Dynamics of Package Cushioning
By RAYMOND D. MINDLIN

INTRODUCTION

ECHANICAL damage is a common occurrence in the transportation

of packaged articles. The causes of failures are generally inadequate

protective cushioning, lack of ruggedness of the outer packing container,

or occasional abnormal weakness of the packaged article. The first of these
difficulties is the subject of this paper.

One of the major influences in reducing the incidence of mechanical failures
of packaged articles in recent years has been the use of the drop test. The
drop test is performed simply by raising the package to a specified height and
dropping it to the floor. The package and its contents are then examined
for damage. This is a go-no-go test and requires a large number of samples
before a reliable estimate of quality can be made. An adequate number of
tests is prohibitive when the article packaged is costly. In such cases it is
important, and in any case it is useful, to supplement the drop test data with
measurements and calculations. It is also possible to evolve rational pro-
cedures for designing packages, as described in the present paper, so that
a particular product will survive a drop test at any specified height, with a
known factor of safety and with a minimum amount of space assigned for
cushioning. The drop test then becomes only a check instead of playing an
integral role in a cut and try design procedure.

Assuming that the outer container is adequate, the survival of a packaged
article in a drop test still depends upon a large number of factors descriptive
of the mechanical properties of both the cushioning medium and the pack-
aged item. However, the more important properties can be grouped so
that they may be replaced by knowledge of only the following factors:

(1) The magnitude of the maximum acceleration that the cushioning

permits the packaged item to reach.

(2) The form of the acceleration-time relation.

(3) The strengths, natural frequencies of vibration and damping of the

structural elements of the packaged article.

Part T of this paper is concerned primarily with methods for predicting
maximum acceleration of the packaged article with emphasis on non-linear
cushioning. Part II deals primarily with the prediction of the form of the
acceleration-time relation. Part IIT deals with the effect of acceleration on
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the packaged article and gives methods for determining whether or not the
strength of the packaged article will be exceeded. The strength deter-
minations themselves are not dealt with here; but the information in Part III
is essential in interpreting and applying the data obtained in strength meas-
urements. In Part IV some consideration is given to the influence of dis-
tributed mass and elasticity.

It cannot be emphasized too strongly that the determination of the mech-
anical properties of the packaged article, not dealt with in this paper, is an
essential preliminary to a rational design procedure for packaging. The
whole purpose in designing package cushioning is to limit the forces which
may act on the packaged item. If one does not know to what values to
limit the forces, a rational design procedure cannot be applied.

It is interesting to observe that the methods described here for analyzing
and designing package cushioning are directly applicable to the design of
shock mounts intended to protect equipment from the effects of a sudden
change in velocity. All of the principles, formulas and design curves given
here may be used in the shock mount problem with the simple substitution
of V2/2g for , where % is the height of drop in the packaging problem, g is
the acceleration of gravity and V is the velocity change in the shock mount
problem.

This paper is essentially a report on a study undertaken at the Bell Tele-
phone Laboratories, Inc., in the Electronic Apparatus Development
Department. The results have been applied to the packaging of large
vacuum tubes and all of the examples used to illustrate the analysis and
design procedures in the paper are taken from vacuum tube applications.

Miss H. A. Lefkowitz, Member of the Technical Staff, Bell Telephone
Laboratories, assisted in the mathematical studies. The oscillograms, used
as illustrations, were prepared under the supervision of Mr. F. W. Stubner,
Member of the Technical Staff, Bell Telephone Laboratories. Figure
3.8.2 was taken from a thesis submitted by Mr. C. Ulucay in partial fulfill-
ment of the requirements for the degree of Master of Science in the Depart-
ment of Civil Engineering at Columbia University. The calculations for
Figs. 3.5.1 to 3.5.6 and Fig. 3.2.2 for 8, > 0 were performed on the Westing-
house Mechanical Transients Analyzer under the supervision of Dr. G.
D. McCann, Transmission Engineer, Westinghouse Electric and Manu-
facturing Company.

ASSUMPTIONS

The procedures to be described for the analyéis and design of package
cushioning are based on applications of a few simple laws of mechanics to
an idealized mechanical system representing the package and its contents.
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Essentially, a package consists of

1.

2a.
2b.

3.

Elements of the packaged article which are susceptible to mecha.mcal
damage.

The packaged article as a whole.

A cushioning medium (excelsior, cardboard spring pads, metal springs,
etc.)

An outer container (cardboard carton, wood packing case, etc.)

The four major components are illustrated schematically in Fig. 0.2.1.
The system is further idealized by “lumping the parameters”; for example,
the outer container is considered as a single mass, the cushioning is con-
sidered as a massless spring with friction losses. The result of this idealiza-
tion is to lose some of the fine detail of the real distributed system such as
wave propagation through the cushioning and higher modes of vibration in
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Fig. 0.2.1—Schematic representation of a package.
1. Element of packaged article
2a. Packaged article as a whole
2b. Cushioning
3. Outer container

the package structure and in the packaged article. Some consideration of
these details is given in Part IV.

The idealized system is illustrated in Fig. 0.2.2. The major components
of the system are as follows:

1.

2a.
2b.

A structural element of the packaged item is represented by a mass
(m,) supported by a linear massless spring with or without velocity
damping. The mass m, is assumed to be small in comparison with
the mass-of the whole packaged item.

The whole packaged item is represented by a mass ..

The cushioning is represented by a spring which may have a linear
or non-linear load-displacement characteristic and which dissipates
energy through velocity damping or dry friction. Permanent de-
formation of the cushioning is not considered, that is, in a repetition
of the drop test it is assumed that the package has the same properties
as before the first test. A properly designed package will have essen-
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tially this characteristic. The mass of the cushioning is assumed to
be small in comparison with ., except in Section 4.2. _
The outer container is represented by the mass m;. The impact of
m3 on the floor is assumed to be inelastic and during contact the rela-
tive displacement between m; and the initial position of the floor
is assumed to be small in comparison with the relative displacement
between m. and m;. In other words, no spring action is assigned to
the outer container and the floor is considered rigid.

"Element of
Packaged

Item L5}

Packaged M2
Item

Cushion |F g | X
c, |
M2 ;;

Outer M3 ¢

Container ¥2 m,

Floor Txg °
7 7 7

(a) (b) (©)
Tig. 0.2.2—TIdealized mechanical system representing a package in a drop test.

PART I
MAXIMUM ACCELERATION AND DISPLACEMENT

1.1 INTRODUCTION

Most of Part I is concerned with the prediction of the maximum accelera-
tion that the cushioning permits the packaged article (ms) to attain. In
many instances this will be all the information necessary for judging the
suitability of a cushioning system. It will be all that is necessary if the
shape and scale of the acceleration-time function satisfy certain criteria
which are treated in detail in Parts IIT and TV. If these criteria are satisfied,
the effect of the drop on the packaged article is found by multiplying the
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dead load stresses (obtained in the usual manner) by the ratio of the maxi-
mum acceleration to the acceleration of gravity. If the criteria for the use
of maximum acceleration alone are not satisfied, then Parts IT and IIT will
supply a numerical factor (the Amplification Factor) by which the maximum
acceleration should be multiplied, and the remainder of the procedure is the
same as before.

The determination of the maximum acceleration is founded on a knowledge
of the load-displacement characteristics of the cushioning. When the cush-
ioning system is simple enough, the load-displacement relation may be found
or designed by purely analytical procedures. The tension spring package,
discussed in Sections 1.7 and 1.8, is an example where such a treatment is
possible. In many instances, as with distributed cushioning, the load-
displacement relation is more easily found by test.

A load-displacement test is made by applying successively increasing
forces, with weights or in a load testing machine, to the packaged item
completely assembled in its package, and measuring thecorresponding
displacements. The force is applied usually by means of a rod inserted
in a hole cut through the outer container and the cushioning to the packaged
item. Itisconvenient to use a low loading rate in the test, and, in doing so,
the effect of resisting forces that depend on velocity is lost. These forces
are often of little importance but, in certain designs, it is necessary to con-
sider them. This is done for velocity damping in Sections 2.5, 2.6, 3.2 and
3.5. ;

Most of Part I is concerned with cushioning having non-linear load-dis-
placement characteristics. Linear cushioning is rarely encountered, but
it will be treated first because of its simplicity and because it will be con-
venient later to express the maximum acceleration in non-linear cases in
terms of the maximum acceleration in a hypothetical linear case.

1.2 DxerivaTioN of EqQuarions oF MoTioN

To introduce the method of analysis that will be used in Part I, the sim-
plest possible system is considered first. The s system is omitted entirely,
the mass of the outer container (m) is neglected, and the cushioning is
assumed to have no damping or friction. There remain only the mass
m. (the mass of the packaged item alone) and the supporting spring, as
shown in Fig. 1.2.1. If the spring is linear its displacement is proportional
to the applied load throughout the range of use (see Fig. 1.4.1). The spring
rate (ks) of a linear spring is a constant usually expressed in terms of pounds
per inch. The force (P) transmitted through a linear spring is therefore
given by

P = k'_x Xa, (1.2.1)
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-where %3 is the displacement of m, measured downward from its position at
first contact of the spring with the floor (see Fig. 1.2.1). For a non-linear
spring P will be some other function of #;:

P = P(x). (1.2.2)

To write the equation of motion for the mass m., we consider the forces
acting on it at any instant., These are (see Fig. 1.2.2(b)) the spring force
P and the weight m.g, where g is the acceleration of gravity. When x,
is positive (i.e., a downward displacement of #, from its position at first
‘contact of the spring with the floor) the spring exerts an upward force P

Fig. 1.2.1—Elementary system.

I"“zE Ing

T

P

(a) (b)
Tig. 1.2.2—Free body diagram for elementary system.
(a) Spring not in contact with floor.
(b) Spring in contact with floor.
on the mass, opposing the weight. The total downward force on m; is
thus msg — P. By the second law of motion, the product of the mass and
its acceleration at any instant is equal to the applied force:

Mo Xy = Mma g — P, (1.2.3)

where the symbol &, representing the acceleration of m,, stands for the
second derivative of displacement with respect to time (d*x»/di?). Equation
(1.2.3) is the law governing the motion of m, as long as the spring is in con-
tact with the floor. When the spring is not in contact with the floor, it can
exert no force on the mass so that, in writing the equation of motion that
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governs before or after contact, the free-body diagram of Fig. 1.2.2(a) should
be used. Then

i = g. (1.2.4)

Equation (1.2.4) holds (neglecting air resistance) from the instant the
package starts to fall until the instant it strikes the floor and from it we
can find the package velocity at the instant of first contact. Integrating
(1.2.4) with respect to time, we find

i =g+ A4, (1.2.5)

where @ is the velocity (dxs/df) and 4 is a constant of integration whose
value is found from the initial condition that when { = 0 (the instant of
release) @ = 0. Thus 4 = 0and

i = gt (1.2.6)
Integrating again,
=g+ B. (1.2.7)

The value of the integration constant B is found from the initial condition
that 22 = —/ (the height of drop) when ¢t = 0. Hence B = —/and

xa= kgt —h. (1.2.8)

At the instant of contact, x; = 0 and, from (1.2.8), the time at first contact
is given by £ = 2h/g. Substituting this value of £ in (1.2.5) we find, for the
velocity at first contact,

[£]epmo0 = V/2gh. (1.2.9)

We now have the initial conditions for finding the values of the integration
constants in the solution of equation (1.2.3), which we proceed to obtain..

First multiply both sides of (1.2.3) by dx,/d! and write & = d (@)

dt \ dt
d:!?g d dxz dxz _ dxz .
or
d d'\,n d:]’:g
1 oz
2mm( )+P "8

Multiplying by d¢ and integrating once:

lmyis + f p dxy = f .mgg dxs + C, (1.2.11)
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where C is a constant of integration whose value is determined by the initial
conditions that 45 = 2gh and x; = 0 at the instant of contact. Hence

0
C = mqgh —|—f P dx,.
Subst}tut.ing the above value of C in (1.2.11), we have
bt 4 f P dry = mag(h + ). (1.2.12)
0

It may be observed that (1.2.12) is an energy equation in which the
terms have the following meanings:
Imgis is the instantaneous kinetic energy of m.,

P dx, s the energy stored in the spring at any instant. It is also
0

equal to the area under the load-displacement curve up to
the displacement xa,
mag(h + x2) is the potential energy of the mass at its initial height 2 + x»
above the instantaneous position w..
Hence (1.2.12) expresses the law of conservation of energy.
Ordinarily % is very much larger than x. so that we may write, with good
accuracy,

zg
Lomy i +f P dx, = magh. (1.2.13)
0

To the sarhe approximation, equation (1.2.3) becomes
Mo o + P =0. (1.2.14)

Equation (1.2.14) and its first integral, equation (1.2.13), are convenient
forms for calculating events at any time during contact. Their use will be
illustrated in Part II. For calculating only maximum displacement a.nd
acceleration, the equations become simpler. Let

W, = weight of the packaged article (=rmzg),

dn, = maximum displacement of the packaged article,

Gn = absolute value of maximum acceleration of the packaged article

in terms of number of times gravity (Gm = | £2/g |max),

P,, = maximum force exerted on packaged article by cushioning.

We shall limit our study to the practical regions where P > 0 when
#2 > 0., Then it may be seen from (1.2.13) that x» is a maximum when
&z 1s zero, hence

It

dm

P dxy = Wah, (1.2.15)
0
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and, from (1.2.14),

G = (1.2.16)

P
W’
where P,, is the maximum value of P. If P(x,) is a monotonic function,
P,, may be obtained from (1.2.2) by substituting dn for x.:

P = P(dn). (1.2.17)

n the unusual case where P(x») is not monotonic, the maximum value of P
in the interval 0 < x, < d,, must be chosen instead of equation (1.2.17).

The general procedure is o calculate dw from (1.2.15), P, from (1.2.17)
and then G, from (1.2.16). 1f P can be expressed analytically in terms of x»
and if the integral in (1.2.15) can be evaluated in terms of elementary func-
tions, simple formulas can be found for d,, and Gn. If this is not possible,
then the integration can be performed graphically or numerically. Both
of these procedures will be illustrated. In either case the maximum accel-
eration and displacement are obtained in terms of the weight of the pack-
aged item, the height of drop and parameters descriptive of the load-dis-
placement characteristics of the cushioning.

1.3 LmNEAR ELASTICITY

For cushioning with a linear load-displacement relation, equation (1.2.1)
applies. Substituting this value of # in (1.2.15), and performing the in-

tegration, we find
4, = 1/2";%. (1.3.1)

From (1.3.1) and (1.2.17),
Pm =V zill’Vzkg, (1.3.2)
and, from (1.3.2) and (1.2.16),

_
Gn 1/ W (1.3.3)

Notice that equation (1.3.3) holds only if there is space available for a
displacement d,, and if the cushioning is linear and capable of transmitting
a force P,.. Also, from (1.3.3) and (1.3.1),

2
dp = = (1.3.4)

and

By = - =~z . (1.3.5)
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Example: Find the properties of the linear cushioning required so that
the maximum acceleration will be 50g in a 3 ft. drop of a 20 Ib. article.
From (1.3.4),

necessary travel, d,, = 2 ?036 = 1.44 inches.
From (1.3.5),
2
spring rate, k; = % = 694 lbs/in.

From (1.2.16)
Maximum force P,, = 20 X 50 = 1000 lbs.

1.4 CusHIONING WITH NON-LINEAR ELASTICITY

In practice it is rarely that a packaging system has linear spring charac-
teristics. Departure from linearity may be due to

P

f2

X2
Fig. 1.4.1—Linear elasticity. Class A.

1. Non-linear geometry, such as in the tension spring package described
in Section 1.7.

2. Non-linear characteristics of distributed cushioning materials such as
excelsior and rubber.

3. Abrupt change of stiffness such as occurs if the packaged item can
strike the wall of the container.

For the purpose of developing design formulas it is desirable to have
analytical functions to represent load-displacement characteristics. It is
not feasible to have only one family of functions with adjustable parameters
to fit all possible shapes of load-displacement curves. Therefore, all the
practical shapes have been divided into six general classes, most of which
are associated with simple functions having one or two adjustable param-
eters. The six classes are as follows:

Class A—Linear Elasticity. This has already been treated. Its load-
displacement function is

P = kgxz. (1.4.1)
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Class B—Cubic Elasticity. This includes cushioning which does not bot-
tom in the anticipated range of use, but the slope of the load-displacement
function generally increases with increasing displacement as in the curved
full line of Fig. 1.4.2. A suitable load-displacement function is

P = koxs + rxi. (1.4.2)

ko is the initial spring rate of the cushioning, as shown by the slope of the
dashed straight line in Fig. 1.4.2, and r determines the rate of increase of the
spring rate. The same function can be used if the slope of the curve de-
creases gradually with increasing load as shown by the curved dashed line
in Fig. 1.4.2. In this case the parameter r is negative.

Fig. 1.4.2

Fig. 1.4.2—Cubic elasticity. Class B.
Tig. 1.4.3—Tangent elasticity. Class C.

Class C—Tangent Elasticity. Cushioning that bottoms, but not very
abruptly, can be represented by the load-displacement function

o ngdt, EE
P = e tan e (1.4.3)
Referring to Fig. 1.4.3, ko is the initial spring rate and d, is the maximum
available displacement. The figure shows hovr the stiffness of the cushion-
ing (i.e., the slope of the curve) increases as the displacement approaches
the maximum available (d;) at hard bottoming. The shape of the curve
is typical of load-displacement curves for a great variety of packages with
distributed cushioning.

Figure 1.4.7 illustrates the wide variety of shapes of non-linear cushioning
characteristics that can be obtained with the single function given by equa-
tion (1.4.3) simply by varying the parameter ko; and a similar set is given by
each value of d,. Although these families of curves do not include all pos-
sible shapes, one of them can usually be found to fit a practical shape for
cushioning of this class over the anticipated range of use.

Class D—DBi-linear Elasticity. This is characterized by a load-displace-
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ment curve consisting of two straight line segments. The load displacement
function is (see Fig. 1.4.4)

P = kyx; 0 d,

P = kyxy — (ke — ko), x = d, .

1A
1A

X

(1.4.4)

It is useful especially in situations where very abrupt bottoming is possible.

Class E—Hyperbolic Tangent Elasticity. When the mechanism of the
cushioning is such as to limit the maximum force that can be transmitted
over a considerable displacement range, the load-displacement function

P = P, tanh k;f? (1.4.5)

0

is useful. Py is the asymptotic value of the force and % is the initial spring
rate (see Fig. 1.4.5).

Fig. 1.44 Fig. 1.4.5 -

Fig. 1.4 4—Bi-linear elasticity. Class D.
Fig. 1.4.5—Hyperbolic tangent elasticity. Class E.

Class F—Anomalous Elasticity. In occasional instances the load-dis-
placement curve of the cushioning cannot be matched accurately enough
by any of the five preceding functions. In such cases a numerical integra-
tion procedure can be used, as described in Section 1.13.

