Transients in Mechanical Systems
By J. T. MULLER

INTRODUCTION

A study of the response of an electrical network or system to the input
of transients in the form of short-duration pulses is an accepted method of
analysis of the network. By comparing the input and the output, conclu-
sions may be drawn as to the respective merit of the various components.

Until recently similar procedures were only of academic interest with
mechanical systems. THowever, the tests for mechanical ruggedness, which
are required of electronic gear in order to pass specifications for the armed
forces, are an example of the application of transients to a mechanical sys-
tem. These tests are known as High Impact Shock Tests.

A basic part of an electrical system is a damped resonant network consist-
ing of an inductance, a capacitance and a resistance. A mass, a spring and
a friction device is the equivalent mechanical network called a simple me-
chanical system and a combination of such networks is a general mechanical
system. It is, of course, advantageous to keep the mechanical system as
simple as possible without detracting from the general usefulness of the
results obtained.

The problems here considered are pertinent to a system which is essen-
tially made up of a supporting structure or table and a resilient mounting
array bearing the equipment (e.g. electronic gear) which is vulnerable to
shock. (See Fig. 1.)

A shock is the physical manifestation of the transfer of mechanical energy
from one body to another during an extremely short interval of time. The
order of magnitude of the time interval is milliseconds and quite frequently
fractions of a millisecond.

The system is excited by administering large spurts of mechanical energy
to the supporting table. The manner in which this energy is supplied to the
base and the way it is dissipated through the system are the subjects of this
paper.

The energy transfer to the supporting table is accomplished by the use
of huge hammers which strike the anvil with controllable speeds. The
action is assumed to be similar to that of an explosion, particularly to an
underwater explosion at close range or a near-miss. As to the real compar-
ison between the two, the reader is referred to the various manuscripts
published by the Bureau of Ships. This particular phase of the subject is
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considered outside the scope of this paper, except for the following brief
statement:

Both actions fit the definition of shock stated above and the difference be-
tween the two is one of size and not of kind.

Shocks are transients and are conveniently treated by a branch of mathe-
matics which is adapted to the solution of problems of this kind; viz, the
Laplace Transforms, and the reader is referred to Gardner and Barnes,
“Transients in Linear Systems.” The nomenclature used here is identical
to that of those authors.

EQUIPMENT
. (MASS,Mm

RESILIENT
_~ MOUNTING ARRAY
- (STIFFNESS, K)

HAMMER

Tig. 1—Schematic layout of shock machine.

The manuscript consists of two parts: In the first, the energy transfer to
the base is considered. We are dealing here with rigid bodies; consequently
with very small transient displacements and very large forces. These are
usually referred to as impact forces or impulses and four such functions of
force and time are discussed. Displacements with associated velocities re-
sult from the action of impulses on the base.

The second part deals with the effect of these displacements on the shock-
mounted equipment. Although the mathematical procedure is identical to
the first part, here we deal with a function of displacement and time. There
is no specific name for such a relationship but a suggestive term is “whip.”
However, the pulse functions represented are the same as those of the force
and time function.

It is assumed that the displacement-time pulse is independent of the subse-
quent motion of the mass.

In considering any kind of shock problem we have the following funda-
mental considerations:
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First, we shall want to know the magnitude of the shock present in the
base or supporting structure; this will be called the ‘“‘excitation.”

Second, the behavior of the resilient medium interposed hetween the
shock-producing base and the equipment. It is sometimes expressed as the
coupling. We shall use the term fransmission.

Third, the resulting disturbance of the equipment caused by the trans-
mitted shock, which we will call the response.

The three functions do not exist independently, but are mathematically
related. For a clearer understanding of shock phenomena it is perhaps
helpful to fix in one’s mind the idea that the response of a system is com-
pletely dependent upon the transmission function.

To use an electrical analogue, the voltage ¢ (£) impressed upon a system
produces an output voltage e (#) which is completely defined by the trans-
mission function. For instance, if this transmission function represents a
filter of some kind with given boundaries, then it is to be expected that the
response of ¢ (1) is completely changed outside these limits and could even
be zero. The same train of thought will hold for mechanical systems. Here
the transmission function is mostly represented by the stiffness or the com-
pliance. For a completely rigid medium the stiffness would be infinite and
the input and output would be alike; in other words, a force applied to the
base would appear at the equipment. This is a theoretical case because no
material is perfectly rigid. Though some materials are more rigid than
others they will all give if the force applied is big enough. Now the forces
associated with a shock are almost always of considerable magnitude so that
the stiffness of a material becomes significant.

