Electron Ballistics in High-Frequency Fields*

By A. L. SAMUEL

HIS, the final lecture of a series on Electron Ballistics, is not a summary

of the material which has been previously presented but rather it is an
attempt to show how the ballistic approach can be extended to the analysis
of high-frequency devices. Much that might otherwise be said about ultra-
high frequencies cannot be said because of secrecy requirements. However,
there is considerable material which can be presented, within the limits of
the necessary security regulations, which may be of interest to those who are
not already well acquainted with the subject. I will, perforce, not be able
to say anything specific about actual devices utilizing the principles to be
discussed.

Many of the ultra-high-frequency devices which have come into use
during the last few years have employed electron beams of one sort or
another. These devices can be analysed in any one of a number of ways.
For example, we can write the equation of space-charge flow. This ap-
proach considers the electric charge as a continuous fluid subject to Poisson’s
equation. The small-signal theory of Peterson and Llewellyn is an example
of this type of analysis. Or if we wish we can consider the various types of
wave motion which can exist in a space-charge region. The space-charge-
wave analysis of Hahn and Ramo as applied to velocity-variation tubes is an
example of this. In addition there is an electron-ballistic approach to the
problem and it is with this method that we will be concerned in the present
lecture.

Before we become involved in the details of the analysis, we should perhaps
spend a few moments considering the relationship between these various
methods. If we have an interaction taking place between electric fields
and moving charges, we know at once from Newton’s second law that the
forces acting on the electrons must of necessity be equal and opposite to
those acting on the fields. It is therefore a matter of small concern whether
we consider the forces acting on the electrons and the effects of these forces
on the electron motion or whether we consider the alteration in fields which
the electron motion produces. We can, if we wish, compute the energy
transfer to an electric field by the motion of an electric charge or we can
compute the change in energy of the electron which accompanies this trans-

* Originally presented on April 11, 1945 as the concluding lecture of a symposium on
Electron Ballistics sponsored by the Basic Science Group of the American Institute of
Electrical Engineers.
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fer. Iwas tempted tosay “which results from this transfer” but this implies
a cause and an effect, a notion which has no place in the present discussion.
The dual aspect of any energy-transfer problem must always be kept in
mind. Much needless discussion frequently arises between proponents of
one point of view and those preferring the other when the only difference
is one of language and both groups are really saying the same thing. The
electron-ballistic approach yields a simple physical picture; it is capable of
being applied to widely differing situations, but it is not well suited for a
determination of the reactive contributions of an electron stream.

Basic CONCEPTS

There are several concepts which we will find useful in our analysis.
These concepts are extremely simple, so simple in fact that one is tempted to
assume that they are well known. However, these concepts are so basic
to the subject, and their results so far reaching that we must pause to
consider them. -

The first is the concept of total current, as distinguished from its com-
ponents. One way of writing Kirchhoff’s second law is

Div. J = 0 1)

This simply says that the total current entering or leaving any differential
region in space is zero. This expression must of course be generalized by
including displacement currents as proposed by Maxwell if applied to
alternating currents. The current J is the total current density as here
defined. An important consequence of equation (1), actually only an
alternate way of stating it, is that the total current always exists in closed
paths. Let us take a simple case of a two-element thermionic vacuum tube
connected to a battery. Visualize the situation existing if but a single
electron leaves the cathode and travels to the plate. The electron takes a
finite time to cross from the cathode to the plate. During this time a current
exists, the magnitude being given by the relationship

I =ev

and according to our premise this current is the same in every part of the
circuit. The current begins at the instant that the electron leaves the
cathode and it ceases when the electron arrives at the plate. In the appar-
ently empty region ahead of the electron there must exist a displacement
component, numerically equal to the conduction, or perhaps we should say
convection component accounted for by the moving electron. An ammeter,
were there one sufficiently sensitive and fast, connected in the external leads -
would read a current during this same interval of time.

T have chosen to talk about but a single electron to emphasize the electron-
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ballistic aspect; however, the concept is much broader than this since it is
not at all dependent upon a corpuscular concept of the electron. As a result
of this property of the total current, the current to any electrode within a
vacuum tube does not necessarily bear any relationship to the number of
electrons which enter or leave it. Obviously then, currents can exist in the
grid circuit of a three-element tube even though none of the electrons are
actually intercepted by the grid. This current may have any phase rela-
tionship to an impressed voltage on the grid so that the grid may draw power
from the external circuit, or it may deliver power to the external circuit,
all without actually intercepting any electronic current. The grid-current
component resulting from the electronic flow between cathode and plate
may equally well bear a quadrature relationship to the impressed voltage,
in which case it will either increase or decrease the apparent interelectrode
capacitance. If these effects seem queer it is because one is still confusing
the electronic component with the total current.