1.5 Cusmroning wita Cusic Evasticity (Crass B)

Substituting (1.4.2) in (1.2.15) and performing the integration, we have:

4

2 d
kodm | ”T”* = Wah. (1.5.1)

2

dy = 1/ 2Wah (1.5.2)
o

Now, let
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that is, do is the displacement that would take place if the elasticity were
linear (see equation (1.3.1)) with a constant spring rate ko equal to the initial
spring rate of the cubic elasticity. Also let

_ dWalhr 15
=g (1.5.3)
Then, from (1.5.1), (1.5.2) and (1.5.3)
| n _ 1/2 (—1 +VITB)- (1.5.4)
dy B

Equation (1.5.4) is plotted in Fig. 1.5.1 which shows graphically how the
maximum displacement d,, compares with the “‘equivalent linear displace-
ment d,” as the parameter B is varied. Note that B depends on the weight
of the packaged item, the height of drop and the shape of the load displace-
ment curve (as determined by %o and r).

P

Xz

Tig. 1.4.6—Anomalous elasticity. Class F.

Similarly we can compare the maximum acceleration G,, with the maxi-
mum (G,) that would obtain if the load displacement curve were linear with
spring rate k. The latter acceleration is given by

2hky
= . 1.5.
G o (1.5.5)
and the former is obtained by finding P, from (1.2.17) and then, from
(1.2.16),

G"i 2 —
= 1/3(1+B)(—1+\/1+B). (1.5.6)
Equation (1.5.6) is plotted in Fig. 1.5.2.

1.6 PROCEDURE FOR FINDING MAXIMUM ACCELERATION AND DISPLACEMENT
ror CusHIONING WITH CUBIC ELASTICITY

If the load-displacement curve of a cushioning system has the general
appearance of Fig. 1.4.2 (where the slope increases or decreases gradually
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with displacement) the following procedure may be used for estimating the
effectiveness of the cushioning.

i
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Fig. 1.4.7—Family of ioad displacement curves for cushioning with tangent elasticity.

a. Select the point cn the load-displacement curve for which the load
is equal to the weight of the packaged item multiplied by the allowable
Gn. Call this load P, and the corresponding displacement d,.
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HH i G
V] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 W, hr

ko

B=

Fig. 1.5.1—Maximum displacement for cushioning with cubic elasticity. See
equation (1.5.4).

Fig. 1.5.2—Maximum acceleration for cushioning with cubic elasticity. See
equation (1.5.6).
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b. Select another point (d;, P;) about half way toward the origin from
(dg, Ps). See Fig. 1.4.2,
c. Calculate

zldg_{?df
b= B0 1.6.1
N gy (6.0
and
PP
dy
r=g =g (1.6.2)

d. Using the known weight, W, of the packaged item, the specified height
of drop k, and ko and r from (1.6.1) and (1.6.2), calculate B, do and G, from
(1.5.2), (1.5.3) and (1.5.5). Then calculate the maximum acceleration G,
and maximum displacement d,, from (1.5.6) and (1.5.4) or find their values
from Figs. 1.5.1 and 1.5.2.

Example: A large vacuum tube, weighing 22.5 Ibs, was packed in a 7" x
73” % 15” carton which was supported on corrugated cardboard spring pads
ina 104” x 113" x 183" carton. The latter was, in turn, packed in 28 pounds
of excelsior in a 25” x 25” x 30” carton. The tube is rated at 50g and the
package is intended for a drop of three feet.

A rod was inserted through a hole cut through the three cartons to the
tube. Load was applied to the rod and the displacement of the tube was
measured. The data obtained were

P E
(!omi(;‘n 1bs) (di:p!acemgt in inches)

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400

= o=

=

BN b b b ek ek ok e b b
elo ok

The data are plotted in Fig. 1.6.1. The resulting curve is suitable for
classification as either Class B or Class C cushioning. Considering it, for
the present, as Class B, we take Py = 22.5 X 50 = 1225, and from the curve,
ds = 1.9 inches. Also, from the curve, take d; = 1 inch and P, = 365
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Ibs. Substituting these values in (1.6.1) and (1.6.2), we find £y = 255 and
r = 108. Then

_AWahr 4 X 225 X 36 X 108

B (255)° =354
_ 2k _ /27X 36 X 255 _
“= A, = 4/ ;s 86

Entering Fig. 1.5.2 with B = 5.4 we find G,,/Gy = 1.9. Hence
Gn = 28,6 X 19 = 55

This is close enough to the 50g rating of the tube to call the cushioning
safe insofar as maximum acceleration is concerned.

1400

1200 -/

1000

800
P

600

P
=

200

—

0 02 04 06 08 10 12 14 16 18 20
X

2

Fig. 1.6.1—Experimental load-displacement curve for a corrugated cardboard spring pad
and excelsior cushion.

The maximum displacement, obtained by entering Fig. 1.5.1 with B =
54 and finding dn/dy = 0.75. Then d,, = 0.75 X 2/Gy = 1.95 inches.
Hence, the package is much larger than necessary since approximately 8
inches of cushioning thickness is supplied to accommodate 2 inches of
displacement.

1.7 TnaE TENSION-SPRING PACKAGE (CLAss B)

The tension spring package is useful when the allowable G,, is so small
and height of drop so great that a large displacement (say d,, > several
inches) is required. The decision as to whether or not a tension spring
package is indicated may be made on the basis of a preliminary estimate
of displacement based on the linear case. Suppose the height of drop is
to be 60 inches and the allowable acceleration for the packaged item is
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20g. Then, from Equation 1.3.4, the approximate displacement that will
be required is

2 X 60 .
= = 5. 1.71
d,. 20 6 inche ( )

The actual maximum displacement in a tension spring package will prove
to be somewhat more than 6 inches, but the preliminary calculation shows
the displacement to be large enough to warrant the use of this type of
cushioning.

H G
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M N
L7 = K
r Xol /
s N
g
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7E& N i
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Fig. 1.7.1—Schematic diagram of a tension spring package.

A schematic diagram of a typical tension spring package is shown in Fig.
1.7.1 and a photograph of one design is given in Fig. 1.7.2. The packaged
item is suspended on eight identical helical tension springs which diverge
to the outer frame. The analysis and design procedures described in this
and the following section apply equally well if the springs converge from the
packaged item to the outer frame. With a slight modification, indicated
in the next section, the procedure also applies if four of the springs (say,
BJ, DL, EM, OG in Fig. 1.7.1) are omitted.

In all cases, however, we shall consider only systems having reflected
symmetry about each of three mutually perpendicular planes through the
center of gravity of the packaged article.
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Fig. 1.7.2—A tension spring package.

The load-displacement characteristics of the spring system may be found
by statical considerations. We shall examine, first, the displacement in the
vertical direction in Fig. 1.7.1, using the following notations:

P = force applied to the suspended object,

x9 = displacement of suspended object,
= perpendicular distance (7R, Fig. 1.7.1) from inner spring support

point (7, Fig. 1.7.1) to nearest plane, perpendicular to displacement

direction and containing four outer spring support points (4, B, C,

D, Fig. 1.7.1);

Xp
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£, = distance (I4) between spring support points when suspended article
is in equilibrium position,
¢ = projection of £; on plane 4 BCD,

f = £ minus length (between hooks) of unstretched spring,

k = spring rate of each spring. '

Consider, first, the action of one pair of springs, say EM and GO of Fig.
1.7.1, 1ndependent of the remainder of the suspension. Since EM and GO
lie in parallel vertical planes and the points M and O remain in the initial
planes of their respective springs during a vertical displacement, the two
springs may be considered to lie in the same plane, and to be translated hori-
zontally in this plane so that their outer ends are separated by a distance 2¢.
Hence Fig. 1.7.3 may be used to represent the independent action of this
pair of springs and it is required to find the force (' needed to transform Fig.
1.7.3(a) to Fig. 1.7.3(b). Initially there are two springs, each of length £ — f

£ —]
F
L £ £
flf
Y
L
E ' G Q
b
Fig. 1.7.3—Diagram used in discussion of tension spring package.

and spring constant k, with no initial tension in them. One end of one spring
is fixed at point E and one end of the other spring is fixed at a point G
distant 2£ from E. The springs are then stretched so that the two mmally
free ends are located at a point ¥ equidistant from E and G and distant x3
from line EG. The axis of each spring makes an angle a with EG, where

’
. X9
Ssimna = ———— . (1-7-2)
Vet
In this state the axial force F in each spring is
=k\VE + =L+ ] (1.7.3)

and the force (, required to equilibrate the two forces ¥ i is 2F sin @. Con-
sidering the force  as a function of the displacement Xy , We write

23’:2

Ve F 2 - 1.7.4
Ve (Ve + 2 — ¢+ 5] (1.7.4)

Q=) =
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s (1 — b)7 -
or Q'(s") = 2kt I:z’ + —\ﬁ—i-——z'z (1.7.5)
where 3= J—;z, b= j't.

Consider, next, the configuration shown in Fig. 1.7.4(a), where one end of
each of four springs is fixed at a corner of a rectangle of length 2£ and width
2x,. Eachspringisagain of length £ — f. The four free ends of the springs
are drawn together at a common point X at the center of the rectangle (see
Fig. 1.7.4(b)). The system is in equilibrium in this position. A force Q
is then applied at X in the plane of the rectangle and normal to the side 24.

‘u‘

Q
a b c
Fig. 1.7.4—Action of springs in a tension spring package.

The common point X is displaced a distance x; to X’ (see Fig. 1.7.4(c)).
Writing s = x./{, @ = xo/{, we observe that

Q) = Q@+ a) + QG — a), (1.7.6)

or, from equation (1.7.5),

s+ a z—a
Q) = Zk‘{z""(““[\/mé * \/ﬁT‘f)]} - (40

The standard tension spring package has two sets of four springs so that
the force P required to displace the common point X a distance x, is

P(z) = 20(z2). (1.7.8)

If x; is small in comparison with { (i.e., z is small in comparison with
unity), equation (1.7.8) may be written approximately as

_ (1= b2 =5
P@) = 4kﬂ[2z Tt ] (1.7.9)

Even when x; becomes almost as large as ¢, equation (1.7.9) has been found,
experimentally, to be remarkably accurate.
Writing

- 1 -8
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and
(1 + 02)1,'2
¢ = —T‘—_—“b— - 1, (1.7.11)
equation (1.7.9) becomes
8
P = K{’(z + ;’_C) (1.7.12)

It is seen, by comparison with (1.4.2) that this is Class B cushioning
(cubic elasticity). K is the initial spring rate and ¢ determines the rate of
increase of stiffness with displacement. With the notation ko , r of Section
1.5, we see that

kg = K (1.7.13)
K
r= Li-c—tfz. (1.7.14)

Hence equations (1.5.6) and (1.5.4) may again be used to calculate maximum
acceleration and displacement. B has the same meaning as before (Eq.
1.5.3).

To predict the performance, in the vertical direction (Fig. 1.7.1),7of an
existing tension spring package the same procedure as outlined in Section
1.6 may be used, except that it is not necessary to have a load-displacement
curve for calculating ko and r. Instead, these parameters may be calculated
directly from equations (1.7.10), (1.7.11), (1.7.13) and (1.7.14). The
remainder of the procedure is the same as in Section 1.6(d).

To predict the performance perpendicular to another face, say AEHD
of Fig. 1.7.1, it is only necessary, in the calculation of %, and 7, to substitute
xg for xo, (' for ¢ (see Fig. 1.7.1) and, in place of b:

=1 g—; (1 —b). (1.7.15)

The initial spring rate K for any direction of acceleration may be calcu-
Jated from the initial spring rates K, , K;, K3 in the three directions normal
to the faces of the frame by using the relation

1 52 £ u?

= Ei, 4 -K—Z:, - k—g, (1.7.106)

1?
where s, ¢, u are the direction cosines of the acceleration direction with
respect to the normals to the faces of the frame. It is seen, from (1.7.16),
that the spring rate is given by the radius to the surface of an ellipsoid whose
principal semi-axes are K, Ko, Kj.
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The displacement direction does not necessarily coincide with the acceler-
ation direction. The angle 6 between them is given by

2 2 o
cos 8 = K[IS{_I + I‘E + %:l (1.7.17)

where K is defined by equation (1.7.16).

The spring characteristics may be made the same in all directions and the
displacement direction may be made to coincide with the acceleration
direction by setting

Xo

Il
=
oS
Il
=
&
I
|

and
{ = 5! = [

(see Fig. 1.7.1). This makes b = b = 4", ¢ = 0.828 and /K = 0.274
in the calculations of the next section.

1.8 PROCEDURE FOR DESIGNING TENSION SPRING PACKAGES

The design of a tension spring package, as contrasted with the analysis of
one, must proceed without initial knowledge of values for the parameters &,
and r, since these cannot be known until the springs are designed. There-
fore equations (1.5.4) and (1.5.6) cannot be used directly. For design pur-
poses they are transformed to the following set of formulas:

Ve =g/ LTy (1.8.1)

h 1 = 1
Lz\—/m:.=§1/(\/N+\/N+8)'+§ (18.2)

d"‘l

Vit = V(-1 + v/1+ B) (1.8.3)

2 _ o _ WaGn _ 2 _ = ,
M =N ==+ B) (=14 V1 + B) (1.8.4)
%—b=—1+/|/1+d"%“5“. (1.8.5)

These formulas have been converted to design curves which are given in
Figs. 1.8.1to 1.8.5. The curves are for use in connection with the following
routine procedure which has been found useful in designing the springs for
tension spring packages. Reference should be made to Table I.
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‘1. Enter, on Line 1, Table I, the weight (W) in pounds, of the sus-
pended item. This includes the weight of the cradle or other holding
arrangement and one-third the estimated weight of the springs.

B i ol i tEEE
t i i . b=0.3
1.7 ::“L_ + .ii T i -
= i b=0.2
i
- : , b=0.1
B it I, b=0.0
1.3 EEE =
12 e gi

.-';' +
HEE 'E-EE H“I”ill =
BE i S
H .EF‘,‘ i Hi
- R
i el S [ e
0 01 02 03 04 05 06 07
'S

Fig. 1.8.1—Tension spring package design curve. Equation (1.8.1).

2. Enter, on Line 2, the height of drop (k) in inches.

3. Enter, on Line 3, the maximum allowable acceleration (Gn) in units
of “number of times gravity.” This should be determined before-
hand from tests on the item to be packaged.

4. Enter, on Line 4, the dimension xy (inches).
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5. Enter, on Line 5, the dimension £ (inches). For a package to have

the same spring rate in all directions, £ = x\/2 is a necessary con-
dition.

6. Enter, on Line 6, the value chosen for b. As b becomes greater than

—
= O O 00~

[y

zero, the stiffness of the whole sispension increases for a given stiff-
ness of individual springs. The reverse happens for b less than zero.

25 E T R T
FERTHT T = BT i

2.4 firnt : moap iR A

2.3 B

i

Ll
bt

22

2.0

19

il

T

1.8 fs et

1.7 [ i

N

i

1.6

15

1.4 fE

1.3

1.2 4

11

i
i =
i TRt

o} 0.1 0.2 03 0.4 0.5

1.0

Fig. 1.8.2—Tension spring package design curve. Equation (1.8.2).

. Calculate xo/£.

. Enter Fig. 1.8.1 with xo/£ and find /.

. Calculate L = h/(\/c {Gn).

. Enter Fig. 1.8.2 with L and find N.

. Calculate K = (W.Gn?)/(2hN). This is the initial spring rate of the

suspension in the direction of xp .

. Calculate f = 3.13 (K/W»)". This is the natural frequency of vibra-

tion (cycles per second) of the suspension for small amplitudes in the
xp direction. This should not be close to the natural frequency of
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‘vibration of any element in the packaged item, which should be
determined by test beforehand (see, also, Section 4.2). In any case
it is advisable to provide damping for the suspension.

3.4 I

3.2

3.0 : —

28

26
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0.8
b=0.2 \
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4\._ e
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0 01 02 03 04 05 06 07 08 09 10
XD

R
Fig. 1.8.3—Tension spring package design curve. Equation (1.7.10).

13. Enter Fig. 1.8.3 with xy/( and find /K. If a four-spring package is
desired, instead of an eight-spring package, (see Section 1.7) the
value of #/K found on Fig. 1.8.3 should be multiplied by two before
entering it on Line 13 in Table I. This is the only change required
in the procedure.

14. Calculate £ = R(IE() This is the spring rate of each of the springs in
pounds per inch.
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15. Calculate B = (2W.h)/(Kec(?).

16. Enter Fig. 1.8.4(a) or (b) with B and find d,./(\/c{).
17. Caleulate dn/¢ = \/c-du//cl.

18. Calculate d,, = {-d,./L.

19. Calculate (d,./€) + (x0/1).

15 e

1.4 PR

135

12k

1.1 [

0.1

Hif i e R sl B R G
0O 02 04 06 08 10 12 14 16 18 20
B

Fig. 1.8.4(a)—Tension spring package design curve. Equations (1.8.3) and (1.8.4).

20. Enter Fig. 1.8.5 with (d./{) + (x/€) and find (e/€) — b. e is the
stretch of each spring (in inches) when the displacement is d,. inches.

21. Calculate F,, = k-(e/{)-{. This is the maximum load (in pounds)
on each spring.

22,23, 24, 25, 26.  These are the coil diameter, wire diameter, number of
turns, fiber stress and length of coils. These quantities are calculated
from the ordinary formulas, charts or slide rules for helical springs,
using the values of k£ and F,, from Lines 14 and 21.

27. The length inside hooks is entered on Line 27 to group all of the spring
specifications.
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Fig. 1.8.4(b)—Tension spring package design curve. Equations (1.8.3) and (1.8.4).
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Fig. 1.8.5—Tension spring package design curve. Equation (1.8.5).
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rAs an example of the calculations, Table I contains the entries for the
design of springs for a 21 pound article (including % the estimated spring
weight) which is to be packaged so as not to exceed 35¢ in a five-foot drop.

