Some Results on Cylindrical Cavity Resonators
By J. P. KINZER and I. G. WILSON

Certain hitherto unpublished theoretical results on cylindrical cavity reson-
ators are derived. These are: an approximation formula for the total number
of resonances in a circular cylinder; conditions to yield the minimum volume cir-
cular cylinder for an assigned Q; limitation of the frequency range of a tunable
circular cylinder as set by ambiguity ; resonant frequencies of the elliptic cylinder;
resonant frequencies and Q of a coaxial resonator in its higher modes; and a brief
discussion of fins in a circular cylinder.

The essential results are condensed in a number of new tables and graphs.

INTRODUCTION

HE subject of wave guidesand the closely allied cavity resonators was

of considerable interest even prior to 1942, as shown in the bibliography.

It is believed that this bibliography includes virtually everything published

up to the end of 1942, During the war, many applications of cavity reso-

nators were made. Among these was the use of a tunable circular cylinder

cavity in the TE 01n mode as a radar test set; this has been treated in pre-

vious papers.'? During this development, a number of new theoretical

results were obtained; some of these have been published.? Here we give

the derivation of these results together with a number of others not previ-
ously disclosed.

In the interests of brevity, an effort has been made to eliminate all
material already published. For this reason, the topics are rather discon-
nected, and it is also assumed that the reader has an adequate background
in the subject, such as may be obtained from a study of references 3 to 7
of the bibliography, or a text such as Sarbacher and Edson.®

A convenient reference and starting point is afforded by Fig. 1, taken from
the Wilson, Schramm, Kinzer paper.? This figure also explains most
of the notation used herein.
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3. Limitation of frequency range of a tunable cavity in the TE 01% mode
as set by ambiguity.

4. Resonant frequencies of an elliptic cylinder. .

5. Resonant frequencies and Q of higher order modes of a coaxial reso-
nator.

6. Fins in a circular cylinder.

APPROXIMATION FORMULA FOR NUMBER OF RESONANCES IN A
Circurar CYLINDER

From Fig. 1, the resonant frequencies of the cylindrical cavity are ob-
tained from the equation:

2 2
1o (7Y 4 (o
o= (3) +(5) ®
in which # is written in place of rym , to simplify the equations. The dis-

tribution of the resonant frequencies, starting with the lowest, can be
approximated by a continuous function

N = F(fo) = G(\o)

where N represents the total number of resonances up to a frequency fo
or a wavelength Ao . This is bound to be an approximation, since the true
function F is discontinuous (or stepped) by virtue of the resonances being a
series of discrete values. For practical purposes, if F fits the stepped curve
so that the steps fluctuate above and below F, it will be a useful approxi-
mation.

Derivation of such a formula as applied to the acoustic resonances of a
rectangular box has recently been a subject of investigation by Bolt? and
Maa.'® Only slight modifications of their method need be made to apply
to the present situation.

. T\?
Multiply (1) thru by (E :

wafz_z '.rrt:m2
(T) -7 +(ﬂ)
wan

2%) is plotted on the XV plane the distance from the
waf

origin to this point will be "5

Hence, if a point (r,

and hence a measure of the resonant fre-

quency. If all such points are plotted, they will form a lattice represent-
ing all the possible modes of resonance. The problem, then, is tofind the
'ﬂ'ﬂfo

number of lattice points in a quadrant of a circle with radius, R =
c
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The values of the Bessel zero, 7, are not evenly spaced along the X axis;
indeed the density, or number per unit distance, increases as 7 increases.
Let the density be p(x). Then the problem becomes one of finding the
welght of a quadrant of material whose density varies as p(x).

Suppose the expression for M, the number of zeros 7, less than some value

%, is of the form
M = Ax* 4 Bx
whence, by differentiation,
p(x) = 2 Ax + B. s, o
The weight, W, of the quadrant of a circle of radius R is then, by ihtegra-

tion,

_2 3 ™ 2
W—:;AR -+ 4BR.

. 2 . . o . 2L
Since there are —i’ lattice points per unit distance along the ¥ axis, ——f—f
ks i

is apparently the total number of points in the quadrant. However, there
are two small corrections to consider. First is that in this procedure a
lattice point is represented by an area and for the points along the X axis

e
half the area, i.e., a strip - wide lying in the adjacent quadrant, has been
Par q

omitted. Second is that the restriction # > 0 for TE modes eliminates
half the points along the X axis. As it happens, these corrections just
cancel each other. Thus we have

_ 1674V | 7B S

ERREE
in which
ra’L
V= 1 wa. N = fo
From a tabulation!! of the first 180 values of 7, the empirical values 4 =
0.262, B = 0 were obtained. This gives
V
N=4393
Ao

Subsequently, from an analysis of over a thousand modes in a ‘“‘square
cylinder” (¢ = L), Dr. Alfredo Bafios, formerly of M.L.T. Radiation Lahb-
oratory, has calculated the empirical formula

Vv S
N =438 Y 4 0.089 5 (2)

bY;
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from which 4 = 0.262, B = 0.057. These values give better agreement
with the 180 tabulated values of r,

There is a two-fold degeneracy in a circular cylinder for modes with
£ > 0, which is removed, for example, when the cylinder is made elliptical.
The total number of modes, then, counting degeneracies twice, is about 2N,
which brings (2) in line with the general result that, in any cavity resonator,

vV
the total number of modes is of the order 8?” NE
0

MinmmuM VOLUME OF CIRCULAR CYLINDER FOR ASSIGNED (0

In practical applications of resonant cavities, the conditions of operation
may require high values of Q which can be attained only by the use of high
order modes. The total number of modes, most of which are undesired,
can then be reduced only by making the cavity volume as small as possible,
consistent with meeting the requirement on Q.

