Maximally-flat Filters in Waveguide

By W. W. MUMFORD

Microwave radio relay repeaters require the use of band-pass filters which
match closely the impedances of the interconnecting transmission lines and which
suppress adjacent channels adequately. A type of structure called a Maximally-
Flat filter meets these requirements.

The ladder network which gives a maximally-flat insertion loss characteristic
is discussed and several methods of achieving its counterpart in microwave trans-
mission lines are presented. Resonant cavities are used to simulate tuned circuits
and the necessary formulas relative to this approximate equivalence are given.

Experimental data confirm the theory and show that this technique yields
remarkable impedance matches.

INTRODUCTION

E USUALLY associated the word filter with any device which is selec-
tive. The electric wave filter has that property which enables it to
transmit energy in one band or bands of frequencies and to inhibit energy in
other bands. Selectivity is the result of either selective absorption!:**
or selective reflection. This paper discusses a special case of the classical
lossless transducer which derives its selective properties entirely from selec-
tive reflection. The insertion loss of this type of filter can be analyzed in
terms of the input reflection coefficient and the input standing wave ratio.
In many applications of lossless filters it is desirable to obtain a character-
istic such that the insertion loss, and hence the reflection coefficient, is small
over as wide a band as possible. A special case described here, referred to
as a maximally-flat filter, has a loss characteristic such that a maximum
number of its derivatives are zero at midband. While the maximally-flat
type of characteristic does not give the smallest possible reflections over a
finite pass band, it does give small reflections, and has added advantages of
simplicity in design and in many cases less transient distortion than filters
giving smaller reflections.

The desirable characteristics of maximally-flat filters have long been
realized.”»3 Mr. W. R. Bennett* of these Laboratories derived the con-
stants for a maximally-flat ladder network in the late 20’s, and gave simple
expressions for the element values. Butterworth,® Landon® and Wallman’
have treated maximally-flat filter-amplifiers in which the filter sections are
separated by amplifier tubes. Darlington® has considered the general case
of four terminal filters which have insertion loss characteristics that can be
prescribed, but he places the emphasis more on filters that have tolerable

* A list of selected references appears at the end of the paper.
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ripples in the pass-band than on maximally-flat structures. The work of
Bennett will be followed closely not only because it came first, but also be-
cause it is easy to understand.

Bennett expresses the values of the filter branches in terms of their cutoff
frequencies, which in turn bear a relationship to the cutoff frequencies of the
total filter. In the language of one who is familiar with microwave tech-
nique,?s 1%+ 1122 the values of the filter branches can he expressed in terms of
the loaded Q’s of the cavities, which in turn bear a relationship to the loaded
Q of the total filter. A simple mathematical expression connects the loaded
(Q to the cutoff wavelengths.

At low frequencies the band-pass maximally-flat filter is made up of
resonant branches connected alternately in series and in parallel. The
microwave analogue of this configuration is obtained by the use of shunt
resonant cavities that are spaced approximately a quarter wavelength apart
in the waveguide. Use is made of the impedance inverting property of a
quarter wave line, thereby eliminating the necessity of using both series and
parallel branches.

The resonant cavity in the waveguide resembles a shunt resonant tuned
circuit,”® but is different in several minor respects. An analysis of these
differences reveals the corrective measures that are necessary in order that
the simulation shall be sufficiently accurately attained.

The first part of the paper deals with the concepts of loaded Q and reso-
nant filter branches of both the series and the parallel types. Admittance
and impedance functions, as well as expressions for the insertion loss, are
given using these terms, and the relationship between loaded () and cutoff
frequencies is stated. This concept of loaded Q is then introduced to de-
scribe the performance of a complete maximally-flat filter in terms of its
cutoff frequencies. The insertion loss is then given as a simple expression
containing the total Q and the resonant frequency. The Q’s of all the
branches are derived from the total Q in simple terms. The connection be-
tween the insertion loss and the input standing wave ratio is then discussed
before turning to the actual design problem.

Next the paper deals with the application of the filter theory to wave-
guide technique. The limitations of the quarter-wave coupling lines are
pointed out and the added selectivity due to them is derived.

Then the paper compares microwave resonant cavities with parallel-
tuned circuits. Formulas are given which relate the geometrical configura-
tion to the loaded (), the resonant frequency and the excess phase of the
cavities. Three types of cavities are treated: those using inductive posts,
inductive irises and capacitive irises.

Finally, the measured results on a four-cavity maximally-flat filter in 1” X
2” waveguide are presented and compared with the original design points.
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As a further confirmation of the theory, the experimental results on another
and longer waveguide filter consisting of fifteen resonant cavities and four-
teen connecting lines are given. The conclusion is reached that-maximally-
flat waveguide filters can be designed to have excellent impedance match
and off-band suppression qualities.