TABLE I
Computation Form for Tension Spring Packages
B 7 21
2. h(ins.)............. . B 60
T 35
Ao (N8 5
S L (INS. ) 7.07
O, B 0
T.Calc.wo/b oo e 0.707
8. FindV/efrom Fig. 1.8.1............................................ 0.1
9. Cale. B/NVeclGn=1L_....... ... e 0.269
10. Tind N from Fig. 1.8.2.. 1.265
11. Cale. WiGn2/2hN = K (lbs/m) . T 169.0
12, Cale. f = 3.13 (K/Wa) (cyc. /sec\ ,,,,,,,,,,,,,, A . 8.9
13. Find £/K from Fig. 1.8.3.. 0.274
14. Cale. £k = K - k/A(lbs/ln) e .. 46.5
15. Calc. B = 2Wah/Ket?. .. 0.368
16. Finddm/‘\/ctfromrlg 184.. ... 0.5
17. Cale. dw/f = V¢ - m/\/cc ................ ...  0.518
18. Calc.dp = ¢ - d.,./t(ms} e S 3.68
19. Calc. dm/€ + x0/€.. ettt eaaiaeeiaiiedeeecaaann 1.220
ZO.Fmde/tfromI‘lg185andlme6 0.580
21, Cale. Fp = k - ¢/C - t(lbs) ... 1910
22. Coil diameter (ins.)...... e S 1.40
23. Wire diameter (ins.)............... o e 0.207
24, Number of turns. . e 19
25. Fiber Stress ( ll)s/sq m) o .. 80
20. Length of Coils (ins.). . e 3.93
27. Length inside hooks (ins.). e . . o 7.07

1.9 CusHioNING WITH TANGENT ELasTICITY (CLASS C)

This is one of the most frequently encountered classes of cushioning since
it includes a very common type of bottoming (Figs. 1.4.3 and 1.4.7). The
load-displacement function (equation (1.4.3)) takes into account the fact
that the cushioning can be compressed only to a definite amount d .

To find formulas for maximum acceleration and displacement, we pro-
ceed as follows. Substitute equation (1.4.3) in (1.2.15) and perform the
integration, obtaining

4kg di T

log co 2d —Wh, (1.9.1)

which may be written as

‘Jl'dm _ 1r2ng _
tan W ,t/;p (—Zkodﬁ ) 1. (1.9.2)
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Equation (1.9.2) can then be substituted into (1.4. 3) to obtain the maximum
force P,, in accordance with (1.2.17):

andb w2 Wah
P /‘/ (% dﬂ - 1. (1.9.3)

54%;' ,,,,, i

-

dy
do
Fig. 1.9.1—Curve for finding maximum acceleration for cushioning with tangent elasticity.
See equation (1.9.4).

The maximum acceleration is then obtained from (1.2.16) and may be

written in the form
Gn 2y do\?
G_'o == -HE exp (%) —_ 1, (1.9.4)

where do and Gy are defined just as in (1.5.2) and (1.5.5). Go is the maxi-
mum acceleration that would obtain if the cushioning did not bottom, that
is, if the spring rate remained constant at its initial value &g. dp is the
maximum displacement that would be reached under the same linear con-
ditions. Hence G,,/Go is a multiplying factor to be applied to a hypothetical
linear cushioning to take into account the effect of bottoming. The multi-
plying factor depends only on the ratio (dy/do) of the amount of space
actually available to the amount of space that would be used under linear
conditions.
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The ratio G../Gy is plotted against the ratio dy/do in Fig. 1.9.1. It may
be seen that the multiplying factor increases very rapidly as the displace-
ment ratio (ds/do) falls below unity. For example, if the cushioning, with
tangent elasticity, reaches hard bottoming (d,) when only 809, of the
required displacement (d,) is attained, the acceleration is multiplied by
3.5;1f only 609, of the required displacement is available, the acceleration
is multiplied by 11.5.

Example: To illustrate with a numerical example, consider the case already
discussed in Section 1.3, where we found that a spring rate of 694 lbs/in
and a displacement of 1.44 inches were required to limit a 20-pound article

1.0

R

0.9

08

07

06§

22 24 26 28 30

12 14 16 18 20
dp,
dO
Fig. 1.9.2—Curve [or finding maximum displacement for cushioning with tangent elasticity.
See equation (1.9.5).

to an acceleration of 50g in a 3-foot drop with linear cushioning. Let us
suppose that only 1.15 inches are available, instead of 1.44 inches, and that
the cushioning has tangent elasticity starting with a spring rate of 694
lbs./in. Entering the curve of Fig. 1.9.1 at dy/dy = 1.15/1.44 we find
G,/Gy = 3.5. Hence the maximum acceleration will be 175g instead of the
required 50g.  This illustrates the wide variations in acceleration that may
occur as a result of minor variations of dimensions in high G packages.
It is not necessarily true that the 175g test is 3.5 times as severe as the
S0g test for all elements of the supported structure, since the severity de-
pends also on the shape and scale of the acceleration-time relation. The
factor may be more or less than 3.5 but it will be very close to this value for
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all high-frequency elements of the structure. This subject is treated in
detail in Parts IT and IIL.

The maximum displacement d,, , in the case of tangent elasticity, may be
calculated from equation (1.9.2) or, in terms of dy/do , from

dn 2 7 (do ”]
a == cos exp[ g Ea . (1.9.5)

The ratio dn/d; is plotted against dy/d, in Fig. 1.9.2.

The use of Fig. 1.9.2 can be illustrated with the example already calcu-
lated, in which dy/d, = 1.15/1.44 = 0.8. Entering the abscissa of Fig.
1.9.2 with dy/dy = 0.8 we find d../d, = 0.915. Hence the maximum dis-
placement will be 0.915 X 1.15 = 1.05 inches.

1.10 OprmauM SHAPE OF Loap-DISPLACEMENT CURVE FOR TANGENT
ELAsTICITY

It is possible to choose the best shape for the load-displacement curve
of the cushioning from those represented in Fig. 1.4.7. This will be, of
course, not the best of all possible curves, but only the best among “tangent
elasticity” curves. The best shape is defined as the one that yields the
smallest maximum acceleration (G,,) for a given weight (W), height of drop
(h) and available space (d;). This leaves the initial spring rate (ko) as the
only remaining variable. To find its optimum value (say ko), set equal to
zero the derivative of G, (equation (1.9.4)) with respect to ko , remembering
that G, and dy are functions of k. The result is

. w Wk (7 Wahk L—o 104
T adiky )P\ 243 ko - (1101)
from which
3.AWeh
- aﬂ“ (1.10.2)
b

Substituting (1.10.2) in (1.9.4) we find the minimum value (Gr) of maxi-

mum acceleration to be
G =222, (1.10.3)

b

To illustrate the application of equations (1.10.2) and (1.10.3), consider
again the case of the 20-pound article dropped from a height of three feet.
We found that a linear spring, with a spring constant of 694 lbs/in, would
limit the maximum acceleration to 50g if 1.44 inches of displacement were
available. If only 1.15 inches of displacement are available, and the initial
spring rate is kept at 694 Ibs/in, we Tound the maximum acceleration to be
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175g if the cushioning bottoms with tangent elasticity. Now, according to
equation (1.10.2), the best initial spring rate for cushioning with tangent
elasticity would be

r 3.1 X 20 X 36

ko = = 1690 Ibs/in.

(1.15)2
In this case, equation (1.10.3) gives, for the maximum acceleration,
r 39 X36
Gm = —ET = 122g.

Hence, confronted with a space limitation less than that required for a 50g
linear spring, it is better to use an initial spring rate higher than that for the
50g linear spring in order to strike an economical balance between displace-
ment and bottoming. The best balance, among cushionings having tangent
elasticity, is obtained by using equation (1.10.2),

If no factor of safety is considered, it would be still better not to use a
bottoming type of cushion at all. From equations (1.3.5) and (1.3.3)
it can be seen that a linear spring with a constant of 1090 lbs/in will give
only 63¢ with a displacement of 1.15 inches. Such a spring, though, would
bottom very sharply at a drop slightly higher than 3 ft. and would give
an acceleration much greater than cushioning with tangent elasticity which
bottoms more gradually. This may be important if there are high-ire-
quency, brittle elements in the packaged article (see Part III).

1.11 PROCEDURE FOR FINDING MAXIMUM ACCELERATION AND
Di1sPLACEMENT FOR CUSHIONING WITH TANGENT ELASTICITY
(Crass C)

To illustrate the use of the equations and curves for Class C cushioning,
the same example used for Class B will be used, as it was observed that the
experimental load-displacement curve in that example (Fig. 1.6.1) is a
border line one which can be treated as either B or C.

By laying a straight edge along the first part of the curve (Fig. 1.6. 1),
the average initial spring rate is found to be 305 lbs/in. This value is taken
as ko in the present case.

The next step is to find a value of d such that a graph of P/dy vs x2/d,
will fall slightly above the curve 2, = 30(0) in Fig. 1.4.7; d, must be greater
than 2 inches, since that displacement was obtained in the experiment.
As a trial take d, = 2.25 inches and test it at one point, say the experi-
mental point P = 300 lbs., x; = § in. Then P/d, = 133 and x,/d, =
0.39. The point (0.39, 133) falls below the curve &y = 30(0) in Fig. 1.4.7.
Next try d, = 2.5 inches. In this case, for the experimental point P =
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300, xy = %, we find P/d, = 120, x/dy = .35. This falls slightly above the
ko = 30(0) curve as required. The whole experimental curve is then
plotted to the coordinates P/2.5 vs x2/2.5 and is found to fit as closely as
necessary. Hence the parameters are adopted as ko = 305, dy = 2.5.

We can now calculate the maximum acceleration that the tube will
receive in, say, a three-foot drop test. First calculate, from equations (1)

and (2),
20V, 2 X 36 X 22.5
dy = LgE LAY A S =231
° 1/ ko 1/ 305 ’

o /P _ ‘/2_><,36><305:
Go Wa 225 31.3.

Then dy/do = 1.08. Entering Fig. 4 with this value we find G./Go = 1.82.
Hence the maximum acceleration is:

Gn = 31.3 X 1.82 = 57g.

Finally, entering Fig. 5 with d»/d, = 1.08 we find dw/dy = 0.8. Hence the
maximum displacement is d,, = 0.8 X 2.5 = 2.0 inches. This indicates
that the load-displacement test was carried far enough to cover the range
up to a three-foot drop.

It may be ohserved that the results obtained, by treating the same data
as Class B or Class C cushioning, agree within a few per cent. This is
because, in the example chosen, both B and C curves can be made to fit the
experimental load-displacement curve.

’ 1.12 ConSEQUENCES oF ABRUPT Borroming (Crass D)

It is useful to examine cushioning systems that can bottom more abruptly
than Class C cushioning. Abrupt bottoming is possible, for example, in a
tension spring package lacking a snubbing device. An estimate of the
increase in acceleration can be made by studying the case of bilinear elasticity
(Fig. 1.4.4). Here we have a spring rate ko up toa displacement d;, follow-
ing which the cushioning has a different spring rate k;. ko represents the
average spring rate before bottoming and k; can represent the much greater
stiffness of the wall of the container.

If dy > ds, that is, if

2Wakh
ko

the suspended article will bottom and the maximum displacement and
acceleration are obtained by using both of the equations (1.4.4) in evaluating
the integral in (1.2.15). Thus,

dm

dy
kgf\!g d:\fg + [kb.‘\:g -_ (kf_. - ku)da] dﬁ;g = IVQ]I (1122)
n d&

> d,, (1.12.1)
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The remainder of the procedure for finding G,, is the same as before.
The value of d,, found from (1.12.2) is substituted for x; in the second of

£lp

0 01 02 03 04 05 06 07 08 09 10
ds
d,

Fig. 1.12.1—Curves for finding maximum acceleration as a result of abrupt bottoming.
See equation (1.12.3),

(1.4.4) and the value of P, , thus obtained, is used, in (1.2.16), with the
result:

/Bl
Gm - GD lfLTﬂ +ﬂ,g (1 ku), (1-12.3)

where Gy is the acceleration that would be reached if a displacement d,

were available:
_ 2k
Gy = 1/11‘/‘2 . (1.12.4)

The ratio G,,/Go is plotted against d,/dy in Fig. 1.12.1 for several values
of ky/ko. Since, in practice, k, might be thousands of times as great as ko,
it may be seen that the increase in maximum acceleration can be very large
even when d, is only slightly less than do . It is apparent that a snubbing
device is desirable in a tension spring suspension. This is especially true
when considering high-frequency elements of the packaged article. It will
be shown, in Part III, that low-frequency elements are not affected as much
as might be expected from consideration of maximum acceleration alone.
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113 CusmioniNe wite HyperBoric Tancent Erasticrry (Crass E)

In the preceding sections, there have been considered four types of elas-
ticity (linear, cubic, tangent and bilinear) that fit the load-displacement
characteristics of the more common cushioning materials and devices.
There now remains the problem of finding more nearly ideal shapes of
elasticity. By “more nearly ideal” is meant a shape which will result in a

smaller maximum displacement for a given maximum acceleration. This is
important in the packaging of very delicate articles if shipping space is
limited.

It may be observed (equation (1.2.15)) that the total area under the
Joad-displacement curve is equal to the maximum energy of the system
The maximum ordinate of the enclosed area is proportional to the maxi-
mum acceleration. Hence, if we wish to (1) limit the maximum acceleration
(2) accomodate a given kinetic energy and (3) have as small a displace-
ment as possible, the best shape for the load displacement function is P =
constant, where the constant is the product of the supported mass and the
maximum allowable acceleration.

It is not practical to obtain this ideal shape exactly, for there will always
be a finite initial spring rate and a rounding off of the load-displacement
curve to the limiting maximum load. A function which represents this
practical condition (and also includes the ideal case) is the hyperbolic
tangent function mentioned in Section 1.4:

kg X9

2 (1.13.1)

P = P, tanh

The formulas for maximum acceleration and displacement are found in
the same way as for the other classes of cushioning with the results:

_Po —1 W hka
d, = i cosh™ exp P (1.13.2)
or
do Py -1 (Ivz Go)
dm = sh 1.13.
WEGUCO exp 2P (1.13.3)
and
Py kod,,
Gn = 7. tanh 2 (1.13.4)
or

B W3 GE
Gn W /‘/; exp( 7 ) (1.13.5)



DYNAMICS OF PACKAGE CUSHIONING ' 389

_ /2, _ Yk
do—,‘/ko, Gy = Wa

Equations (1.13.3) and (1.13.5) are plotted, in Figs. 1.13.1 and 1.13.2,
against the dimensionless parameter Po/Wi.G,. The latter is the ratio of
the maximum force, that the hyperbolic tangent cushioning will transmit,

where, as before

i

jissiitit
i

L

25

S e e

i

Tk

H

S

o] .5 1.0 1.5 2.0 25 30
Po
WaGo

Fig. 1.13.1—Maximum displacement for cushioning with hyperbohc tangent elasticity.
See equation (1.13.3).

to the force that linear cushioning would transmit under the conditions
specified.

To find the value of &, which yields the minimum value of acceleration
for a given maximum displacement, differentiate (1.13.4) with respect to &,
and set the result equal to zero:
ko dn,

Py
This is satisfied by kg — @, which represents the rectangular load dis-

placement curve and confirms the conclusion reached from energy
considerations.

2
sech

= 0. (1.13.6)
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Taking the limit of (1.13.4) as ky — o, we find the optimum acceleration
to be
;P

) 1.13.7
G Wa ( )
The corresponding maximum displacement is found, from (1.13.2) to be
p Wah J/
=— = —7°* 13.8
m P(] Gm (1 )
o p—
SH T : BE
BE
6
Gm
Go E
o
i
;! pats tasee VEEI :(’:" 4,, (eSS ree st tnset fatpt foses ey
0 5 1.0 1.5 20 25 3.0
Po
W2 Go

Fig. 1.13.2—Maximum acceleration for cushioning with hyperbolic tangent elasticity.
See equation (1.13.5).

1.14 MiNmMUM SPACE REQUIREMENTS FOR VARIOUS CLASSES OF
CUSHIONING

It is interesting to compare the minimum amount of space for displace-
ment that can be attained with the various kinds of cushioning that have
been discussed.

h

Hyperbolic Tangent Elasticity dn = G
. . 2h
Linear Elasticity dp = G
- , 3.9k

Tangent Elasticity dp = G
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Cubic elasticity will give a d,, somewhat more or less than 2//G,, depending
upon whether the parameter r is positive or negative.

It is seen that a factor of almost four can be gained, in the linear dimensions
of the cushioning space required, by replacing the tangent type of cushioning
with the hyperbolic tangent type.

There are several ways of obtaining a load-displacement curve with a
shape similar to the hyperbolic tangent curve. One of the most interesting
is suggested by the fact that the load-displacement curve of a strut has
approximately this shape. Hence a bristle brush has the proper
characteristics.

TABLE II

1 2 3 4 5 6 7 8

O UM S T T i Eeob (ol T A )
0 —_— 0 0 0 0 0 0

1 0.500 0.500 120 30 30 1.6 6.5
2 0.100 0.600 150 13.5 43.5 2.4 8.1
3 0.100 0.700 205 17.0 61.3 3.3 11.1
4 0.100 0.800 290 24.8 86.1 4.7 15.7
5 0.100 0,900 410 35.0 121.1 6.6 22.2
6 0.100 1.000 585 49.8 170.9 9.2 31.6
7 0.050 1.050 730 32.9 203.8 11.1 39.5
8 0.050 1.100 950 42.0 245.8 13.3 51.4
9 0.050 1.150 1370 58.0 303.8 16.4 74.0
10 0.025 1.175 1680 38.1 341.9 18.5 91.0
1 0.025 1.200 2240 49.0 390.9 21.1 121.0
12 0.0125 | 1.2125 | 2620 30.4 421.3 22.8 141.5
13 0.0125 | 1.225 3200 | 36.4 457.7 24.7 173.0

1.15 NuMmericAL METHOD FOR ANALYZING (Crass F CUSHIONING

The numerical method to be described is one that has been adapted from
a graphical one used by the Committee on Packing and Handling of Radio
Valves of the British Radio Board. The method has advantages of sim-
plicity in concept and ease of application, especially when the load-displace-
ment curve of the cushioning does not resemble closely one of the Classes A
to E described above. It has the disadvantage that it does not yield,
directly, numerical factors by which the spring rate or depth of cushioning
should be changed in the event that the analysis reveals inadequate or more
than adequate protection.

The method is based on the fact that the area under the load-displace-
ment curve of the cushioning represents the energy stored in, or absorbed
by, the cushion. The total amount of energy that must be transferred is
equal to the product of the weight (I7,) of the suspended item and the
height () of drop. By finding the abscissa (x.) and its ordinate (P) which
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include an area Wk, the maximum displacement is immediately x, and the
maximum acceleration is the quotient P/Ws , in accordance with equations
(1.2.15) and (1.2.16).

- As actually applied in the present instance, the British method was
modified slightly to make the procedure a routine numerical one. The

Q

3200

3000
LOAD DISPLACEMENT CURVE
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Fig. 1.15.1—Experimental load-displacement curve for Table IT.

computing form is given in detail in Table II, in which the data are taken

from an experimental load-displacement curve (Fig. 1.15.1) for the end spring

pads of a vacuum tube package. The load-displacement data are listed in

Columns 3 and 4 of Table IT. The meaning of each column in the table is as

follows.