As the stifiness diminishes the response changes and may appear to be
quite different from the input. As far as the transmissibility of forces is
concerned, the reader is reminded that a force is always accompanied by a
reaction. The forces which put the base into motion cannot be transmitted
by a soft material like rubber, unless it is compressed to extremely high
values, and thus produce an equally large reactive force.

PART 1
Anavysis oF THE Excrration or THE Base

By recording the motions of the base, we obtain time-displacement curves
as shown in Fig. 2. The method of recording has been done by means of
high-speed motion pictures (at the Whippany testing laboratory using a
Fastex) and by using strain gages (at the Annapolis Engineering Experiment
Station).

The test equipments are fundamentally mechanical impact producing
machines. For technical details and description of the machines the reader
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is referred to the various test specifications by the Bureau of Ships (as, for
example, Spec. 40T9).

The characteristic of an impact is the transfer of mechanical energy from
one mass to another in a relatively short time. The corresponding force as
function of time is called an émpulse, henceforth indicated as F(f). A study
of the pulse functions has suggested some probable theoretical shapes of F(1)
which could cover a wide variety of conditions. These pulse functions will
be used for force-time functions as well as displacement-time-functions and
it will be shown that the results are surprisingly similar.

We will let these pulses operate on the base with mass m; an- calculate and
plot the resulting time displacement curves. Since an impulse is associated

2
with energy transfer, it must be a function of %ﬂ From the point of view
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Fig. 2—Time displacement record of medium high impact machine.

of shock action, the final velocity v is extremely important, for it is this
velocity which will determine the displacement and acceleration of the
shock-mounted equipment.

To distinguish the various applications of the pulse functions, the follow-
ing notations are adopted:

f(t) represents any functions of ¢, without reference to its dimensional
magnitude. The transform of f(¢) is indicated by F(s).

x(f) represents a function of { when it is a displacement of the mazs m
only. The transform is indicated by X(s).

x1(f) represents a function of ¢ when it is a displacement of the base (with
mass m;) only. The transform is indicated by X(s).

F(¢) represents a function of ¢ when it is a force applied to the base. The
transform is indicated by Fy(s).

Since x1(¢) and F(¢) are input functions, they may be represented by the
same type pulse, in which case the transforms are alike, i.e., F(s) = Xi(s) =
Fn(S).

Figure 3A, a rectangular pulse, is the simplest form.

Figure 3B is a triangular pulse, f(f), reaching a peak and returning to zero
in a linear manner.
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Figure 3C consists of one-half cycle of a sine wave.

Figure 3D is a cosine pulse of one-cycle duration and is shifted along the ¥°
axis an amount equal to the amplitude.

These are the pulses to be used in the problems under consideration.

If they represent a force as it varies with time then it is said that F(t)
represents a particular pulse. The Laplace transform of F(¢) is given as
Fo(s), Fo(s) being some function in the complex domain. It is outside the
scope of this paper to prove or show the mathematical technique in ob-
taining the transforms which produce Fo(s). We will present them here for
future reference.
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Fig. 3—Tour pulses.
The Laplace transform for a very short pulse is

F(s) = 4, (1.01)

and is a pulse which has a finite area but the time interval of which is
approaching zero.

For a square pulse with finite time interval and magnitude a (hereafter
referred to as pulse amplitude) it is

1 _ Efbs

F(s) =a . (1.02)
For a triangular pulse

F(s) = 2 (——1 - ) (1.03)

b 5
For a sine pulse
= _ Gwo —walwg
F(s) 52+w%(1 + ¢ ) (1.04)
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For a shifted cosine pulse

aw’
(

_ Ixslwg ' c
=t ey T ) (1.03)

Suppose we let an impulse, and to take a specific example, a triangular
impulse, operate on a mass m;. We have

F = ma (1.06)
in which

I = F(i) = force in Ibs.

m; = mass in slugs

ao = # = acceleration in ft/sec’

Let L)) = Xals) =
then

Llmdy] = s Xi(s)

the & transform of a triangular pulse F(f) is

y —bs \ 2
atr) = & (L7 = wle (107)

