Tables of Phase Associated with a Semi-Infinite Unit Slope of Attenuation ## By D. E. THOMAS This paper presents tables of the phase associated with a semi-infinite unit slope of attenuation. The phase is given in degrees to .001 degree with an accuracy of \pm .001 degree and in radians to .00001 radian with an accuracy of \pm .000015 radian. The method of constructing the tables and a brief analysis of the errors are given. An appendix, which gives a detailed explanation with specific examples of the use of the tables in determining the phase associated with a given attenuation characteristic or the reactance associated with a given resistance characteristic by means of the straight line approximation method given in Bode's "Network Analysis and Feedback Amplifier Design," is included for the benefit of those who are not already acquainted with this method. The Appendix also presents an example of a non-minimum phase network1 in which the minimum phase determined from the attenuation characteristic fails to predict the true phase of the network. HE method described by Bode² for the determination of the phase associated with a given attenuation characteristic or the reactance associated with a given resistance characteristic has proved to be an extremely useful laboratory and design tool. In this method the attenuation (or real) characteristic, plotted versus the log of frequency, is approximated by a series of straight lines. The phase (or imaginary component) is then determined by summing up the individual contributions of each elementary straight line segment to the total phase (or imaginary component). The most elementary straight line characteristic which can be used to construct a given straight line approximation is that in which the attenuation plotted against the log of frequency is constant on one side of a prescribed frequency, f_0 , and has a constant slope thereafter. Such a characteristic has been called by Bode a "semi-infinite constant slope" characteristic.³ A semi-infinite unit slope of attenuation or one in which the attenuation changes 6 db per octave, or 20 db per decade is shown in Fig. 1. The phase associated with this attenuation characteristic is plotted in Fig. 2.4 The independent variable was chosen as f/f_0 for values of f less than f_0 and f_0/f for values of f greater than f_0 to keep it finite for all values of f and in order to show the phase plotted exactly as it is given in the tables to follow. The phase associated with a semi-infinite constant slope of ¹ For a complete discussion of *minimum phase* see Hendrik W. Bode, "Network Analysis and Feedback Amplifier Design," D. Van Nostrand Company, Inc., New York, N. Y., Ibid: Chap. XV, page 344. Ibid: Chap. XIV, page 316. Ibid: Chap. XIV page 317. Fig. 1—Semi-infinite unit slope of attenuation. Fig. 2—Phase associated with semi-infinite unit slope of attenuation of Fig. 1. attenuation of the same character as the semi-infinite unit slope of attenuation of Fig. 1 but of slope k, is k times the phase given in Fig. 2. Bode points out, ⁵ however, that the building up of the complete imaginary characteristic from a single primitive curve, namely a semi-infinite real slope, suffers from the disadvantage that the phase contributions of the individual slopes may be rather large positive and negative quantities, even though the net phase shift is fairly small. In order to avoid this disadvantage, Bode recommends that the individual finite line segments which constitute the straight line approximation to the real characteristic be regarded as the elementary characteristics used in the summation of the total phase. He then gives a series of charts, plotted as a function of f/f_0 , of the phase associated with a finite line segment having a 1 db change in attenuation and with a ratio of the geometric mean frequency (f_0) of the two terminal frequencies of the finite line segment to the lower terminal frequency as a parameter (ratio designated a). However, problems have arisen where, even with the finite line segment phase charts, the phase contributions of the various elements were sufficiently large and nearly equal positive and negative quantities that difficulties in interpolation between the curves for the various values of a, given on the charts, resulted in a sufficient lack of precision that the quantity being sought was lost. Because of the usefulness of the method in question, and with its application to a wider variety of problems, means of increasing its over-all precision and simplification of computation have constantly been sought. It had occurred to several engineers independently that a table of phase versus frequency for a semi-infinite unit slope of attenuation would prove extremely useful. The phase in radians at frequency f_c , associated with a semi-infinite unit slope of attenuation commencing at frequency f_0 , is given by Bode as⁶ $$B(x_c) = \frac{2}{\pi} \left(x_c + \frac{x_c^3}{9} + \frac{x_c^5}{25} + \cdots \right)$$ (1) where: $$x_c = \frac{f_c}{f_0} = \frac{\omega_c}{\omega_0}, x_c < 1.$$ The computation time required to determine the phase at a given frequency by summation of the above series is such, that the work required to get the phase at a sufficient number of points and to a sufficient number of significant figures to prepare an adequate table proved to be sufficient to discourage this procedure. ^{Ibid: Chap. XV page 338. Ibid: Chap. XV, page 343.} The derivative of (1) above, however, proves to be quite simple and easy to evaluate. It is given by Bode as: $$\frac{dB}{dx_c} = \frac{1}{\pi x_c} \log \left| \frac{1 + x_c}{1 - x_c} \right| \tag{2}$$ $$=\frac{2}{\pi}\left(1+\frac{x_c^2}{3}+\frac{x_c^4}{5}+\cdots\right), x_c<1.$$ (2a) It therefore seemed that since the phase had already been computed by the Mathematical Research Group of the Bell Telephone Laboratories, Inc., at a Fig. 3—Element of Fig. 2 for $f/f_0 < 1$ expanded qualitatively. considerable number of points, using the infinite series expansion of (1) above the function in the regions between known values of phase could be constructed by assuming the intervening curve of phase as a function of $x = \frac{f}{f_0}$ to be a series of straight lines having the slope given by (2) above over intervals Δx of x made sufficiently small that the resultant straight line approximation would approach the true phase curve to the desired degree of accuracy for the table contemplated. In order to evaluate the errors involved in such a procedure let us refer to Fig. 3 where a segment of the desired phase function to be constructed is qualitatively represented on a large scale. It is assumed that the phase at x_c , $B(x_c)$, is known and that it is desired to determine the error $\delta_1 B$ in phase computed for $x_c + \Delta x$ when it is assumed that the phase curve is a straight line from $B(x_c)$ at x_c , to $x_c + \Delta x$ having a slope, $\frac{dB}{dx}\left(x_c + \frac{\Delta x}{2}\right)$, the slope of the true phase curve at $x = x_c + \frac{\Delta x}{2}$. Then: $$\delta_1 B = B(x_c + \Delta x) - B(x_c) - \frac{dB}{dx} \left(x_c + \frac{\Delta x}{2} \right) \Delta x \tag{3}$$ where: $$B(x_c) = \frac{2}{\pi} \left[x_c + \frac{x_c^3}{9} + \frac{x_c^5}{25} + \cdots \right]$$ $$B(x_c + \Delta x) = \frac{2}{\pi} \left[(x_c + \Delta x) + \frac{1}{9} (x_c^3 + 3x_c^2 \Delta x + 3x_c \Delta x^2 + \Delta x^3) + \frac{1}{25} (x_c^5 + 5x_c^4 \Delta x + 10x_c^3 \Delta x^2 + 10x_c^2 \Delta x^3 + 5x_c \Delta x^4 + \Delta x^5) + \cdots \right]$$ $$B(x_c + \Delta x) - B(x_c) = \frac{2}{\pi} \left[\Delta x + \frac{x_c^2 \Delta x}{3} + \frac{x_c \Delta x^2}{3} + \frac{\Delta x^5}{3} + \frac{\Delta x^5}{25} + \cdots \right]$$ $$= \frac{2}{\pi} \left[\Delta x \sum_{n=1}^{n=\infty} \frac{x_c^{2n-2}}{2n-1} + \Delta x^2 \sum_{n=1}^{n=\infty} \frac{nx_c^{2n-1}}{2n+1} + \Delta x^3 \sum_{n=1}^{n=\infty} \frac{n(2n-1)x_c^{2n-2}}{3(2n+1)} + \cdots \right]$$ $$\frac{dB}{dx}\left(x_{c} + \frac{\Delta x}{2}\right)\Delta x = \frac{2}{\pi}\Delta x \left(1 + \frac{1}{3}\left[x_{c}^{2} + 2x_{c}\left(\frac{\Delta x}{2}\right) + \left(\frac{\Delta x}{2}\right)^{2}\right] + \frac{1}{5}\left[x_{c}^{4} + 4x_{c}^{3}\left(\frac{\Delta x}{2}\right) + 6x_{c}^{2}\left(\frac{\Delta x}{2}\right)^{2} + 4x_{c}\left(\frac{\Delta x}{2}\right)^{3} + \left(\frac{\Delta x}{2}\right)^{4}\right] + \cdots\right) \\ = \frac{2}{\pi}\left[\Delta x + \frac{x_{c}^{2}\Delta x}{3} + \frac{x_{c}\Delta x^{2}}{3} + \frac{\Delta x^{3}}{12} + \frac{x_{c}^{4}\Delta x}{5} + \frac{2x_{c}^{3}\Delta x^{2}}{5} + \frac{3x_{c}^{2}\Delta x^{3}}{10} + \frac{x_{c}\Delta x^{4}}{10} + \frac{\Delta x^{5}}{80} + \cdots\right] \\ = \frac{2}{\pi}\left[\Delta x \sum_{n=1}^{n=\infty} \frac{x_{c}^{2n-2}}{2n-1} + \Delta x^{2} \sum_{n=1}^{n=\infty} \frac{nx_{c}^{2n-1}}{2n+1} + \Delta x^{3} \sum_{n=1}^{n=\infty} \frac{n(2n-1)x_{c}^{2n-2}}{4(2n+1)} + \cdots\right].$$ Since Δx will be small compared to unity and since an error function is being computed it is permissible to take only the 1st term of the difference between the true phase and the computed phase, i.e. the Δx^3 term, and drop all higher order terms of Δx . Then: $$\delta_{1}B \doteq \frac{2}{\pi} \left[\Delta x^{3} \sum_{n=1}^{n=\infty} \frac{n(2n-1)x_{c}^{2n-2}}{3(2n+1)} - \Delta x^{3} \sum_{n=1}^{n=\infty} \frac{n(2n-1)x_{c}^{2n-2}}{4(2n+1)} \right]$$ $$= \frac{\Delta x^{3}}{6\pi} \sum_{n=1}^{n=\infty} \frac{n(2n-1)x_{c}^{2n-2}}{2n+1}.$$ (4) The equation (4) above for $\delta_1 B$ gives only the error for a single increment Δx of $x = f/f_0$. If the phase is known at $x = x_a$ and $x = x_b$ and it is desired to determine the phase at points between $x = x_a$ and $x = x_b$ then since $\delta_1 B$ always has the same sign the errors due to successive increments of x will be cumulative and the total error at $x = x_b$ will be n times the average of the $\delta_1 B$ errors of each increment of $\Delta
