field strength E,. K
has the dimensions of impedance. V), is the voltage specifying the electron
velocity #o

ug = V. (38)

From (36)-(38) and (35) we see

282C*T, [ B eIt - (j8 - r))]
I -r)lGs-1r [(B-=Tr+4 ]

1 = (39)
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We now make the approximation that

—I'=—j8+34. (40)
Where | 6| << | 8|. Neglecting higher order terms,
" —Ty . .aa|l ot
T 2;8°C & + & gl (41)

4, PureLY TRANSVERSE FIELD ALONG THE PATH

We can imagine a case in which @ approaches infinity and the quantity

s 2o EE; T
D' =dC = —6% #ﬂ (42)
remains finite. In this case we have
T —TG _ 2;',331): (43)
Ty 8% + 6o
We will let
=Ty = —j8 — j8Db — BDd. (44)

Here b is a parameter describing the difference in speed between the electrons
and the unperturbed wave and d is a loss parameter.

Assuming bD < 1and dD < 1,and letting 8D(x + jy) = 9, (45)
we find
(@ =3+ )+ ) + 20y + ) = 1 (46)
(3 — 2+ /D) (x+ d) — 2uy(y +0) =0 (47)
where
f“" — ﬁ (48)
152 D2’

If would be difficult to work with all of the parameters b, f and d. How-
ever, it scarcely seems that the attenuation parameter d should enter into
any unusual phenomena due to the presence of the magnetic field. Accord-
ingly, let us investigate (46) and (47) for d = 0. We then obtain

BBy + )+ (=) (y+ b =—1 (46a)
ala + (2 — %) — 29(y + 8)] = 0. (47a)
From the # = 0 solution of (47a) we obtain
x=0 (49)
b= = (50)

32 — f2
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If is found that this solution obtains for large and small values of b. For
very large and very small values of b, either y = —b (51) or y = =+ f (52)
The wave given by (50) is a circuil wave; that given by (51) represents the
travel down the tube of electrons oscillating in the magnetic field with cyclo-
tron frequency.
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Tig. 1—Plot of parameters giving velocity and attenuation of the three forward waves
vs. ¢ parameter b proportional to electron speed with respect to the undisturbed wave.
A positive value of x means an increasing wave; a positive value of ¥ means a wave travel-
ing faster than the electrons. This plot is for f2 = 0 (no magnetic field).

In an intermediate range of 4, we have from (47a)

v=£V2y + 8 - (F =5 (33)

and
b= —2y=+ /2 — 1/2y. (54)

For a given value of f* we can assume values of ¥ and obtain values of &.
Then, x can be obtained from (52) or (53). In Figs. 1-6, x and y are plotted
vs.bforf*=0,.5,1,2,4and 10. Itshould be noted that x; , the parameter
expressing the rate of increase of the increasing wave, has a maximum at
larger values of & as f is increased (as the magnetic focusing field is increased).
Thus, for higher magnetic focusing fields the electrons must be shot into the
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Fig. 2—Propagation parameters for f* = 0.5.
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Tig. 7—Parameter x giving rate of increase of increasing wave vs. f, which is propor-
tional to magnetic field strength,

circuit faster to get optimum results than for low fields. In Fig. 7, the max-
imum positive value of x is plotted vs. f. The plot serves to illustrate the
effect on gain of increasing the magnetic field.
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Let us consider an example. Suppose
A=75cm
D = .03

These values are chosen because there is a longitudinal field tube which oper-
ates at 7.5 cm with a value of C (which corresponds to D) of about .03. The
table below shows the ratio of the maximum value of x; to the maximum
value of x; for no magnetic field.

Magnetic Field in Gauss J x1/x10
0 0 1

50 1.17 .71

100 2.34 .50

A field of 50 to 100 gauss should be sufficient to give useful focusing action.
Thus, it may be desirable to use magnetic focusing fields in deflection travel-
ing wave tubes. This will be more especially true in low-voltage tubes, for
which D may be expected to be higher than .03.

5. Mixep FIELDS

In tubes designed for use with longitudinal fields, the transverse fields far
off the axis approach in strength the longitudinal fields. The same is true
of transverse field tubes far off the axis. Thus, it is of interest to consider
equation (41) for cases in which « is neither very small nor very large, but
rather is of the order of unity.

If the magnetic field is very intense so that g is large, then the term con-
taining o, which represents the effect of transverse fields, will be very small
and the tube will behave much as if the transverse fields were absent.

Consideration of both terms presents considerable difficulty as (41) leads
to 5 waves (5 values of 8) instead of 3. The writer has attacked the problem
only for the special case of 8 = d = (. In this case we obtain from (41)

1 v
5 = —ig'C’ [; + 52_3‘?3] (55)

In work which is given as an appendix, Dr. L. A. MacColl has shown that
the two ‘“new” waves (waves introduced when o = 0) are unattenuated and
thus unimportant and uninteresting (unless, as an off-chance, they have
some drastic effect in fitting the houndary conditions).