—bay\ 2
X, = & 1 (1 €
b s s

The inverse transform is

X)) = m() = &7 [“— 5 (1 - ‘uba)j (1.08)

_ efba 2
w(l) = nﬁb e [% (1 S_)] (1.09)

The solution of 1.09

oy al N (1t —
wnll) = EE[B = — b)Y 2b)J (1.10)

Substituting

After the impulse is over, i.e., for values of ¢ > 25, 1.10 becomes

() = % bt — b) (1.11)
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and the final velocity is

Sy (1.12)

nn

which represents the area of the impulse divided by the mass.
Similarly we find for the very short square impulse

¥ o= = (1.13)

For the square impulse of finite time interval b

o = ﬂ(: - 9) (1.14)
niy 2

5 .
o= (z — l) (1.15)
niwy ng

For the shifted cosine impulse

= (r. — ’r—) (1.16)
Mwy Wp

The velocity is the term preceding the term in parenthesis.
In the five examples mentioned, we find that this velocity is proportional
to the area of the tmpulse curve and inversely proportional lo the mass. All

For the sine impulse

expressions contain the factor — and, since ais the maximum force present,

m

this expression represents the maximum acceleration and it is this value
which is so frequently mentioned when discussing the actions on the shock
table.

For instance, from fecords we have determined approximate values for
the time interval during which the energy transfer from hammer to the table
takes place. The high-speed motion pictures are taken at the rate of 4,000
to 5,000 frames per second, which means an average elapsed time of .22
milliseconds or 220 microseconds. The energy transfer occurs within this
time interval, because the rate of increase of the displacement from frame
to frame is constant. The exposure time of one frame is 12000 second or 83
microseconds. If the anvil moved within this time there would be evidence
of blurring. Since we have been unable to detect any blurring, we may state
that transfer is less than 220us yet more than 80us.

Let us assume it to be 100us. That means a pulse width of 26 = 100us.
(See Fig. 3.)
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a .
— = ap = acceleration,
ny

then

1= — = aob

For a 2000-ft. pound shock the table speed v is approximately 7 ft./sec.
Substituting, we find for a, or the acceleration

7 = ao X .00005
or ag = 140.000 ft./sec.?
ag = 4400 “g”’s

This is about the order of magnitude which the accelerometers have
recorded.

The important conclusion we draw from this is that the acceleration and
its time interval combine to produce a velocity of the base which is a com-
plete criterion of the severity of the shock administered.

In the example just cited the weight of the table is approximately 800 lbs.,
and the force 4400 x 800 = 3,250,000 lbs. The result is, then, that a tri-
ahgular impulse of 3,520,000 lbs. magnitude and a duration of 100us operat-
ing on a table of 800 lbs., imparts to that table a velocity of 7 ft./sec.

PART II

ANALVSIS OF THE RESPONSE

In Part I the origin of the motion of the base has been treated. This mo-
tion of the base can now be represented by a pulse or a displacement as a
function of time. To distinguish the displacement-time function from the
force-time function, we have already suggested the name Whip. Obviously
some of the pulse shapes which were used to represent impulses are not suit-
* able as whips. For instance, the square pulse as whip could not exist, since
this would suppose an infinite velocity.

The triangular whip is observed in the medium-high-impact shock ma-
chine. The sine whip may be taken to represent approximately the output
of the light-high-impact machine.

The shifted cosine whip is sometimes used in the motion of cams of auto-
matic equipment.

The problem of shock response is now reduced to the behavior of a mass
and spring system when the base motion is represented by a whip.
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Triangular whip (Fig. 3b). The Laplace transform of this pulse is
_ ba\2
F(s) = 2 (1 < ) .
b s

The differential equation for a simple harmonic system is

mi+ kx =0 (1)

or
fte=u )
If we let the whip operate on this system, then
S x =10 = =) 3)

iﬁ which x1(¢) represents the displacement of the whip as a function of time.
Let £[x(1)] = X(s)
and
Lm@)] = O] = Fs) = Xu(s)
then
L] = s'X(s) — of(0) — 1'(0)
By definition the initial conditions are zero, so that

L] = 5°X(s) (4)

The Laplace transform of equation (3) is then

S X() + X(5) = L) = Xils)

or

(32 :;“’2) X(s) = Xuls). (5)

Xi(s) = & (1 = ‘4")2.