x$ between x_a and x_b where n is the total number of equi-increments of x taken between x_a and x_b . However, since the individual $\delta_1 B$ errors decrease as the cube of Δx , the individual errors will decrease as the cube of the number of increments taken between the two frequencies at which the phase is known, whereas the cumulative $\delta_1 B$ error will increase only in proportion to the first power of n. the net result will be a vanishing of the cumulative error inversely as the square of the number of frequency increments taken to approximate the curve in the interval in question. It therefore follows that the accuracy of the proposed method of building up the function, in so far as the phase at the terminals of the straight line segments is concerned, is limited only by the number of increments of frequency selected for the summation. In order to determine the actual magnitude of errors to be expected $\delta_1 B$ was computed for $x_c = .4$ and $\Delta x = .02$ and found to be only .000015 degree. Since the total number of .02 intervals needed to be used between previously computed values of B is 5, the total cumulative error in this region for increments of this magnitude will not be greater than .0001 degree, which is entirely satisfactory, since the accuracy being sought is \pm .0005 degree in B. For $x_c = .9$ and $\Delta x = .005$ the $\delta_1 B$ error proves to be only .00001 degree and since in this region the value of B has already been determined at .01 intervals by the more accurate series expansion technique referred to above, only two increments are necessary between known values of B and therefore the $\delta_1 B$ error is sufficiently small. Having determined the order of magnitude of intervals necessary to keep $\delta_1 B$ errors small, let us examine the errors due to the departure of the straight line approximation from the true curve in the interval between x_c and $x_c + \Delta x$. Since $\delta_1 B$ will be very small it is anticipated that the maximum value of $\delta_2 B$ (see Fig. 3) will occur in the vicinity of $x_c + \frac{\Delta x}{2}$. $\delta_2 B$ at this point may be determined as shown below. $$\delta_2 B = B\left(x_c + \frac{\Delta x}{2}\right) - B(x_c) - \frac{dB}{dx}\left(x_c + \frac{\Delta x}{2}\right) \frac{\Delta x}{2}$$ (5) where: $$B\left(x_{c} + \frac{\Delta x}{2}\right) - B(x_{c}) = \frac{2}{\pi} \left[\Delta x \sum_{n=1}^{n=\infty} \frac{x_{c}^{2n-2}}{2(2n-1)} + \Delta x^{2} \sum_{n=1}^{n=\infty} \frac{n x_{c}^{2n-1}}{4(2n+1)} + \cdots \right]$$ $$\frac{dB}{dx} \left(x_{c} + \frac{\Delta x}{2}\right) \frac{\Delta x}{2} = \frac{2}{\pi} \left[\Delta x \sum_{n=1}^{n=\infty} \frac{x_{c}^{2n-2}}{2(2n-1)} + \Delta x^{2} \sum_{n=1}^{n=\infty} \frac{n x_{c}^{2n-1}}{2(2n+1)} + \cdots \right].$$ Again retaining only the first term of the error function and dropping all higher order terms of Δx $$\delta_{2} B \doteq \frac{2}{\pi} \left[\Delta x^{2} \sum_{n=1}^{\infty} \frac{n x_{c}^{2n-1}}{4(2n+1)} - \Delta x^{2} \sum_{n=1}^{\infty} \frac{n x_{c}^{2n-1}}{2(2n+1)} \right]$$ $$= -\frac{\Delta x^{2}}{2\pi} \sum_{n=1}^{\infty} \frac{n x_{c}^{2n-1}}{2n+1}.$$ (6) $\delta_2 B$ proves to be negative and considerably larger than $\delta_1 B$ for the same magnitude of interval. Therefore the computed B will always exceed the true phase in the interval x_c to $x_c + \Delta x$ except above a value of x very near to $x_c + \Delta x$ where the straight line approximation crosses the true phase curve. When $x_c = .35$ and $\Delta x = .02$, $\delta_2 B$ is found to be -.0005 degree from (6) above, and for $x_c = .91$ and $\Delta x = .005$, $\delta_2 B$ is also found to be -.0005 degree. The $\delta_2 B$ errors are therefore found to be much more important than the $\delta_1 B$ errors. $\delta_2 B$ errors are not accumulative, however, and therefore increments of Δx of the above order of magnitude prove to be sufficiently small to give the accuracy being sought, namely $\pm .0005$ degree in B. An evaluation of the $\delta_1 B$ and $\delta_2 B$ errors for values of x_c greater than .9 is difficult due to the slowness of convergence of the series giving these errors. For values of x_c between .9 and unity, however, the frequency of known values of B determined from (1) above and available as check points is sufficient to check the adequacy of intervals insofar as $\delta_1 B$ errors are concerned. Furthermore an analysis similar to that given above for the determination of the $\delta_1 B$ and $\delta_2 B$ errors shows that an interpolation of the slopes computed for construction of the tables in question, to give the intervening slopes necessary to cut the increments of Δx in half will give check points at $x_c + \frac{\Delta x}{2}$ frequencies, with a $\delta_1 B$ error $(x_c + \frac{\Delta x}{2})$ is then the termination of a straight line segment since the Δx interval has been halved) of comparable order of magnitude to the $\delta_1 B$ error for the original interval selected and therefore small in comparison to the $\delta_2 B$ error for the original Δx interval. This technique was therefore used in checking the adequacy of the intervals in so far as $\delta_2 B$ errors are concerned in the region $x_c = .9$ to $x_c = 1.0$. Using the procedure outlined above the phase associated with the semi-infinite unit slope of attenuation of Fig. 1 was computed for values of f less than f_0 and is given as a function of f/f_0 in Table I in degrees and in Table III in radians. For values of f greater than f_0 the phase was computed as a function of f_0/f utilizing the odd symmetry behavior of the phase characteristic of Fig. 2 on opposite sides of $f/f_0 = 1$, and this phase is tabulated in Table II in degrees and in Table IV in radians. For the other type of semi-infinite unit slope of attenuation in which the attenuation slope is constant and equal to unity at all frequencies below f_0 and the attenuation is constant for all frequencies above f_0 (with the constant slope of attenuation intersecting the f_0 axis at the same point as the constant attenuation line) the same tables can be used by reading the values of phase for $f/f_0 < 1$ from the f/f_0 tables and the values of phase for f/f/f < 1 from the f/f/f0 tables. The intervals over which the straight line approximation to the true phase was assumed are given below: | Δx | | | x_c | | |------------|------|-------|-------|--------| | .02 | from | .00 | to | .40 | | .01 | " | .40 | " | .70 | | .005 | " | .70 | " | .92 | | .002 | | .92 | " | .98 | | .001 | " | .98 | " | .996 | | .0005 | " | .996 | " | .998 | | .0002 | " | .998 | " | .999 | | .0001 | " | .999 | " | .9998 | | .00005 | " | .9998 | " | 1.0000 | The points at which the cumulative sum of the straight line increments of phase was corrected to the phase as determined from (1) above are listed below: A study of the errors based on the error analysis discussed above indicates that the computed values of B in degrees are accurate to \pm .0005 degree and since there is an additional possibility of \pm .0005 degree error in dropping all figures beyond the third decimal place, the over-all reliability of the degree tables is \pm .001 degree. Similarly the computed values of B in radians are accurate to \pm .00001 radian and since there is an additional possibility of \pm .000005 radian error in dropping all