Proceeding from this information, we will find the change in é as B4 is in-
creased from zero. From (51) we obtain

(56)

_ 25 2a'sds 20’ dgs ]

0= -0 - VG Ry
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Now, if 8y = 0
63
—igct = 2 -
8 o) (57)
Using this in connection with (36) for 8y = 0 we obtain
2 2
ds = —3‘;- dgi. (58)
For the increasing wave
8, = B(.866 — 7.5). (59)
Hence, for this wave
By

déy = 2(—.866 + 7.5) (60)

ik
This shows that applying a small magnetic field tends to decrease the gain.
This does not mean, however, that the gain with a longitudinal and a trans-
verse field and a magnetic field is less than the gain with the longitudinal
field alone. To see this, we can assume that not 8, but o? is small. Differ-
entiating (55) we obtain

| —2dé 2a%5db do®
dé = —jp°'C I:Tg - (524_-,33)2 - (62 _}_ﬁg):l (61)
Ifae =
_jﬁlicﬂ — 63 (62)
1 6% da®
ds = 3+ 6D (63)

If Bi is zero, a small transverse field (small increase in o®) increases the magni-
tude of 8 without changing the phase angle. If 8o >> |6, then
—jg'Cc

2T da

B3
and the change in 4 is purely imaginary. For the increasing wave, the change
in & as a transverse field is added will range from an increase in the real part
for small magnetic fields to no change in the real part for large magnetic
fields.

s = (64)

APPENDIX
Stupy oF THE ALGEBRAIC EqQuaTiON
2| 1 o
6 = —""‘C*‘[ --ﬁ] (1A
Jb e T L B 14)

53(8% + ﬁﬁ} + jB:«(_js(az + 183 4+ a%?) =0
8 + B3° + JBC1 + a8 + JBIFC = 0
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Write

(3A)

\._/'Cﬁ[cn

@
(Y o=

B+ 2tie+ b+ ja=0 (4A)

a is assumed to be positive, and & is assumed to be real and non-negative.
For b = 0 we have

Then

(Za Ji‘ ja) (22 + 1) = (SA)
g =3, —j7, ja ja”a 2rj/3 ja”a girifs (6A)
We have
52" + 3% + 2j(a + DA 32 + st =0
az — "72
b = = (7A)

0b 530+ 322 4 2j(a + b)z

From this we draw the following conclusion. Suppose that for a certain
value of & the five roots are distinct, and that among them there is a purely
imaginary root. Then as & varies, in the neighborhood of its initial value,
that root remains purely imaginary.

In particular, consider b as increasing from the initial value 0. As long
as the five roots remain distinct, there are exactly three purely imaginary

roots.
In order to have a real root 5 = x, we would have to have simultaneously

2 4 af =
(a+bx2+a=0 (8A)

This is impossible (with ¢ > 0). Hence there is never a real root.

In particular, as & increases from 0, no root can cross the real axis. Hence,
as b increases from 0, as long as the roots remain distinct, there are two
purely imaginary roots above the real axis, one purely imaginary root below
the real axis, and two complex roots below the real axis.
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Since there is no term in z* in the equation, the sum of all the roots is 0.
Hence the two complex roots must be located symmetrically with respect to
the imaginary axis.

First order variations of the roots with & can be calculated at once hy
means of the equation

as —js
ab 52+ 322 + 2j(a + b)z (94)

In principle, higher-order variations can be calculated by carrying the
differentiation to higher orders. However, the formulae get wonderfully
complicated.

A very practical way of solving the equation is the following:

The three imaginary roots can be found by plotting a curve. If we let
z = jy, (4A) becomes

Y-yt @atb)y—a=0 (10A)

For the imaginary roots y is real and we have merely to plot the left-hand
side of (10A) vs. y to find the roots. Denote them by z , 22, 23 , which are
now regarded as known numbers. These roots satisfy the equation

(z— )z — 2@ —5) =3° — (5 + 2+ 22 + (G132 + 2125 + 203)2
— 1%y = 53 + CEIZE + 9l + a3 = 0 {IIA)

o

The two complex roots satisfy some equation
24Pzt B =0 (12A)

The §’s are at present unknown. When we find them we can at once calcu-
late the complex roots. We must have

(3% + aus® + aws + ag) (3 + Bz + B2) =22+ 22+ jla + b)z + ja  (13A)
Comparing the coefficients of z* and 5", we get the equations |

ar+ =10

azfe = ja (14A)

which give us the 3’s.

Suppose that the magnetic field is very small, so that 3y <<B. Then
unless « is very small, both @ and & in (10A) will be very large numbers, and
we find that two of the imaginary roots are given approximately by

a 1/2
y = =% (a T b) (154)
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As 8y — 0 the other three roots are given by
5 = [—jla + B)"" (16A)

These three roots correspond to the waves found for traveling-wave tubes
with a purely longitudinal field. The roots according to (15A) represent
such a combination of deflection and bunching as to produce no induced
current in the circuit. The roots of (15A) are “extra’ roots attributable to
the consideration of transverse fields and transverse electron motion.

For the roots given by (15A), 8/8 — 0 as 8y — 0. Thus in this case it is
convenient to form the solution of two parts, one varying as

¢ % sin (a_a—l[:i" b) 5

iz 3 U?BL =
€ CO3 (a + b) 5

As By — 0, the first of these approaches the form

and the other varying as

e %
and the cecond approaches the form
e*.r'ﬁ:

Again, these “extra” waves produce no induced current in the circuit.
Two additional pieces of information:
As a — 0, b a remaining fixed, the roots approach the limiting values

0,0, 0»]‘1 _]

As @ — =, ba remaining fixed, two of the roots approach the limiting values
./ e
i 4/ o 5
the other roots behave as

ia + B a + 57, ja + )

Much of the preceding discussion depends upon the roots remaining distinct.
The condition that two or more of the roots coincide, which is a relation
between @ and b, can be written out, but it has not as yet been reduced to a
compact and intelligible form.