NoTaTION

a Width of waveguide.
b Height of waveguide.
B Normalized susceptance.
¢ Velocity of light in free space.
C,  Capacitance in the ™ branch of a filter.
d Width of iris opening.
d Diameter of post in waveguide.
b A small number <« 1.
€ Base of natural logarithms.
f Frequency.
fo Resonant frequency.
fe Frequency at half power point.
Sew Cutoff frequency of waveguide.
G Terminating conductance of filter.

2rt
Y
K Susceptance parameter.
4 Length of transmission line.
' Length of line corresponding to excess phase of cavity.
(. Length of line connecting two cavities.
Ao Resonant wavelength.
Ac Wavelength at half power point.
Ay Wavelength in transmission -line.
Aa Wavelength in free space.
L, Inductance in *® branch of a filter.
m An integer, including zero.
n Number of branches in filter.

Py Available power.

P, Power delivered to load.

Q Loaded . The selectivity of a loaded circuit.
Q.  Loaded Q of the r™ branch.

Qr Loaded Q of the total filter.

R Terminating resistance of the filter.

s Distance from center of waveguide.

) Voltage standing wave ratio.

)



MAXIMALLY-FLAT FILTERS IN WAVEGUIDE 687

Thickness of iris.

T
Vmer Maximum voltage on transmission line.
Vmin Minimum voltage on transmission line.
w Angular frequency.
Q Frequency parameter.
v Admittance.
¥ Surge admittance of transmission line.
Z Impedance.
Zo Surge impedance of transmission line.
1
Y2 Y4 Yn-1
| [ [ .

THE Y'S ARE USED TO DENOTE
GENERALIZED ADMITTANCE FUNCTIONS

Fig. 1—Block diagram of a filter consisting of a ladder network.
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Fig. 2—Schematic diagram of a low-pass filter,

GENERAL

The art of designing filters which utilize lumped elements is well known,
Desirable characteristics may be obtained by means of a ladder network of
generalized admittances, such as is illustrated in Fig. 1. In particular a
low-pass filter takes the configuration shown in Fig. 2, and a band-pass filter
that of Fig. 3. In either case, certain frequency selectivity characteristics
can be obtained when the individual branches are assigned definite values.
The individual branches, £,y , /.Cs, in the bandpass filter consist of an
inductance, L, , and capacity, C,, in series or shunt. For the specific case
to be discussed in this paper, namely a filter consisting of lossless elements
intended for insertion between a source having an internal resistance R
and a receiver having the same resistance, analysis is simplified if a branch
is described in terms of its resonant frequency and its loaded Q.* The

* The loaded Q of a resonant branch in such a filter is the reciprocal of its percentage

band width measured to the half power points when that branch alone is fed by the same
generator and has the same load resistance as that of the total filter.
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resonant frequency of a branch is independent of the terminal resistance and
is given by the relation
1
= VLG,

The loaded Q of the branch, to be designated Q, , is a function not only of the
inductance and capacitance in the branch, but also of the resistance, R, of
the terminations on the filter. For the series resonant branches, it is given

by

(1)

1 L, wl,

and for the parallel resonant branches

Qr=* r= er. (3)

~C4 Ln-

IYig. 3—Schematic diagram of a band-pass filter.

It may be noted that the loaded Q can be defined in terms of the insertion
loss imposed by connecting the branch between a source and receiver each
of resistance R. Analysis of such a circuit shows that

ﬂ:l-kQ‘i({—.u—j}—")g | @

where f is the frequency;
P, is the power available from a generator which has an internal

resistance R; .
P, is the power delivered through the inserted branch to a load of

resistance R.
At the cutoff frequency, f., defined as the frequency at which the power

delivered to the load is half the available power, ITD = 2, whence
L

|||
=l A T e — e
o fe

(5)
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Written in terms of the wavelengths this becomes

1
A
Q- = 1—01— (6)

Ao A

This equation is a convenient one to use later in the discussion on resonant
cavities.

The normalized admittance of a single-shunt branch terminated by a re-
sistance R can be expressed in terms of its resonant frequency and its Q;
thus

VYR =1 +J'2Q,(JTr -—{") (N
Jo ]

Similarly, the normalized impedance of a single-series branch terminated

by a resistance R can be written

Z . f_h
Z=1+0.(L-2). ®)

The use of the term loaded Q thus has the advantage that expressions for
normalized admittance and normalized impedance of shunt and series reso-
nant circuits respectively are identical, as are also the corresponding expres-
sions for their insertion loss functions.

Loss functions of complete filters can likewise be expressed in terms of a
loaded Q defined for the complete filter. For example, the loss function of
the particular type of filter called a “Maximally-flat” filter is given®

i _ ‘ﬁ) 2n

Py f" f

JlTL:I‘l‘ _T;c__ﬁl (())
oo [

where » is the number of resonant branches in the filter, and f, is the cutoff
frequency of the filter (half power points).