figures beyond the fifth decimal place, the over-all reliability of the radian tables is \pm .000015 radian. Since the function tabulated was constructed by a series of straight line approximations to the true phase, interpolation to get the phase for values of f/f_0 or f_0/f between those given in the tables in problems where this is necessary, will result in the same accuracy as that given for the tabulated values. Murlan S. Corrington⁷ of Radio Corporation of America has computed the phase in radians for the semi-infinite unit slope of attenuation of Fig. 1 for approximately 100 values of f/f_0 using equations 15-9 and 15-11 of Bode's "Network Analysis and Feedback Amplifier Design" and has given a table of these values to five decimal places. Where the values of Table III differ from Corrington's values, his value is given as a superscript. Since his approach is the more exact one, it is assumed that where a difference exists, his value is correct. The differences have a maximum value of one figure in the fifth decimal place which is consistent with the accuracy of \pm .000015 radian given for Table III. However, linear interpolation of Corrington's values to get the function to three figures in f/f_0 , which precision in f/f_0 is really needed to utilize five figure accuracy in B, will result in errors considerably larger than those of Table III for the higher values of f/f_0 . ## ACKNOWLEDGMENT The writer wishes to thank Miss J. D. Goeltz who carried out the calculations of the basic Tables and of the illustrative examples of this paper. ## APPENDIX Use of Tables I to IV in Determining Phase from Attenuation or Reactance from Resistance The first step in determining the phase associated with a given attenuation characteristic using the tables described in the basic paper is to plot the attenuation as a function of log frequency to a suitable scale. Such an attenuation characteristic is illustrated in Fig. 4a. The attenuation characteristic is then approximated by a series of straight lines such as are shown in dotted form. The number of straight lines used will depend upon the accuracy desired in the resultant phase. As a rule, an approximation to the attenuation which does not depart by more than \pm .5 db will give a resultant phase which does not depart by more than \pm 3° from the true phase. If we now examine the straight line attenuation approximation of Fig. 4a, ⁷ Murlan S. Corrington, "Table of the Integral $\frac{2}{\pi} \int_0^x
\frac{\tanh^{-1} t}{t} dt$ " R.C.A. Review September, 1946, page 432. we see that it can be constructed by adding a number of semi-infinite constant slopes of attenuation as shown in Fig. 4b. The first of these will be a semi-infinite slope of magnitude k_1 commencing at the first critical frequency Fig. 4—(a) Straight line approximation to attenuation characteristic. (b) Individual semi-infinite constant slopes of attenuation which add to produce the straight line approximation of Fig. 4(a). f_0 . The second will be a semi-infinite slope of magnitude $-k_1$ commencing at the critical frequency f_1 which must be added to correct for the fact that the first straight line of slope $+k_1$ does not extend to infinity, but terminates at the critical frequency f_1 , where the straight line approximation assumes a new slope. In order to achieve this new slope a semi-infinite slope of magnitude k_2 , commencing at frequency f_1 , must be added. This process is continued up the frequency scale until the entire straight line approximation is constructed. The total phase $\theta(f)$ at a particular frequency f is then given by the sum of the phase at frequency f associated with each of the semi-infinite constant slopes of attenuation which together make up the straight line approxmation. Thus: $$\theta(f) = k_1\theta_0 - k_1\theta_1 + k_2\theta_1 - k_2\theta_2 + k_3\theta_2 - k_3\theta_3 + k_4\theta_3 - k_4\theta_4$$ or for the general straight line approximation having slopes $$k_1, k_2, \dots k_n$$ $\theta(f) = k_1 (\theta_0 - \theta_1) + k_2 (\theta_1 - \theta_2) + \dots k_n (\theta_{n-1} - \theta_n)$ where: θ_n is the phase at frequency f associated with the semi-infinite unit slope of attenuation commencing at frequency f_n and extending to $f = \infty$ and is read from Tables I or III for $f < f_n$ and Tables II or IV for $f > f_n$, and k_n is the slope of the straight line approximation between f_{n-1} and f_n given by: $$k_n = \frac{A_n - A_{n-1}}{20 \log \frac{f_n}{f_{n-1}}}$$ where: A_n is the attenuation at frequency f_n on the straight line approximation. Note that in Fig. 4a the attenuation is constant from zero frequency to the first critical frequency f_0 . In many problems, there is a constant slope below frequency f_1 to frequency zero. In that event, the initial critical frequency, f_0 , will be zero, and θ_0 will be 90° . $(f_0/f = 0$ at all finite frequencies.) When this occurs, k_1 must be determined by choosing a finite frequency f_0' and taking the ratio of attenuation change between f_0' and f_1 to 20 log of the ratio of f_1 to f_0' . Similarly, the attenuation is constant in the illustration from the top critical frequency f_4 to infinity, whereas in many problems the attenuation will have a constant slope extending from the top critical frequency to infinity. In these cases, the top critical frequency will be infinity and the final angle θ_n will, of course, be zero. Here again the final slope k_n must be determined over a finite portion of this infinite slope. It will also be noted that in the illustration given the characteristic is approximated, commencing at zero frequency, by a series of semi-infinite slopes, each of which is a constant times the characteristic of Fig. 1 of the basic paper, for which Tables I to IV were computed. The characteristic could have been approximated just as well with a series of semi-infinite constant slopes, commencing at $f = \infty$ and going down in frequency, each having a flat attenuation above a critical frequency f_n and constant slope at frequencies below. In summing the phase for such an approximation Tables I to IV may be used by reading the angles for f/f_n from the f_0/f tables and vice versa as indicated in the basic paper. As an illustration of the above procedure, consider the determination of the phase associated with the characteristic given by $20 \log |Z|$ shown in Fig. 5. The characteristic is first approximated by a series of straight lines as shown in dotted form. The critical frequencies and values of $A=20 \log |Z|$ at these critical frequencies are then read from the straight line approximation⁸ and the slopes of the various straight line segments determined as illustrated in Table V. Having determined the slopes of the various segments of the straight line approximation, the phase at any desired frequency is summed as illustrated in Table VI where the phase for f=1.5 is summed. The mesh computed value of θ for the network in question is plotted in Fig. 6 and it will be noted that the phase summation of Table VI checks the true value to within the accuracy to which the phase can be read from the curve. The identical procedure is followed in determining the phase at any other frequency. As an illustration of the accuracy of the method, the phase was determined at a considerable number of frequencies and the results shown as individual points in Fig. 6. The straight line approximation to $20 \log |Z|$ of Fig. 5 was of the order of \pm .25 db and, in accordance with the estimated accuracy of the method given above, the maximum departure of the phase summation from the true phase is approximately \pm 1.5°. A much simpler approximation than that of Fig. 5 may be used without a great loss in accuracy. For instance, a five-line approximation determined by the critical frequencies of Table VII will match 20 $\log |Z|$ to within approximately \pm .5 db and therefore should give a phase summation within \pm 3° of the true phase. The phase was actually summed at 12 frequencies chosen at random for this five-line approximation and the maximum departure of the summed phase from the true phase was 3.2°. With experience in use of the method, simpler approximations can be used and the phase determined more accurately than the limits of accuracy of the summation at individual frequencies by plotting the individual summations ⁸ The original plot was expanded and had much greater scale detail than can be shown with clarity on a single page plate. | f/fo | 0 | 1 | 2 | . 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------------------------------|---|---|--|--|--|--|--|--|--|---| | .00