It will be shown that, for a cylinder, operation in the TE 01z mode very
probably gives the smallest volume for an assigned Q.

Statement of Problem

When the relative proportions (the shape) of a cavity and the mode of
oscillation are fixed, both the Q and the volume, V, of the cavity are func-
tions of the operating wavelength, A. Since we are primarily interested
in the relationship between Q and V', with A fixed, some simplification can
be made by eliminating A as a parameter. This may be done by a change of

variables to Q'%and 7% , respectively; to simplify the typography, these

quantities will be denoted by single symbols:

é

P=0%
V

WE-ﬁ.

We are, consequently, interested in the following specific problem:

In a circular cylindrical resonator, which is the optimum mode
family and what is the corresponding shape to obtain the smallest
value of W for a preassigned value of P? '

A rigorous solution cannot be obtained by the methods of elementary
calculus, since P is not a continuous function of the mode of oscillation.
However, a possible procedure is to assume continuity, and examine the
relation between P and W under this assumption. If sufficiently positive
results are obtained, the conclusions may then be carried over to the dis-
continuous (i.e., the physical) case with reasonable assurance that, except
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perhaps for special values, the correct answer is obtained. We proceed on
this basis. y

Solution

To permit a more coherent presentation of the arguments, only their
general outline follows. More mathematical details are given later.

We start with the formulas for Q ;3—\ (= P) as given in Fig. 1.

The first operation is to show that, under comparable conditions, ie.,
A, r, n fixed, the TE Omn modes give the highest values of P. That this is
plausible can be seen in a general manner from the equations as they stand.
For the TE modes, if £ = 0, the numerator of the fraction is largest. Also,
P simplifies, and the denominator roughly reduces the expression in square
brackets to the 1/2 power. Now compare this expression with those for
the TM modes. That for the TM modes (n > 0) is smaller because of the
factor (1 + R) in the denominator. Finally, that for the M modes (n=
0) is still smaller, because 1 < (1 4 p2R?)'2,

This leaves only the TE Omn modes to be considered, and the next step
is to show that m = 1 is the most favorable value. Since the relation be-
tween P and W is complicated, a parameter ¢ is introduced, with ¢ defined
by
: tan ¢ = pR. (3)

The resulting parametric equations are:
p=rt 1 n
- 21!‘ 3 1 . 3 ( )
cos ¢ -+ }-bsm ©

pr 1

W= 2 cos® @sing’ (5)

For each of the discrete values of » and n (n is related to p) then, plots
of P vs W can be prepared as shown in Fig. 2 for the TE 01n modes.

Inspection of Fig. 2 shows that the best value of Q does not correspond
to a minimum of W or a maximum of P for a given value of #, but rather to
a point on the “envelope” of the curves. To get the envelope, we assume
# to be continuous and proceed in the standard manner. It turns out that,

by solving (4) for p in terms of P, r and ¢, substituting the resulting ex-
pression in W, and setting %Ef = 0 an equation is obtained which, when
%

solved for ¢, gives the values of ¢ which lie on the envelope.
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. . . . aw .
We next substitute this expression for ¢ in W and calculate —, Assuming

now that r is continuous, and find that W has no minimum. Practica.lly,-_
this means that the smallest value of r should be used, i.e., the TE 01z mode.
Finally, since from Fig. 2 it is seen that the envelope is reasona.bly smooth

)
for values of Q > 1, the expression for ¢ derived on the a,ssumptmn of

continuous p is used to obtain a simple relation of great utility in practlcal
cavity design. - -

Details of solulion

In (3), since R must be finite for a physical cylinder, 0 < tan ¢ < =,
0<sing <1, and0 < cos ¢ < 1. Hence we may always divide by
sin ¢ or cos ¢. Note that ¢ ranges between 0° and 90°.

From Fig. 1,

2r(1 + p'RY)"

k =
a
whence
ksing = 2R ©)
a
2r
keose = . )
We define W by:
vV _xd K '
W=%~1& & ®)

Substituting (6) and (7) in (8),
Pf’ /
T 4n’cos psing’ (5)

Substitution of (3) into the expression for Q ; (= P) for the TE modes as

given in Fig. 1 yields, after some manipulation

po . 1 — (¢/r)

T cost o + % sin® ¢ + (cos ¢ — % sin :p) (t/r)’sin’ ¢
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! To show that any value of £ > 0 reduces P below its value when { = 0,
let

)
Il

1.
cosacp-i-issm"‘rp

b= (cos:p — 115 sin (p) sin? ¢

¢ = (£/r)

It suffices to show that

1 1—¢

e a-+bc
where the question is in doubt because b may take on negative values. If
the inequality is to be valid, it is necessary only that (b + a) > 0, that is,
cosg > 0. Hence, for the TE modes, only £ = 0 needs be considered. For
this case, the expression for P simplifies to

r 1
P = 1 @)
Tcos® @ + = sin’ o
?
For the TM modes, there is similarly obtained
r 1
P = —
2Tc05¢+lsin<p n>0 ©)
?
r COoS ¢
P= n =10, (10)

1 .
2wcos¢+2—psm¢

It is easy to show, since cos ¢ < 1 and sin ¢ < 1, that both (9) and (10)
are less than (4').