Column 1. n(= 1, 2, 3---) is the number that identifies the displacement
~ (and corresponding load) up to which the area under the load-

displacement curve is to be calculated.
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Column 2. A(xs), is the increment of displacement between (x2),—1 and

(®)n . Alxz)n = (x2)n — (¥2)n_1, see Fig. 1.15.2, Note that,
as the curve becomes steeper, A(az), is taken smaller for better
accuracy.

Column 3. (x), is the displacement associated with the 2" point (see Fig.

1.15.2).
Column 4. P, is the load that produces displacement (x), .
P oo e o e e
L T ;1
!
e, /
o ‘
-“' __________________________ ’
o Paf-—"""""""
Pg fommmmmmm e m e oo
F‘2 ______________________________
Py b= 1
aA, £, aAy |BA, QA
0] (X2, %), (Xg), (Xz), (Xo)
| N D (X2,
LS > 1 1 - 1
A(x;)l A(XQ)Z A(XZ)g Nle A(xz)n

Xz = DISPLACEMENT

Fig. 1.15.2—Graphical illustration of numerical method of calculating area under load-

Column 5.

Column 6.

Column 7.

Column 8.

displacement curve. See Table II.

AAd, = 3A(x2)n(Pno1 + Pn) is the area of the trapezoid with
altitude A(x.), and bases P,—;and P, . Itisapproximately the
energy absorbed by the cushioning in displacing from (x2)-1
to (x2)n .

A, is the sum of all the trapezoidal areas from x, = 0 to x; =
(x3)n . It is approximately the total energy the cushioning can
absorb in displacing an amount (x,), beginning at zero dis-
placement. Note that 4, is always equal to zero.

Jn = A,/W is the height of fall that will cause the cushioning
to displace an amount (xs), . In Table IT, W. = 18.5 pounds.
G. = P,/W, is the maximum acceleration experienced by the
suspended mass when dropped from a height 7 .
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Fig. 1.15.3—Maximum acceleration vs. height of drop for an 18.5 pound article supported
on cushioning with the load-displacement curve of Fig. 1.15.1. See Table II.

From the last two columns of the table a curve of height of drop vs. the
corresponding acceleration may be plotted as in Fig. 1.15.3.

PART 1II
ACCELERATION-TIME RELATIONS

2.1 INTRODUCTION

In Part I we were concerned primarily with the maximum acceleration of
the packaged item. In this part we shall study the details of the variation
of acceleration with time in order to have this information available for our
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study, in Part III, of its influence on the response of elements of the packaged
item.

The first case to be considered will be the simple single mass and linear
spring example described in Sections 1.2 and 1.3. Following this the
phenomenon of rebound of the package will be considered. The influence
of velocity damping and dry friction will be studied; and, finally, the effects
of non-linearity of the cushion elasticity on the acceleration-time relation
will be investigated.

2.2 ACCELERATION-TIME RELATION FOR LINEAR ELASTICITY

Returning to the elementary example studied in Sections 1.2 and 1.3, we
first write the equation of motion for the mass m; , on its linear spring of
spring rate ks (see Fig. 1.2.1.). Equation (1.2.3) becomes

Mok + kz.’lf'_: = Ma2f. (221)
Using the initial conditions
[%2]mo = O, (2.2.2)
[%2]tm0 = ‘\/m, (2.2.3)
the solution of (2.2.1) is
X = M sin (w2 — a) + % (2.2.4)
w3 2
or
v = 1/’;’ + 2 sin (@f — a) + %’3 (2.2.5)
where
. = 2 = 2nfs = — 2.2.
w2 o mfy = T (2.2.6)
and
a =t wg\/2gk tan bad,, (2.2.7)

ws is the circular frequency, f, is the frequency and T'; is the period of vibra-
tion of the mass m, on its spring; d,, has the same definition as in Section 1.3
(equation (1.3.1)).

Now, Wa/ks is the static displacement of the mass m. on its spring. This
is usually very small in comparison with the maximum displacement (d,,)
during impact. Hence W,/ks will be neglected, and (2.2.5) becomes

Xo = dm sin wal. (2.2.8)
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Differentiating (2.2.8) twice with respect to ¢, we find, for the acceleration
f2 = —wilm SN wgt = —waV/2gh sin wat. (2.2.9)

Hence the absolute magnitude of the maximum acceleration is

- 2
G = Inglmx - ‘Eﬂgﬁn - ‘/%k: (2.2.10)

as before.
G
AAAAANAANAANAR R o
Gwlrm WV ur‘u'r\u‘ v
t
BN
W2
Fig. 2.2.1 Fig. 2.2.2

Fig. 2.2.1—Half-sine-wave pulse acceleration, See equation (2.2.9).
Fig. 2.2.2—Oscillogram of a half-sine-wave pulse obtained with a piezo-crystal
accelerometer.

Equation (2.2.9) shows that the acceleration varies sinusoidally with time.
It rises from its initial zero value to its maximum in a time 7/2w; , at which
time the displacement also reaches its maximum value. The acceleration
returns to zero again at time w/w; . At this time the displacement is also
zero. This is the end of the range of applicability of equation (2.2.9); for
when ¢ becomes slightly greater than 7/w, , a tension in the spring is required.
Since no mechanism, such as a large mass m; (Fig. 0.2.2), has been supplied,
to allow a tension in the spring to develop, the system will rebound from the
floor at the end of the half period w/ws . The acceleration is thus a half-
sinusoidal pulse of duration r/ws = T»/2 and amplitude Gng as illustrated
in Fig. 2.2.1. An oscillogram of such a pulse obtained with a piezo-crystal
accelerometer is shown in Fig. 2.2.2.

2.3 PACKAGE REBOUND.

The presence of the mass of an outer container will affect the acceleration
after the first half cycle of displacement. The outer container is represented
by the mass m; in the general idealized system illustrated in Fig. 0.2:2 and in
the simpler system (Fig. 2.3.1) that we shall consider now.
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Two pairs of equations are necessary to describe the action of the system;
one pair applies during the time of contact of m; with the floor and the
second pair applies if rebound occurs.

The mass m; is assumed to be inelastic (see Section 0.2) so that, during the
interval of its contact with the floor, the equation of motion for ms will be
the same as before (2.2.1). In addition, there will be an equation of equili-
brium for the mass m; :

R = kots + mag ' (2.3.1)

where R is the upward force exerted by the floor on m; .

3
N

1

" X2

];.? }MW’IMMAMW
>

7 ra X3

Fig. 2.3.1—Two-mass system representing packaged s ticle, linear cushioning and
outer container.

Equations (2.3.1) and (2.2.1) will hold as long as Ris positive. Tofind out
when R > 0, solve (2.2.1) for ksx, and substitute in (2.3.1):

R = Wz + I’Vs — Maky . (2.3.2)

That is, a necessary condition for rebound is that the mass of the cushioned
article, multiplied by its maximum acceleration, exceeds the total weight
of the package. The condition for rebound may be written

We 4+ W;

Gn > A

(2.3.3)
This is a necessary, but not a sufficient, condition for rebound because there
will be energy losses as a result of damping and permanent deformation.
G will generally have to be considerably greater than the right hand side
of (2.3.3) for rebound to occur.

If rebound does not occur, equation (2.2.9) continues to apply, except for
damping which will be considered in Section 2.5.
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2.4 MoTioN AFTER REBOUND

If rebound occurs, the equations of motion for the two masses, m; and m; ,
are

Mafis + kaxs — 3) = Mag, (2.4.1)
My — ka(vy — x3) = Mag. (24.2)
Multiplying (2.4.1) by ms and (2.4.2) by m, and subtracting, we find
my + kay = 0, (2.4.3)
where
y = %3 — &s, (2.4.4)
Wa M
m = 1;2—24-3?3 (2.4.5)

Fig. 2.4.1—Oscillogram illustrating the half-sine pulse followed by the higher frequency,
lower amplitude vibration of the packaged article in a rebounding package.

Equation (2.4.3) is the equation governing the vibration of the two-mass
system as a simple oscillator. The circular frequency of the vibration is

© = 4/ ks (2.4.6)
m

and it may be noticed that this frequency is always greater than ws (equation
(2.2.6)). This fact is important in estimating the effect of vibrations on
elements of the packaged item (Section 3.5).

w is also the frequency of vibration of the packaged article during the
interval of free fall. This vibration (usually of small amplitude) is initiated
by the sudden release of the dead load displacement of the packaged article.

As an intermediate step in obtaining the acceleration after rebound we
shall find the magnitude of the relative displacement (v) of the two masses.
To do this it is necessary to solve equation (2.4.3) with the appropriate
boundary conditions. Calling ¢, the time at which 3 leaves the floor, we
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must find y and y at ¢ = ¢,. Since my; is motionless at ¢ = /., the relative
displacement and velocity at that time are identical with x, and &, respec-
tively. The former is simply the stretch of the spring necessary to just
pull the mass m; off the floor, i.e.,

[J’]t:t, = {3’2]£=t, = —— (2.4.7)

To find the velocity at ¢ = {, , substitute (2.4.7) in (2.2.4) and also substi-
tute /. for ¢ in the latter. This gives an equation for determining#, . Then,
returning to (2.2.4), differentiate it once to obtain %, and substitute for ¢ the
value #, just found. The result is

[#)ee, = [Pliee, = — /‘/Qg]z — w) (2.4.8)

W ks
The solution of (2.4.3) with initial conditions (2.4.7) and (2.4.8) is
1 .
y= =1 /l/Qgh o Gin (wt —¢), (2.4.9)
w kz
where ¢ = wt, — tan™" wlylis,

Ve,
We are now in a position to find the acceleration of the packaged item
after rebound. Substitute v of (2.4,9) for x» — a3 in (2.4.1) to obtain

2 e

i=g+ 24/ 2k — I'f;%ig sin (wf — ¢). (2.4.10)
w 2
To obtain a simple formula for the ratio of the maximum accelerations
after and before rebound, let us assume that both are much greater than
gravitational acceleration. Then if

G, = maximum number of g’s after rebound, (maximum of (2.4.10))
2hiks . ,
Gn = W o maximum number of g's before rebound,

we find, from (2.4.10), neglecting the term g outside the radical,

Gr_ Wy _ W
Gn W+ Ws 1/ L= i (24.11)

Hence, the maximum acceleration after rebound is always less than the
maximum acceleration before rebound. Therefore, conditions after re-
bound need only be examined when the frequency after rebound (see equa-
tion (2.4.6)) is near the natural frequency of vibration of a critical element
of the packaged item (see Section 3.5).
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The complete acceleration history of a rebounding package with un-
damped linear cushioning is thus a half sine wave pulse of amplitude G, =
\/2hk,/W, and duration m/w, followed by an oscillating acceleration of
amplitude given by (2.4.11) and frequency given by (2.4.6). Such a wave
shape is shown in Fig. 2.4.1.

2.5 INFLUENCE OF DAMPING ON ACCELERATION

The presence of damping in cushioning is always desirable to prevent the
building up of large amplitudes as a result of periodic disturbances. How-
ever, damping also has an effect on the maximum acceleration that is at-
tained in a drop test. From the latter point of view there is an optimum
amount of damping and an amount that should not be exceeded if the maxi-
mum undamped acceleration is not to be exceeded.

We shall consider the case of a linear cushion with damping proportional
to velocity. The system is represented in Fig. 2.5.1. With the addition

my

-

= b
T =
_—

I 7 4

Fig. 2.5.1—Idealization of linear cushioning with velocity damping.

of the damping term the equation of motion of m; , during contact of the
package with the floor, is
matis + Cofz + kowe = 0, (2.5.1)

in which ¢, is the damping coefficient of the cushioning. Equation (2.5.1)
is more conveniently expressed as

o + 2Bawaks + wize = 0, - (25.2)
where
ke
= —, 2.5.3
w2 1/ ms . ( )
[
o= (2.5.4)

ws is the undamped circular frequency of vibration of 7 on its spring and B2
is the fraction of critical damping. [: = 0 means no damping and 8z = 1
means just enough damping so that there will be no oscillation if the pack-
aged article is displaced and released.
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The acceleration solution of (2.5.2), with the initial conditions of the drop
test (see (2.2.2) and (2.2.3)) is

W '\/Eg_h

8 —Bouwat —
d = — — X557 % cos (watn/1 — B2+ ) (2.5.5)
V1 - g
where
282 — 1
= "_'_'_:_'—"_'_'7 . 2. .
tan vy 2;92\/1—,!33 (2.5.6)
2.:‘:‘ ! |
15
\ =0
\\ ﬁ;: 25
1.0 S‘: f7/£ﬁ2=s
, E N
)‘2 N 4 B
—GcTES /)\ \\ §::7g
\\\ T~ \\ %ﬂz;g,
0 5 1.0 ‘\'___"'--:..\- 25N 33\ as /'/;0 45 5.0
NEeR e S =222 ——
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Fig. 2.5.2—Acceleration-time curves for linear cushioning with various amounts of
damping (no rebound). See equation (2.5.5).

The acceleration is thus a damped sinusoid with an abruptly reached
initial value whose magnitude depends upon the amount of damping. For
small damping, the initial acceleration is small and then the acceleration
increases, but never reaches the value that would be reached without any
damping. For high damping (82 > 0.5) the initial value is greater than
without any damping and falls off thereafter. Figure 2.5.2 shows the shapes
of the acceleration time curves for several values of 3;. All of the curves
are for no rebound. It may be seen, from equation (2.5.5) and Fig. 2.5.2
that the addition of damping changes the shape of the acceleration-time
relation in three ways. First, a damped sinusoid replaces the pure sinusoid;
second, the frequency is reduced; and, third, the initial phase is changed.

It is useful to consider in detail the effect of damping on maximum accel-
eration. Let

G = maximum number of g’s with damping
o

Gy = W

= maximum number of g’s without damping.
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Fig. 2.5.3—Influence of velocity damping on maximum acceleration. See equation (2.5.5).

Then, from (2.5.5),at ¢ = 0

G
om 5.7
Go 23, (2.5.7)
and, after t = 0,
Gn —Bawatn
G = Bruztm (2.5.8)
where £, , the time at which the maximum occurs, is given by
o _ (1 —48)V1 — 8
t a1 — g2 = — 2. 2.5.9
et V1= 8= "5 iy 259

The largest value of Gn/Go from (2.5.7) and (2.5.8) is plotted against G2
in Fig. 2.5.3. It is shown there that, as the damping is increased from zero,
the maximum acceleration first decreases to a minimum of 80% of G, and
then increases to Gy at 509 of critical damping. In this interval the maxi-
mum acceleration occurs after £ = 0. For damping greater than 8, =
0.5 the maximum acceleration occurs at the instant of contact and increases

in direct proportion to 8 .

2.6 INFLUENCE OF DAMPING ON REBOUND

In considering rebound without damping, it was found that rebound does
not occur unless the product of the maximum acceleration and the sus-
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pended mass exceeds the total weight of the package. It was not necessary
to distinguish between maximum acceleration on the first downstroke and
first upstroke, since these are the same when there is no damping. With
damping, however, the maximum acceleration on the first downstroke is

1.0

O.BI\

MAXIMUM UPSTROKE ACCELERATION
MAXIMUM UNDAMPED ACCELERATION

N
0.4 \\
0.2 \\\
\\
~—_]
o 2 4 6 8 1.0
B2

Fig. 2.6.1—Influence of velocity damping on maximum upstroke acceleration. See
equation (2.5.5).

greater than that on the first upstroke (Fig. 2.5.2) and it is the latter that
controls rebound. Hence damping inhibits rebound.

For example, with 509 of critical damping (8; = 0.5), equations (2.5.8)
and (2.5.9) and Tig. 2.5.2 show that for the first downstroke G, /Gy = 1
while for the first upstroke G, /G, = 0.164. Hence the tendency to rebound
is reduced by a factor of six when damping to the extent of 509 of critical
is added to an undamped package.

The ratio of the maximum acceleration on the first upstroke to the maxi-
mum undamped acceleration is plotted in Fig. 2.6.1 for various values of 3 .
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2.7 INFLUENCE OF DRY FRICTION ON ACCELERATION AND DISPLACEMENT

By “dry friction” is meant friction that is independent of velocity except
for sign. During contact of the package with the floor the motion of #,
might be opposed by a constant friction force F. Such a force is developed,
for example, in a package with corrugated spring pad cushioning by rubbing
against the side and end pads in a top or bottom drop. A typical idealized

1

Fig. 2.7.1—Load vs. displacement for cushioning with dry friction.

load-displacement curve is shown in Fig. 2.7.1. For the first downstroke
of ms , the equation of motion of m; is

oka + kove = —F. (2.7.1)
With initial conditions
[¥2)emo = O, [aemo = V/2gh (2.7.2)
the solution of (2.7.1) is

2
% = 1/dg+ (g) sin (02! + @) — % (2.7.3)
2
_ 2W2]1
dU - V kz ]

F _ F_
ks dy W.Gy’

_ i
Gn—/‘/nfz-

where

tan a =
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dy and Gy are the maximum displacement and acceleration that would obtain
if no friction were present. From (2.7.2) the maximum displacement with

friction is
F\* F
= 2 — —
dm 1/ a2 + (kz) X (2.7.4)

Hence, the presence of friction decreases the maximum displacement since
dn < dy.
From (2.7.3) the acceleration is

. —-_F_z .
?:;2 = — ,‘/GE + (Wz) sin (w2t 4+ &), (2.7.5)

so that the maximum acceleration is

G = 1/ Gl + (%)2, @7.6)

which is greater than the maximum acceleration without friction.

It would appear, at first glance, that cushioning with friction always
gives a greater acceleration than the corresponding cushioning without
friction. However, the reverse is actually true provided we allow the same
displacement in both cases. This may be done, as may be seen from (2.7.4),
by decreasing the spring rate in the cushioning with friction to

_or
x

The maximum acceleration in the cushioning with friction is then, from
(2.7.6),

kp = kg (2.7.7)

F = F
Gr—-Go—Wz, Ozﬁr—2

= (2.7.8)

z0
5"
That is, for the same maximum displacement, the maximum acceleration
is reduced by the addition of dry friction.

2.8 AcCcCELERATION-TIME RELATION FOR CuUBIC ELASTICITY

As an example of the effect of nonlinearity of the cushioning on the shape
of the acceleration-time function, the case of cubic elasticity (Class B)
will be analyzed. The system to be considered is illustrated in Fig. 1.2.1,
and the load-displacement relation for the cushioning is given by

P = koxy + rxs. (2.8.1)
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Substituting (2.8.1) in (1.2.13) and performing the indicated integration,
we find

ko 2 r a4
= 20h — — %5 — — Xa. 2.8.2
i me 2my ( )

Remembering that &, = dx./dt, we solve (2.8.2) for dt:
dxz

dt = . (2.8.3)
) 9 LA
,‘/ng o x3 2m2x"
1.0
n |
\\
E RN
N
°I:a 5
I~
© -_-'-'-'--—-_.
—
50 2 4 6 8 10 12 14 16 18 20

Fig. 2.8.1—Duration of acceleration pulse for cushioning with cubic elasticity. See
equation (2.8.10).