In consequence of the concept of loaded Q of the total filter, the loss
function can be expressed as

oGl

where the total Q; of the filter is

0r =
LAy

ifo fc

(11)
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For convenience, the bra.cket'ed term of equation 9 may be called @, a
frequency parameter, whence

I _f
o :Q.(i_@) (12)
fo_fo| TNb T
fO fc
‘and the loss function becomes
Pﬂ _ 2n
7= 14+ @™ (13)
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Fig. 4—Insertion loss of maximally-flat filters.

MaxmvarLy-Frat FILTERS

The loss function for maximally-flat filters as given in equation 13 is
plotted in Fig. 4 where the insertion loss in db is used on the ordinate and
Q" is used on the abscissa.

The ladder network which gives rise to this loss function consists of #
resonant branches, as shown in Fig. 3, that are all tuned to the same fre-
quency, but whose selectivities, or loaded (s, are tapered from one end of
the filter to the other according to the positive imaginary parts of the 2n
roots of —1, according to the theories of Bennett! and Darlington.® These

roots are expressed thus
in 2r—1
2n T
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where 7 is the number of the root, » is the total number of branches. Thus
the selectivities of the branches follow the relation

0, = Oy sin (Z_r_--_l) T (14)
2n

where (0, represents the selectivity of the total filter, and Q, represents the
required selectivity of the " branch, e.g., the selectivities of the first, second
and third branches are

N
= sin —
O Or 2n

Q2 = Qrsin 3T (15)
2n

. 5w
= sin —.
Qs Or 2n

This type of filter is particularly practical when a filter is required to give
more than a certain amount of insertion loss in an adjacent band, and less
than another certain amount of insertion loss at the edges of the pass-band.
Putting this information in equation 10 gives two equations containing two
unknowns, Qr, the selectivity of the total filtef, and #, the number of
branches needed to fulfill the stated requirements. The solution for n
may be fractional, in which event the next higher integral value of » is
chosen, and this value is used to determine the selectivity, Qr, of the filter.
From this, the selectivities of all the branches are determined in accordance
with equation 14.

Stanping Wave Ratio

An alternative way of specifying filter performance is to refer to the input
impedance mismatch as a function of frequency. The impedance mis-
match can be expressed in terms of the direct and the reflected waves and in
terms of the standing wave ratio that exists along the transmission line that
connects the properly terminated filter with its generator. The standing
wave ratio and the insertion loss of a filter bear a definite relationship to
each other if the filter is composed of purely reactive elements. This rela-
tionship is given by the formula

Py (S+ 1)

P, 4S (16)

max
’ Vmin
minimum voltage as measured along the transmission line.

where S is the standing wave ratio , of the maximum voltage to the
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When the filter characteristic is given by equation 13, the relationship be-

tween £, the frequency parameter, and the standing wave ratio can be ex-
pressed as

@ = *;;\/g (17)

This is shown graphically in Fig. 5, where the standing wave ratio is given
in db (20 logo Y mux

min

). This graph is used as an aid in the design of filters of
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Fig. 5—Input standing wave ratio of maximally-flat filters.

this type, where the requirements are given in terms of the standing wave
ratio. From this information the number of filter branches and the selec-

tivity of the total filter can be determined, either from equation 17 or from
Fig. 5.

DISTRIBUTED BRANCHES

It has been assumed that the mutual impedances of successive branches
are all zero. At low frequencies this limitation may not be a serious one
and the practical realization of the expected filter characteristics is accom-
plished by shielding properly one branch from another. However, as the
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frequency is increased it becomes difficult to isolate the branches and unde-
sirable mutual impedances arise which complicate the problem. In par-
ticular, in the microwave region, where waveguides are used, the physical
size of each branch may be large compared with the wavelength and it is
then impossible to lump all the branches at one place in the waveguide with-
out encountering the complicated effect of mutual impedances.

A practical way of circumventing this difficulty is to distribute the branch
circuits along the transmission line or waveguide at such distances that the
mutual impedances become negligible. Then, however, the lengths of
transmission line act as transducers, but since their properties are well under-
stood and readily calculable this appears to be a practical solution. Asa
matter of fact, the impedance transforming properties of a length of trans-
mission line can be used to advantage.: !+ For instance, it is well
known that a quarter wavelength of lossless line transforms a load imped-
ance according to the relation

Zs
Z= 7 (18)
where Z; is the surge impedance of the line and Z, is the load impedance,

Hence if the load impedance consists of a series resonant circuit contain-
ing an inductance, a capacity and a resistance equal to Zy in series, the im-
pedance at the input end of the quarter wavelength of line is given

Z= N (o)
[+ (- 4)]
The input admittance is
V=1 [1 + 520 ('L — é)] (20)
o f

As can be seen from equation 7, this is identical with the input admittance
of a parallel tuned circuit whose terminating conductance is

= Y. (21)