Substituting and rearranging,

w2 1 _ —ba\ 2
X(S):SE—l—w?%( Sé ) (6)

Now
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This is the transform equation. To find x we use the inverse Laplace
transform and the solution of (7) is

x=a£ & sinwt 9 (t —b) sinw(t—0b) w(t — b)
b w? w? w? w3

+ (r —2b _ sin m(:‘ﬁ_ 25).) u(t — Zb):l-

w2

o)

The expression #(t — b) simply means that the term to which it is attached
is zero for all values of ¢ < b.

Let us now consider what this solution consists of.

There are apparently three terms which take effect at successive intervals.

The initial whip can be considered to consist of three different displace-
ments starting at successive times 0, b and 2b. With the displacement of
the base there is a corresponding displacement of the mass m. After the
time b the second term or displacement takes hold and an associated dis-
placement of mass m except that the initial conditions are the end conditions
of the first displacement. After the time 25 the third displacement enters
and the final result is the displacement-time pulse or whip. To make the
problem somewhat simpler we introduce the following modifications:

1°. Because the motion is a simple harmonic of known frequency after
the whip has passed we will only consider the maximum amplitude.

2°, Only the displacement-time function of the mass m during the pulse
interval will be examined.

3°. The dimensional magnitudes of the motion of mass m will be expressed
as ratios of those of the pulse.
If ¢ is the maximum amplitude of the whip, and Ty = 2b its time interval
(usually expressed in milliseconds), then we define

Y- Amplitude ratio of pulse displacement and response of mass m dur-
‘ ing pulse inlerval only.

=== T =g Natural frequency of mass m expressed as a
ratio of the pulse length.

T = ZLb Elapsed time expressed as a ratio of the pulse length.
A= x“;“" Ratio of maximum amplilude lo pulse displacement after pulse

inlerval.
Substituting these values in equation (7) and rearranging we obtain

. = [ PR
5 — o, _ Sin 2pmr ” ((21, — 1) - smma(-rl)) u(2r — 1)
TP ™

. _ (8)
n (2(7 - sin 2re(r — 1)) W(r — 1)

T
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This looks somewhat complicated, but we can simplify by omitting the last
term, because we are only considering values of § during the pulse interval.

fh =2 2o ((27 —1) - Smm(z’““l)) w2 — 1) (9)
T T
A plot of this equation for various values of ¢ is shown in Fig. 4. Tt is seen
that & becomes a maximum when ¢ is approx. .9 and 7 is then .75. The dis-
placement is approximately 1.5 times the peak displacement of the whip.
After the whip has passed, or when r > 1, the transient has disappeared
and a steady-state condition exists. Since the system under consideration
is a simple harmonic system, the steady state is a harmonic motion of fre-
quency w, with an amplitude to be obtained from equation (8). Indicating
the dimensionless values of the amplitude by 8, when 7 > 1, equation 8 may
be written

5, = 2p — S 2eTT _ 2((2., - fﬂ‘&;l))

T e
in 2re(r — 1 (10)
+ (2(7 — 1) = Smemar = )) r>1
T
After developing (10) and rearranging we obtain
ba = 2(w) sin me(2r — 1). (11)
T
The maximum amplitude is
A = 2(1 — cos m¢) (12)

TQ

A plot of equation (12) is shown in Fig. 5. Before considering the action of
this whip in terms of what it does to the system, we shall take a brief look at
the analysis of the two other whips; viz., the sine whip and shifted cosine
whip (see Fig. 3).

Sine Whip

We have again equation (3).
=4 x =) = w0
o2

and equation (5)
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From 1.04

F(s) = gt (L4 &™), (13)

Substituting (13) in (5) we obtain

aw?w

G TR

X(s) 5 (1 + ™). (14)

= A
Py
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N
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o
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Fig. 5—Maximum amplitude as a function of frequency ratio-steady state tri-
angular whip.