Then, with the initial condition x» = 0 when ¢ = 0, the integral of (2.8.3) is

z2 drz
' = f - (2.8.4)
LU R
2¢l Tt ]
To integrate (2.8.4), let
X2
zZ = (2.8.5)

VEQR] = du) + 3

where -

2 _ 1 _ __1__
k= 5{1 ‘\/ITB} (2.8.6)
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Fig. 2.8.2—Acceleration-time curves for cushioning with cubic elasticity. See
equation (2.8.14).

and B and d,, are as given in Part I:
AW hr
=R

dw = do ,1/%(—1 + 1+ B)- (1.5.4)

(1.5.3)




408 BELL SYSTEM TECHNICAL JOURNAL

Then (2.8.4) becomes
[ = 1 ]'z iz
T h VI =290 — B2’
in which the integral is the elliptic integral of the first kind (see Hancock
“Elliptic Integrals,” John Wiley and Sons, New York, 1917). In (2.8.7),
we = wo (14 B, (2.8.8)

where wo = A/ ko/ms is the radian frequency that would obtain if the cushion-
ing were linear with spring rate k. The motion for the linear case has a
half period, or pulse duration 7o = /wo . The half-period (r2) of the motion
with cubic elasticity is twice the time required for x» to increase from 0

(2.8.7)

to dm .
From 2.8.5
[Z]zg=0 = 0,
(2.8.9)
[Z]:g=d,,, b 1.
Hence, from (2.8.7), the half-period is
2 dz 2K
T2 = wc,{ VI =201 - 22 = o (2.8.10)

where K is the complete elliptic integral of the first kind. The duration of
the acceleration pulse is therefore 2K /w,. We can define a radian frequency
of the acceleration by

=T =T _mall T 5 (2.8.11)

The ratio wo/ws (i.€., 72/70) is plotted in Fig. 2.8.1 which illustrates how the
pulse duration decreases as the parameter B increases. Hence, for a given
cushioning with cubic elasticity, the pulse duration decreases as the height
of drop increases. This is in contrast to the linear case in which the dura-
tion is independent of the height of drop.

To find the acceleration &, , we return to (2.8.7) and write it in the form
of an elliptic function:

snwd = Z. (2.8.12)
Substituting the expression for Z given in (2.8.5) and solving for xz , we find
X = dmen(wit — K). (2.8.13)

Finally, differentiating (2.8.13) twice with respect to ¢, we find the accelera-
tion to be

iy = wldn2B2sn2(wt — K) —1]en(wt — K). (2.8.14)
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The ratio —&,/Gog is plotted in Fig. 2.8.2 against a radian coordinate
(wof) for several values of B. It may be seen that, as B increases, the maxi-
mum acceleration increases, the duration of the pulse decreases (see Fig.
2.8.1) and the acceleration-time curve becomes bell shaped. For reference,
the sinusoid for the linear case (B = 0) is plotted in the figure.

Figure 2.8.2 is plotted for perfect rebound. If rebound does not occur,
the curves continue, mirrored in the time axis, so as to form a periodic
vibration of period 27,.

2.9 AccCELERATION-TIME RELATION FOR TANGENT ELASTICITY

In this section the effect of tangent elasticity on the shape of the accelera-
tion-time relation will be studied. The shape of the load displacement
curve is given by

ch.db t TXo

P=T anﬁ;.

(1.4.3)

The system considered is again that shown in Fig. 1.2.1. Referring to the
energy equation (1.2,13):

”’m f Pdxy = magh, (1.2.13)

we substitute the above value of P and perform the indicated integration to
obtain, for the velocity,

. Skudg X2
X = 1/2gk + o log cos 2% (2.9.1)

Then, as in Section 2.8,

® 24,

¢ = f”dx"‘ f (2.9.2)
1/2k+8k"dbl T o

and the half-period (r2) of the motion is again twice the time required
for x, to increase from 0 to d,, . Hence

= 2_[6" das 293
o 1/2 h -I-S—kodglo cos =2 22
8% T a2 OB €95 34,

where, from Section 1.9,

2y s (do)ﬂ] <
dpm = - cos expl: s\a) | (1.9.3)
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The radian frequency of the acceleration is
m
Wy = —
T2

and this is to be compared with the frequency

™ ko
wﬂ=—= —_

To Mo

that would obtain if the cushioning were linear with spring rate k. The
ratio wo/ws (i.e., 72/7)) was obtained by numerical integration of (2.9.3)

1.0

9y
do

Fig. 2.9.1—Duration of acceleration pulse for cushioning with tangent elasticity. See
equation (2.9.3).

and is plotted in Fig. 2.9.1 against the ratio dy/de. Thefigure shows that
for dy/dy < 1, the pulse duration varies almost linearly with dy/dy . Asthe
bottoming distance becomes larger than that required for linear cushioning
with spring rate ko, the pulse duration approaches asymptotically the
duration 7/w, for the linear case.

As dy/d, decreases, the pulse duration becomes shorter, but the maximum
acceleration increases, in accordance with equation (1.9.4) and Fig. 1.9.1.
The shapes of the acceleration-time curves for several values of dy/dy are
illustrated in Fig. 2.9.2. They are more sharply peaked than the corre-
sponding curves for cubic elasticity (Fig. 2.8.2) as might be expected from
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the fact that the load-displacement curve for tangent elasticity rises more
rapidly than that for cubic elasticity; that is, the bottoming is harder.

]

d
b_
a;—.?S
4.0
35
3.0
25
X2 ‘

GoB L\ dp_
20 ?D—-I.O

/

1.0

/

/
/ 7
- N
. v \ A %\f_’oa
NN
o] 5 1.0 ].S\\ 20 25 \30\

Fig. 2.9.2—Acceleration-time curves for cushioning with tangent elasticity.

\\\

The curves of Fig. 2.9.2 were obtained by numerical integration of equa-
tion (2.9.2), to obtain x» as a function of #, following which these values
were substituted in the equation

Zku d-b X2

t =0

an'é‘gn =

ma iy +

to obtain & . It may be observed that the maximum values of the curves
are the values dictated by equation (1.9.4).
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In performing the numerical integrations of equations (2.9.2) and (2.9.3),
it is found that the integrand becomes infinite when x; = dy since at this
point the velocity is zero. In order to avoid this difficulty, it was assumed!
that, for a small distance in the neighborhood of du , the acceleration is
constant with magnitude G,g as obtained from equation (1.9.4). The
procedure is described in further detail in Section 2.12.

Figure 2.9.2 gives the acceleration-time curve for perfect rebound. If
rebound does not occur, the acceleration is a periodic vibration, each suc-
cessive half period having the shape shown, with alternating sign.

210 ACCELERATION-TIME RELATION FOR ABRUPT BOTTOMING

By abrupt bottoming, we mean bilinear cushioning (Class D) as treated
in Section 1.12. The load-displacement relation is (see equation (1.4.4)
and Fig. 1.4.4)

P = kyxs Oéxzéds
_ . (1.4.4)
P = kpxe — (kb — ko)ds X > dy

Considering, again, the system illustrated in Fig. 1.2.1, the equation of
motion of m. , before bottoming, is

Moy + koxp = 0 0 % =d. (2.10.1)
with initial conditions
[x2):—0 = O, [iolimo = V/2gh. (2.10.2)
The solution of (2.10.1) is then

Xy = ‘\/ng sin wp t, 0=x = dn (2'103)
0

@ =

w = @ (2.10.4)

The time (¢,) at which =, reaches d; is found from (2.10.3):

where

(2.10.5)

where

1 See Timoshenko, “Vibration problems in Engineering,” D. Van Nostrand Co.. New
Y ork, Second Edition (1937) page 123.
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i.e., do is the displacement that would have been reached if the spring rate

remained constant.
The velocity of m. at time ¢, is

[daleme, = V/2gh cos wot, = /‘/Zgh(

motion becomes
?Hg’fg + kb.’t'z — (kb -_— kg)d, = 0,

The solution of (2.10.7), with initial conditions

2gh (1 —

X2

[let—t, = d,

[#a)ee, =

a3
)

is
_ kndu k(, df kb : —
X = k—b1/5<1+d5(1 i, ) i (wpt + @ — wply)
ko
(-5
where
tan’ %
an” o =
dg
k(ﬁ_q
. kb
wp = e
My

&
1-%).

If v/2gh > wed,, the displacement will exceed d,

(2.10.6)

and the equation of

=d,. (2.10.7)
(2.10.8)
(2.10.9)

¥ Z d,
(2.10.10)

By differentiating (2.10.3) and (2.10.9) twice with respect to f, the

accelerations for the two regions are found to be

Ha = — Gog sin C\."u[, 0 é X2 = dn! (2‘10'11)
Lo ke dif, R _
= =G g/ (1= )i ke — w0,
X9 § d.,
where
.
G 1/ Z3 (2.10.13)

Typical shapes of the acceleration pulse represented by equations (2.10.11)

and (2.10.12) are shown in Fig. 2.10.1.

The curves are drawn for d,/d,



414 BELL SVSTEM TECHNICAL JOURNAL

0.5 and for several values of ks/ko . The peak values of the curves are the
same as given by equation (1.12.3). The curve marked ki/ko = 1 is the
sinusoid of the linear case with duration

— (2.10.14)
wWo
| 1
k k
K b_
kox.o‘ 0-100
8
7
6
5
X2
~GoB
4
3 1}
N o,
\ko
2
\ —’ih =2
/ “& Z
1 N Pa1
e z,
WA V| N~
- ~J
e \L}\ a’ \\a' .\a'\\a'
0 .5 1.0 15 2.0 25 3.0
L/nt

Fig. 2.10.1—Acceleration-time curves for cushioning with bi-linear elasticity.
ds/do = 0.5. See equations (2.10.11) and (2.10.12).

As before, if the package does not rebound, the acceleration shown is mir-
rored in the time axis after each half cycle, to forma vibration of period 273.

It is useful to know the duration of the complete pulse (za’ in Fig. 2.10.1)
and also the duration of bottoming (b4’ in Fig. 2.10.1). Calling the former
7o and the latter r5 , we have, from equations (2.10.11) and (2.10.12)
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Fig. 2.10.2—Pulse durations for cushioning with bi-linear elasticity. See equations
(2.10.15) and (2.10.16).

8 EQ _g —1 kﬂ
&t 1/1; 1=t ( 2 ‘) (2.10.15)
k(% — 1

(2.10.16)

These two equations are plotted in Fig. 2.10.2 for several values of k,/k, .

2.11 AccELERATION-TIME RELATION FOR HYPERBOLIC TANGENT
ErasriciTy
The relation between acceleration and time for hyperbolic tangent
elasticity is found by the same procedure that was used for tangent elasticity
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in Section 2.9. The system considered is that shown in Fig. 1.2.1 and the
load displacement curve of the cushioning is given by
. ko X
= P tanh =,
P 0 anh Pn
Substituting the above expression for P in the energy equation (1.2.13), we
find the velocity to be

. 2P} ko s
= — =2, A1.1
& 1/ 2gh ke log cosh 7, (2.11.1)
Then, as before,
I3 d
t = f & (2.11.2)
(-

and the half period (73) of the motion is twice the time required for x; to
increase from 0 to dm , or

dm
Ty = 2f —.'M, (2.11.3)
0 X2
where, from Section 1.13,
doPo WiGS)
A W:Go cosh™ exp 2P (1.13.3)

that would obtain if the cushioning had a constant spring rate equal to the
initial spring rate (ko) of the hyperbolic tangent cushioning. The ratio
wo/wy (or T5/7o) is plotted, in Fig. 2.11.1, against the dimensionless param-
eter Po/WaGy (see Section 1.13). It may be observed that the pulse
duration becomes very long when Po/W G, is small, i.e., when the horizontal
portion of the load displacement curve (Fig. 1.4.5) comes into play. The
influence on the shape of the acceleration-time curve is illustrated in Fig.
2.11.2. The curve marked Po/W3Gy — < is the sinusoid for the linear
case. For small values of Py/W G, the curve approaches a square wave.
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Fig. 2.11.1—Duration of acceleration pulse for cushioning with hyperbolic
tangent elasticity.

2.12 NUMERICAL PROCEDURE FOR FINDING ACCELERATION-TIME RELATION
FOoR Crass F CUSHIONING

When the load-displacement curve does not resemble one of Classes A to
E, the acceleration-time relation may be found by numerical integration.
Combining the energy equation,

.2
Mo Xa

2

+ f " Pdxs = magh, (1.2.13)
0
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with the equation relating time and velocity,

=2 d)
z=f e (2.12.1)
0

o

I = 1/W2.[=:2 /L——dL-T
%h S ffe P do (2.12.2)
(1]

As an example, consider the problem of a 15-pound article supported on
cushioning with the load-displacement curve shown in Fig. 2.12.1. The
package is to be dropped from a height of 3 feet. The computations are

Po

we find

o= > 0o

WaGo

!
|
NI
[/
v/
/

1.0

e VAN

1 2 3 4 5 3 7 )
Ght

Fig. 2.11.2—Acceleration-time curves for cushioning with hyperbolic tangent elasticity.
given in detail in Tables IIT and IV. The headings of Columns (1) to (8)
of Table IIT are the same as in Table II, Section 1.15. A, is the integral
under the radical of equation (2.12.2). Column (10) of Table III is the
integrand of Equation (2.12.2), Le., it is proportional to the reciprocal
of the velocity expressed as a function of displacement. The function
is plotted in Fig. 2.12.2 and its integration is performed in Table IV. In
columns (11), (12) and (13), intervals of x» are chosen to suit the shape of
the curve. The values for column (14) are taken from column (10). Col-
umns (15) and (16) perform the same operations on the integrand
(Wih — A,)”" that are performed in Columns (5) and (6) of Table IIT on
the integrand P.
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Fig. 2.12.1—A load displacement curve for Class I cushioning,
TABLE TIII
(1) (2) 3 |@ (5) (6) (7) (8) ) (10)
w | AGnn | o | o [2ED0 (0 4 Py (ﬁ)"= PSS IR ) PR " —
thn | (w2 | Pu | =5 (Pn+ Pna J'u..npdn n =3, | On = | W * VIVl — A,
of 0 |00 |O 0 0 0 0 540 0.0431
1| .20 0.2 |105 10.5 10.5 0.7 7.0 | 529.5 0.0435
2| .20 |0.4 |155 26.0 36.5 2.4 10.3 | 503.5 0.0446
3| .20 |0.6 |192 34.7 71.2 4.8 12.8 | 468.8 0.0462
4( .20 |0.8 |217 40.9 112.1 7.5 14,5 | 427.9 0.0483
5( .20 |1.0 (237 45.4 157.5 10.5 15.8 | 382.5 0.0511
6| .20 |1.2 |257 49 .4 206.9 13.9 17.1 | 333.1 0.0547
71 .20 (1.4 (277 52.9 259.8 17.3 18.5 | 280.2 0.0597
8] .20 |1.6 |305 58.2 318.0 21.2 20.3 | 222.0 0.0671
9] .20 |1.8 |342 64.7 382.7 25.5 22.8 | 157.3 0.0798
10| .20 (2.0 (392 73.4 456.1 30.4 26.1 83.9 0.109
11| .05 |2.05 |405 19.9 476.0 31.8 27.0 64.0 0.125
12| .05 |2.10 |422 20.7 496.7 33.2 28.1 43.3 0.152
13| .05 |2.15 {440 21.6 518.3 34.6 20.4 21.7 0.215
14 .01 |2.16 |445 4.42 522.7 34.8 29.7 17.3 0.240
15| .01 |2.17 450 4.48 527.2 | 35.2 30.0 12.8 0.279
16| .01 |2.18 |455 4.52 531.7 | 35.5 30.3 8.3 0.347
17| .01 |2.19 |457 4.56 536.3 | 35.8 30.5 3.7 | 0.521
18| .01 |2.20 |462 4.60 540.9 | 36.1 30.8 0 { »
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TABLE IV
(11) (12) (13) (14) (15) (16) 17
) Iy Az) (o s l:/'uT
" A(x2)n (x2) R S == (fa + fa-1) W __CX3 f
i ViTah— An : ,/; Vg4 "XV %
0 0 0 0.0431 0 0 0
1 0.4 0.4 0.0446 0.0175 0.0175 0.0024
2 0.4 0.8 0.0483 0.0185 0.0360 0.0050
3 0.4 1.2 0.0547 0.0206 0.0566 0.0079
4 0.4 1.6 0.0671 0.0243 0.0809 0.0112
5 0.2 1.8 0.0798 0.0149 0.0958 0.0133
6 0.2 2.0 0.109 0.0189 0.1147 0.0160
7 0.1 2.1 0.152 0.0131 0.1278 0.0178
8 0.05 2.15 0.215 0.0092 0.1370 0.0190
9 0.03 2.18 0.347 0.0083 0.1453 0.0202
10 0.01 2.19 0.521 0.0043 0.1496 0.0208
11 0.01 2.20 © 0.0221
0.5
0.4
c
<
&~
N
=
0.3

]

0.1

0o 2 a4 8 12 16 2.0 24
X
Fig. 2.12.2—Plot of Column (3) vs. Column (10) of Table III.
A difficulty arises because the integrand (Wah — An)_i becomes infinite
for the maximum displacement (see Column (14)). This is avoided by
assuming that the acceleration is constant in the last interval? and has the

2 Timoshenko, “Vibration Problems in Engineering,” D. Van Nostrand Co., New York,
Second Edition (1937) page 123.
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value given in Column (8), Table III, for the maximum height of drop.
Then,

A(xe)n = 3GmgAL (2.12.3)

— 2A(22)
o= g/ 2 (2.12.4)

or

0 7

25

o .01 .02 .03 .04
t

Tig. 2.12.3—Acceleration-time curve (for the cushioning shown in Fig. 2.12.1) obtained
by numerical integration.

In the present instance,
(Ax), = 0.01 inches
Gng = 30.8 X 386 = 11900 in/sec.
Hence, from (2.12.4), A¢ = 0.0013 sec. and the last entry in Column (17)
is obtained by adding this value of Af to the preceding entry.
The final curve of acceleration vs. time is obtained by plotting the entries

of Column (17) against the entries of Column (8), Table III, for correspond-
ing values of x2 . The result is shown in Fig. 2.12.3.
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PART III

AMPLIFICATION FACTOR

3.1 INTRODUCTION

If the maximum acceleration, of the packaged article as a whole, is
reached very slowly, the severity of the disturbance experienced by a
structural element of the packaged article is very nearly proportional to the
maximum acceleration. Roughly speaking, “‘very slowly” means that the
time, during which the acceleration undergoes a major change in magnitude,
is long in comparison with the natural period of vibration of the element
under consideration. When this is so, no transient vibration is excited in
the element. The displacement response of an e}ement under very slowly
varying conditions is called the “static response”. Under more rapidly
varying conditions the dynamic response to the same maximum acceleration
may be greater or less than the static response. The ratio (A) of the maxi-
mum dynamic response to the static response is called the amplification
factor, In general, for a given acceleration disturbance, very low-frequency
elements have amplification factors less than unity, while the amplification
factors are greater than unity for elements whose natural frequencies are
near or above the disturbing frequencies. The numerical value of the
amplification factor depends not only on the manner in which the disturbing
acceleration varies with time, but also on the “reference acceleration”, i.e.,
the value of acceleration for which the static response is calculated. Usually
the reference acceleration chosen for calculating the static response is the
maximum value (G,) of the disturbing acceleration. However, when
special circumstances are being investigated, such as the effect of damping
or abrupt bottoming, the reference acceleration is taken to be Go , which is
the acceleration that would be reached if the damping or bottoming were
absent. In such cases the amplification factor includes both the effect of
rate of change of acceleration and the effect of the special conditions.