The quarter-wave line likewise transforms a parallel circuit to a series
circuit, as is illustrated in Fig. 6. This property of the quarter-wave line
thus makes it possible to simulate a ladder network of alternate series and
shunt branches by spacing shunt branches (or series branches) at quarter
wavelength intervals along a transmission line, as illustrated in Fig. 7.
The resonant frequencies and the selectivities of the branches are chosen as
before.
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Sometimes in practice a quarter wavelength may not be sufficient spacing
to avoid mutual impedances arising between adjacent elements, in which
event the connecting line may be increased to a higher odd multiple of quar-
ter wavelength. This accentuates the frequency sensitivity of the connect-

-+ o

o— VT —]

Yo L c Yo = Zp Zp
O (e, O
Yo— Z'—
v =Y (1+j20n) 2'=2Z92¥, (14 j200)

Fig. 6—Illustrating the impedance inverting property of a quarter wavelength of trans-
mission line,

LUMPED CONSTANT FILTER USING SERIES & SHUNT ELEMENTS

fo2,Q2 fon,@n

7/
fo1,Q4 fo3,Q3 fon-1,Qn-1

LUMPED CONSTANT FILTER USING ONLY SHUNT ELEMENTS

Ao Ao )_\_0
o a 7 4
) )|
O
- N \
01,9, fo2,Qp 03,23 fon=1,9n-1  fon,Qn

Fig. 7—Simulation of ladder network by shunt branches at quarter wave intervals.

ing line, but this effect can be taken into account by decreasing the selectiv-
ities of the branches themselves by appropriate amounts. In narrow-band
filters this may be negligible, but in broad-band filters it may be consider-
able, as shown in the following analysis.

SELECTIVITY OF CONNECTING LINES
Consider a length of transmission line having a surge impedance Zo =

1 .
e and terminated in a parallel resonant circuit containing an inductance, a
0 :
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capacitance and a resistance equal to Z, ,* as in Fig. 6. The terminating
admittance is given by the relation (See Eq. 7 and 9)

Vo= Tl + j29). (22)

The input admittance at the end of the length of line, £, (nominally a quar-
ter wavelength long) is given by the relation

v (1—{—j1_‘ﬂ)co§9+jsinﬁ

~ = i N . 23
Yo cos@ + j(1 4 j22) sin @ (23)
where
2l
o ="
A
{ = length of line
A = wavelength
/ fu)
a=o(L -4
\n77
letting
T T , 76
- (1 == = 24
0=50+8 =5+ (24)
. m w8
cos § = —sin 5T T (25)
. w .
sin § = cos o =1 (26)

where 6 is a number small compared with 1. Then the admittance becomes
Vo.o.mb 1
S 12 + A (27)
0 1+j@9+3)
This is the normalized input admittance of a circuit as shown in Fig. 8,
where each end of an ideally inverting line is shunted by a tuned circuit

. . . .mh
whose normalized admittance is j %

From Eq. 24, setting 2;{-5 = 1;, it follows that
0

)Gt e

* More generally, the terminating admittance can assume any value without affecting
the result,
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From equation 7, the admittance of the circuit is expressed in terms of its

selectivity, thus
=20 (L - 1), (29)

Solving for the selectivity of this circuit, from Equations 28 and 29:
Q=z. (30)

The selectivity of the coupling line can hence be counteracted by sub-

tracting g from the selectivities of the branches associated with it, provided

;T8 j08
172 T J2ﬂ
O]
L
4
—_ AT /= Yo
Y0 ALL T g
FREQ. l

Fig. 8—Schematic diagram illustrating that the selectivity of a quarter wavelength
of line can be represented by adding a tuned circuit to each end of an ideally inverting
impedance transformer.

the coupling line is a quarter wavelength long. If it becomes necessary to
use & wavelength coupling lines, the selectivity of the line is tripled and -SI

is subtracted from the selectivities of the associated branches.

REsoNANT CAVITIES

The foregoing analysis reviews the principles of the design of filters which
use lumped-constant circuits distributed along a transmission line. These
principles can be applied to the design of filters in waveguides, coaxial lines,
or any other types of transmission lines, provided that these lines are suffi-
ciently lossless, the band is sufficiently narrow and the branches themselves
are realizable. In the microwave region the first two provisions are usually
met without difficulty, as is also the third provision when circuits with dis-
tributed constants are used. It may be difficult to construct a coil and a
condenser circuit for microwaves, but easy to construct a resonant cavity
which displays some of the desirable properties of the tuned circuit. Reso-
nant cavities are similar to lumped tuned circuits in two respects.”*: ** They
transmit a band of frequencies and they introduce a phase shift. An ap-
proximate equivalence is demonstrated in Appendix I, and is illustrated in
Fig. 9, which depicts a resonant cavity as being nearly identical with a
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tuned circuit situated across the middle of a short length of transmission
line. This short length of transmission line is added in order to account for
an excess of phase shift associated with the resonant cavity, but it can read-
ily be absorbed in the connecting line which otherwise would have been an
odd quarter wavelength long.