Hence we have shown that, under comparable conditions, i.e., » and p
constant, the TE Omn modes have higher values of P than any others.
There is one flaw in the argument, viz., r takes on discrete values and cannot
be made the same for all modes. It is conceivable, therefore, that for some
specific values of P, a mode other than the TE Omn can be found which
gives a smaller I than either of the two “adjacent” TE Omn modes, one
having a value of r higher, the other lower, than the supposed high-P
mode. This situation requires further refinement, and hence complication,
in the analysis; we pass over this point.

Having so far indicated that the TE Omn modes are the best, our next
objective is find the best value of m, if possible.
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By use of the parametric equations (4) and (5), Fig. 2 has been plotted
for r = 3.83 (TE 01n modes) and values of # from 1 to 9. This drawing
shows that, for each discrete value of 7, minimum W/P is given by points
on the “‘envelope” of the family of curves.

The standard method of obtaining the envelope is to express W as a
function of P with n as parameter (r is assumed fixed, for the moment),

. ] s . . .
i.e., W = F(P, n),and then set 9F 0. However, in this case it is easier

an
to express W = G(P, ¢) and ¢ = H(n), whence
oF _2G o
an o on

and the envelope is obtained by setting g—g = 0 provided g—: # 0. We

proceed, therefore, as follows.
Assume # is continuous, and solve (4) for #, obtaining:

sin® ¢
P e, (1)
2rP
Now substitute (11) in (5). This gives W as a function of P and ¢:
W = ra sin2¢
A cos’o [ ~— — cos’ . (12)
“\2xP ¢
aw . . T N
To solve P = 0, we differentiate and simplify. This yields
3 5 r
-3 = .
5cos ¢ s’ = —5 (13)

Substituting (13) back into (11) yields

2sin ¢
3 cost (14)

P =
The situation so far is that, with P.and r assigned, W lies on the en-

velope and is a minimum when ¢ satisfies (13); # is then given by (14).
Obviously, for (13) to hold, it is necessary that

r
— < 1.

2xP
To obtain the best value of , the procedure is to differentiate Wy, with

respect to r, assuming now that 7 is continuous, and examine for a mini-
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mum. We can, however, first differentiate (12) by setting

dW _ oW | W 3¢

dr ar | e or

and then substitute from (13). However, when (13) is satisfied, g = 0.
This process yields

E!_V _ _r_2 (2 — 3 cos’p)

dr w2 9sin?¢ cost ¢

. d - aw
This shows E‘i—/ to be positive, when cos?¢ < 3. Hence o 0 corresponds

to a maximum, rather than a minimum.* If cos?¢ < %, that is, ¢ > 35°16¢/,
then r should be as small as possible. The smallest r is 3.83, for the TE
017 modes. For r = 3.83, and ¢ > 35° from (13) there is obtained P >
0.75.

The analysis thus indicates that, for values of'P = Q g-g'reater than 0.75,

the TE 01n mode yields the smallest ratio W/P or V/Q.

An interesting and simple relation between fe and R for minimum W/P
can easily be derived from the foregoing equations. Substitute (14) back
into (6), thereby obtaining

_ 4Rr
3acost ¢’

(15)

Now use (7) with (15) to eliminate cos ¢, replace k by 2x/A, and r by 3.83,
its numerical value for the TE 01z modes. This gives

2
a
(&) & - 22

ot by substituting A = =, ¢ = 3 X 10",

o

(a)* R = 20.1 x 10%.

This useful relation was first discovered by W. A. Edson.

Some further discussion is of interest. It is realized that a number of
points have not been taken care of in a manner entirely satisfactory mathe-
matically, but nevertheless important practical results have been obtained.
As an example, since p and r can assume only discrete values, there are

* It is for this reason that the determination of the stationary values of W(r, p, ¢),

subject to the constraint P(r, p, ¢) = constant, by La Grange multipliers fails to yield
the desired least value of W/P.
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specific situations where some mode other than the TE 01z gives a smaller
W/P. For example, it may be shown that for P between 0.97 and 1.14
the TE 021 mode yields a smaller W than the TE 013 or T'E 014 modes.
However, the margin is small, and fon larger P, the TE 021 modes become
progressively poorer.

LivmitatioN oN FREQUENCY RANGE OF TuNABLE CAVITY AS SET
BY AMBIGUITY

In the design of a tunable cylindrical resonant cavity intended for use
in the TE 01z mode, the requirements on Q may dictate a diameter large
enough to sustain TE 02n" or TE 03n" modes. Also, the range of variation
of cavity length may be such that the TE 01(n + 1) mode is supported. As
the cavity is required to tune over a certain range of frequency, the maximum
frequency range possible in the TE 01z mode without interference from the
TE01(n + 1)torany TE 02 or TE 03 modes isof interest. The interference
from the TE 01(n + 1) limits the useful range of the TE 01z by the presence
of extraneous responses at more than one dial setting for a given frequency
or more than one frequency for a given dial setting. In applications so far
" made, it has been possible to eliminate extraneous responses from the TE 02
and TE 03 modes, but crossings of these modes with the niain TE 01z mode
have not been permitted. No designs have had dlameters sufficiently large
to support- TE 04 modes.