The inverse transform gives us

awlw 1 . 1 1 . ™
¥ =3 |[—sinwt——sinw) +(— sinw ({ — —)
w wp wWo

_! sin w (¢ — 1)) u(t — 1)] (15)
w wo wo

and dividing this into two parts again, the transient and the steady state,
we find for the transient,

awwy |:1 . 1 . ]
r = 5 3|7 sin wl — ~ 8In w!
w — wo | wo w
and substituting the dimensionless quantities
= f, /wo =

a T

and
ot

"7 /e

we find

2
g . 1 .
5 = % (sm T e sin 21rqo'r). (16)
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A plot of this equation as a family of curves for various values of ¢ is shown
in Fig. 6. It is noted that, in general, this group of curves resembles those
of Fig. 4 of the triangular whip.

The steady state is

aw?wy [ 1 | 1.
x = "3 3| " Sinwyl — -sinwl
w — wp |« w

- (17
1 . T 1 . T
4+ — sinwy (t — —) — ~sinw (t — )
wp wy w Wy
and, in dimensionless quantities or expressed as a ratio of the pulse dimen-
sions, we obtain

- 1o
1 — 4

Ba cos e sin 2we(r — 1). (18)

From (18) it follows that the maximum amplitude of the steady state is

4o cos T
A= T
1 — 4¢° (19)

A plot of this curve is shown in Fig. 7.
Shifted Cosine Whip.
The shifted cosine whip produces results of a similar nature. We have

seen that the transform equation for this whip is (1.05)

2
a — aewp _ iwslawg
P = gy (1= €171, (20)

Using equations (3) and (5) and transferring to dimensionless quantities, in
which

X 2r/wy w ! wol
D=, T = = T = — = b
[ T ¢ wo 27I’/wn 2‘11'
we obtain
6 1 (CO" 2roT F cos 2
= —— s — ,R-T
2(¢* — 1) e

(21)
— cos 2re(r — Du(r — 1) + ¢ cos 2n(r — Dulr — 1))

Since we are interested only in the transient displacement, (21) becomes

_ (1 — co3 2moT) — (1 — cos 277)
2(1 — o9
A family of curves showing § for various values of ¢ is shown in Fig. 8.

b (22)
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The steady state after the transient is (from Eq. 21)

1

b= =1

(cos 2rer — ¢ cos 2aT

— cos 2mp(r — 1) + ¢ cos 2r(r — 1))

which reduces to

sin 7o

1 — ¢?

3q = sin 2rer — ). (23)

2.0

= A

\
AP

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
PULSE LENGTH (INTERVAL) é
NATURAL PERIOD OF SYSTEM

"-_‘-

o
S

MAX. AMPLITUDE STEADY STATE
PEAK PULSE AMPLITUDE
~

o

Fig. 7—Maximum amplitude as a function of frequency ration-steady state sine whip.
The maximum amplitude is

(24)

a plot of which is shown in Fig. 9.

Practical Considerations

Let us now consider the action of these various whips in terms of what
they do to the system. The designer of shockmounts is primarily interested
in the displacement across the mount or the relative displacement of base
and mass.

In Fig. 10 the relative transient displacements for four systems are shown
when subjected to a triangular whip. The natural frequencies are .4, 1.0,
1.5, and 2 times the frequency of the whip. From this it appears that the
maximum relative displacement is approximately equal to the maximum
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whip displacement. It is also observed that the large relative displacements
occur when the frequency of the system is smaller than the pulse frequency.

After the transient has passed, the relative steady-state displacement,
which is of course equal to the absolute, obtains large values too.

From Fig. 5 we note that a maximum of 1.5 is reached for the triangular
whip and up to 1.7 times for the sine whip (see Fig. 7) at a frequency of
approximately 3 of the whip. Apparently even larger displacements
across the mount occur after the transient has disappeared.

This is illustrated in Fig. 11 for the same systems as in Fig. 10.

As ¢ increases, which means if the frequency of the system increases with
respect to the pulse frequency, the displacements across the mounts diminish,

2.0

DA
Y

0 I
o 0.5 ) 15 20 25 3.0 35 40 45 5.0

PULSE LENGTH (INTERVAL) _ é
NATURAL PERIOD OF SYSTEM

A

PEAK PULSE AMPLITUDE
o

MAX., AMPLITUDE STEADY STATE

Fig. 9—Maximum amplitude as a function of frequency ratio-steady state shifted
cosine whip.

while on the other hand the acceleration increases as will be shown later (-ee
equation 39).