The similarity between resonant cavities and resonant lumped circuits
enables one to use the known art of designing lumped element filters to de-

RESONANT
CAVITY

e
g+28' = >

Fig. 9—A resonant cavity is approximately equivalent to a resonant circuit shunted
across a short length of transmission line.
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Tig. 10—The resonant wavelength and the loaded Q of a cavity depend upon the
normalized susceptance of the end obstacles and their separation.

sign filters which use resonant cavities, provided that the selectivity, the
resonant frequency and the excess phase shift of the resonant cavity are
known.

RESONANT WAVELENGTH AND LOADED Q oF CAVITIES

These properties can best be derived by considering one of the usual types
of cavities, which consists of two obstacles or discontinuities separated by a
length of transmission line. Such a cavity is shown schematically in Fig.
10. The obstacles at each end are assumed to be equal, and to have an
unvarying susceptance BY,, where ¥, is the surge admittance of the con-
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necting transmission line. This type of cavity is resonant when the rela-
tion is satisfied®- 1 '
2né 2
tan "B (31)
where A is the resonant wavelength in the transmission line,
{1is the length of the cavity
B is the normalized susceptance of the end obstacles.

This resonance occurs at any number of wavelengths, but the 1st or 2nd
longest wavelength at which resonance occurs is in the region which is usu-
ally of greatest interest.

The selectivity in this region is determined also by the value of the nor-
malized susceptance, B, of the obstacles, and is given by the relation (See
Appendix I)

2
arc tan B
Q= 2 . (32)

2 arc sin wz

This selectivity is based upon the wavelength, not the frequency parameter.
In terms of the wavelength in the transmission line this is

2re

|
2 { _ 2nt
Aot Ager
where Ay is the wavelength of resonance in the transmission line and A,
is the wavelength at the half power points. If the phase velocity in the

transmission line does not vary with frequency, then the selectivity can be
expressed simply in terms of either the wavelength or the frequency since

f_h_M_ A (34)

Ao

33
)\acl - Agrﬁ ( )

0 =

However, when the velocity in the transmission line varies with frequency,
equation 34 does not hold true, and the expression relating the two parame-
ters is more complicated. In the case of the rectangular waveguide

4
f :— iw
where ¢ is the velocity of light in vacuum, f.. is the cutoff frequency of the
4

2a

A = (35)

waveguide, fo, = 5~ and @ is the width of the waveguide.
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It can be shown readily that the frequency parameter can be expressed
in terms of the wavelength, thus

(F-7-G-20GG6) o

where ), is the wavelength in free space.
For narrow percentage bands, this reduces to the approximate relation
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Fig. 11—The relation between loaded Q and normalized susceptance. (Inductive ob
stacles)

This states, in effect, that the percentage bandwidth is greater in terms of
wavelength than in terms of frequency, by the square of the ratio of the
wavelengths in the guide and in free space. The selectivity in terms of the
frequencies and wavelength ratio thus becomes

1 Aul])E f() (}\00)2

= (7)) = 7 . [ 38

Q (]; _ f_ﬂ) (Rgﬂ (fcﬂ - fcl) )\pﬂ ( )
_fﬂ fc

This is the selectivity that is plotted as a function of B in Figures 11 and 12.

Excess Puase anD CoONNECTING LINES

The excess phase of this type of cavity is taken into account by adding the
lengths of line, ¢’ (see Fig. 9), which have a length given by the relation (See

Appendix I)
drl’ 12
tan o (E) (39)
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Combining Eq. 31 and Eq. 39 and solving for ¢’ in terms of {
V=" — - (40)

where ( is the length of the cavity and A, is the resonant wavelength in the
line.

20
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Fig. 12—The relation between loaded Q and normalized susceptance. (Capacitive ob-
stacles)

Thus, when this length, corresponding to the excess phase of the cavity
resonator, is absorbed in the length of line connecting two cavities together,
the correct total connecting length becomes

(’_,:(Zm-i—l)}%’—f{*fz'

b6 NN
- 2 TT"3 (1)

where f, and £ are the lengths of the cavities and m is any integer including
Zero.

OBSTACLES IN WAVEGUIDES

The three properties of the cavity—the resonant frequency, the selectiv-
ity and the excess phase—are given in Equations 31, 32 and 39, regardless
of the sign of the normalized susceptance, B. In the case where the obstacles
are inductive, B is negative; and where the obstacles are capacitive, B is
positive. .
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Further explanation is needed to distinguish between these two impor-
tant cases. First consider the case where inductive obstacles are used.

Tan 2}\1{’ is negative and the cavity length lies between a quarter and a half

g0
wavelength (plus any multiple of half wavelength). The selectivity, as
given by equation (32), is plotted on Fig. 11 for the fundamental mode.
The excess phase is positive, and the added lengths, £/, of Fig. 9 are positive.
The connecting lines between two such cavities are then slightly less than a
quarter wavelength (or odd multiple thereof).