The desired relations are easily obtained by simple algebraic manipula-
tion of equation (1). For simplicity in presentation of the results, we in-
troduce some symbols applicable to this section only:

2 2
A= [M] B = [E] = 2.247 X 10”
- 2

Ao = value of A for TE 01z modes = 13.371 X 10"

b= A/40

xo = (a/L)? at low frequency end of useful range of TE 01z mode
F = frequency range ratio = maximum f

- yrane minimum f’

The values of A and ¢ depend upon the interfering mode under considera-
tion. For the TE 02n modes, 4 = 44.822 X 10”, t = 3.3522.
The two typical cases of interest are shown on Fig. 3. For case I, am-

1 It is easy to show that the extraneous response from the TE 01(n — 1) mode is not
limiting. The proof depends on the inequality n2 > (n + 1) (n — 1). S



SOME RESULTS ON CYLINDRICAL CAVITY RESONATORS 421

n
‘@
«
e
" m=4
>
3
2

] i

TE 02 i

1

|

|

[}

n=4 :

]

1

3

TE 01
\

X0 Xo

- (-8)2

x= (%)

Fig. 3—Mode chart illustrating types of interference with TE 01n mode.

biguity from TE 01(n + 1) mode, it is found that

o Aot B + 1)’x
Ao + Balx '

Curves of F for this case are shown on Fig. 4.
" The maximum value of F is obtained when x, = « and is

Fo. ="t
n
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Fig. 4—Curves showing maximum value of frequency ratio without interference from
TE 01(n + 1) mode (case I of Fig. 3).

Tasre I.—Case II: Maximum Freguency Range Ratio, F, for TE 0ln Mode when Limited
by Mode Crossings with TE 02m and TE 02(m—+-1) Modes.

n=3 n=4 n =12

F (@/L)min F (@/L)min F (@/L)min

1.198 1.323 1.086 0.966 1.008 0.313
1.242 1.080 1.013 0.316

1.104 0.418
1.168 0.471
1.345 0.564

SO0 ~TCh Ui I b s
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For case II, range limited by mode crossings, it is found that

A — 4

= Bt — %

R #* — nntt — (0’ 4+ 1)7
T (= am — (' + 1Y

Xo

Some values for this case are given in Table T.
The formulas above are general and may be used for any pair of mode
types by using the appropriate values for 4 and ¢.

THE Errreric CYLINDER

In the design of high Q circular cylinder cavity resonators operating in
the TE 01n mode, it is desirable to know how much ellipticity is tolerable,
so that suitable manufacturing limits may be set. The elliptical wave
guide has already been studied, notably by Brillouin'? and Chu,* but the
results are not in suitable form or of adequate precision for the present
purposes. More recently tables!* have become available which permit the
calculation of some of the properties of the elliptical cylindrical resonator.

The elliptical cavity involves Mathieu functions, which are considerably
more complicated than Bessel functions.!® The tables give the numerical
coefficients of series expansions, in terms of sines, cosines, and Bessel func-
tions, of the Mathieu functions up to the fourth order. These tables have
been used for the calculation of some quantities of interest in connection
with elliptical deformations of a circular cylinder in the TE 01n mode.

The Ellipse

All mathematical treatments of the ellipse (including the tables men-
tioned above) use the eccentricity, e, as the quantity describing the amount
of departure from the circular form. The eccentricity is the ratio

distance between foci
major axis ’

This is not a quantity subject to direct measurement, hence we here in-
troduce and use throughout the ellipticity, E, defined as

_ difference between major and minor diameters
major diameter ’

E

It is clear that the ellipticity is easily obtained directly.
Again, many results are given in terms of the major diameter. Since we
are interested in deformations from circular, and in such deformations the
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perimeter remains constant, while the major diameter changes, we have
expressed our results in terms of an average diameter, defined as

rimet
p — perimeter

o
Figure 5 shows the ellipse and various relations of interest.

Y

P=PERIMETER

FOCUS

I-————E Co-—--

(DISTANCE B

 je——————2b (MINOR AXIS)-~-m———|

e= ECCENTR!CITY:C—

E]
E=ELLIF"I‘ICITY=(a;ab) b=ayi-e2=a(1-€)
A= AREA=TTab A=Tra2\fi-e2=Ta2 (1-E)

D ="AVERAGE" DIAMETER:%

Fig. 5—The ellipse

Elliptic Coordinates and Functions

The elliptic coordinate system is shown on Fig. 6. Following Stratton,'
we have used £ in place of the table’s z, since we wish to use z as the coor-
dinate along the longitudinal axis. Stratton also uses n = cos ¢ as the angu-
lar coordinate; this is frequently convenient.

Analogous to cos £6 and sin {6 in the circular case, there are even and
odd* angular functions, denoted by

°Sylc, cos @) and °S,(c, cos ¢)

which reduce to cos £6 and sin £8 respectively when ¢ — 0. Similarly, there
are even and odd* radial functions, denoted by

‘Ty(c, &) and °J(c, £)

* For £ = 0, only even functions exist.



SOME RESULTS ON CYLINDRICAL CAVITY RESONATORS 425

which both reduce to J,(kip) when ¢ — 0. 1In the above, ¢ is a parameter
related to the ellipticity.* The tables do not give values of the functions,
but rather give numerical coefficients

D% and F

of expansions in series of cosine, sine and Bessel functions, which permit one
to calculate the elliptic cylinder functions. The coefficients, of course,

Y
= 90
E'a,o 75
4
60 “Ag
g
2
45”1,
90,
2.0 %
%
30 'S,
1.5
1.2 15
te-~1-Cof~—=

Fig. 6—Elliptic coordinate system

depend on the parameter c; the largest value of ¢ in the tables is 4.5, which
corresponds to an ellipticity of 399 in a cylinder operating in the TE 01n
mode.** For this case, Bessel functions up to Ji(x) and J 12(x) are needed
for calculating the radial function. It is clear ‘that calculations on elliptic
cylinders have not been put on a simple basis.