From this it seems advantageous to select a natural period of the system
at least twice that of the pulse frequency.

The relative displacements are limited by practical considerations, such
as available space between cabinets and bulk head, cable connections, per-
sonnel safety and others.

In the design of Bell Telephone Laboratories radar equipment, the rela-
tive displacement has been held to one-half inch, and the natural frequency
in the neighborhood of 35 to 40 cycles per second or a period of 25 to 30 m.s.

The average of the heaviest shock administered to this type of equipment
has a peak amplitude of 1.5 inch and a time interval of approximately 60 m.s.

From Fig. 5, we find that under these conditions a maximum relative dis-
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placement of .42 times the peak pulse amplitude or approximately § inch
may be expected.

Taking into consideration that the shock mount has been designed with a
certain amount of damping, it is thus possible to hold the relative displace-
ment within the boundaries of its shock-absorbing capacity.

DAMPING

DISPLACEMENT =
(BASE)

TIME —>

Fig. 12—System with damping.

Viscous Damping

The fundamental differential equation for a system with damping is (see
Fig. 12).

i+ Ui+ fx =0 (25)
If we let a whip operate on this system we obtain
i+ 208 4 wx = w'x(l) (26)

However, the sudden displacement of the base also produces an acceleration
of the mass proportional to the velocity. If a;(f) is the displacement then
#(¢) may be represented to be the velocity and 2£#;(¢) the acceleration. We
have, then, for the completed equation

i+ 20 4 wix = w'an(t) + 26a(0) (27)
In the Laplacian terminology, if
x(t) = F(s)
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then
#1(t) = sF(s) (initial value being zero)

The Laplace transform of equation (27) is

2
oy w + 20 ;
X(s) = 126+ o F(s). (28)
The solution of (28) is made easier if it is written in the form
o + 2as
b = = 9
X6) = g g b (29)

in which
a="{ and a®+ 3=k

Subjecting this system to a triangular whip, of which the Laplace trans-
form is
afl1 — e—bs 2
Pis) = ¢
©=2(17)

. o+ 2a5s  a (1 — e_b!)2
X(s) = R IEwE S (30)

the solution of which involves two transform pairs. The inverse transform
gives us a solution of the transient as well as the steady state. It has been
mentioned before that the steady state produces the maximum displace-
ments across the mount; therefore it will be considered in more detail. We
find that the steady state solution is

we have

—at

xa(t) = gEﬁT (—sin Bl + 26 sin Bt — b) — € sin Bt — 26)) (31)
Which simplifies to
xa(t) = ‘;‘—; /(4% + B?) sin (8 — 0) (32)
Using dimensionless quantities
n = £ =Z and i da
w w a

and the substitution

Vie g =7,
we find that

bB = bwy = wey
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Equation (32) may now be expressed as

—at
€

by = o V(A2 + B?) sin (wyt — 0) at > 2pme (33)
in which
B
tan § = —
an 4
and
A= —14 26" cos ey — €™ cos 2rey (34)
B = 26" sin moy — €77 sin 2wpy (35)
< 16
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Fig. 13—Effect of damping on steady state amplitude for triangular whip.

From equation (33) we obtain the maximum displacement

—at
€

A= o VA? + B al > Igwe (36)
in which
; ( B T - B)
al = — | tan - 4 tan ~ = al > 2nmwe
¥ 7 4

In Fig. 13 a plot of equation (36) is shown for n = .5. This indicates that
the peak value of A is .24 as compared to 1.48 when no damping is present.

Acceleralions
The transient accelerations of the mass m during the whip action and the

subsequent steady state may be found by examining the acceleration during
the first part of a triangular whip. Designating the velocity of displacement
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of the whip by v the expression for x may be formed from equation (7) by
setting { < b.

2 .
aw t sin wi
and, since g
b
7 .
x = v —— sin i (38)

w

whence

% = vw sin w!
and the maximum acceleration is
do= w (39)
Let

A _ ho then Xy = 1
%
By proceeding in a similar manner with the next step of the whip the value

of the acceleration ratio will be found to be
M=3

and for the completed whip or steady state
A =4

The expression 49 = Aoww is an important factor in shock considerations.
Thus we havea simple relation for the final maximum amplitude of the periodic
acceleration of the mass m when subjected to a triangular whip; viz., it is
four times the product of whip velocity and natural frequency of the system.
The constant Ay depends upon the configuration of the whip; the velocity
» indicates the intensity of the whip; while w expresses the kind of response
the system is capable of.