.01
.02
.03
.04 | .000
.365
.730
1.094
1.459 | .036
.401
.766
1.131
1.496 | .073
.438
.803
1.167
1.532 | .109
.474
.839
1.204
1.569 | .146
.511
.875
1.240
1.605 | .182
.547
.912
1.277
1.642 | .219
.584
.948
1.313
1.678 | .255
.620
.985
1.350
1.715 | .292
.657
1.021
1.386
1.751 | .328
.693
1.058
1.423
1.788 | | .05
.06
.07
.08 | 1.824
2.189
2.555
2.920
3.286 | 1.861
2.226
2.591
2.957
3.322 | 1.897
2.262
2.628
2.993
3.359 | 1.934
2.299
2.664
3.030
3.396 | 1.970
2.335
2.701
3.066
3.432 | 2.007
2.372
2.737
3.103
3.469 | 2.043
2.409
2.774
3.140
3.505 | 2.080
2.445
2.810
3.176
3.542 | 2.116
2.482
2.847
3.213
3.578 | 2.153
2.518
2.884
3.249
3.615 | | .10
.11
.12
.13 | 3.652
4.018
4.384
4.751
5.118 | 3.688
4.054
4.421
4.788
5.155 | 3.725
4.091
4.457
4.824
5.191 | 3.762
4.128
4.494
4.861
5.228 | 3.798
4.164
4.531
4.898
5.265 | 3.835
4.201
4.568
4.934
5.302 | 3.871
4.238
4.604
4.971
5.338 | 3.908
4.274
4.641
5.008
5.375 | 3.945
4.311
4.678
5.044
5.412 | 3.981
4.347
4.714
5.081
5.449 | | .15
.16
.17
.18
.19 | 5.485
5.853
6.221
6.590
6.959 | 5.890
6.258
6.626 | | 5.596
5.963
6.332
6.700
7.070 | 5.632
6.000
6.369
6.737
7.106 | 5.669
6.037
6.405
6.774
7.143 | 5.706
6.074
6.442
6.811
7.180 | 5.743
6.111
6.479
6.848
7.217 | 5.779
6.148
6.516
6.885
7.254 | 5.816
6.184
6.55
6.922
7.29 | | .20
.21
.22
.23
.24 | 7.328
7.698
8.069
8.440
8.811 | 7.735
8.106
8.477 | 8.143
8.514 | 7.439
7.809
8.180
8.551
8.923 | 7.476
7.846
8.217
8.589
8.960 | 7.513
7.883
8.254
8.626
8.998 | 7.550
7.920
8.291
8.663
9.035 | 7.587
7.957
8.329
8.700
9.072 | 7.624
7.994
8.366
8.737
9.109 | 7.66
8.03
8.40
8.77
9.14 | | .25
.26
.27
.28
.29 | | 9.594
9.968
10.342 | 9.259
9.631
10.006
10.380
10.755 | 9.296
9.669
10.043
10.417
10.793 | 9.333
9.706
10.080
10.455
10.830 | 9.370
9.744
10.118
10.492
10.868 | 9.408
9.781
10.155
10.530
10.906 | 9.445
9.818
10.193
10.568
10.943 | 9.482
9.856
10.230
10.605
10.981 | 9.51
9.89
10.26
10.64
11.01 | | .30
.31
.32
.33
.34 | 11.433
11.810
12.189 | 11.471
11.848
12.227 | 11.131
11.508
11.886
12.265
12.644 | 11.169
11.546
11.924
12.303
12.682 | 11.207
11.584
11.962
12.341
12.720 | 11.244
11.622
12.000
12.379
12.758 | 11.282
11.659
12.037
12.416
12.797 | 11.320
11.697
12.075
12.454
12.835 | 11.358
11.735
12.113
12.492
12.873 | 11.39
11.77
12.15
12.53
12.91 | | .35
.36
.37
.38
.39 | 13.330
13.713
14.096 | 13.368
13.751
14.134 | 13.025
13.406
13.789
14.173
14.558 |
13.063
13.445
13.827
14.211
14.596 | 13.101
13.483
13.866
14.250
14.635 | 13.139
13.521
13.904
14.288
14.673 | 13.177
13.559
13.942
14.327
14.712 | 13.215
13.598
13.981
14.365
14.750 | 13.254
13.636
14.019
14.404
14.789 | 13.29
13.67
14.05
14.44
14.82 | | .40
.41
.42
.43
.44 | 15.253
15.641
16.030 | 15.292
15.680 | 14.943
15.330
15.719
16.109
16.500 | 14.982
15.369
15.758
16.148
16.539 | 15.021
15.408
15.797
16.187
16.578 | 15.059
15.447
15.836
16.226
16.617 | 15.098
15.486
15.875
16.265
16.657 | 15.137
15.525
15.914
16.304
16.696 | 15.175
15.563
15.953
16.343
16.735 | 15.21
15.60
15.99
16.38
16.77 | | .45
.46
.47
.48
.49 | 17.207
17.602
17.999 | 17.247
17.642
18.039 | 16.892
17.286
17.681
18.078
18.477 | 16.931
17.326
17.721
18.118
18.517 | 16.971
17.365
17.761
18.158
18.557 | 17.010
17.405
17.800
18.198
18.597 | 17.050
17.444
17.840
18.238
18.637 | 17.089
17.484
17.880
18.277
18.677 | 17.128
17.523
17.919
18.317
18.717 | 17.16
17.56
17.95
18.35
18.75 | | .50
.51
.52
.53
.54 | 19.198
19.602
20.007 | 19.239
19.642
20.048 | 18.877
19.279
19.683
20.088
20.496 | 18.917
19.320
19.723
20.129
20.537 | 18.958
19.360
19.764
20.170
20.578 | 18.998
19.400
19.804
20.211
20.619 | 19.038
19.441
19.845
20.251
20.660 | 19.078
19.481
19.885
20.292
20.701 | 19.118
19.521
19.926
20.333
20.741 | 19.15
19.56
19.96
20.37
20.78 | | f/f_0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------|--------|---------|--------------|--------|---------|------------------|--------|--------|------------------|---------| | .55 | 20 922 | 20. 964 | 20, 006 | 20 047 | 20, 000 | 21 020 | 21 070 | 21 111 | 24 450 | 24 400 | | .56 | | | 20.906 | 20.947 | 20.988 | 21.029 | 21.070 | 21.111 | 21.152 | 21.193 | | .57 | | | 21.731 | 21.772 | 21.814 | 21.855 | 21.482 | 21.524 | 21.565 | 21.606 | | .58 | | | 22.147 | 22.189 | 22.230 | 22.272 | 22.314 | 22.356 | 21.980 22.397 | 22.022 | | .59 | 22.481 | 22.523 | 22.565 | 22.607 | 22.649 | 22.691 | 22.733 | 22.775 | 22.817 | 22.859 | | | | | | | 01 | 22.071 | 22.700 | 22.770 | 22.017 | 22.039. | | .60 | 22.901 | 22.943 | 22.986 | 23.028 | 23.070 | 23.112 | 23.155 | 23.197 | 23.239 | 23.281 | | .61 | | | 23.409 | 23.451 | 23.494 | 23.536 | 23.579 | 23.621 | 23.664 | 23.706 | | .62 | | | 23.834 | 23.877 | 23.920 | 23.963 | 24.006 | 24.048 | 24.091 | 24.134 | | .63 | | | 24.263 | 24.306 | 24.349 | 24.392 | 24.435 | 24.478 | 24.521 | 24.564 | | .64 | 24.007 | 24.031 | 24.694 | 24.738 | 24.781 | 24.824 | 24.868 | 24.911 | 24.954 | 24.998 | | .65 | 25.041 | 25.085 | 25.128 | 25.172 | 25.216 | 25.259 | 25.303 | 25.347 | 25.390 | 25.434 | | .66 | 25.478 | 25.522 | 25.566 | 25.610 | 25.654 | 25.698 | 25.742 | 25.786 | 25.830 | 25.873 | | .67 | 25.917 | 25.962 | 26.006 | 26.050 | 26.095 | 26.139 | 26.183 | 26.228 | 26.272 | 26.316 | | .68 | | | 26.450 | 26.494 | 26.539 | 26.584 | 26.628 | 26,673 | 26.718 | 26.762 | | .69 | 26.807 | 26.852 | 26.897 | 26.942 | 26.987 | 27.032 | 27.077 | 27.122 | 27.167 | 27.212 | | .70 | 27.257 | 27 302 | 27.348 | 27.393 | 27.438 | 27.484 | 27.529 | 27.574 | 27.620 | 27.665 | | .71 | | 27.757 | | 27.848 | 27.894 | 27.939 | 27.985 | 28.031 | 28.077 | 28.123 | | .72 | 28.169 | 28.215 | 28.261 | 28.307 | 28.353 | 28.399 | 28.445 | 28.492 | 28.538 | 28.584 | | .73 | 28.631 | 28.677 | 28.724 | 28.770 | 28.817 | 28.863 | 28.910 | 28.957 | 29.003 | 29.050 | | .74 | | 29.144 | | 29.238 | 29.285 | 29.332 | 29.379 | 29.426 | 29.473 | 29.521 | | .75 | 20 568 | 29.615 | 20 663 | 29.710 | 29.757 | 29.805 | 29.853 | 29.900 | 29.948 | 29.996 | | .76 | 30.043 | | | 30.187 | 30.235 | 30.283 | 30.331 | 30.379 | 30.428 | 30.476 | | .77 | 30.524 | | | 30.669 | 30.718 | 30.766 | 30.815 | 30.864 | 30.913 | 30.961 | | .78 | 31.010 | 31.059 | 31.108 | 31.157 | 31.206 | 31.255 | 31.305 | 31.354 | 31.403 | 31.453 | | .79 | 31.502 | 31.551 | 31.601 | 31.651 | 31.700 | 31.750 | 31.800 | 31.850 | 31.900 | 31.950 | | .80 | 32.000 | 32 050 | 32 100 | 32.150 | 32.201 | 32.251 | 32.301 | 32.352 | 32.403 | 32.453 | | .81 | 32.504 | | | 32.657 | 32.707 | 32.758 | 32.810 | 32.861 | 32.912 | 32.963 | | .82 | 33.015 | | | 33.170 | 33.221 | 33.273 | 33.325 | 33.377 | 33.429 | 33.481 | | .83 | 33.533 | 33,586 | 33.638 | 33.690 | 33.743 | 33.795 | 33.848 | 33.901 | 33.954 | 34.006 | | .84 | 34.059 | | | 34.219 | 34.272 | 34.325 | 34.379 | 34.433 | 34.486 | 34.540 | | .85 | 34.594 | 34 648 | 34 702 | 34.756 | 34.810 | 34.865 | 34.919 | 34.974 | 35.028 | 35.083 | | .86 | 35.138 | | | 35.303 | 35.358 | 35.413 | 35.469 | 35.524 | 35.580 | 35.636 | | .87 | 35.691 | | | 35.860 | 35.916 | 35.972 | 36.029 | 36.086 | 36.142 | 36.199 | | .88 | 36.256 | | | 36.428 | 36.485 | 36.542 | 36.600 | 36.658 | 36.716 | 36.774 | | .89 | 36.832 | 36.891 | 36.949 | 37.008 | 37.067 | 37.125 | 37.184 | 37.244 | 37.303 | 37.362 | | .90 | 37.422 | 37 492 | 37 542 | 37.602 | 37.662 | 37.722 | 37.783 | 37.844 | 37.904 | 37.965 | | .91 | 38.026 | | | 38.211 | 38.273 | 38.334 | 38.397 | 38.459 | 38.522 | 38.584 | | .92 | 38.647 | | | 38.837 | 38.901 | 38.965 | 39.029 | 39.093 | 39.157 | 39.222 | | .93 | 39.287 | | | 39.483 | 39.549 | 39.615 | 39.681 | 39.748 | 39.815 | 39.882 | | .94 | 39.949 | 40.017 | 40.085 | 40.153 | 40.221 | 40.290 | 40.359 | 40.428 | 40.497 | 40.567 | | .95 | 40.638 | 40 708 | 40 779 | 40.850 | 40.921 | 40.993 | 41.066 | 41.138 | 41.211 | 41.285 | | .96 | 41.358 | | | | 41.657 | 41.733 | 41.809 | 41.887 | 41.964 | 42.042 | | .97 | 42.120 | | | | 42.439 | 42.521 | 42.603 | | | 42.854 | | . 98 | 42.938 | | | | | | | 43.561 | 43.655 | 43.750 | | .99 | 43.846 | 43.945 | 44.045 | 44.148 | 44.253 | | 44.473 | (refer | to table l | below) | | | .996 | 0 44 | 1.473 | 00 | 984 4 | 4.763 | | - | 44.871 | | | | .996 | | 1.530 | | | 4.776 | | | 44.886 | | | | .997 | | 1.589 | .99 | 986 4 | 4.789 | | | 44.900 | | | | .997 | | .649 | | | 4.802 | | 995 | 44.915 | | | | .998 | | 1.711 | | | 4.816 | | | 44.931 | | | | .998 | | 724 | | | 4.829 | | | 44.946 | | | | . 998 | | .737
.750 | | | $4.843 \\ 4.857$ | | | 44.963
44.980 | | | | . 330 | -11 | .,,,,, | . 95 | .,,, | 1.007 | 1.0 | | 45.000 | | | | | | | | | | 1.0 | 550 | 20.000 | | Table II—Degrees Phase ($\pm .001^\circ$) for Semi-Infinite Attenuation Slope k=1 $f>f_0$ | - | | | | | 1/1 | 1 | | an Asserta | 1 | | |-------------------|--|--|--|--|--|--|--|--|--|--| | f_0/f | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | .01