Next consider the case where the obstacles are capacitive. Tan ilg is

g0

positive and the cavity length lies between zero and a quarter wavelength
(plus any multiple of half wavelengths). The selectivity as given by equa-
tion (32) is plotted in Fig. 12 for cavity lengths lying between a half wave-
length and three quarters wavelength. The excess phase is negative and
the added lengths, {1 of Fig. 9 are negative. The connecting lines between
two such cavities are then slightly longer than a quarter wavelength (or odd
multiple thereof).

SUSCEPTANCE OF OBSTACLES

The Equations (31), (32) and (39) give the resonant wavelength, the selec-
tivity (in terms of wavelength) and the excess phase as functions of the nor-
malized susceptance of the obstacles which form the ends of the cavity, and
a knowledge of this susceptance as a function of the geometrical configura-
tion of the obstacle is necessary to complete the design of the filter. At low
frequencies, conventional coils and condensers can be used to form the dis-
continuities in the transmission line; while at high frequencies, transmission
line stubs can be used.® In the microwave region, where waveguides are
employed, obstacles having the shapes shown in Figures 13, 14, and 15 can
be used.’®

INDUCTIVE VANES

Figure 13 shows a plane metallic obstacle, transversely located across a
rectangular waveguide, with a centrally located rectangular opening extend-
ing completely across the waveguide in a direction parallel to the electric
vector. For thin obstacles, the normalized susceptance can be calculated
from the approximate formula,

Ao g mwd

B = — — cot’

2 3, (42)

where A, is the wavelength in the waveguide, a is the width of the waveguide,
and d is the width of the iris opening.
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When the iris is constructed of material of finite thickness, r, the expression
for the susceptance is more complicated,”® ™ and the equivalent circuit
becomes a four-terminal network with both shunt and series elements.
The equivalent shunt susceptance of this network can be obtained experi-
mentally by measuring the insertion loss of the iris, from which a curve such
as shown in Fig. 16 can be computed. These data* were taken for irises
.050” thick in waveguide having internal dimensions of 0.872” X 1.872” in
the frequency range around 4000 mc. The ordinate is a parameter, K, from
which the normalized susceptance is calculated:

A, ,
B-K (ﬂ) . (43)

VANES

LIZTTN,

} \{ .

s
=

Fig. 13—One type of inductive obstacle in rectangular waveguide.
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!
E] d b B*% LOGg¢ cscg—g
— l

b
Fig. 14—One type of capacitive obstacle in rectangular waveguide.

—d k-
q—
Fig. 15—Another type of inductive obstacle consists of a cylindrical post.

Along the abscissa is plotted the ratio of iris opening to width of the wave-
guide.

It can be demonstrated that for values of K from —1 to — 20, the equiv-
alent iris opening is approximately the actual opening less the thickness of
the metal sheet. For practical purposes, when the susceptance lies be-
tween — 1.5 and — 30, it is often sufficient to use the approximation,

L Ng o fwld—7)
B = pu cot (T) (44)
where 7 is the thickness of the iris.

* Data supplied by Mr. L. C. Tillotson of Bell Telephone Laboratories.
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CapAacCITIVE IRISES

The normalized susceptance of infinitely thin capacitive obstacles, as illus-
trated in Fig. 14, may be calculated by the approximate relation’

U wd
B = i log, cosec % (45)

a

where b is the height of the waveguide, \, is the wavelength in the waveguide,
and d is the width of the iris opening.
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Fig. 16—Experimentally determined curve of normalized susceptance of inductive irises.
As with the inductive vanes, the normalized susceptance is a function of
the iris thickness and may be calculated from the approximate formula®

. 27 (b d
B = By + ~ ([—i E) (46)

where By is the normalized susceptance of the infinitely thin iris, and 7 is
the iris thickness.

For best results, the irises should be designed from experimentally deter-
mined curves, however.
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InpucTIVE Posts

The normalized susceptance of the round cylindrical inductive post, cen-
trally located in the waveguide parallel to the electric vector, may be calcu-
lated from the approximate formula!!: 15. 16

g 1
T () o
8 \zde
where a is the width of the guide, and d is the post diameter.
=20 ,
rg
B=K (E)
X 10
x -9l
/
= -7F /
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g s )4
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% e
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Fig. 17—Experimentally determined curve of normalized susceptance of inductive posts

The experimentally determined values of susceptance are somewhat less
than the values calculated by the formula (47). The difference is less than

209, when gis less than 0.08. A curve of experimentally determined values

is plotted in Fig. 17, the data being taken in rectangular waveguide 0.872” X
1.872" at a frequency near 4000 mc.*

The normalized susceptance of posts is also a function of their position in
the waveguide, the susceptance decreasing as the posts are moved off center.
This feature may be used when it is desired to make all the posts in a filter

* Data supplied by Mr. A. E. Bowen of Bell Telephone Laboratories.
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from stock of a given diameter. The expression for the normalized sus-
ceptance of off-center posts is given by the relation!!: 1

2, 1

o sect I8 [10 ﬂ cos = )
a Be mde? a

where s is the distance off center.