* Not to be confused with ¢ = velocity of electromagnetic waves; the symbol ¢ is

here carried over from the published tables. )
** An ellipticity of 399, means that the difference between maximum and minimum

diameters is 399, of the maximum diameter. For a given ¢, the ellipticity depends on
the mode. : i ; 3
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Field Equations
The equations for the fields are easily obtained from settion 6.12 of
Stratton’s book, and are given in Table II, which is self-explanatory, except
for the quantity ¢, which we now proceed to discuss.
Resonant Frequencies

The elliptic cylinder has the major diameter, 2¢, and the focal distance,
a

2¢,. The equation of its surface is then expressed by § = o= On
0

this surface, E, must vanish. This requires that “Jy(c, @) = 0 for TE
modes and that “J,(c, @) = 0 for TM modes. The series expansions are
in terms of ¢t as variable. Let ca = rpm OF 74y be the roots of the above

. 4 r . . . .
equations. Then i (dropping the subscripts ¢, m). Now, in working
0
nut the solution of the differential equations, it turned out that ¢ = cok.
Here , is one component of the wave number, kf. Hence &y = i . Further-

c

AT ¢ - )
more, the eccentricity 1s e = &9 = The indicated procedure is: 1) choose

a value of ¢; 2) find the various values of r for which the radial function or
its derivative is zero; 3) then calculate the corresponding eccentricity and
resonant frequency. Notice that for a given value of ¢, the values of r
will depend on the mode, and hence so will the eccentricity.

We now wish to express our results in terms of the ellipticity and the
average diameter. - To convert eccentricity to ellipticity, we use

E=1-—+/1—¢.

The perimeter of the ellipse is given by P = 4aE(e) where E(e) is the com-
plete elliptic integral of the second kind.ft
In terms of the average diameter we find

- 3[22]

or calling the quantity in brackets s, by = %f This is now in the same form

as ky for a circular cylinder of diameter D. The quantity s is the recipro-

A
1 of Chu’s <.
cal of Chu’s

t It is recalled that

+1 This is tabulated as E(«) in Jahnke & Emde, p. 85, with @ = sin-le.
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We have calculated and give in Table III values of r, ¢, £ and s for several
values of ¢ and for a few modes of special interest. For three cases, ‘TE 01,

eIM 11 and °TM 11, we have determined an empirical formula to fit the
calculated values of s. These are also given in Table III.

TABLE II. Ertreric CyLINDER FIELDS

TE Modes

s V1T—9
E:= —Fk 1/E \% Stle, 0T ¢lc, £) sin kyz cos wl
€

Y
E,=*! /‘/'_‘ \Z—Eq—-—l S¢le, mJ (e, £) sin by s cos wl
€

2 -1 '
Hy=k N/Eq Sele, )T gle, &) cos ky 3 sin wl
1=,
Hy=F Vi—n Stle, )T (e, £) cos ks z sin wi
o, =k S¢le, n) T ¢le, £) sin k; 2 sin w!
TM Modes .
2 —
E:= —k \/Eq L Sele, )T (e, ) sin bz cos wt
V1i—179*_,
E,= —k " U Stle, 0T (e, £) sin kyz cos wt
E, = k} Sele, ) J ¢(c, £) cos ks cos wt .
Hy= —k 1/‘l \L___’?_ Stle, mT¢le, £) cos kys sin wt
m q
- 21 ,
Hy="k /‘/i :\/E =1 Sele, n)J (e, £) cos ky2 sin wi
m q
Notes:

Derivatives are with respect to £ and 5.
Sgand J,carry prefixed superscripts, e or o, since they may be either even or odd.

7=avVE—7 ¢ = ak
Ttom nr

=" k=T Bk 4k

a .

2¢y is distance between foci of ellipse.
a is the semi major diameter of the ellipse.
rgm i the value of ct that makes