.02
.03 | 90.000
89.635
89.270
88.906
88.541 | 89.234
88.869 | 89.927
89.562
89.197
88.833
88.468 | 89.891
89.526
89.161
88.796
88.431 | 89.854
89.489
89.125
88.760
88.395 | 89.818
89.453
89.088
88.723
88.358 | 89.781
89.416
89.052
88.687
88.322 | 89.745
89.380
89.015
88.650
88.285 | 89.708
89.343
88.979
88.614
88.249 | 89.672
89.307
88.942
88.577
88.212 | | .06
.07
.08 | 88.176
87.811
87.445
87.080
86.714 | 88.139
87.774
87.409
87.043
86.678 | 88.103
87.738
87.372
87.007
86.641 | 88.066
87.701
87.336
86.970
86.604 | 88.030
87.665
87.299
86.934
86.568 | 87.993
87.628
87.263
86.897
86.531 | 87.957
87.591
87.226
86.860
86.495 | 87.920
87.555
87.190
86.824
86.458 | 87.884
87.518
87.153
86.787
86.422 | 87.847
87.482
87.116
86.751
86.385 | | .11
.12
.13 | 86.348
85.982
85.616
85.249
84.882 | 86.312
85.946
85.579
85.212
84.845 | 86.275
85.909
85.543
85.176
84.809 | 86.238
85.872
85.506
85.139
84.772 | 86.202
85.836
85.469
85.102
84.735 | 86.165
85.799
85.432
85.066
84.698 | 86.129
85.762
85.396
85.029
84.662 | 86.092
85.726
85.359
84.992
84.625 | 86.055
85.689
85.322
84.956
84.588 | 86.019
85.653
85.286
84.919
84.551 | | .16
.17
.18 | 84.515
84.147
83.779
83.410
83.041 | 84.478
84.110
83.742
83.374
83.004 | 84.441
84.073
83.705
83.337
82.967 | 84.404
84.037
83.668
83.300
82.930 | 84.368
84.000
83.631
83.263
82.894 | 84.331
83.963
83.595
83.226
82.857 | 84.294
83.926
83.558
83.189
82.820 | 84.257
83.889
83.521
83.152
82.783 | 84.221
83.852
83.484
83.115
82.746 | 84.184
83.816
83.447
83.078
82.709 | | .21
.22
.23 | 82.672
82.302
81.931
81.560
81.189 | 82.635
82.265
81.894
81.523
81.151 | 82.598
82.228
81.857
81.486
81.114 | 82.561
82.191
81.820
81.449
81.077 | 82.524
82.154
81.783
81.411
81.040 | 82.487
82.117
81.746
81.374
81.002 | 82.450
82.080
81.709
81.337
80.965 | 82.413
82.043
81.671
81.300
80.928 | 82.376
82.006
81.634
81.263
80.891 | 82.339
81.968
81.597
81.226
80.853 | | .26 | 80.816
80.443
80.069
79.695
79.320 | 80.779
80.406
80.032
79.658
79.282 | 80.741
80.369
79.994
79.620
79.245 | 80.704
80.331
79.957
79.583
79.207 |
80.667
80.294
79.920
79.545
79.170 | 80.630
80.256
79.882
79.508
79.132 | 80.592
80.219
79.845
79.470
79.094 | 80.555
80.182
79.807
79.432
79.057 | 80.518
80.144
79.770
79.395
79.019 | 80.481
80.107
79.733
79.357
78.982 | | .31
.32
.33 | 78.944
78.567
78.190
877.811
477.432 | 78.906
78.529
78.152
77.773
77.394 | 78.869
78.492
78.114
77.735
77.356 | 78.831
78.454
78.076
77.697
77.318 | 78.793
78.416
78.038
77.659
77.280 | 78.756
78.378
78.000
77.621
77.242 | 78.718
78.341
77.963
77.584
77.203 | 78.680
78.303
77.925
77.546
77.165 | 78.642
78.265
77.887
77.508
77.127 | 78.605
78.228
77.849
77.470
77.089 | | .36 | 77.051
76.670
76.287
875.904
975.519 | 77.013
76.632
76.249
75.866
75.481 | 76.975
76.594
76.211
75.827
75.442 | 76.937
76.555
76.173
75.789
75.404 | 76.899
76.517
76.134
75.750
75.365 | 76.861
76.479
76.096
75.712
75.327 | 76.823
76.441
76.058
75.673
75.288 | 76.785
76.402
76.019
75.635
75.250 | 76.746
76.364
75.981
75.596
75.211 | 76.708
76.326
75.943
75.558
75.173 | | .41
.42
.43 | 75.134
74.747
274.359
373.970
473.579 | 75.095
74.708
74.320
73.930
73.540 | 75.057
74.670
74.281
73.891
73.500 | 75.018
74.631
74.242
73.852
73.461 | 74.979
74.592
74.203
73.813
73.422 | 74.941
74.553
74.164
73.774
73.383 | 74.125
73.735 | 74.863
74.475
74.086
73.696
73.304 | 74.825
74.437
74.047
73.657
73.265 | 74.786
74.398
74.009
73.618
73.226 | | .45
.46
.47 | 73.187
72.793
72.398
872.001
971.603 | 73.147
72.753
72.358
71.961
71.563 | 73.108
72.714
72.319
71.922
71.523 | 73.069
72.674
72.279
71.882
71.483 | 73.029
72.635
72.239
71.842
71.443 | 72.990
72.595
72.200
71.802 | 72.950
72.556
72.160
71.762 | 72.911
72.516
72.120
71.723
71.323 | 72.872
72.477
72.081
71.683
71.283 | 72.832
72.437
72.041
71.643
71.243 | | .51
.52
.53 | 71.203
170.802
270.398
3 69.993
4 69.586 | 71.163
70.761
70.358
69.952
69.545 | 71.123
70.721
70.317
69.912
69.504 | 71.083
70.680
70.277
69.871
69.463 | 71.042
70.640
70.236
69.830
69.422 | 70.600
70.196
69.789 | 70.559
70.155
69.749 | 70.922
70.519
70.115
69.708
69.299 | 70.074
69.667 | 69.627 | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | • | | | | |-------------------|--|--|--|--|--|--|--|--|--|--| | f_0/f | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | .56
.57
.58 | 69.177
68.766
68.352
67.937
67.519 | 69.136
68.724
68.311
67.895
67.477 | 69.094
68.683
68.269
67.853
67.435 | 69.053
68.642
68.228
67.811
67.393 | 69.012
68.600
68.186
67.770
67.351 | 68.971
68.559
68.145
67.728
67.309 | 68.930
68.518
68.103
67.686
67.267 | 68.889
68.476
68.061
67.644
67.225 | 68.848
68.435
68.020
67.603
67.183 | 68.807
68.394
67.978
67.561
67.141 | | .60
.61
.62 | 67.099
66.676
66.251
65.823
65.393 | 67.057
66.634
66.208
65.780
65.349 | 67.014
66.591
66.166
65.737
65.306 | 66.972
66.549
66.123
65.694
65.262 | 66.930
66.506
66.080
65.651
65.219 | 66.888
66.464
66.037
65.608
65.176 | 66.845
66.421
65.994
65.565
65.132 | 66.803
66.379
65.952
65.522
65.089 | 66.761
66.336
65.909
65.479
65.046 | 66.719
66.294
65.866
65.436
65.002 | | .66
.67 | 64.959
64.522
64.083
63.639
63.193 | 64.915
64.478
64.038
63.595
63.148 | 64.872
64.434
63.994
63.550
63.103 | 64.828
64.390
63.950
63.506
63.058 | 64.784
64.346
63.905
63.461
63.013 | 64.741
64.302
63.861
63.416
62.968 | 64.697
64.258
63.817
63.372
62.923 | 64.653
64.214
63.772
63.327
62.878 | 64.610
64.170
63.728
63.282
62.833 | 64.566
64.127
63.684
63.238
62.788 | | .71
.72
.73 | 62.743
62.289
61.831
61.369
60.903 | 62.698
62.243
61.785
61.323
60.856 | 62.652
62.198
61.739
61.276
60.809 | 62.607
62.152
61.693
61.230
60.762 | 62.562
62.106
61.647
61.183
60.715 | 62.516
62.061
61.601
61.137
60.668 | 62.471
62.015
61.555
61.090
60.621 | 62.426
61.969
61.508
61.043
60.574 | 62.380
61.923
61.462
60.997
60.527 | 62.335
61.877
61.416
60.950
60.479 | | .76
.77
.78 | 60.432
59.957
59.476
58.990
58.498 | 60.385
59.909
59.428
58.941
58.449 | 60.337
59.861
59.379
58.892
58.399 | 60.290
59.813
59.331
58.843
58.349 | 60.243
59.765
59.282
58.794
58.300 | 60.195
59.717
59.234
58.745
58.250 | 60.147
59.669
59.185
58.695
58.200 | 60.100
59.621
59.136
58.646
58.150 | 60.052
59.572
59.087
58.597
58.100 | 60.004
59.524
59.039
58.547
58.050 | | .81
.82
.83 | 58.000
57.496
56.985
56.467
55.941 | 57.950
57.445
56.934
56.414
55.887 | 57.900
57.394
56.882
56.362
55.834 | 57.850
57.343
56.830
56.310
55.781 | 57.799
57.293
56.779
56.257
55.728 | 57.749
57.242
56.727
56.205
55.675 | 57.699
57.190
56.675
56.152
55.621 | 57.648
57.139
56.623
56.099
55.567 | 57.597
57.088
56.571
56.046
55.514 | 57.547
57.037
56.519
55.994
55.460 | | .86
.87
.88 | 55.406
54.862
54.309
53.744
53.168 | 55.352
54.807
54.253
53.687
53.109 | 55.298
54.752
54.196
53.630
53.051 | 55.244
54.697
54.140
53.572
52.992 | 55.190
54.642
54.084
53.515
52.933 | 55.135
54.587
54.028
53.458
52.875 | 55.081
54.531
53.971
53.400
52.816 | 55.026
54.476
53.914
53.342
52.756 | 54.972
54.420
53.858
53.284
52.697 | 54.917
54.364
53.801
53.226
52.638 | | .91
.92
.93 | 52.578
51.974
51.353
50.713
50.051 | 52.518
51.912
51.290
50.648
49.983 | 52.458
51.851
51.227
50.582
49.915 | 52.398
51.789
51.163
50.517
49.847 | 52.338
51.727
51.099
50.451
49.779 | 52.278
51.666
51.035
50.385
49.710 | 52.217
51.603
50.971
50.319
49.641 | 52.156
51.541
50.907
50.252
49.572 | 52.096
51.478
50.843
50.185
49.503 | 52.035
51.416
50.778
50.118
49.433 | | .96
.97
.98 | 49.362
48.642
47.880
47.062
46.154 | 49.292
48.568
47.801
46.976
46.055 | | 49.150
48.418
47.641
46.801
45.852 | 49.079
48.343
47.561
46.712
45.747 | 49.007
48.267
47.479
46.622
45.639 | 48.934
48.191
47.397
46.531
45.527 | | 48.789
48.036
47.231
46.345
to table | 48.715
47.958
47.146
46.250
below) | | | | 9960
9965
9970
9975
9980
9981
9982 | 45.527
45.470
45.411
45.351
45.289
45.276
45.263
45.250 | | 9984
9985
9986
9987
9988
9989
9990
9991 | 45.237
45.224
45.211
45.198
45.184
45.171
45.157
45.143 | | 9992
9993
9994
9995
9996
9997
9998
9999
0000 | 45.129
45.114
45.100
45.085
45.069
45.054
45.037
45.020
45.000 | | Table III—Radians Phase (\pm .000015) for Semi-Infinite Attenuation Slope k=1 $f< f_0$ | f/f_0 | 0 | 1 | 2 | 3 | 4 | 5 | .6 | 7 | 8 | 9 | |------------------------------|--|--|--|--|--|---|--|--|--|--------------------------------------| | .01
.02
.03 | 0.00000
0.00637
0.01273
0.01910 | 0.00700
0.01337
0.01974 | 0.00127
0.00764
0.01401
0.02037 | 0.01464 0.02101 | 0.00891
0.01528
0.02165 | 0.00955
0.01592
0.02228 | 0.01019
0.01655
0.02292 | 0.01082
0.01719
0.02356 | 0.00509
0.01146
0.01783
0.02419
0.03057 | 0.01210
0.01840