It is of interest to note that this maximum periodic value of 4, will be pro-
duced only if the ratio of pulse frequency and natural frequency is of the
correct value. It is difficult to produce shocks on existing equipment of
exactly the same characteristics within narrow limits as to time duration
and therefore it must expected that a considerable variation in damage
may occur even though similar shocks are administered to identical test
objects. For the same reason a shock of lower intensity may produce
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more damage than a hizher one because impulse amplitude as well as dura-
tion change at the same time.

Although damping is a highly desirable feature in a shock mount, the
damping device may cause a certain amount of coupling between themassand
the base, and if too much damping is provided the transient acceleration of
the mass may become excessive.

The analysis of this problem by means of the Laplace transforms is not
difficult, for we can use results previously obtained. The transform equa-
tion for a system with damping, subjected to a whip, is

w? + 2as
X(s) = G+ af+ F(s) (40)
in which F(s) represents the transform of the disturbance or excitation.
Since we are interested in the effect of the damping or n upon theresponse,
only the first part of the triangular whip will be considered.

In this case

() = ol
and
Llal)] = F(s) = “;_ (41)
Substituting (41) in (40)
(w? 4+ 2as)

X(s) = = Fis) (42)

Sl(s + ) + 1
If X(s) is the transform of x(f), a displacement, then the acceleration is &(¢)
or g(t), (&(t) = g(t) by definition) and

L] = Lle(n] = s*°Xs

Substitution in (42) gives

2
w
S+E

PN = 2

(43)

Now £1[s2X(s)] = g(®)
so that

2t [(g _ a)g + 52]% e sin (Bt + ¢) (44)

g(1) 5 | \2a
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Fig. 14—Transient acceleration during initial part of triangular whip.

Letting
{’ - L]
g(_)z)\, Y=l =y B=wvVl—p=wy
e @ ow . -
and
wl = f?o
Substituting
E"uﬂn
A= o sin (Mo + ¢) (45)
in which
)
tan ¢ = ﬁg
Figure 14 is a plot of X against §, for various values of 5. It is noted that
for n = .5 of critical damping the initial acceleration is equal to the un-

damped, A being one.

The data presented here are also applicable to lonz duration pulses, be-
cause the final results have been given in dimensionless quantities, the units
of measurement being those of the pulse.

SvymBors USED -

MASS oot e m
Mass Of DaSe. .. ..o my
Spring stiffness.............. .. k
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Displacement mass........... ... ... o ..., x(l)
Displacement base. ... . . P vy, x1()
Force on base...................... ... i F, F(})
Velocity of base............ ... ... . ... ... ...
Acceleration of base. .. ... ... . ... ap , %
Acceleration of mass m. R, x(t),g(i)
Maximum acceleration of the mass ». . A
Mazximum acceleration ratio... ... ... ... ... ... .. Ao = i:
Acceleration ratio. ... . .. ... A= )
%)
Natural frequency of mass m (circular).. ... .. ... ... ........... w, Bo
Circular (angular) displacement........... . .. .. ... .. ... ... .. wl = by
Frequency of sinusiode of which pulse consists (not pulse frequency). . . .. wp
Peak pulse displacement........ ... ... .. ... a
Pulse period (triangular).............. ... .. 2b]|
¢ « . T
(sine pulse)........ ... i o .} T,
2
H (shifted cosine pulse)................. ... ..., o
Period of mass #2. ... ... T
displacement during pulse period _ ¥,
peak pulse amplitude T a
amplitude steady state _ 5
peak pulse amplitude a
max. amplitude steady state _ A
peak pulse amplitude
elapsed time ° ot/ t2r 1
pulse length (mterval) % w w Te
pulse length (interval) To
naturalperiodofsystemTAsg
Damping coefficient. . ......... . ... {, a
Critical damping ratio. .. ... .. ... ... ... ... .. ... ... ... % =9
Transform of x(f) =.... .. . ... . . X(s)
“ R () B P. €1 ()]
“ “ F(l) =..... FQ(S)
H D o= F(s)

f(£) represents any function of /, without reference to its dimensional
magnitude. ‘