Jolc£) = 0 for TM modes
Jy(c,£) = 0 for TE modes.
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TABLE III Roor VaLves ofF Raprar Ervreric CYLINDER FuNcTiONs
Mode r ¢ E s
TE 01 0 3.8317 0 0 3.8317
0.2 3.8343 0.05216 0.001361 3.8317
0.4 3.8423 0.10410 0.005434 3.8318
0.6 3.8558 0.15561 0.012181 3.8324
0.8 3.8753 0.20643 0.021539 3.8337
1.0 3.9015 0.25631 0.033406 3.8366
1.2 3.9349 0.30496 0.047636 3.8417
1.4 3.9763 0.35209 0.064033 3.8500
1.6 4.0264 0.39738 0.082346 3.8624
2.0 4.154 0.4814 0.12351 3.902
3.0 4.634 0.6474 0.2378 4.101
4.0 5.29 0.756 0.346 4.42
4.5 5.66 0.795 0.393 4.62
= 3.8317 + 4.33 E* 4+ 1.9Ek3
«TM 11 0 3.8317 0 0 3.8317
0.2 3.8330 0.05218 0.001362 3.8304
0.4 3.8370 0.10425 0.005449 3.8265
0.6 3.8436 0.15610 0.012259 3.8201
0.8 3.8532 0.20762 0.021791 3.8113
1.0 3.8658 0.25868 0.034036 3.8003
1.2 3.8818 0.30913 0.048981 3.7874
1.4 3.9015 0.35884 0.066599 3.7727
1.6 3.9253 0.40761 |  0.086844 3.7568
4.5 5.13 0.878 0.520 3.91
3.8317 — 0.96E + 1.1F2
oM 11 0 3.8317 0 0 L8317
0.2 3.8356 0.05214 0.001361 .8330
0.4 3.8474 0.10397 0.005419 8370
0.6 3.8670 0.15516 0.012111 8436
0.8 3.8944 0.20542 0.021326 .8530
1.0 3.9298 0.25446 0.032918 .8654
1.2 3.9731 0.30203 0.046701 3.8809
1.4 4.0243 0.34788 0.062462 3.8997
3.8317 + 0.95E + 2.2E*
¢eTE 22 0 6.706 0 0 6.706
0.4 6.712 0.0596 0.00178 6.706
0.8 6.729 0.1189 0.00709 6.705
1.2 6.756 0.1776 0.01590 6.702
1.6 6.788 0.2357 0.02817 6.693
2.0 6.826 0.2930 0.04389 6.677
°TE 22 0 6.706 0 0 6.706
0.4 6.712 0.0596 0.00178 6.706
0.8 6.730 0.1189 0.00709 6.706
1.2 6.762 0.1775 0.01587 6.708
1.6 6.810 0.2350 0.02799 6.715
2.0 6.877 0.2908 0.04323 6.729




SOME RESULTS ON CYLINDRICAL CAVITY RESONATORS

429

Mode c r e E s
*TE 32 0 8.015 0 0 8.015
0.4 8.020 0.0499 0.00124 8.015
0.8 8.035 0.0996 0.00497 8.015
1.2 8.059 0.1489 0.01115 8.014
1.6 8.093 0.1977 0.01974 8.013
2.0 8.135 0.2459 0.03070 8.010
°TE 32 0 8.015 0 0 8.015
0.4 8.020 0.0499 0.00124 8.015
0.8 8.035 0.0996 0.00497 8.015
1.2 8.060 0.1489 0.01115 8.015
1.6 8.097 0.1976 0.01972 8.018
2.0 8.146 0.2455 0.03061 8.022
¢TM 01 0 2.4048 0
0.2 2.4090 0.08302
0.4 2.4216 0.16518
0.6 2.4431 0.24559
0.8 2.4739 0.32337
1.0 2.5149 0.39762
*‘TE 11 0 1.8412 0
0.2 1.8416 0.10860
0.4 '1.8430 0.21704
0.6 1.8452 0.32516
0.8 1.8484 0.43280
1.0 1.8527 0.53975

Notes:

Superscripts ¢ and o on mode designation signify even and odd.
¢ is parameter used in the Tables (Stratton, Morse, Chu, Hutner, *“Elliptic Cylinder
and Spheroidal Wave Functions’)
r is the value of the argument which, for TM modes, makes the radial function zero
and, for TE modes, makes its derivative zero.
e is the eccentricity of the ellipse;

distance between foci
major diameter

E is the ellipticity of the ellipse;

__ difference between major and minor diam.

E

r  perimeter
« major diameter

major diameter
s is the root value, referred to the “average diameter”

; it is related to r by:

The quantity s is also related to the cutoff wavelength in an elliptical wave guide

according to:
_ perimeter of guide
cutoff wavelength

Resonaior Q

Although the calculation of the root values is straightforward and not
overly laborious, the same cannot be said for the integrations involved in
the determination of resonator (). The procedure is obvious: The field
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equations are given; it is only necessary to integrate H*dr over the volume
and H2de over the surface and get Q from

~ 2fH’dT

=5 (16)
f Hdo

Q

with 8 = skin depth, a known constant. Unfortunately the integrations
cannot at present be expressed in closed form. A numerical solution can
be obtained by a combinaticn of integration in series and of numerical .
integration,

The calculations have been made for the ‘TE 01 mede with ¢ = 2.0, for
which r = 4.154. This value of ¢ corresponds in this case to an ellipticity
of about 12%; in a 4” cylinder this would amount to 1/2” difference between
largest and smallest diameters. Evaluation* of the integrals yields:

f H®dr = 12.307 EXL + 12.294 kiL
.

f He do = 49.228 kX + 01619 hEL + 6.6847 KL
S

Substituting & = %Oj and &y = % , one obtains, finally
L 1 + 0.1622 n’R’*
08 = 0471 D (1 + 0.0039 #°R* 4 0.1529 n°R*/ °

For a circular cylinder,

_ 1 + 0.1681 n’R*
0 = 05D (T + 0.1681 n*R3/

Comparison of these two formulas for (08 shows that the losses in the end
plates (n2R? term) are less with respect to the side wall losses in the ellip-
tical cylinder. The net loss in (03, as described by the reduction in the mul-
tiplier frem 0.5 to 0.471, is thus presumably ascribable to an increase in side
wall lcsses (stored energy assumed held constant). The additional term
in #2R?in the dencminator is responsible for the difference in the attenuation-
frequency behavior of elliptical vs circular wave guide as shown by Chu,
Fig. 4. Incidentally, these results agree numerically with those of Chu.