0.0248 | | .05
.06
.07 | 0.02547
0.03184
0.03821
0.04459
0.05097 | 0.03248
0.03885
0.04523
0.05160 | 0.02674
0.03311
0.03949
0.04586
0.05224 | 0.03375
0.04012
0.04650
0.05288 | 0.03439
0.04076
0.04714
0.05352 | 0.02865
0.03503
0.04140
0.04778
0.05416 | 0.03566
0.04204
0.04841
0.05479 | 0.03630
0.04267
0.04905
0.05543 |
0.03694
0.04331
0.04969
0.05607 | 0.0375
0.0439
0.0503
0.0567 | | 10
11
12
13 | 0.05735
0.06373
0.07013 ²
0.07652
0.08292
0.08932 | 0.06437
0.07076
0.07716
0.08356 | 0.05862
0.06501
0.07140
0.07780
0.08420
0.09061 | 0.06565
0.07204
0.07844
0.08484 | 0.06629
0.07268
0.07908
0.08548 | 0.06054
0.06693
0.07332
0.07972
0.08612
0.09253 | 0.06757
0.07396
0.08036
0.08676 | 0.06821
0.07460
0.08100
0.08740 | 0.06245
0.06885
0.07524
0.08164
0.08804
0.09445 | 0.0694
0.0758
0.0822
0.0886 | | 15
16
17
18 | 0.09574 ³
0.10215
0.10858
0.11501
0.12145 | 0.09638
0.10279
0.10922
0.11565 | 0.09702
0.10344
0.10987
0.11630
0.12274 | 0.09766
0.10408
0.11051
0.11694 | 0.09830
0.10472
0.11115
0.11759 | 0.09894
0.10537
0.11179
0.11823
0.12468 | 0.09959
0.10601
0.11244
0.11888 | 0.10023
0.10665
0.11308
0.11952 | 0.10087
0.10729
0.11372
0.12016
0.12661 | 0.1015
0.1079
0.1143
0.1208 | | 21
22
23 | 0.12790
0.13436
0.14082
0.14730
0.15379 | 0.13501
0.14147
0.14795 | 0.12919
0.13565
0.14212
0.14860
0.15509 | 0.13630
0.14277
0.14925 | 0.13695
0.14342
0.14990 | 0.13113
0.13759
0.14406
0.15055
0.15704 | 0.13824
0.14471
0.15119 | 0.13888
0.14536
0.15184 | 0.13307
0.13953
0.14601
0.15249
0.15899 | 0.1401
0.1466
0.1531 | | . 26
. 27
. 28 | 0.16029
0.16680
0.17332
0.17985
0.186410 | 0.16745
0.17398
0.18051 | 0.16159
0.16810
0.17463
0.18116
0.18772 | 0.16875
0.17528
0.18182 | 0.16941
0.17593
0.18247 | 0.16354
0.17006
0.17659
0.18313
0.18968 | 0.17071
0.17724
0.18378 | 0.17137
0.17789
0.18444 | 0.16549
70.17202
0.17855
0.18509
0.19165 | 0.1726 0.1792 0.1857 | | .31
.32
.33 | 0.19296
0.19954
0.20613
0.21274 ³
0.21935 | 0.20020
0.20679
0.21340 | 0.19428
0.20086
0.20745
0.21406
0.22068 | 0.20152
0.20811
0.21472 | 0.20218
0.20877
0.21538 | 0.19625
0.20283
0.20943
0.21605
0.22268 | 0.20349
0.21009
0.21671 | 0.20415 0.21076 0.21737 | 7 0.19823
5 0.20481
5 0.21142
7 0.21803
0.22467 | 0.2054
0.2120
0.2186 | | .36 | 0.226 ⁵ 0 ⁹ 0 ⁹
0.23265
0.23933 ²
0.24601
0.25274 ³ | 0.23332
0.24000
0.24669 | 0.22733
0.23398
0.24067
0.24736
0.25408 | 0.23465
0.24134
0.24803 | 0.23532
0.24200
0.24870 | 0.22932
0.23599
0.24267
0.24937
0.25610 | 0.23666
0.24334
0.25005 | 0.23732
0.24401
0.25072 | 0.23132
20.23799
0.24468
0.25139 | 0.2380
0.2453
0.2520 | | 41
42
43 | 0.25946
0.26621
0.27299
0.27978
0.286601 | 0.26689
0.27367
0.28047 | 0.26081
0.26757
0.27435
0.28115
0.28797 | 0.26824
0.27503
0.28183 | 0.26892
0.27571
0.28251 | 0.26284
0.26960
0.27639
0.28319
0.29003 | 0.27028
0.27706
0.28388 | 0.27095
0.27774
0.28456 | 0.26486
50.27163
10.27842
60.28524
0.29208 | 0.2723
0.2791
0.2859 | | . 45
. 46
. 47
. 48 | 0.29345
0.30032
0.30721 ²
0.31414
0.32109 | 0.30101
0.30791
0.31483 | 0.29482
0.30170
0.30860
0.31553
0.32248 | 0.30239
0.30929
0.31622 | 0.30308
0.30998
0.31692 | 0 0 . 29688
8 0 . 30377
8 0 . 31068
2 0 . 31761
8 0 . 32458 | 0.30446
0.31137
0.31831 | 0.30515
0.31206
0.31900 | 0.29894
50.30584
60.31275
00.31970
70.32667 | 0.306
0.313
0.320 | | .51
.52
.53 | 0.32807
0.33508
0.34212
0.34919
0.35629 | 0.33578
0.34282
0.34990 | 0.32947
0.33648
0.34353
0.35061
0.35772 | 0.33719
0.34424
0.35132 | 0.33789
0.34495
0.35203 | 7 0.33157
0.33860
5 0.34565
8 0.35274
5 0.35986 | 0.33930
0.34636
0.35345 | 0.34000
0.34707
0.35416 | 7 0.33368
0 0.34071
7 0.34777
5 0.35487
0 0.36201 | 0.3414
0.3484
0.3555 | | | | | | IABLE | 111 00 | minuea | | | | | |---------|--------------------|----------------------|----------|------------------|--------------------|--------------|--------------|----------|----------------------|---------| | f/f_0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | .55 | 0.36343 | 0.36415 | 0.36487 | 0.36559 | 0.36631 | 0.36702 | 0.36774 | 0.36846 | 0.36918 | 0.36989 | | | 0.37061 | 0.37133 | | | 0.37350 | | | | 0.37638 | | | | 0.37782 | 0.37855 | | | 0.38072 | | | | 0.38362 | | | | 0.38507 | 0.38580 | | | 0.38799 | | | | 0.39091 | | | . 59 | 0.39237 | 0.39310 | 0.39383 | 0.39457 | 0.39530 | 0.39603 | 0.39677 | 0.39750 | 0.39823 | 0.39897 | | | 0.39970 | 0.40044 | | | 0.40265 | | | | 0.40560 | | | | 0.40708 | 0.40782 | | | 0.41004 | | 0.41153 | | | | | | 0.41450 | 0.41524 | | | 0.41748 | | 0.41898 | | | | | | 0.42197
0.42948 | $0.42272 \\ 0.43024$ | | | 0.42497
0.43251 | | | | $0.42798 \\ 0.43554$ | | | | | 0.43024 | 0.43100 | 0.43173 | 0.43231 | 0.43327 | | | | | | | 0.43705 | 0.43781 | | | 0.44010 | | | | 0.44315 | | | | 0.44467 | 0.44544 | | | 0.44774 | | 0.44927 | | | | | | 0.45234 | 0.45312 | | | 0.45544 | | 0.45698 | | | | | | 0.46008 | 0.46086 | | | 0.46319 | | 0.46475 | | | | | .09 | 0.46787 | 0.46866 | 0.40944 | 0.47023 | 0.47101 | 0.4/100 | 0.47258 | 0.4/33/ | 0.47415 | 0.47494 | | | 0.47573 | 0.47652 | | | 0.47889 | | | | 0.48206 | | | | 0.48365 | 0.48444 | | | 0.48684 | | [0.48843] | | | | | .72 | 0.49164 | 0.49244 | | | 0.49485 | | 0.49647 | | | | | | 0.49970 | 0.50051 | | | 0.50295 | | 0.50457 | | | | | 1. | 0.50784 | 0.50866 | 0.30948 | 0.31030 | 0.51112 | 0.31194 | 0.51276 | 0.51558 | 0.51441 | 0.51523 | | | 0.51605 | 0.51688 | | 0.51854 | 0.51937 | 0.52019 | 0.52103 | 0.52186 | 0.52269 | 0.52352 | | | 0.52436 | 0.52519 | | | 0.52770 | | 0.52938 | | | | | | 0.53274^{5} | 0.53359 | | | 0.53613 | | 0.53783 | | | | | | 0.54123 | 0.54208 | | | 0.54465 | | 0.54637 | | | | | . 19 | 0.54981 | 0.55068 | 0.55154 | 0.33241 | 0.55327 | 0.55414 | 0.55501 | 0.55588 | 0.550/6 | 0.55/63 | | .80 | 0.55850 | 0.55938 | 0.56025 | 0.56113 | 0.56201 | 0.56288 | 0.56377 | 0.56465 | 0.56553 | 0.56642 | | | | 0.56819 | | | 0.57085 | | 0.57264 | | | | | | 0.57622 | 0.57712 | | | 0.57982 | | 0.58163 | | | | | | 0.58526 | 0.58618 | | | 0.58892 | | 0.59076 | | | | | .84 | 0.59445 | 0.59538 | 0.59631 | 0.39723 | 0.59816 | 0.59909 | 0.60003 | 0.60097 | 0.60190 | 0.60284 | | .85 | 0.60378 | 0.60472 | 0.60567 | 0.60661 | 0.60756 | 0.60850 | 0.60945 | 0.61041 | 0.61136 | 0.61231 | | | | 0.61423 | | | 0.61711 | | 0.61905 | | | | | | | 0.62391 | | | 0.62685 | | 0.62882 | | | | | | | 0.63378 | | | 0.63678 | | 0.63880 | | | | | .89 | 0.64284 | 0.64387 | 0.64489 | 0.64591 | 0.64693 | 0.04796 | 0.64899 | 0.65003 | 0.65106 | 0.65210 | | .90 | 0.65313 | 0.65418 | 0.65523 | 0.65628 | 0.65733 | 0.65837 | 0.65943 | 0.66050 | 0.66156 | 0.66262 | | | | 0.66476 | | | 0.66798 | | 0.67015 | | | | | | | 0.67562 | | | 0.67894 | | 0.68118 | | | | | | | 0.68683 | | | 0.69026 | | 0.69257 | | | | | .94 | 0.69724 | 0.69843 | 0.69961 | 0.70080 | 0.70199 | 0.70319 | 0.70439 | 0.70560 | 0.70681 | 0.70804 | | | | 0.71049 | | | 0.71421 | | 0.71673 | | | | | | | 0.72313 | | | 0.72706 | | 0.72971 | | | | | | | 0.73651 | | | 0.74070 | | 0.74356 | 0.74501 | 0.74646 | 0.74794 | | | 0.74942 | 0.75092 | 0.75243 | 0.75397 | 0.75552 | | 0.75867 | 0.76028 | 0.76192 | 0.76358 | | .99 | 0.76527 | 0.76698 | 0.768743 | 0.77053 | 0.77236 | 0.77425 | 0.77620 | (refer t | o table b | oelow) | | | .9960 | | | .998 | | 8125 | .999 | | 78315 | | | | .9965 | | | .998 | | 8148 | .999 | | 78340 | | | | .9970 | | | .9986 | | 8171 | .999 | | 78366 | | | | .9975 | | | .998 | | 8195 | .999 | | 78392 | | | | .9980
.9981 | | | . 9988
. 9989 | | 8218
8242 | .999 | | 78419 | | | | .9982 | | | .999 | | 8266 | .999
.999 | | 78446
78475 | | | | .9983 | | | .9991 | | 8290 | .999 | | 78505 | | | | .,,,,, | 0.70 | | .,,,, | 0.7 | | 1.000 | | 78540 | | | | | | | | | | | | | | Table IV—Radians Phase (±.000015) for Semi-Infinite Attenuation Slope k=1 $f>f_0$ | fō/f | 0 | 1 | 2 | 3 | 4 | 5 | 6 | . 7 | 8 | 9 | |-------------------|---------------------------------|-------------------------------------|---|-------------------------------|--|---|---|-------------------------------|---|----------------------------------| | .01
.02 | 1.56443
1.55806 | 1.56379
1.55743
1.55106 | 1.56952
1.56316
1.55679
1.55042
1.54405 | 1.56252
1.55615
1.54979 | 1.56188
1.55552
1.54915 | 1.56125
1.55488
1.54851 | 1.56061
1.55424
1.54787 | 1.55997
1.55361
1.54724 | 1.55934
1.55297
1.54660 | 1.55870
1.55233
1.54596 | | .06
.07 | 1.53258
1.52621 | 1.53195
1.52557
1.51919 | 1.53768
1.53131
1.52493
1.51855
1.51217 | 1.53067
1.52430
1.51792 | 1.53003
1.52366
1.51728 | 1.52940
1.52302
1.51664 | 1.52876
1.52238
1.51600 | 1.52812
1.52174
1.51536 | 1.52748
1.52111
1.51472 | 1.52685
1.52047
1.51409 | | .11 | 1.50067
1.49428 | 1.50003
1.49364
1.48724 | 1.50578
1.49939
1.49300
1.48660
1.48019 | 1.49875
1.49236 | 1.49811
1.49172
1.48532 | 1.49748