EXPERIMENTAL DATA

The principles of waveguide filter design as outlined in the foregoing have
been used in several applications. For example the channel branching fil-
ters in the New York-Boston microwave radio relay link consist of two reso-
nant cavities separated by the equivalent of 4 wavelength sections of
waveguide. The transmitting modulators in this relay system also use
two-chamber filters to separate the wanted sideband from the unwanted
sideband. The transmission band in each of these applications was 10 mc

. l-—Er--— Qla—-r—ﬁz“-r‘[’-za *—"L*szﬁm—-rrgr'l

0
JB' ‘jB’
e 0

Fig. 18—Diagram of a transmission line filter consisting of four resonant cavities and
three connecting lengths of line,

and the image frequency or the unwanted sideband which was to be re-
flected was 130 mc away.

In another case the requirements were that the standing wave ratio should
be less than 0.64 db over a band of 20 mc and more than 28 db 30 mc on
each side of the midband frequency. The design formulae indicated that a
filter consisting of four cavities would be needed. These, then, would take
the general configuration shown in Fig. 18, where the first and last cavities
are formed by the obstacles 7B, and the length of line ¢, , while the two mid-
dle cavities are formed by the obstacles Bs and the length f.. The lengths
{12 and £y correspond to the transforming sections of transmission line which
connect the cavities together. The loaded (s required to meet the speci-
fications turned out to be Oy = 12.25 and Q; = 30.0, after allowance had
been made for the selectivities of the § wavelength connecting sections.
Assuming that the cavities would be formed with inductive obstacles, as
shown schematically in Fig. 19, the susceptances to obtain these selec-
tivities were obtained from Fig. 11 based on equation 32. This gave

By = —4.08
By = —6.36
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These susceptances were realized with centrally located round posts, for
which the data of Fig. 17 has been plotted, and this filter was constructed
according to the calculated dimensions which are shown in Fig. 20. Each
of the four cavities was tuned separately to resonance near midband by ad-
justing a capacitive plug located in the center of each. The characteristic
then obtained is plotted in Fig. 21, which shows that the standing wave

]"Bi*r_ﬁlz—-rﬁz-ﬂ'— Eza—j*ﬂz --1*212*—'4;'-81—-{
o]

EITIEITIY

Fig. 19—A four-cavity filter which utilizes inductive obstacles.

S W L
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2 Q
| 1Q1? 191 Qe
0.112”D 0.180"D 0.412%D
TUNING PLUGS

Fig. 20—The calculated dimensions for a four-cavity maximally-flat filter in 0.872" x
1. 872" rectangular waveguide.
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Fig. 21—Measured characteristic of four-cavity filter of Figure 20.

ratio met the design points quite well. These are shown as circles in the
figure. The insertion loss of this filter was less than 0.7 db over a 25-mc
band and less than 0.3-db at midband.

Another maximally-flat waveguide filter consisting of fifteen resonant
cavities gave an insertion loss of two decibels at midband, 4-db loss at 20-
mc bandwidth and 40-db loss at 30-mc bandwidth. The input standing
wave ratio was less than 1.0 db over a 20-mc band. Its characteristics are
plotted in Figs. 22 and 23. This excellent performance is remarkable in
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Fig. 22—Measured standing wave ratio of maximally-flat filter consisting of fifteen
resonant cavities.
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I'ig. 23—Measured insertion loss of the fifteen-cavity filter.

view of the difhculties that might be encountered in constructing and align-
ing a filter consisting of 75 discontinuities and 29 lengths of waveguide.
Its physical length (over 80”) may be seen in the photograph of Fig. 24.
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Fig. 24—The fifteen cavity filter.
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The theoretical treatment of maximally-flat filters presented here has ig-
nored the dissipation in the elements. Better agreement between expected
and observed characteristics would be obtained if this had been taken into
account. The observation of .3-db loss and 2-db loss in the four-cavity and
the fifteen-cavity maximally-flat filters is indicative of the amounts of added
insertion loss to be expected because of dissipation in the elements. In
addition to the increased loss at midband, we should expect a rounding of the
insertion loss characteristic near the cutoff frequencies, and a broadening of
the standing wave characteristic at frequencies well beyond cutoff. In
many applications, however, these effects can be ignored.