* Numerical integration was by Weddle’s rule; intervals of 5°in ¢ and 0.1 in x were used.
The calculations were made by Miss F. C. Larkey.
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Corresponding expressions for the resonant wavelength are

xD 0.805 D
A= =
D V1 + 0.1622 n2R?
s 14—
2sL
0.820 D

Ne="/T 1 01681 nR:"

As an example, take n = 1, R = 1, then
(Circular) Q.6 = 0.500 D A = 0759D
(Elliptical) 06 = 0.473 D AN =0747TD
Ratio = 0.946 Ratio = 0.984.

Conclusions

The mathematics of the elliptic cylinder have not yet been developed to the
point where the design of cavities of large ellipticity could be undertaken.
On the other hand, sufficient results have been obtained to indicate that the
ellipticity in a cavity intended to be circular, resulting from any reasonable
manufacturing deviations, would not have a noticeable effect on the reso-
nant frequencies or Q values, at least away from mode crossings.

Furl CyrLINDRICAL COAXIAL RESONATOR

The full coaxial resonator has been of some interest because of various
suggestions for the use of a central rod for moving the tuning piston in a
TE 01n cavity.

The cylindrical coaxial resonator, with the central conductor extending
the full length of the resonator, has modes similar to the cylinder. In
fact, the cylinder may be considered as a special case of the coaxial. The
indices f, m, n have much the same meaning and the resonant frequencies
are determined by the same equation (1). However, now the value of r
depends in addition (see Fig. 1) upon 7, where

_ diameter inner conductor
"~ diameter outer conductor

b
-

The problem now arises of how best to represent the relations between
f,a,band L. The »’s depend on 7; so one possibility is to determine their
values for a given 5 and then construct a series of mode charts, one for each
value of 7.

A more flexible arrangement is to plot the values of  vs 7 and allow
the user to construct graphs suitable for the particular purpose in hand.
An equivalent scheme has been used by Borgnis.!®

It turns out that as n — 1, (1 — %) — mm, for the 7'M modes and the
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TE Omn modes, and (1 — 5) — (m — 1)7 for all other TE modes. For
the former modes,  becomes very large as  — 1, that is, as the inner con-
ductor fills the cavity miore and more, the frequency gets higher and higher.
For the TE {ln modes, however, as the inner conductor grows, the fre-
quency falls to a limiting value. This is discussed in more detail by
Borgnis.!®

Figure 7 shows (1 — ) vs n, for a few of the lower modes; the scale for 7
between 0.5 and 1.0 is collapsed since this region does not appear to be of
great engineering interest. A different procedure is used for the roots of
the TE {1n modes. Figure 8 is a direct plot of r vs 5 for a few of the lower
modes. In this case,r — fasyp— 1.

Distribution of Normal Modes

The calculation of the distribution of the resonant modes for the coaxial
case follows along the lines of that for the cylinder, as given previously.
The difference lies in the distribution of the roots r, which now depend upon
the parameter 5. The determination of this latter distribution offers
difficulties. There is some evidence, however, that the normal modes will
follow, at least to a first approximation, the same law as the cylinder, viz.:

N 44V
= X

with some doubt regarding the value of the coefficient.

Q ‘-sx in Coaxial Resonator

The integrations needed to obtain this factor are relatively straightfor-
ward, but a little complicated. The final results are given in Fig. 1.

The defining equation is (16); the components of H are given in Fig. 1.
The integrations can be done with the aid of integrals given by McLachlan"
and the following indefinite integral:

[ l:f 224) z”’(«:)] x dx

= 2z + 22 4 i) (1 - £) |

which can be verified by differentiation, remembering that y = Z,(x) is a
1 £
i ” Ty —_ =
solution of y” + 57 + (1 x”) y =0,
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An investigation needs to be made of the behavior of the formulas as
n — 0 before any conclusion may be drawn regarding their blending
into those for the cylinder. For TE modes with £ = 0, the term involving

% disappears, hence no question arises. Consider then { > 0, and let

x = xr for the discussion following. From expansions given in McLachlan,
it is easy to show that, for small

Vi) = —¢= D! (g)t Vi) = (%)51
T x ™ \X/ X
£

X {1
27!

T = =y

Je(x) =

Since, from Fig. 1,

_ Jir) _ Jelr) _ T
Yi(r)  Ye(r) Vi)

it is found, upon substitution of the approximations given above:

That is, Ze(x) ~ xf and hence — 0 as ¥ — 0. Furthermore Z¢(r) remains

finite as 7 — 0. Hence H ~ 2*f and L &1 Therefore, for £ > 0,
7

1 —0asnp—0.

n

. 1) .
Hence, the expression for () N for the coaxial structure reduces to that for

the cylinder, for any value of £, in the TE modes.
For the TM modes, and for £ > 0, an entirely similar argument shows

that H' remains finite as n — 0. Hence, the expression for Qf—\ for these

modes also reduces to that for the cylinder.
For the TM modes, and with £ = 0, we have

PN ) Yi(x)
Zy(x) = —Ji(x) + Jo(x) Tol) |
For x — 0, Ji(x) — 0 and Jo(x) — 1, hence for small x,

Y] (L)

Zo(x) ~ o
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Now substitute the approximate values of the ¥ for small x. The result is

1
Zyw) ~
1 _
x log 5
Since Zo(r) is finite, it follows that
1

nH' ~—7— 3
x (log E)

and it is easily shown that nH’ — © asy— 0. On the other hand, n*H" —

0 as n — 0. Hence, Q; — 0 as 7 — 0. On the other hand, for 3 = 0, a
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Fig. 9—Coaxial resonator. TE 011 mode Contour lines of Q%
. . é . i .
perfect cylinder exists whose Q 3 i not zero. It is concluded that the ex-

pression for Q% does not apply for small 5 for the TM modes with £ = 0.