1.49108
1.48468 | 1.49684
1.49044
1.48404 | 1.49620
1.48980
1.48339 | 1.49556
1.48916
1.48275 | 1.49492
1.48852
1.48211 | | .16
.17 | 1.46864
1.46222
1.45579 | 1.46800
1.46157 | 1.47378
1.46736
1.46093
1.45450
1.44805 | 1.46672
1.46029
1.45385 | 1.46607
1.45964
1.45321 | 1.46543
1.45900
1.45257 |
1.46479
1.45836
1.45192 | 1.46414
1.45772
1.45128 | 1.46350
1.45707
1.45063 | 1.46286
1.45643
1.44999 | | .21 | 1.43644
1.42997
1.42349 | 1.43579
1.42933 | 1.44161
1.43514
1.42868
1.42219
1.41571 | 1.43450
1.42803
1.42155 | 1.43385
1.42738
1.42090 | 1.43320
1.42673
1.42025 | 1.43256
1.42608
1.41960 | 1.43191
1.42544
1.41895 | 1.43127
1.42479
1.41831 | 1.43062
1.42414
1.41766 | | .26
.27
.28 | 1.40400
1.39747
1.39094 | 1.40335
1.39682
1.39029 | 1.40920
1.40270
1.39617
1.38963
1.38308 | 1.40204
1.39551
1.38898 | 1.40139
1.39486
1.38832 | 1.40074
1.39421
1.38767 | 1.40008
1.39356
1.38701 | 1.39943
1.39290
1.38636 | 1.39878
1.39225
1.38570 | 1.39813
1.39160
1.38505 | | .31 | 1.37125
1.36467 | 1.37060
1.36401
1.35740 | 1.37652
1.36994
1.36335
1.35673
1.35011 | 1.36928
1.36269
1.35607 | 1.36862
1.36203
1.35541 | 2 1 . 36796
3 1 . 36136
1 . 35475 | 5 1 . 36730
5 1 . 36070
5 1 . 35409 | 1.36665
1.36004
1.35343 | 1.36599
1.35938
1.35277 | 1.36533
1.35872
1.35210 | | .36 | 1.33815
1.33147
1.32478 | 1.33748
1.33080
1.32411 | 3 1.34347
3 1.33681
0 1.33013
1 1.32344
0 1.31672 | 1.33614
1.32946
1.32277 | 1.33548
1.32879
1.32209 | 3 1 . 33481
9 1 . 32812
9 1 . 32142 | 1 1 . 33414
2 1 . 32746
2 1 . 32075 | 1.33347
1.32679
1.32008 | 7 1 . 33280
 1 . 32612
 1 . 31941 | 1.33213
1.32545
1.31873 | | .41 | 1.30458 | 1.30391
1.29713 | 1.30999
1.30323
31.29645
31.28965
1.28282 | 1.30255
1.29577 | 1.30187
1.29509 | 7 1 . 30120
9 1 . 29441
8 1 . 28760 | 0 1 . 30052
1 1 . 29373
0 1 . 28692 | 1.29984
1.29305
1.28624 | 1 . 29916
5 1 . 29237
1 1 . 28556 | 1.29849
1.29169
1.2848 | | .46 | 1.27048
1.26358
1.25666 | 1.26979
1.26289
1.25596 | 1.27597
1.26910
1.26220
1.25527
1.24831 | 1.26841
1.26150
1.25457 | 1 . 26772
1 . 26083
7 1 . 25388 | 2 1 . 26703
1 1 . 26012
8 1 . 25318 | 1.26634
21.25943
1.25249 | 1.26565
1.25874
1.25179 | 1.26496
1.25804
1.25110 | 1.2642
1.2573
1.2504 | | .51 | 1.23572
21.22868
31.22161 | 2 1.23502
3 1.22797
1 1.22090 | 3 1.24133
2 1.23431
7 1.22726
0 1.22019
9 1.21307 | 1.2336
1.2265
1.2194 | 1 1 . 23290
5 1 . 2258
8 1 . 21870 | 0 1 . 23220
5 1 . 22514
6 1 . 2180 | 0 1 . 23150
4 1 . 22444
5 1 . 21734 | 1.23079
1.22373
1.21663 | 9 1 . 23009
3 1 . 22302
3 1 . 21592 | 2 1.2293
2 1.2223
2 1.2152 | | Pinnerson | - | - | | | | | | | The state of s | - | |------------|---|------------------|-------------------|---|------------------|--------------------|--------------------|--------------------|--|-------------------| | f_0/f | 0 - | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 1 20726 | 1 20664 | 1 20502 | 1 20521 | 1 20440 | 1 20277 | 1 20206 | 1 20224 | 1 20162 | 1 00000 | | . 55 | 1 20/30 | 1 10046 | 1 10974 | 1 10802 | 1 10730 | 1 10659 | 1.20306
1.19586 | 1 10514 | 1.20102 | 1.20090 | | .57 | 1 19297 | 1 19225 | 1 19152 | 1 19080 | 1 19007 | 1 18935 | 1.18862 | 1 18700 | 1 18717 | 1 18645 | | .58 | 1.18572 | 1.18499 | 1.18426 | 1.18353 | 1.18280 | 1.18208 | 1.18135 | 1.18062 | 1.17989 | 1 17016 | | . 59 | 1.17843 | 1.17770 | 1.17696 | 1.17623 | 1.17550 | 1.17476 | 1.17403 | 1.17330 | 1.17256 | 1.17183 | | | | | | \ | | 1 | | | | | | . 60 | 1.17110 | 1.17036 | 1.16962 | 1.16888 | 1.16815 | 1.16741 | 1.16667
1.15927 | 1.16593 | 1.16519 | 1.16446 | | 62 | 1 15630 | 1 15555 | 1 15481 | 1 15406 | 1 15331 | 1 15257 | 1.15182 | 1 15107 | 1 15032 | 1.15/04 | | .63 | 1.14883 | 1.14808 | 1.14733 | 1.14658 | 1.14582 | 1.14507 | 1.14432 | 1.14357 | 1 14282 | 1 14900 | | .64 | 1.14131 | 1.14056 | 1.13980 | 1.13904 | 1.13829 | 1.13753 | 1.13677 | 1.13602 | 1.13526 | 1.13450 | | | 1 12255 | 1 12200 | 1 12000 | 1 12146 | 1 12070 | 1 12004 | 1 10017 | | | | | . 05 | 1.133/3 | 1 12536 | 1 12450 | 1 12382 | 1.130/0 | 1.12994 | 1.12917
1.12152 | 1.12841 | 1.12765 | 1.12689 | | 67 | 1.11845 | 1 11768 | 1 11690 | 1 11613 | 1 11536 | 1 11450 | 1.11381 | 1 11304 | 1 11227 | 1.11922 | | .68 | 1.11072 | 1.10994 | 1.10916 | 1.10838 | 1.10760 | 1.10682 | 1.10604 | 1.10526 | 1.10448 | 1 10371 | | . 69 | 1.10293 | 1.10214 | 1.10135 | 1.10057 | 1.09978 | 1.09900 | 1.09821 | 1.09743 | 1.09664 | 1.09586 | | | | | | | | | - | | | | | . 70 | 1.09507 | 1.09428 | 1.09349 | 1.09270 | 1.09191 | 1.09112 | 1.09032
1.08236 | 1.08953 | 1.08874 | 1.08794 | | 72 | 1.00713 | 1.00033 | 1 07755 | 1 07675 | 1.00390 | 1 07514 | 1.07433 | 1.08130 | 1.080/0 | 1.07996 | | 73 | 1.07110 | 1 07029 | 1 06947 | 1 06866 | 1 06785 | 1 06704 | 1.06622 | 1 06541 | 1 06450 | 1.0/191 | | .74 | 1.06296 | 1.06214 | 1.06132 | 1.06050 | 1.05968 | 1.05886 | 1.05804 | 1.05721 | 1.05639 | 1.05557 | | | | | 1 1 | | | | | | 1.0 | | | .75 | 1.05474 | 1.05391 | 1.05309 | 1.05226 | 1.05143 | 1.05060 | 1.04977 | 1.04894 | 1.04811 | 1.04727 | | . 70 | 1.04044 | 1 03721 | 1.044// | 1.04393 | 1.04309 | 1.04220 | 1.04142
1.03297 | 1.04058 | 1.03973 | 1.03889 | | 78 | 1 02057 | 1 02871 | 1 02786 | 1 02700 | 1 02615 | 1 02520 | 1.03297 | 1 00212 | 1.03127 | 1.03042 | | .79 | 1.02099 | 1.02012 | 1.01925 | 1.01839 | 1.01752 | 1.01666 | 1.01578 | 1.01491 | 1.01404 | 1 01317 | | | | | | | | | | | | | | .80 | 1.01230 | 1.01142 | 1.01054 | 1.00967 | 1.00879 | 1.00791 | 1.00703 | | | | | .81
.82 | .99458 | .99368 | 1.00172
.99278 | .99188 | .99994
.99097 | .99905
.99007 | .99816 | .99726 | .99637 | .99547 | | .83 | .98553 | .98462 | .98370 | .98279 | .98187 | .98096 | .98916
.98004 | .98826
.97912 | .98735
.97819 | .98644
.97727 | | .84 | .97635 | | .97449 | .97356 | .97263 | .97170 | .97077 | .96983 | .96889 | .96796 | | | 0.4500 | 0.1.05 | | | | | | | | .,,,,, | | .85 | .96702 | , | .96513 | .96418 | .96324 | .96229 | .96134 | .96039 | .95944 | .95848 | | .86 | .95753 | .95657 | .95561 | .95464 | .95368 | .95272 | .95175 | .95078 | .94981 | .94884 | | .87
.88 | .94787
.93801 | .94689
.93701 | .94591 | .94493 | .94395
.93401 | .94297
.93301 | .94198 | .94099 | .93999 | .93900 | | .89 | .92795 | | .92591 | .92488 | .92386 | .92284 | .93200
.92180 | .93099
.92077 | .92998
.91973 | .92896
.91870 | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .,20,0 | .,20,1 | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . > 2000 | . , , , , | .52100 | . 92011 | .91973 | .91070 | | .90 | .91766 | | .91557 | .91452 | .91347 | .91242 | .91136 | .91030 | .90924 | .90818 | | .91 | .90712 | .90604 | .90496 | .90389 | .90281 | .90174 | .90064 | .89955 | .89846 | .89737 | | .92
.93 | .89628
.88511 | .89518
.88397 | .89407
.88283 | .89296
.88168 | .89185
.88054 | .89074
.87938 | .88962 | .88850 | .88737 | .88624 | | .93 | .87355 | .87237 | .87119 | .87000 | .86881 | .86761 | .87823
.86641 | .87706
.86519 | .87590
.86398 | .87473*
.86276 | | | | 7.7 | | | | | .03011 | | .00070 | .00270 | | .95 | .86154 | .86031 | .85907 | .85783 | .85658 | .85533 | .85407 | :85280 | .85153 | .85025 | | .96 | .84896 | .84766 | .84637 | .84505 | .84374 | .84241 | .84108 | .83974 | .83839 | .83703 | | .97
.98 | .83567
.82138 | .83428
.81988 | .83290
.81836 | .83150
.81683 | .83009
.81528 | .82867
.81371 | .82724
.81212 | .82579 | .82434 | .82286 | | .99 | .80553 | | .80206 | | .79844 | .79655 | .79460 | .81051
(refer t | .80888
to table l | .80722
pelow) | | | 100000 | | | | | | | (10101) | - Cubic I | | | | .996 | | 79460 | | | .78954 | | 9992 | 0.78765 | | | | .996 | | 79360 | | | .78931 | | 9993 | 0.78739 | | | | .997 | | 79257 | | | 78908 | | 9994 | 0.78714 | | | | .997
.998 |
| 79152
79044 | | | . 78885
. 78862 | | 9995
9996 | 0.78688 | | | | .998 | | 79022 | | | .78838 | | 9990
9997 | 0.78661