When the reference acceleration is G, the amplification factor will be
denoted by A,, and when the reference acceleration is Go the amplification
factor will be denoted by A, . The symbol G, will be used to designate the
slowly applied acceleration that would produce the same maximum dis-
placement as the transient acceleration, ie., Go = AnGm or G, = AoGo .
The symbol G, will be used to denote the safe value of G., for an element
of the packaged article, as determined by a strength test or by calculation.
In specifying G, some judgement is required to take into account the effects
of plastic deformation in comparing tests made on greatly different time
scales. Good judgement is also necessary in deciding whether or not the
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assumptions listed in Section 0.2 are valid in each application. The general
procedure for using amplification factors is as follows. We first find the
value of the reference acceleration (in units of number of times gravity) from
Part I, From Part IT we find the properties of the acceleration-time rela-
tion which give us the information required for entering one of the curves
of Part IIT and finding the amplification factor. Then, the product of the
reference acceleration and the amplification factor (4,G. or 4,Gy) is a
number (G,) by which the weight of the structure is to be multiplied when
calculating its deflection or stress by the usual static methods of elementary
strength of materials. Alternatively, G, must be found not to exceed G, .

m

=
) S

-

3
’_.><

—fF
MMM

= - T
-:-/?2

= X2 e
=
h g
il

Ve /S I v 77

(@) (b)

Fig. 3.2.1—Idealized system used in calculating amplification factors for linear undamped
cushioning with perfect rebound. (a) initial position, (b) first contact with floor.

In the following sections the amplification factors for typical transient
accelerations encountered in package drop tests are calculated. The ampli-
fication factor curves that are plotted are entirely analogous to the familiar
“resonance curves” for steady sinusoidal vibration, except that in this
case the disturbing forces are transients of various shapes. It will be seen
from the curves that the maximum acceleration, as calculated by the
methods of Part I or as measured by an accelerometer, is not always a true
measure of the severity of the disturbance.

3.2 AwmprrricatioN FActors ForR A HALF-SINE-WAVE PULSE
ACCELERATION

The first case to be treated is the response of an element of the packaged
item to the transient acceleration that would occur in a package with linear
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undamped ' cushioning and perfect rebound. Figure 3.2.1 illustrates the
idealized system, and it may be noted that the mass m; is omitted, as is
required for perfect rebound (Section 2.3). At first we shall consider that
the mass m; is undamped and later we shall consider the effect of damping
in this element. ;
The mass m; is taken to be small in comparison with #2, so that the motion
of the latter is the same as we found it to be in Section 2.2 where m; was not
considered. Hence the acceleration of m, is a half-sine wave pulse:

B = —ws V2ghsinwt, (0=t =2 w/w). (3.2.1)
The equation of motion of m; is
mgy + ki(xy — %) = 0. (3.2.2)
Let x be the relative displacement of m; with respect to m; , ie.,
X=X — %2, (3.2.3)

« is proportional to the force in the spring (k) and to the acceleration
of m, and hence is proportional to the deflection, strain and stress in the
element which the system 1, , k; represents.
Substituting (3.2.3) in (3.2.2), we find:
mla'é + klx = —mis . (32.4)

This equation holds for the duration 7/w. of the pulse & . The initial
conditions for x are

[#]i=0 = [#]em0 = 0 (3.2.5)
so that the solution of (3.2.4) is

= ‘M[‘E sin wy¢ — sin wzi], (0

wi — wl [w

Il

t = f;) (3.2.6)

It may be seen that x is composed of a forced displacement at the accelera-
tion frequency ws , on which is superposed a free vibration at the natural
frequency, w1 , of the element. The maximum value of the relative displace-
ment is

xmnx'—'——zi‘sinﬂ, (Ogtii), 327
wl(ﬂ—l) 21 w2 (3.2.7)
wa w2
in which # is a positive integer chosen so as to make the sine term as large
as possible while the argument remains less than .
(3.2.7) gives the maximum dynamic response of the element m, during
the interval of impact. To find the amplification factor we must compare
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Xmax With the “static response” i.e. with the value (x,,) that x would have
if the acceleration &, reached the same maximum value (w2/2gh) in a very
long time. The resulting value may be found from (3.2.4) by omitting
the transient term m,i. Then

'fﬂa
Xy = w2 Zgh?ll

or

= -3 \/2gh. (3.2.8)

2
Wi
The amplification factor for the interval 0 < ¢ Z w/w, is then

w

w gy 2T 0=1=n/w). (3.29)

x
Ap = = = sin
Xt w1

e B |
W w2

It should be observed that A, depends only on the frequency ratio w;/ws .
That is, since wi/ws = 7s/71, the amplification factor depends only on the
ratio of the pulse duration to the half period of vibration of the element.

Thus far we have studied only the motion in the interval 0 ¢ S m/w. .
We must not, however, overlook the possibility of larger displacements of m,
with respect to m. occurring after rebound. In fact, examination of (3.2.6)
reveals that x has no maximum in the interval 0 < ¢ € m/w; whenw; < ws.
It is very likely, then, that larger values will occur at later times.

After rebound, m; executes free vibrations with respect tom,. We have
to compare the magnitude of ¥max, in the interval 0 Z ¢ < w/w, , with the
amplitude of the free vibration. Calling the relative displacement during
free vibration x’ and measuring a time coordinate ¢ from the instant the
package leaves the floor, we have

miE’ + k! = 0, (3.2.10)

with initial conditions

[x’]l'nﬂ [x]t=n'wg 3

(3.2.11)

[i:’]l’l-ﬂ = [x]t=r!m2 .

The solution of (3.2.10) with initial conditions (3.2.11) is

mg/l/ﬁlgk(l + cos‘ﬂr)
"= “2 7 sin (mlt’ 4 o7

wi(w} — wi) 2"’2) " G2.12)

Vil

™
wa
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Then
o 22 cos 121""‘ _
Ay = oo o G2 COr (t = -’i). (3.2.13)
Xst 1 — Eﬂj wa

We find, on comparing (3.2.13) with (3.2.9) that for w, < ws equation
(3.2.13) gives the larger value of A, , while for wi > w2 equation (3.2.9)

1.8
1.6 Xﬂﬂ:o
0.005
L-0.01
Etﬁ o A/\\\ 6/0.05
S N 0.10
3.3 /’ L 0.30
<E 1.2 //-.-\‘-. r080
% o - T \ﬂ
I% 8 ‘ / ,/ 100
5 .|/
2 & Vi
B [/
v
L a4
0
5 I//
< 2 r
) 1 2 3 a 5 6 7 8 ) 10
“ Lo,

Fig. 3.2.2—Amplification factors for linear undamped cushioning with perfect rebound.
See Fig. 3.2.1 and equations (3.2.9) and (3.2.13).

gives the larger value of 4,,. That is, when the duration of impact is
shorter than the half-period of vibration of the element, the maximum
displacement (and stress) in the element occurs after the impact is over.

The curve marked 8; = 0 in Fig. 3.2.2 is a plot of the largest value of A
from (3.2.9) and (3.2.13) with the frequency ratiow;/ws as abscissa. (3.2.13)
was used for wy/ws = 1 and (3.2.9) for wi/ws = 1. The maximum value
of A, is 1.76 and occurs at w;/w, = 1.6. Hence, at this frequency ratio, the
deformation of the element is 1.76 times as great as would be expected from
a calculation using the maximum value of acceleration alone as in Part I.
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On the other hand, for frequency ratios wy/w: < 0.5 the severity of the
shock can be very much less than might be expected from the calculations
of Part I. For very small values of w,/w, the amplification factor may be seen
from (3.2.13) to be equal to 2wy/ws. For large values of wy/wa (stiff elements)
Fig. 3.2.2 shows that the amplification factor is very nearly unity and the
methods of Part I can be used without additional calculation.

When damping of the element of the packaged article is considered, the
amplification factors are less than without damping. The applicable
equations of motion during and after impact are obtained by inserting
velocity damping terms in (3.2.4) and (3.2.10):

ml:ii + C]j: + klx = —‘”l]_.’/ifz, 0 2 t ? 1 (3'2'14)
wa
m# + o + kha' =0, S wl (3.2.15)
2

If we express the damping of the element m; as the fraction of critical
damping

_a
B = PRV (3.2.16)

(as in Section 2.5) equations (3.2.14) and (3.2.15) become

i+ 2Bt + oir = —iy, 02t ?fﬂ' (3.2.17)
& 4 281w’ + wix' =0, 5T, (3.2.18)
w2

The amplification factors for equations (3.2.17) and (3.2.18), with boundary
conditions (3.2.5) and (3.2.11), respectively, were obtained on the Westing-
house Mechanical Transients Analyzer® for 8, = 0.005, 0.01, 0.05, 0.10, 0.30,
0.50 and 1.00. The curves are shown in Fig. 3.2.2.

3.3 AprpLICATION OF HALF-SINE-WAVE AMPLIFICATION FACTORS

As an example of the use of the amplification factor curves of Fig. 3.2.2,
let us consider the following problem:

* Arrangements for performing these calculations were made through the courtesy of
Mr. A. C. Monteith, Manager of Industry Engineering, and Mr. C. F. Wagner, Manager
of Central Station Engineering, Westinghouse Electric and Manufacturing Co. Dr. G. D.
McCann, Transmission Engineer, was in immediate charge of the project. For a descrip-
tion of the analyzer see “A New Device for the Solution of Transient-Vibration Problems
by the Method of Electrical-Mechanical Analogy” by H. E. Criner, G. D. McCann and
C. E. Warren, Journal of Applied Mechanics, Vol. 12, No. 3 (1945) pp. A-135 to A-141.
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It is required to judge the suitability of a proposed package for a large
vacuum tube weighing 10 pounds. Strength tests have been made on the
tube in a shock testing machine which produces a half-sine-wave acceleration
pulse of 25 milliseconds duration. The weakest element of the tube is
found to be the cathode structure, for which the safe maximum acceleration
in the drop testing machine is 200g. The cathode structure has a natural
vibration frequency of 120 cycles per second and has 197 of critical damping.
The proposed package has essentially linear, undamped cushioning with a
spring rate of 3300 pounds per inch and an available displacement of  inch.
The outer container weighs much less than the tube so that the package may
be expected to rebound. Is the cushioning suitable for protecting the
cathode in a drop of 5 feet?

First find the maximum G that the tube will experience in a 5 ft. drop of
the package (equation 1.3.3):

_ 2k _ |, /2 X 60 X 3300 _
G = A/ . 1/ SRS = 1.

The accompanying maximum displacement is, from equation (1.3.4),

_ 22X

dm
Gn 199

= 0.6 in.

The available displacement (} inches) is therefore sufficient and the maxi-
mum acceleration (199g) is slightly less than the safe maximum acceleration
(200g) found with the shock testing machine. However, before the cush-
ioning is approved it is necessary to investigate the frequency effects. The
duration of acceleration in both the shock machine and in the package
must be considered.

The amplification factor for the element tested in the shock machine is
found as follows. First find the frequency corresponding to the 25 milli-
second pulse:

1

fz = m = 20 C.p.S.

The ratio of the element frequency to the shock machine frequency is

Entering Fig. 3.2.2 with w/w; = 6, we read, from the curve 8, = 0.01, 4, =
1.14. The 200g test in the shock machine is, therefore, equivalent to a
slowly applied acceleration of G, = 200 X 1.14 = 228;.
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To find the corresponding quantity for the package drop, first find the
cushion frequency:

1 /& 3300 X 386
fo = o 1/;_2 ,‘/ X = 57 c.p.s.

The ratio of the element frequency to the package frequency is therefore

Entering Fig. 3.2.2 with wi/wy; = 2.1 we read, from the curve ; = 0.01,
Am = 1.59. The 199g acceleration pulse in the package drop is therefore
equivalent to a slowly applied acceleration of G, = 199 X 1.59 = 316g.
This is almost 409 in excess of the value (228g) found to be safe from the
shock machine data. The cushioning is therefore judged to be inadequate.
The procedure for finding the correct spring rate for the cushioning is as
follows. It is known that we must have

G. 2 G..
Therefore, take
G, = ApGm = 228,

Now
Gu = 4/ — /B
Therefore
Apwy = 409 rad/sec,
Also

w1 = 2r X 120 = 754 rad/sec.

Then, with successive trial values of ws, we calculate w;/ws, enter Fig. 3.2.2,
read the corresponding value of 4,, from curve 8; = 0.01 and test to see if
the product A,w, = 409. The combination which satisfies the test is found
to be

wz = 280 rad/sec.
ml/w-), = 269

A = 1.47.
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Then
280)° X 10 )
by = wimy = L?;ssi = 2030 Ibs./in.
- .@.2 =
Gm - W2 155
_ 2h

dm = ‘G— = .77 in.

Hence the spring rate of the cushioning should be reduced from 3300 Ibs./in,

to 2030 lbs./in. and the available space should be increased to accomodate
the 0.77 inch maximum displacement before bottoming.

3.4 SpECIAL TREATMENT OF STRONG, Low FREQUENCY ELEMENTS

The product of the amplification factor (4,,) and the maximum accelera-
tion (Gn) must be equal to or less than the maximum allowable slowly
applied acceleration (G.):

Ge = -Ame é Tg . (3.4.1)
For frequency ratios
1
%<y, (3.4.2)
wy 2

Figure 3.2.2 shows that, approximately,
Ap =22 343

for 8; 2 0.10. When this is so, we may combine (3.4.1) and (3.4.3) to
obtain the criterion

296, =G, . (34.4)
ws
Now,
_ i,
Gn = We w2 Vg . (345)

Hence the criterion (3.4.4) may be written as

2o 2—;’ 2 G, (34.6)
or

[ = 1.1 G, 4

RS 34.7)

where % is in inches and fi is in cycles per second.
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It may be observed that (3.4.7) is independent of the properties of the
cushioning. Hence, as long as (3.4.2) is satisfied, any cushioning at all
may be used for an element that satisfies (3.4.7) regardless of the magnitude
of the maximum acceleration G,, . In particular, rigid mounting is suitable
for such an element. The only precaution to be observed is that the maxi-
mum acceleration and duration must not be unfavorable for other elements
of the packaged article.

Example: A 9-pound vacuum tube has an anode structure for which the
safe maximum acceleration is 200g as determined in a centrifuge test.
The natural vibration frequency of the anode is 35 cycles per second and the
damping is 19 of critical. What cushioning around the tube is required to
protect the anode from damage in a package drop of 3 feet?

Calculate

116, 1.1 X 200 36.7
Vi~ 3 % C.p.S.

This is greater than f; = 35 c.p.s and hence any cushioning is safe for the
anode. The results of calculations for cushioning with spring rates of 50,
500, 5000, 5 X 10" and 5 X 10" pounds per inch are given in the following
table:

k2(lbs./in.) Gm Zﬁ Am AmGm
50 20 4.74 1.12 22
500 63 1.47 1.65 106
5 X 108 200 474 0.9 180
5 X 108 2,000 L0474 0.09 180
5 X 107 20,000 .0047 0.009 180

In each case the product of 4,.(r,, is less than the allowable 200 and, as long
as the combination of (,, and the amplification factors for other elements
does not exceed the allowable A4,,G,, for those elements, the cushioning is
suitable. The precaution to observe is that higher-frequency elements
shall not have amplification factors such that 4,,G, may be excessive for
them.

3.5 AwmpLIFICATION FACTors rorR DAMPED SINUSOIDAL ACCELERATION

If the outer container of the package is heavy enough (see Section 2.3)
there will be no rebound and the packaged item will vibrate in the cushion-
ing afterimpact. For linear cushioning with velocity damping, the accelera-
tion produced by the vibration will be a damped sinusoid (equation (2.5.5)
and Fig. 2.5.2). The system to be considered is shown in Fig. 3.5.1.
To determine the effect of the damped vibration of m, on the mass m; ,
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Fig. 3.5.1—Idealized system for linear damped cushioning with no rebound.
(a) initial position, (b) first contact with floor.
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Fig. 3.5.2—Amplification factors for linear damped cushioning with no rebound.
B2 = 0.005. See equations (3.5.1) and (3.5.2).

we note that the equation of motion and initial conditions are identical
with (3.2.17) except that for the acceleration &; we use the damped sinusoid,
equation (2.5.5), instead of the half-sine pulse (3.2.1). The solution of
(3.2.17), i.e. the relative displacement (x; — ,) of 1 with respect to m,,
is
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.
x = “’2_‘/2_3” {e P[4 sin (wi! + v — 8) 4+ Bsin (wt — v — ¢)]
2“?2“’1
— e P[4 gin (wal + v — 8)— Bsin (waf + v + ©)]} (3.5.1.)
where

k1
m

iz
M2

m; = wl\/l — B3
w = V1 — 8
V (Bawz — Bron)? + (0] — wi)?

—

~

—
I

1/B = \/(32012 — Bun)? + (w; + wé)z
tany = 2221
28: v/1 — B
tan 0 = Baws — Bran
w + w
B e — B

The relative displacement of m, with respect to m, is seen to consist of a
forced, damped vibration (wz , 82) on which is superposed the free damped
oscillations (w;, 81) of m; .