Thus it is seen that the expressions for the factor (Q ;) reduce to those

given for the cylinder, when n = 0, except for TM modes with £ = 0.
For these latter cases, the factor approaches zero as n approaches zero,
because #H’ increases without limit, This means that an assumption
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which was made in the derivation of the Q values is not valid for small »;
that is, the fields for the dissipative case are not the same as those derived
on the basis of perfectly conducting walls.

The expressions for the factor are rather complicated, as it depends on
several parameters. When a given mode is chosen, the number of param-

eters reduces to two, n and R. Contour diagrams of ; vs nand R are

given on Figs. 9, 10, 11 and 12 for the TE 011, TE 111, TMO011and TM 111
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modes. As mentioned above, the true behavior of Qf—\ for the TM 011

mode for small 7 is not given by the above formula, so this contour diagram
has been left incomplete.

Fins 1N A CAVITY RESONATOR

The suppression of extraneous modes is always an important problem
in cavity design. Among the many ideas advanced along these lines is the
use of structures internal to the cavity.

It is well known that if a thin metallic fin or septum is introduced into a
‘cavity resonator in a manner such that it is everywhere perpendicular to
the E-lines of one of the normal modes, then the field configuration and



SOME RESULTS ON CYLINDRICAL CAVITY RESONATORS 439

frequency of that particular mode are undisturbed. For example, Fig. 13
shows the E-lines in a TE 11z mode in a circular cylinder. If the upper
half of the cylinder wall is replaced by a new surface, shown dotted, the
field and frequency in the resulting flattened cylinder will be the same as

NEW SURFACE PERPENDICULAR
TO E-LINES LEAVES REST OF
FIELD AND FREQUENCY UNALTERED
1

Fig. 13—E Lines in TE 11n mode

sORIGINAL CYLINDER

“‘__
-

N

S—o

Fig. 14—“TE 01»” mode in half-cylinder

before. Indeed, they will also be the same in the crescent-shaped resonator

indicated in the figure.
Except for isolated cases, all the other modes of the original cylinder will

be perturbed in frequency since the old fields fail to satisfy the boundary
conditions over the new surface. I'urthermore, if the original cylinder was
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circular, its inherent double degeneracy will be lost and each of the original
modes (with minor exceptions) will split into two.

Although the frequency and fields of the undisturbed mode are the
same, the Q is not necessarily so. For example, Fig. 14 shows a “TE 01z
mode” in a half cylinder.*

It is easy to calculate Q; for this case. The result is

r (1 + p*RH**
2r 1+ PR + K1 + K.p*R?

3
5= 7)

Q

in which

Here K, and K, are constants which account for the resistance losses in
the flat side. For the full cavity, shown dotted in Fig. 14, eq. (17) holds
with K3 = Ks = 0. If the circular cavity has a partition extending from
the center to the rim along the full length, (17) holds with the values
of K; and K, halved. If a fin projects from the rim partway into the in-
terior, still other values of K; and K, are required. It is a simple matter
to compute these for various immersions; Fig. 15 shows curves of K; and
K,. The following table gives an idea of the magnitudes involved:

mopE: TE 0,1,12 R = 04

Fin, % a Q% Ratio
0% 2.573 1.0
10 2.536 .985
20 2.479 .965
50 2.04 .79
100 1.47 .57

The question now is asked, “Suppose a longitudinal fin were used, small
enough to cause only a tolerable reduction in the Q. Would such a fin
ameliorate the design difficulties due to extraneous modes?”

Some of the effects seem predictable. All modes with £ > 0 will be split
to some extent, into two modes of different frequencies. Consider the
TE 121 mode, for example. There will be one mode, of the same frequency
as the original whose orientation must be such that its E-lines are perpendicu-
lar to the fin. The Q of this mode would be essentially unchanged. There
will be a second mode, oriented generally 90° from the first, whose E-lines
will be badly distorted (and the frequency thereby lowered) in the vicinity

* Solutions for a cylinder of this cross-section are known and all the resonant fre-
quencies and Q values could be computed, if they had any application.
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of the fin. Tt would be reasonable to expect the Q of this mode to be appre-
ciably lowered because of the concentrated field there. If two fins at 90°
were present, there would be no orientation of the original TE 127 mode
which would satisfy the boundary conditions. In this case both new modes
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would be perturbed in frequency from the original value. If both fins were
identical, the perturbations would be equal and a double degeneracy ensue.
Similar effects would happen to the other types of modes.

The major advantage derivable from such’ effects would appear to be in
extraneous transmissions. The fin serves to orient positively the fields in
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the cavity, and the input and output coupling locations can then be appro-
priately chosen. On the basis that internal couplings are responsible for
mode crossing difficulties, one might hazard a guess that a real fin would
increase such couplings.

Another application of fins might be in a wave guide feed in which it is
desired to establish only a TE Om wave. In this case, Q is not so important
and larger fins can be used. If these extended virtually to the center and x
of them were present (with uniform angular spacing) all types of wave trans-
mission having £ less than /2, x even or { less than x, x odd, would be sup-
pressed. This use of fins is an extension of the wires that have been
proposed in the past.

CONCLUSION

It is hoped that the foregoing, which covers some of the theoretical work
done by the author during the war, will be of value to other workers in
cavity resonators. There is much that needs to be done and hardly time
for duplication of effort. !
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