CONCLUDING REMARKS

In the foregoing, the design of maximally-flat band-pass filters has been
treated in detail. The treatment of other types of band-pass and band-
rejection filters is beyond the scope of the present paper, although much of
the material presented here may be of use in designing such filters. In
fact, almost any filter consisting of a ladder network of inductive and capaci-
tive elements in series and in shunt can be simulated in waveguides by fol-
lowing these principles. Emphasis on the maximally-flat filter has been
deliberate for two reasons: it gives a type of transmission characteristic that
is useful in microwave work; it is simple to design.
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APPENDIX I

A cavity resonator, consisting of a length of transmission line, £, at each
end of which there is an unvarying susceptance, 7B, is approximately equiv-
alent to a tuned circuit, consisting of an inductance, L, and a capacity, C,
in parallel located at the center of a short length of transmission line, 2¢’,
when these two conditions are satisfied:

(1) The square root of L over C is equal to the surge impedance of the
transmission line divided by twice the loaded Q of the cavity.

(2) The sum of the lengths of the two transmission lines £ and 2¢’ is equal
to a half wavelength at resonance.

The first of these conditions follows from equation 3 of the text above,
and the proof of the second condition will be given in the following analysis,
based on the schematic drawing of Figures 9 and 10. In this analysis, the
loaded Q of the cavity is derived in terms of the susceptance of the obstacles
at its ends.

Since the cavity and the tuned circuit are both symmetrical it is adequate
to consider but one half of each in establishing the equivalence. Then by
setting the short circuit admittance of one equal to the other and setting the
open circuit admittance of one equal to the other, the necessary relationships
are derived.

The following symbols will be used in addition to those used in the text:

Vse = Normalized admittance, short circuited.
Voc = Normalized admittance, open circuited.

The subscripts 1 and x refer to the cavity and the equivalent tuned circuit
respectively.

2r £
h=% 2

r
9z=2_".5f
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The short-circuited admittances of half the cavity and half the tuned cir-
cuit are

Y.gm = j(Bl — cot 01) (Al)
Vsez = —jcot 0, (A2)
while the open-circuited admittances are
Yom = j(Bl + tan 01) (A3)
j (—Bz-’—’ —+ tan 0,)
Yoor = — (A4)
1 — 7’ tan 6,
Putting Vser = Ve
1
tan 8, = m . (AS)
Putting AS in A4 and setting Voe; = Voe:
B, 1
B]_ + tan 91 - 2_- Bzcot 61 ;‘ Bl . (AO)
2 cot b — By

Solving for B. we have
B:‘ = —Bl(B_[ sin 201 — 2 cos 261) (A7)

which becomes

= /B! + 4B sin i”‘( - 1) . (A8)
a0 \ g

where
14
— = arc tan —-. (A9)

Equation A9 gives the requirements for resonance.
The expression for the loaded Q is

2ré

Ao
2l 2l
Neer Mg

Q= (A10)
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The cutoff wavelengths are obtained when B, is equal to &= 2 and we have
from equation A8

2rl 27l .2
il vl sin B T 4 (A11)
2rf 2wl .2
e~ on -+ arcsin Bl\/flf-—l-*é’ (A12)
from which we obtain
; 2
arc tan — = T e ,
0 = Eé = \/B':_ 4B, arc tan%. (A13)

2 arc sin \/B‘*—W

This gives the loaded Q of the cavity in terms of the susceptance of the end
obstacles.

To derive the length corresponding to the excess phase of the cavity, let
the short-circuited admittances be equal by equating equations Al and
A2, and let the wavelength be the resonant wavelength of the cavity, and
we have

By — cot 8y = — cot 0. (A14)
From equation A9
B]_ =2 cot 2010 (A].S)
so that
p 2 cot 20y — cot 6y = —cot 0. (A16)
But
2 cot 2919 — cot 910 = —tan 91(] (Al?)
hence
tan 8,0 = cot 0 (A18)
or |
b+ b0 = 3 (A19)
That is
2r, £ 2@l o«
N 2T N T2
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whence

>

{4+ 26 = -;9 (A20)

which proves the second condition mentioned above, namely, that the sum
of the lengths of the transmission lines in the cavity and its equivalent cir-
cuit is equal to a half wavelength.

The normalized admittance of the cavity terminated in the surge admit-
tance of the guide can be written in terms of its loaded  and a wavelength

variable as
VR = 1+ 120 [2 (’_;f-") - 1] (A21)
g

This expression is obtained from equations A8 and A13 by making the as-
sumption that the bandwidth is narrow so that the sine of the angle in equa-
tion A8 can be replaced by the angle. This admittance is referred to a point
slightly inside the cavity, i.e. a distance ¢’ inside.

The similarity between this expression and the corresponding one for the
parallel resonant circuit consisting of lumped elements is evident. (See eq.
7 of the text.)

VR = 1 4 j20 [f ﬂ (A22)

In the case of the cavity the bracketed term is a wavelength variable; in
the case of the tuned circuit it is a frequency variable.
The loss function for maximally-flat filters in waveguides becomes

fn N Ag(] 2n
porefoale )

The loaded (s of the cavities taper sinusoidally from one end of the filter to

the other so that
o (2r—1
0, =0 sm( r2u )w. (A24)