The amplification factor

Xmax w'{’xmu

Ao = Ta a2 2gh (3.5.2)
is plotted in Figs. 3.5.2 to 3.5.7 for six values of 8, and six values of 8, .
These curves were obtained by direct solution of the differential equation
on the Westinghouse Mechanical Transients Analyzer.! The amplifica-
tion factor in this case includes the effect of damping; i.e., the reference
acceleration is not the maximum acceleration of m., but is the maximum
acceleration that m, would reach if the damping 8, were zero. Conse-
quently, the amplification factors for large values of wi/w, do not approach

4 See footnote, Section 3.2. Only enough data were obtained with the analyzer to find
the general shapes of the curves, so that the fine structure is not revealed. Checks on
the analyzer results were made by computing A4, from equations (3.5.1) and (3.5.2) for
wifwy = 1, By = By w/wr = 0; wfwy — o,
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Fig. 3.5.3—Amplification factors for linear damped cushioning with no rebound.
Bz = 0.01. See equations (3.5.1) and (3.5.2).
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Fig. 3.5.4—Amplification factors for linear damped cushioning with no rebound.
B2 = 0.05. See equations (3.5.1) and (3.5.2).

unity. For example, the curve for 8; = 0.003, 8 = 1 (Fig. 3.5.7) approaches
a value of nearly four as w;/w, — . The factor four is composed of two
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Fig, 3.5.5—Amplification factors for linear damped cushioning with no rebound.
B: = 0.1. See equations (3.5.1) and (3.5.2).
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Fig. 3.5.6—Amplification factors for linear damped cushioning with no rebound.
B2 = 0.5. See equations (3.5.1) and (3.5.2).

factors of two, The first arises from the fact that the maximum value of
acceleration, for B2 = 1, is twice the value that would be reached if 8.
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were equal to zero (see Fig. 2.5.3). The second factor (of nearly two) is
due to the fact that the maximum acceleration is reached at time ¢ = 0
when 8, = 1 (see Fig. 2.5.2) and the response of an almost undamped sys-
tem (8; = 0.005) to a suddenly applied and subsequently maintained
acceleration is double the response to a slowly applied acceleration (see
curve (a) Fig. 3.8.1). For 8; > 0 and 8, < 1 the amplification factor is
less than four, as w,/ws — %, in accordance with the curves plotted in Fig.
3.5.8.

Example: A 1.5-pound vacuum tube is to be packed in a container whose
estimated weight will be at least 50 pounds. The cathode structure of the
tube has a natural frequency of 25 c.p.s. with damping 0.5% of critical
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Fig. 3.5.7—Amplification factors for linear damped cushioning with no rebound.
B2 = 1.0. See equations (3.5.1) and (3.5.2).

and its safe acceleration, as determined in a centrifuge, is 90g. What
spring rate of cushioning is suitable for protecting the cathode in a drop of
five feet? It is specified that the cushioning shall have damping 509, of
critical.

Assuming linear cushioning, the spring rate that would be prescribed, by
considering maximum acceleration alone, is

2 2
by = W2Gn _ 15 X 00 _ 449 g /i,

2h 2 X 60

v

Considering damping, Fig. 2.5.3 shows that 50% of critical damping does
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not change G,,. To find the amplification factor we must first decide if the
package will rebound. With 509, of critical damping, the maximum ac-
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Fig. 3.5.8—Limiting values of amplification factors for linear damped cushioning with no
rebound. w;/w;— «. See equations (3.5.1) and (3.5.2).

celeration on the first upstroke is 0.164 G, (see Section 2.6 and Fig. 2.6.1).
Then, 0.164 X 90 X 1.5 = 22 Ibs. which is less than the estimated weight
of the outer container. The package will not rebound and Fig, 3.5.6
should be used for the amplification factor.
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The frequency of vibration of the tube in its cushion will be

~ /l _ , /101 X 386 _
wy = e 1/——1.5 159 rad./sec.
Hence wi/ws = 2r X 25/159 = 0.99 and, from Fig. 3.5.6, 4o = 1.4. Hence
G, = 90 X 1.4 = 126, which is greater than the allowable G, = 90, so
that the 101 Ib./in. cushion is unsatisfactory.

To obtain satisfactory cushioning, set

A(]Go = 90,

that is

90
Agws = *—24]3 = 159 rad./sec.

g

Noting thatw; = 2r X 25 = 157, we find from Fig. 3.5.6 that there are two
values of ws (90 and 600 rad/sec.) that satisfy the criterion Aows = 159
rad/sec. The first gives

wz = 90 rad/sec.
Ag= 138
ky = 31.5 lbs./in.
Go = 50
G.= 90
dn, = 2.4 in.

The second gives
ws = 600 rad/sec.
Ay=0.27
ks = 1400 lbs./in.
Go = 335
G, =90
dp = 036 in.

The second solution requires less space for cushioning than the first but
should be used only if the remainder of the tube can endure the high ac-
celeration of 335g. Otherwise the 50g package should be used.
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3.6 AMPLIFICATION FACTORS FOR THE PULSE ACCELERATION OF
Cusic CUSHIONING

In a rebounding package with undamped Class B cushioning, the pack-
aged article (m.) will undergo a pulse acceleration of duration 7/w; as given
by equation (2.8.11). The shape of the pulse is illustrated in Fig. 2.8.2
and its functional form is

2 2
#y = K w1dn [2k23n2 (ZK“’“ - K) - 1] m(ZK“’“ - K). (2.8.14)
™ ™ ™

To determine the influence of the shape and duration of this pulse on the
amplification factor, we proceed as before by substituting (2.8.14) in the

-
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Fig. 3.6.1—Idealized system used in calculating amplification factors for non-linear,
undamped cushioning with perfect rebound.

differential equation governing the relative displacement (x = x;, — x,)
between m; and m. (see Fig. 3.6.1):

Pt oix = —d. (3.6.1)

With boundary conditions ¥(0) = #(0) = 0, the solution of (3.6.1) may be
written as

3 [ @ (\) sin wy (A — £) dA (3.6.2)

wy

and the maximum value of ¥ may be expressed by

tm
e % f £\ sin oA — 1) d), (3.6.3)
1 Y0

where 1, is the time at which the largest value of x occurs.



40 BELL SYSTEM TECHNICAL JOURNAL

The amplification factor, in this case, will be taken as the ratio of %max
to the relative displacement (x.) resulting from a slow application of the
maximum value of & . From (3.6.1),

'" max Gm
vy = [Ftlmex _ Gng (3.64)
w1 wy :

Ymax Tmax ‘-'Jil:
A, = == 3.6.5
1 s Gng (3.6:5)

@
[AF)

Fig. 3.6.2—Amplification factors for undamped cushioning with cubic elasticity. ~Perfect
rebound. See equation (3.6.6).
or

tm

Ay — > f #2(\) sin wi(N — #n) d\. (3.6.6)
‘ Gng Jo

A, was evaluated, mostly by graphical methods, for four values of B
(0, 2, 20 and ) and the results are plotted in Fig. 3.6.2. Observing that
B = 0 corresponds to linear cushioning, it may be noted that cubic non-
linearity in the cushioning does not change the amplification factor by
more than 357 even in the most extreme case (B — ). The severity
of the shock, however, may be much greater for the cubic cushioning than
for linear cushioning with a spring rate equal to the initial spring rate (ko)
of the cubic cushioning. This is because 4., is multiplied by Gn to obtain
G. and, for large values of B, G,, may be much larger than the maximum
acceleration for the linear case. In other words, in comparing Class B
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with Class A cushioning the difference in maximum acceleration, rather than
the difference in amplification factors, is usually more important.

Example: Consider the example given in Section 1.6 and let it be required
to determine the effect of pulse duration on a cathode structure with a 200
c.p.s. natural frequency of vibration. In Section 1.6 we found that

B =354 " ko = 255
Go = 28.6 r = 108,
G, = 55

With B = 5.4, enter Fig. 2.8.2 and find

= 0.88.
wa
Now
wy = ,‘/kWLf = 1/%%:86 = 66.1 rad./sec.
Hence
661
e T 75 rad./sec.

Then, with w;/w, = 27 X 200/75 = 16.7, enter Fig. 3.6.2 and find 4, =
approximately 1.0. Hence G. is about the same as G, and the conclusions
reached for this problem in Section 1.6 are not altered.

3.7 AMPLIFICATION FACTORS FOR ABRUPT BOTTOMING

The amplification factors for bilinear elasticity have not been computed
in complete detail. They can be obtained approximately by using the dura-
tion curves (Fig. 2.10.2) and the amplification curves for the linear case
(Figs. 3.2.2 and 3.5.2 to 3.5.7). It is useful, however, to calculate the am-
plification factors for extremely abrupt bottoming (k% — =) to obtain a
general understanding of the accompanying phenomena.

The system to be considered is illustrated in Fig. 3.7.1. It is assumed
that the impact between s and the base (occurring at ¢ = #,, ¥3 = d,)
has a coefficient of restitution of unity. Hence m, will strike the base with
velocity

| . e
| [ t=t, = 2¢h (1 - Eg)

(see equation (2.10.8)) and leave it at a velocity of the same magnitude but
opposite sign, Perfect rebound of the whole package is also assumed.
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The acceleration pulse will then look like the curve marked ky/ky —
in Fig. 2.10.1.
There will be three regions in which to consider the relative displacement x:

Region 1 0 <t <t
Region 2 te <t < 2

Region 3 1> 2,
The relative displacement (x = x; — x2) of m, with respect to m, will have

™

—

X1 =
=°
ma
L——__‘
X2
=
= |ds
s base
Vo 5 777,75777
-k
-

Fig. 3.7.1—Idealized system representing abrupt bottoming.

the same functional form for Region 1 as in the linear case (see equation
(3.2.6)), and the amplification factor is, by analogy with (3.2.9),

W)
Ag = —“  in 2nm . 0<t<t, (3.7.1)

w1

@r_ 1 @14
wy wo

where
wg = ko/ms .
For Region 2, we use the differential equation
&+ wra = wo/2gh sin wo(t — 24,) (3.7.2)

and, as initial conditions at ¢ = #,, we use the terminal conditions for
Region 1 with the sign of [#2]_,, reversed. The amplification factor for
this region is found to be (by the same method as in Section 3.2):
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2

= \/ng VAT + B + B2sin (wilm + 7 — wils)
=1 da) (3‘7'3)
n ’

— —— > sin (wuim — woly — sIn

W
e <t < 2t

where

'Oi}

of — = sin ( = sin™* (i‘)
wo \/Zglz 1 — wo - wy do
w1
“o .
o = 29f - % s Lsm_ds]
wo N/ 2gh ) (wu 2% w ; @ dy
w;
|
= tan ' =
n a B
and £, is the root of
w} _
&Rﬁﬁvﬂh+ﬁmﬂmm+n—wm)
1
— T 7 N:C08 (wn tm — woly — sin_" Ed—’) =0
1 - (2 ds
&)

that yields the largest value of A4, in equation (3.7.3). Region 3 is gov-
erned by

it wx=0 (3.7.4)

and the initial conditions are the terminal conditions of Region 2. By
the same method as was used in Section 3.2, we find

s
. IR
((.IJI) d; wp dy (3.7.5)
Wo
t> 2,.

The largest value of A, from equations (3.7.1), (3.7.3) and (3.7.5) is
plotted against w/wo in Fig. 3.7.2 for several values of d,/d, .
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Notice that the amplification factor is A4, rather than Au . That is,
the reference acceleration is G, rather than G, . This is necessary because
G, is infinite in the present instance. Hence Fig. 3.7.2 cannot be com-
pared directly with Figs. 3.2.2 and 3.6.2. However, it is interesting to
observe that, for wi/w: < 0.5, (low frequency elements) abrupt bottoming
has no harmful effect.  For high-frequency elements, the severity of bottom-
ing is very great even when very nearly all of the required space (do) is
available. For example, if 90%, of the required space is available (d./do =
0.9) and the frequency of the element is ten times the package frequency,

50,

40

30

20|

o
Po 4(‘
=5

-

9 ° — el
b |
; =
N Z Sb_g
5 Frad
4 / el
3 /
2 4
do
/ — -
0 1 2 3 4 5 3 7 8 9 10
Ly
[
Fig. 3.7.2—Amplification factors for abrupt _}Juttﬂming. See equations (3.7.1), (3.7.3)
and (3.7.5).

the severity of the shock is almost ten times as great as it would be if the
additional 109, of space were available.

3.8 GENERAL INFLUENCE OF SHAPE OF ACCELERATION-TIME CURVE
ON AMPLIFICATION FACTOR

When amplification factor curves are not available for a special shape of
acceleration-time curve, an approximate value of 4,, may be obtained by
interpolation between or extrapolation from the curves of the preceding
sections. The shape of the acceleration-time curve and its duration (7g)
or frequency (w2) should be found, first, by the methods described in Part IL.
The shape found should then be compared with the standard shapes shown
in Part 11, for which amplification factors are given in Part IIL

The amplification factor found in this way will generally be within 25%,
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of the true value because amplification curves for pulse accelerations do not
differ greatly even for very different acceleration-time curves as long as the

2.0

i
s@s! M
ﬁ % Wuﬂlﬁ;‘!ﬁﬁﬁia%

ﬁﬂﬁ?iﬂﬂ el B
' fiba]

Fig. 3.8.1—Dependence of amplification factor on shape of symmetrical acceleration pulse.

2. HH T ”

1.8

1.6

1.4

1.2

Fig. 3.8.2—Efiect of asymmetry of an acceleration pulse on amplification factor.

amplitudes and frequencies are adjusted to the same scales. This is illus-
trated in Fig. 3.8.1 where the amplification factor curves are drawn for

square wave, half-sine wave, triangular and cubic pulses.
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Amplification factors for small values of wi/w: may be calculated Very
accurately if it is observed that the initial slope of the amplification factor
curve for a pulse acceleration is proportional to the area under the accelera-
tion-time curve. For example, noting that the initial slope of the amplifica-
tion factor curve for the half-sine wave pulse is 2, we assign the value 2 to
the area under the half-sine wave. On the same scale, the area under a
square wave pulse is 7 and under a triangular pulse is /2. Accordingly,
the initial slopes of the amplification factor curves for the latter two pulses
are 7 and 7/2 respectively.

As an additional aid in finding amplification factors for unusual cases;
Fig. 3.8.2 is given to show the effect of asymmetry of an acceleration pulse.
The pulse is triangular in shape but the time (77) taken to reach the peak
value of acceleration may have any value from zero to the total duration
(72) of the pulse.

PART IV

DISTRIBUTED MASS AND ELASTICITY

4.1 INTRODUCTION

It is important to be aware of the conditions under which the assumption
of lumped parameters is permissible. In Parts I and II the cushioning
medium was assumed to be massless, so that wave propagation (or surges)
through it was ignored. Such surges will contribute to the acceleration
imposed on the packaged article and we should be able to predict both the
magnitudes and frequencies of the additional disturbances. If this is done,
the information in Part IIT may be used to obtain at least a rough estimate
of the resulting effects. In Part III itself the effects of accelerations were
determined by studying the response of a system having only one degree of
freedom; that is, an element of the packaged article was assumed to be a
single mass supported by a massless spring. Ewvery real element, of course,
has an infinite number of degrees of freedom, so that it is important to
discover the contribution, of the higher modes of vibration of an element,
to the overall response.

Both of these problems (distributed parameters of mass and elasticity in
the cushioning medium and in an element of the packaged article) are
studied in this part. One example of each type is considered, and the choice
of the example in each case was influenced by considerations of expediency,
namely that the mathematical derivations be relatively simple and lead to
solutions for which not too lengthy computations are ‘necessary to yield
results that can be applied practically. At the same time, the examples
chosen are believed to give some insight into several of the physical phe-
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nomena involved. The treatment is by no means complete, but a more
detailed investigation is beyond the scope of this paper.

4.2 EFFEcT oF DISTRIBUTED MASS AND ELASTICITY OF CUSHIONING
ON ACCELERATION OF PACKAGED ARTICLE

Referring to Fig. 4.2.1, we consider the packaged article, of mass m, ,
to be supported by distributed cushioning of mass m. and depth £. The
cushioning may be a pad, say of rubber, in which case £ is the pad thickness,
or it may be a helical metal spring, in which case £ is the coil length. The
package is dropped vertically from a height % and has attained a velocity v
at the instant of contact (¢ = 0) of the outer container and the floor. The
outer container is assumed to be heavy enough so that there is no rebound.
A horizontal plane in the cushioning is located by a coordinate x measured
from the end of the cushioning attached to the outer container. The vertical

mz
T
:E:': i :i:i / (cushion)
-v| x A
b
m3
- Floor ‘
7 777

Fig. 4.2.1—Packaged article of mass ms, supported on distributed cushioning of depth ¢
and mass m., depicted at the instant of first contact of the outer container (mj;) and
the floor.

displacement of the plane x is designated by #. The undamped motion of
the cushioning after contact is governed by the one-dimensional wave
equation:
a‘u 2 9 u
=gt 2.1
9z = O g (4.2 )
in which a is the velocity of propagation of longitudinal waves in the cushion-
ing. If the cushioning is continuous,
E
a ==, (4.2.2)
p

where E is the modulus of elast1c1ty and p is the density of the cushmmng
If the cushioning is a helical spring,

a =, (4.2.3)

where & is the spring rate.
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The initial conditions of the system are

(4]0 = O, (4.2.4)
ou| . _ '
[E]t-o = 2. (4.2.5)
The boundary conditions are
[t#]2—0 = 0O, (4.2.6)
ou 8 u
kt [a]rﬁt = —M- [ﬁ]xnt. (4-.2.7)

Equation (4.2.7) expresses the requirement that the force on the upper end
of the cushioning must balance the inertia force of the packaged article.
For continuous cushioning #¢ should be replaced by E4, where 4 is the
cross-sectional area of the cushioning.

A solution of (4.2.1) satisfying conditions (4.2.4) and (4.2.6) is

w= 2, A,sin w;x sin w, f, (4.2.8)
n=1

where w, is the n'® root of a transcendental equation to be obtained from

(4.2.7) and A4, is a constant to be determined by (4.2.5). Substituting

(4.2.8) in (4.2.7) and equating coefficients of like terms of the series, we
obtain the transcendental equation

w € w, b my

an — = —

= (4.2.9)

Substituting (4.2.8) in (4.2.5) we obtain, by the usual methods of expansion
into trigonometric series,
2y

Ap = — (wnt’ — 2%5). (4.2.10)
wy | — + 3 sin
a a

Hence the complete solution of the problem is

. WX .
w 29 sin —— sin wy ¢
a

aml o, (wnt + 3 sin ant)
a a

Our chief interest is in the acceleration of m,. Making use of (4.2.7)
and (4.2.9) we find, from (4.2.11), that this acceleration is

2 ]
[6 “] | =tn 3 B sin a (4.2.12)

W n=l1

(4.2.11)
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where
wy = — (4.2.13)

and

2 ,‘/ﬁ (?EE < fﬂ)
B, = — —’”2—“_ (4.2.14)

. wy
T 2 o o

mse m2

The acceleration of m, is, therefore, a sum of sinusoids of frequency w,
and amplitude wweB,. Now, wwy is the maximum acceleration that m,
would attain if the mass of the cushioning were negligible. Calling G,
the maximum acceleration in the #t" mode and G, the maximum accelera-
tion neglecting the mass of the cushioning, as in Part I, we have

Gn
& = Ba. (4.2.15)

But B, depends only on the ratio m./m., as may be seen from equations
(4.2.9) and (4.2.14). Similarly the ratio of the frequency (w.) of any mode
to the frequency (wo) with massless cushioning depends only on m./m, ,
as may be seen from equations (4.2.3), (4.2.9) and (4.2.13). Hence, both
the amplitude and frequency ratios for the acceleration in any mode depend
only on the ratio of the mass of the cushioning to the mass of the packaged article.
The ratios G,/Gy and w, /wp are plotted against m./m, in Figs. 4.2.2 and 4.2.3
for the first five modes. 1t may be seen from these figures that the accelerations
in the higher modes can be very important. For example, if the cushioning
weighs half as much as the packaged article the maximum acceleration in
the second mode is about 409, of the acceleration in the first mode and the
latter is about the same as found by the elementary method of Part I.
This could have a disastrous effect on an element of the packaged article if
the latter had a fundamental frequency near that of the second mode of the
cushioning, the latter being found, from Fig. 4.2.3, to be about five times
the fundamental frequency of the package.