0.78633 | | | | .998 | | 78999 | | | .78814 | | 9998 | 0.78605 | | | | .998 | | 78977 | | | .78789 | | 9999 | 0.78575 | | | | | | | | | | | 0000 | 0.78540 | | | _ | | | | | | | | | | | of phase versus frequency and drawing a smooth curve weighting the points in accordance with the errors known by experience to occur for various types of departures of the straight line approximation from the exact characteristic. Although the degree and db relationship is applicable to attenuation and phase computations, nepers and radians are proper theoretical units which can be used in other problems⁹. For instance, Tables III and IV give the ⁹ Bode, "Network Analysis and Feedback Amplifier Design," Chapter XV, page 340. reactance in ohms associated with a semi-infinite unit slope of resistance where a unit slope of resistance is one in which a one-ohm change in resistance TABLE V TABULATION OF CRITICAL POINTS AND DETERMINATION OF SLOPES OF STRAIGHT LINES APPROXIMATING CHARACTERISTIC OF FIG. 5 | n | f_n | A_n | $A_n - A_{n-1}$ | $20 \log \frac{f_n}{f_{n-1}}$ | k_n | |-----|-------|--------|-----------------|-------------------------------|--------| | 0 | .13 | 0 | _ | | | | 1 | .433 | -1.40 | -1.40 | 10.45 | 134 | | 2 | 1.19 | -5.55 | -4.15 | 8.78 | 473 | | 3 | 1.38 | -5.55 | .00 | 1.287 | 0 | | 4 | 1.62 | -4.30 | +1.25 | 1.393 | +.897 | | 5 | 1.96 | 45 | +3.85 | 1.655 | +2.326 | | 6 | 2.20 | 45 | .00 | 1.003 | 0 | | 7 | 3.00 | -6.70 | -6.25 | 2.694 | -2.320 | | 8 | 5.00 | -13.40 | -6.70 | 4.437 | -1.510 | | 9 | 20.0 | -26.00 | -12.60 | 12.04 | -1.046 | | 10' | 40.0 | -32.0 | -6.0 | 6.02 | | | 10 | 00 | | | | -1.0 | Note that $f'_{10} = 40.0$ is chosen to get k_{10} over a finite section of the semi-infinite slope extending to $f = \infty$. | n | f_n from Table V | $\frac{f_n}{f}$ | $\frac{f}{f_n}$ | θ_n Degrees | $\theta_{n-1} - \theta_n$ Degrees | k_n from Table V | $\begin{array}{c} k_n(\theta_{n-1}-\theta_n) \\ \text{Degrees} \end{array}$ | |--|---|------------------------------|--|---|-----------------------------------|---|---| | 0
1
2
3
4
5
6
7
8
9 | .13
.433
1.19
1.38
1.62
1.96
2.20
3.00
5.00
20.0 | .087
.289
.793
.920 | .926
.765
.682
.5
.3
.075 | 86. 824
79. 357
58. 349
51. 353
39. 029
30. 283
26. 450
18. 797
11. 056
2. 737
.000 | | $ \begin{array}{c}134 \\473 \\ 0 \\ +.897 \\ +2.326 \\ 0 \\ -2.320 \\ -1.510 \\ -1.046 \\ -1.00 \end{array} $ $ (\theta_{n-1} - \theta_n) \\ \theta (f = 1.5) $ | | Note that for f_0 to f_3 the ratio of f to f_n must be taken f_n/f to be less than unity and θ_n is therefore read from Table II, whereas for f_4 to f_{10} the ratio must be taken f/f_n and θ_n is therefore read from Table I. occurs between frequencies which are in the ratio e=2.7183. The same technique described above for the determination of the phase associated Table VII CRITICAL POINTS FOR FIVE LINE APPROXIMATION TO CHARACTERISTIC OF FIG. 5 | n st | f_n | A_n | |------|-------|-------| | 0 | .25 | 0 | | 1 | 1.40 | -5.8 | | 2 | 2.10 | 0 | | 3 | 3.00 | -7.0 | | 4 | 10.0 | -20.0 | | 5' | 40.0 | -32.0 | | 5 | ∞ | | Fig. 6-Phase associated with 20 log | Z | of Fig. 5. with a given attenuation characteristic may therefore be used to determine the reactance associated with a given resistance characteristic. The only TABLE VIII TABULATION OF CRITICAL POINTS AND DETERMINATION OF SLOPES OF STRAIGHT LINES APPROXIMATING RESISTANCE CHARACTERISTIC OF FIG. 7 | | | - 1 | | 6 1 | | | |----|-------|-------|----------------|----------------------------------|------------|--| | n | f_n | R_n | R_n-R_{n-1} | $2.303 \log \frac{f_n}{f_{n-1}}$ | k_n | | | 0 | .078 | 1.000 | 0 | | | | | 1 | . 185 | .912 | 088 | .864 | 102 | | | 2 | . 290 | .805 | — . 107 | .450 | 238 | | | 3 | .900 | .400 | 405 | 1.133 | 357 | | | 4 | 1.20 | .400 | 0 | | | | | 5 | 1.50 | .547 | +.147 | .2231 | +.659 | | | 6 | 1.67 | .840 | +.293 | .1074 | +2.728 | | | 7 | 1.84 | 1.280 | +.440 | .0969 | +4.54 | | | 8 | 1.92 | 1.280 | 0 | | | | | 9 | 2.20 | .335 | 945 | .1361 | -6.94 | | | 10 | 2.45 | .094 | 241 | .1076 | -2.24 | | | 11 | 2.85 | .015 | 079 | 1512 | 52 | | | 12 | 5.00 | .000 | 015 | .562 | 027 | | | 9 | 5.00 | .000 | .013 | .502 | .021 | | Table IX Summation of Reactance Associated with Resistance of Fig. 7 at f=1.0 | n | f_n (From Table VIII) | $\frac{f_n}{f}$ | $\frac{f}{f_n}$ | X_n Ohms | $X_{n-1} - X_n$ Ohms | k_n (From Table VIII) | $k_n (X_{n-1} - X_n)$ Ohms | |----|-------------------------|-----------------|-----------------|------------|---|-------------------------|----------------------------| | 0 | .078 | .078 | | 1.52111 | | | | | 1 | .185 | .185 | | 1.45257 | .06854 | 102 | 0070 | | 2 | .290 | . 290 | | 1.38439 | .06818 | -238 | 0162 | | 3 | .90 | .900 | | .91766 | .46673 | 357 | 1666 | | 4 | 1.20 | | .833 | . 58801 | .32965 | | | | 5 | 1.50 | | .667 | .45004 | .13797 | +.659 | +.0909 | | 6 | 1.67 | | . 599 | .39897 | .05107 | +2.728 | +.1393 | | 7 | 1.84 | | .543 | .35844 | .04053 | +4.54 | +.1840 | | 8 | 1.92 | | .521 | .34282 | .01562 | • | | | 9 | 2.20 | | .455 | . 29688 | .04594 | -6.94 | 3188 | | 10 | 2.45 | | .408 | .26486 | .03202 | -2.24 | 0717 | | 11 | 2.85 | | .351 | .22666 | .03820 | 52 | 0199 | | 12 | 5.00 | , | . 200 | .12790 | .09876 | 027 | 0027 | | | | | | | $\sum k_n (X_{n-1} - X_n) =1887$ $X (f = 1.0) =189 \text{ Ohm}$ | | | difference is that the slopes of the straight lines approximating the resistance plotted on a log frequency scale are determined by the expression below: $$k_n = \frac{R_n - R_{n-1}}{\log_s \frac{f_n}{f_{n-1}}} = \frac{R_n - R_{n-1}}{2.303 \log \frac{f_n}{f_{n-1}}}$$ where: R_n is the resistance at f_n on the straight line approximation to R. Fig. 7—Resistance characteristic. Fig. 8-Reactance associated with resistance characteristic of Fig. 7. As an example of the determination of the reactance associated with a given resistance characteristic, consider the resistance characteristic of Fig. 7 and the straight line approximation shown in dotted form. The slopes of the straight lines are determined as illustrated in Table VIII. Having determined the slopes of the various straight lines of the approximation, the reactance can be summed at any desired frequency. As an illustration the reactance is summed at f = 1.0, in Table IX. The mesh computed reactance of the network of Fig. 7 is plotted in Fig. 8 and the reactance summed for f=1.0 is seen to be within .01 ohm of the true reactance. The reactance was summed at a considerable number of frequencies and the results plotted as individual points in Fig. 8. The degree of approximation to the true reactance should be similar to the Fig. 9-Parallel T network. degree of approximation to the original resistance and this is borne out by the example where the straight line approximation to the resistance characteristic is within \pm .03 ohm and the maximum departure of the reactance determined from the straight line approximation is \pm .025 ohm. As was pointed out in the attenuation example a much simpler straight line approximation to the resistance characteristic would have resulted in a reactance determination without too much greater error than the determination of the illustration. A word of caution is necessary in connection with the use of the straight line approximation method discussed above. The true phase or reactance is reliably obtained only in those cases where the problem in question is a minimum phase one. In order to illustrate the failure of the method in those problems in which non-minimum phase conditions exist consider the parallel T network of Fig. 9. The transfer impedance Z_{012} defined by the ratio of the open circuit voltage E_2 to the open circuit driving current I_1 is given by: $$Z_{012} = \frac{1}{2} \frac{1+d}{2+d} \frac{1+dp+p^2}{p(1+p)}.$$ Fig. 11—Phase angle of $\frac{Z_{012}}{Z_{\infty}}$ for network of Fig. 9. If we take the ratio of Z_{012} to its value for $\omega = \infty$ then: d $$\frac{Z_{012}}{Z_{\infty}} = \left| \frac{Z_{012}}{Z_{\infty}} \right| e^{j\theta} = \frac{1 + dp + p^2}{p(1+p)}.$$ $20 \log \left| \frac{Z_{012}}{Z_{\infty}} \right|$ is plotted in Fig. 10 for d=+1/4 and it is apparent than 20 $\log \left| \frac{Z_{012}}{Z_{\infty}} \right|$ for d=-1/4 is identical. This identity does not hold for θ , however. This is shown in Fig. 11 where θ for d=+1/4 and θ for d=-1/4 are plotted. The real characteristic of Fig. 10 was then approximated by a series of straight lines determined by the critical points listed and the phase associated with this straight line approximation summed. The phase so determined is plotted as individual points in Fig. 11. It is seen that this summation determined the phase of the function in question for d=+1/4 but completely failed to do so for d=-1/4. The function for d=-1/4 is an example of a non-minimum phase function for which the above technique fails to determine the phase of the function from its attenuation characteristic.¹⁰ There are certain instances where the above technique can be usefully applied in connection with non-minimum phase systems in
spite of the failure of the method to predict the total phase.¹¹ However, the necessity of checking for non-minimum phase conditions and, if such exist, determining whether the above method of computing phase is at all applicable, is illustrated by the non-minimum phase example above. ¹⁰ This is the anticipated result since the function is identified as a non-minimum phase function by the fact that it has two zeros falling in the right half p plane. ¹¹ Bode, "Network Analysis and Feedback Amplifier Design," Chap. XIV, page 309.