Tt must be remembered that damping has been neglected in the above
investigation and damping in the cushioning will serve to mitigate the se-
verity of the higher mode accelerations to a great extent. However, the
danger is always present at the start of a design and the possibilities of un-
favorable combinations should be studied in every case.
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A

o 02 04 06 08 10 12 14 16 18 20
Mme

Fig. 4.2.2—Influence of ratio of mass of cushioning (ms) to mass of packaged article
(m2) on acceleration ratio. The numerator of the acceleration ratio is the maximum
acceleration (Gy) in the nt* mode of vibration transmitted through the cushioning. The
denominator of the acceleration ratio is the maximum acceleration (Go= V4 thg/ng) that
the mass m2 would experience if the mass of the cushioning were negligible. See equations
(4.2.15), (£.2.14), (4.2.9).

20 4

16+

14| K

Fig. 4.2.3—Influence of ratio of mass of cushioning (m.) to mass of packaged article
on frequency ratio. The numerator of the frequency ratio is the frequency (w.) of the
nth mode of vibration transmitted through the cushioning. The denominator of the

frequency ratio is the frequency (o = vV k{/‘"lz) of vibration of the mass mz neg}ectin\g
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4.3 - Errect oF DI1STRIBUTED MASS AND ELASTICITY, OF AN ELEMENT
OF THE PACKAGED ARTICLE, ON THE AMPLIFICATION FACTOR FOR
A HALF-SINE-WAVE PULSE ACCELERATION

In this section we shall determine the contribution of the higher modes of
vibration of a structural element to its total response to a half-sine-wave
pulse acceleration. For the shape of the element, we choose a prismatic
bar because this leads to the simplest mathematical formulation of the
problem and such a bar is also a common structural element. Other con-
siderations influence the choice of direction of acceleration with respect to
the axis of the bar. The transverse direction (cantilever) is the most
practical from a physical standpoint, but, for purposes of comparison with
the one-degree-of-freedom system, the parallel (axial) direction of accelera-
tion is the more logical. Both problems lead to solutions in the form of
infinite series, but, in the latter case, the expression for the strain at a fixed

=B —
i —

o

S

Fig. 4.3.1—The system studied in Section 4.3 depicted at the instant of contact with
the floor.

end can be summed in terms of elementary functions without difficulty.
Since it is necessary to determine maximum values of strain over a wide
range of frequency ratios for the plotting of an amplification factor curve, an
enormous reduction in the time required for accurate computations is
obtained by choosing the axial case. Iurthermore, the axial case appears to
contain the essential features which might result in differences between the
response of a one-degree-of-freedom system and a continuous one,

The complete system to be studied is illustrated in Fig. 4.3.1. To the
mass ma, supported on massless cushioning of constant spring rate ks,
is attached one end of an elastic prismatic bar, of length ¢, cross sectional
area A, modulus of elasticity £, and density p, with its axis oriented verti-
cally. The system is dropped from a height 2 so that its velocity is v
at the instant of contact of the cushioning with the floor. The mass of the
bar is supposed to be small in comparison with m. and perfect rebound is
assumed, so that the motion of ms during contact is a half-sine wave of
frequency
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w = ,‘/E. (4.3.1)
Mo

The maximum acceleration of m. is thus wws. If this magnitude of ac-
celeration were reached very slowly, so as not to excite transient longitudinal
waves in the bar, the maximum force between the bar and m; would be the
product of the acceleration and the mass of the bar:

F = wwspAHL. (4.3.2)
Hence the strain at the end of the bar attached to m. would be

Twa £ :
@ = E" . (4.3.3)
Our problem is to find the ratio of the maximum transient strain to €.
| 1 - P ————— - - l
16 —
/T
1.4 /
1.2
1.0 \/’—-—. T —
Am /
0.8 /
06
04
02 //
0 1 2 3 4 5 6 7 8 9
i ma
o ZT;!!

Fig. 4.3.2—Amplification factors for an element of the packaged article having dis-
tributed mass and elasticity. The package has linear undamped cushioning and perfect
rebound. See equations (4.3.15), and (4.3.14).

Let % be the displacement of a transverse plane section of the bar distant x
from the end attached to m,. Then, the equation of motion of the bar is

a*u o'u
h = o 5 (4.3.4)

where @ is the velocity of propagation of longitudinal waves in the bar:

a = =. 4.3.5)

Taking the instant of first contact of the cushioning with the floor to be
¢t = 0, we know, from Part II, that the system will leave the floor when ¢ =
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w/w:. We shall therefore treat separately, as in Part III, the motion
during contact

[an]

Al

Al
Ela

and after rebound

=T
P> —-
w2

During the first interval, the initial and houndary conditions are

[#]imo = 0, (4.3.6)
du
[Eﬁjlz_n = —v, | (4.3.7)
[0 = —* sin wo l (4.3.8)
o
on
I:EV:L:I = 0. (4.3.9)

The first and second conditions state that, at the instant of contact, all
points in the bar are moving with the approach velocity », without relative
displacement. The third condition prescribes the half-sine wave motion
of the end of the bar that is attached to m.. The fourth condition states
that the strain at the free end of the bar is always zero.

By the usual methods, a solution of (4.3.4) satisfying conditions (4.3.6)
to (4.3.9) is found to be

w2 . . nwx ., #nwal
v cos — (£ — x) sin wy © sin —- sin ——
a

!
w—— @ 8vl ) 20 2

wp T3 ne35--- o] £ nwa\
wg COS — n -1
a ngf

(D'ét?i ”—’Tfyél).

(4.3.10)

wo’ 2wl

The displacement is seen to be a forced vibration at the frequency (w.)
of the applied acceleration, on which are superposed the free vibrations of
the bar given by the series expression. The frequency of the fundamental
mode of vibration of the bar iswa/2{ and the frequencies of the higher modes
are the odd integral multiples of the fundamental.



454 BELL SYSTEM TECHNICAL JOURNAL

The strain at the attached end of the bar is

¢ = 6u:|
0% _|z=0
( nrat
| 26

_ wzﬂ . 4: =
= - tan—a— sin wet — - ,.=1,;.5.-. n———_@ P ., (4.3.11)
20025

T NTad
(0 1= — —f¢1).

wz, 20.126
It may be verified that the sum of the series in (4.3.11) is given by

sin

Al

nwat

2 = tan Li;f sin wof + cos wat — 1, (4.3.12)

n=L8,6-"" nwad : 1]
i 2&125
(0 <t < 2—€)
a

It should be observed that the summation is valid only in the interval 0 <
t < 2¢/a. However, the series is periodic with half period 2{/a and includes
only the odd terms, so that the function repeats itself with reversed sign
after each interval 2£/a. Hence the summation, valid for all ¢, can be
written

sin

. nmab
sin

4 = 2¢
" 20}26

= (—-1)* [tan%ﬁ sin ws (t - ?E) + cos wy (t — -2:?)— 1:| (4.3.13)

a
i .k = m when 2_m‘<t<g*(m+1)t
. - ' a a
! m=20,1,2,3,--- .
We may, tfi'erefore, rewrite (4.3.11) in the form
“ —tanw—zg sin wal + (—l)k [tanm—ggsin ws (t — Z—M)
v a a a

+ cos wy (t - %M)— 1:' (4.3.14)
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0=1¢

Al
AE

k=mwhen%<t <2—-—(m:_1)£

m=20,1,2,3---.

The expression (4.3.14) is simple enough so that the maximum value (e,)
of the strain at the attached end can be obtained without difficulty for any
ratio of the fundamental frequency (w; = wa/2{) of the bar to the frequency
(w2) of the disturbing acceleration. The amplification factor

_lenlE _ 2ma
VYwopl Two ¥

€m

€

Ay =

| €m |, (4.3.15)

may then be calculated. The results of these calculations are plotted in
Fig. 4.3.2. The important feature of this curve is that the amplification
factor is everywhere less than the corresponding amplification factor for the
one-degree-of-freedom system (Fig. 3.2.2, 8, = 0). Hence the assumption
of lumped parameters is on the side of safety as regards amplification factor.

It is interesting to observe that the curve of 4, vs. w;/ws , for this case,
is a straight line between wy/ws = 0 and wi/ws = 1. This arises from the
fact that, for wy/w; = 1, equation (4.3.14) reduces to

e
— = cos wet — 1, (
7

w2

Wy

Al

1) . (4.3.16)

Hence, when the duration of shock is less than the half period of the funda-
mental mode of vibration, the maximum value of strain occurs at the end of
impact and is equal to twice the ratio of the approach velocity to the velocity
of wave propagation in the bar.

The whole solution of the problem is not yet completed; for, although it is
fairly evident from the fact that there is at least one maximum in the inter-
val 0 Z { £ m/w, for all values of w;/w, , it must be verified that the maxi-
mum strain (and, therefore, the amplification factor) is never greater after
t = w/wy than before. Defining a new time coordinate ‘

=t —-=2

: (4.3.17)
w2

we have, for the initial and boundary conditions of equation (4.3.4) for
t S whe,
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. naw? | nwx
sin -—, sm

8uf - 2w
[) o = Sul Y ——a— 2 (4.3.18)

720 =135 - nwa
n
2(.02

ws naw® | Awx
au v cos — (£ — x) " w cos
o]

265111 2¢

ot Swzf na=1,8.5+ - - ) nwa 1
— z — ——
€083 M\ 2w

[#]zme = ot', (4.3.20)

on
— = 0. 3.
I:Bx]z.: (4.3.21)

The first and second conditions state that the displacement and velocity of
every point in the bar must be the same at the beginning of the second inter-
val as at the end of the first interval; the expressions in (4.3.18) and (4.3.19)
are obtained from (4.3.10). The third condition prescribes the constant
velocity of departure from the floor of the mass m. and, therefore, of the
end of the bar attached to it. The last condition states, again, that the
strain at the free end of the bar is zero.

1t may be verified that a solution of (4.3.4) satisfying conditions (4.3.18)
to (4.3.21) is

(4.3.19)

e = o' + i si n_'n'} sin ’M’ - )
"= il D 20 T (4.3.22)
("” § 0: t § 7"/“-’2):
where
Qo nam*
‘ of sin =
Cn sin vy, = 2o 5 (4.3.23)
. o { nwa )
T an _M -
nam?
8ol ( Yo
C, cos yn = - -
. o fnma\?
moan [(zmg ) - 1] (4.3.24)
nwa
#= 1.

20}2 f
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Hence, the strain at the attached end of the bar is

nwat

_ ém] 4o i S g
€= I:a_m r=0 - E n=1,3,5--+ 1@ 2
o Gat) - 1]
Gin nmal’ (4.3.25)

+2 2

TA n=1,3,5:-- ) ETLG_. 2 1 '
" 2uel)
The two series may be summed, as before, with the result
Y - (—=1)* [tanwi{lsin wg(! — Z—k—{) + cos w, (t — 2—{6) - I:I
v a a a
+ (=" [tan %fsin ws (:’ —~ 2_21") + cos s (zs' - 2%{) - 1:| (4.3.26)

[ S miws, ' =1— m/ws

7 ’
E=m when 2 <y 2D
@ a

’ !
E' = m’ when ZL;—M <i < 20w + 1) :_ 1)¢

m=20,1,2,3-- - m =0,1,2,3---.

Once more, the expression for the strain at the attached end of the bar is
in a form suitable for rapid calculation and it can be shown the e in equation
(4.3.26) for ¢ = m/w. is never greater than the e in equation (4.3.14) for 0 =
t < m/w, for the same w,/ws. Hence, Fig. 4.3.2 and the conclusions follow-
ing equations (4.3.15) and (4.3.16) need not be modified.

NOTATIONS

A Cross sectional area of a bar element of the packaged article. Also, a
constant of integration.

Ao Amplification factor when the reference acceleration is Go. Ratio of
maximum dynamic response to the response to a slowly applied ac-
celeration of magnitude G.g.

Am Amplification factor when the reference acceleration is G.. Ratio of
maximum dynamic response to the response to a slowly applied accelera-
tion of magnitude Gpg.

An In Section 1.15, the sum of all the trapezoidal areas from x; = 0 to x3 =
(x2)n. Also, in Section 4.2, the coeflicient of the nth term of a series.
AA, The area of a trapezoid with altitude A(x2), and sides P, and P,.
a xo/l in the tension spring package. Also, in Part IV, the velocity of

propagation of longitudinal waves.



458

Cn

€1
C2
cn

do

dy

exp ()

Fm

fi

Go

G.

Gr

Gm

Gn'

BELL SYSTEM TECHNICAL JOURNAL

A parameter of cushioning with cubic elasticity defined in equation
(1.5.3). Also, a constant of integration.

Coefficient in the #th term of a series.

£/l in the tension spring package.

A constant of integration.

Coeflicient of the nth term of a series.

A constant defined in equation (1.7.11)

Damping coefficient of an element of a packaged article.
Damping coefficient of linear cushioning.

The elliptic cosine function.

Hypothetical displacement that would result if initial spring rate were
maintained.

Maximum possible displacement of packaged article in cushioning with
tangent elasticity.

Maximum displacement of packaged article.
Value of d., when ky = kq.

Displacement of bi-linear cushioning at which the spring rate changes
from ko to ks

Modulus of elasticity.

In the tension spring package the stretch of a spring when the displace-
ment is dm.

e OO, where ¢ is the Naperian base 2.718- - -
In section 2.7, a frictional force.
In the tension spring package, the maximum force on a spring.

In the tension spring package, the difference between / and the distance
between hooks of an unstretched spring.

Frequency of vibration of an element of the packaged article.

Frequency of vibration of the packaged article on its cushioning.

Hypothetical maximum acceleration (in number of times g) that would
result if initial spring rate were maintained.

A G or AyGy, i.e. the slowly applied acceleration (in number of times g)
that will produce the same maximum response as a transient acceleration
of maximum value Gm or Go.

Maximum acceleration (in number of times g) in cushioning with fric-
tion and spring rate kr.

Absolute value of maximum acceleration of packaged article in units of
“number of times gravitational acceleration.”

Value of G when ky = kb.
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In section 1.15, the maximum acceleration (in number of times g) ex-
perienced by the suspended mass when dropped from a height #,. In
Part IV, the maximum acceleration (in number of times g) of the nth
mode of vibration.

Maximum acceleration (in number of times g) after rebound.

Safe value of G..

Gravitational acceleration.

Height of drop.

In Section 1.15, the height of fall that will cause the cushioning to dis-
place an amount (x2) .

In the tension spring package, the initial spring rate of the suspension.
In Section 2.8, the complete elliptic integral of the first kind.

The initial spring rates in the three mutually perpendicular directions
normal to the faces of the package frame.

In the tension spring package, the spring rate of a spring. In Section
2.8, the modulus of an elliptic integral.

In Section 4.3,0,1,2,3, --- .
Initial spring rate of non-linear cushioning.
Optimum value of initial spring rate k.

Spring rate of lumped elasticity of element of packaged article.

Spring rate of linear cushioning.

Spring rate of bilinear cushioning after bottoming.

Spring rate defined in equation (2.7.7).

Constant defined in equation (1.8.2).

In the tension spring, the projection of /; on a horizontal plane. In
Section 4.2, length of cushioning. In Section 4.3, length of element of
packaged article.

In the tension spring package, the distance between the two support
points of a spring when the suspended article is in the equilibrium
position.

Constant defined in equation (1.8.4), equal to Gu/Go.

Reduced mass defined in equation (2.4.5).

In Section4.3, 0,1, 2,3, --- .

Lumped mass of element of packaged article.

Lumped mass of packaged article.

Lumped mass of outer container.

Mass of cushioning.

M2
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0,1,2,3, ---.
Force transmitted through cushioning.

Asymptotic value of force transmissible through cushianing with hyper-
bolic tangent elasticity.

Maximum force exerted on packaged article by cushioning.
In Section 1.15, the load that produces displacement (xz)n.
Force between package and floor.

Coefficient of cubic term in load-displacement function for cushioning
with cubic elasticity.

The direction cosines of the acceleration direction with respect to the
normals to the faces of the package frame.

The elliptic sine function.
The period of vibration of the packaged article on its cushioning.
Time coordinate.
;=T

w3
Time of first contact of package with floor.
Time at which maximum displacement or acceleration occurs.
Time at which package leaves floor on rebound.
Time at which the displacement reaches d,.
Displacement in x direction.
Approach velocity.
Weight of packaged article.
Weight of outer container.
21 — %o; relative displacement of m; with respect to m..
O
¥ — Xa.
Relative displacement of m; with respect to m2 at time #".
In the tension spring package, the perpendicular distance from an inner
spring support point to the nearest plane, perpendicular to the displace-
ment direction and containing four outer spring support points.
Displacement of .
Velocity of m.
Acceleration of m;.

Displacement of .

Velocity of ma.
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Acceleration of mia.
Mazximum value of x.
In Section 1.15, the displacement associated with the nth point.

The value x would have if the acceleration reached its maximum value
in a very long time.

In Section 1.15, equals (x2),, — (22)u_1.

X2 _X3.

x»/1 (tension spring package).

Phase angles.

Traction of critical damping of an element of the packaged article.
Fraction of critical damping of package cushioning.

Phase angle of n'" term of series (equation (4.3.22)).

Strain at attached end of element under transient conditions.

Strain at attached end of element under non-transient conditions.
Maximum strain at attached end of element under transient conditions,

Angle between the displacement direction and the acceleration di-
rection,

3.14159. .- .

Density (mass per unit of volume)

Pulse duration of a half-sine-wave acceleration,
Pulse duration associated with non-linear cushioning.

Duration of bottoming of cushioning with bi-linear elasticity.

Time required to reach peak value of a triangular acceleration pulse.
Radian frequency defined in equation (2.4.6).

Radian frequency of vibration of an element of the packaged article.
Radian frequency of vibration of damped element of packaged article.
Radian frequency of vibration of the packaged article on its cushioning.

Radian frequency of vibration of the packaged article on damped
cushioning.

A frequency defined in equation (2.10.10).
A frequency defined in equation (2.8.8).

Radian frequency of nth mode.