A second basic concept once stated becomes self-evident. This is to the
effect that the only one thing which we can do to an electron is to change its
velocity, that is, if we are to confine ourselves to the classical concept of
an electron. We can change its longitudinal velocity, that is, alter its speed
but not its direction other than possibly to reverse it, or we can introduce a
transverse component to its velocity, that is, alter its direction as well as its
speed. Thought of in this light all electronic devices in which a control is
exercised over an electron stream are velocity-modulated devices. It might
be argued that one could equally well say that all we can do is to change the
electron’s acceleration (derivative of velocity) or ils position (integral of velocity).
The singling out of velocity is in a sense arbitrary. It does, however, have
some very interesting ramifications.

I might digress for a moment to elaborate on this idea. Since some of
the newer devices have heen labeled velocity-modulation tubes, there is a
perfectly understandable tendency on the part of the uninitiated to assume
that these tubes differ from earlier known devices, such as, for example, the
space-charge-control tubes, the Barkhausen tube or the magnetron in the
fact that they employ velocity modulation. The real difference lies else-
where as we shall see in a few moments. At the same time that these newer
devices were introduced, there was introduced a new way of looking at
something which is very old in the art. This newer viewpoint, to my way of
thinking, constitutes a far greater fundamental contribution than do the
specific devices which have received so much attention. The pioneers in this
new approach: Heil and Heil, Bruche and Recknagel, the Varian Brothers,
Hahn and Metcalf, to mention a few, and the many other workers who lost
in the race to publish their independent contributions in this field—all of
these people deserve the greatest of praise for their stimulating contributions
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‘to our thinking. My only point in all this discussion is to emphasize that
the basic method of acting on the electron stream has not really been changed
at all. The entire matter is summarized in the original statement that the
only thing which we can do to an electron is to change its velocity.

Before going on to the next aspect of the problem there is a closely related
concept which should be mentioned. This concept is that a change in the
component of the velocity of an electron along one space coordinate does not
introduce components of velocity in directions orthogonal to the first. For
example, if an electron beam is deflected by a transverse electric field, there
will be no accompanying change in the longitudinal velocity. The difficulty
in the way of doing this in a practical case has nothing to do with the concept
but only with the problem of producing unidirectional fields. Analyses of
deflecting field problems which ignore the longitudinal components of the
fringing fields are apt to be wrong. The problem of high-frequency deflect-
ing fields has been treated in great detail in the literature and frequently
with more acrimony than accuracy.

One further note should be added at this point. In an earlier lecture it
was pointed out that the magnetic effects of an electromagnetic field are in
general very much smaller than the electric effects. We will not stop to
prove that this is still true at the frequencies which now interest us but will
accept it without further discussion.

For our next concept we leave electron flow for a moment and consider the
fields within a resonant cavity. You may very properly object that this
has nothing to do with electron ballistics, and indeed it does not. However,
we will find it necessary to discuss problems involving cavity resonators, and
a failure to understand some of the properties of these circuit elements can
cause a great deal of trouble. There are two conflicting approaches to this
problem which I will attempt to reconcile.

The physicist when first presented with the problem of a resonant cavity
is inclined to say: This is a boundary value problem. The solution consists in
writing Maxwell’s equations subject to the conditions that the tangential com-
ponent of E must be sero along the conducting walls. W hile a scalar and a mag-
netic vector potential can be defined, the field is not related to the former in the
simple manner used in electrostalic problems.

The engineer, on the other hand, is inclined to say: This looks like an
extension of the usual resonant circuit. A capacilance exists between the top
and boltom walls of the cavity; charging currents will flow through the single
turn toroidal inductance formed by the side walls. I would like to know
what voltage difference exists between the top and bottom walls, and what
currents exists in the side walls.

Now, actually, T am maligning both the physicist and the engineer by my
statements; nevertheless, there are these two approaches. Which is cor-
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rect? Well, they both are. It is not correct to speak of an electrostatic
potential within a resonant cavity; nevertheless, we may and do talk about
the voltage between the top and bottom of a resonant cavity. What do
we mean? Simply the maximum instantaneous line integral of the electric
field taken along some specified path. In any practical device utilizing
electron beams we are naturally interested in the path taken by the elec-
trons. The fact that the line integral is different for different paths is of no
great concern. We are interested in but one of these paths. We shall
therefore have occasion to talk about voltages in cavities but we must always
remember what is meant, and we must never for one instant forget that this
voltage is not unique but that it depends upon some assumed path. '

The second peculiarity of this voltage must also be emphasized. The line
integral must be taken at a specified instant in time. In effect one takes a
photograph of the field at some instant in time and then at one’s leisure
performs the integration.

Now, of course, an electron when projected through such a cavity will
perform yet another type of integration. The change in squared velocity
of the electron as expressed in volts will be given by the line integral of the
field encountered by the electron; that is, integrated not instantaneously
but with the electron velocity. This is not a simple process, because the
electron velocity is continuously being changed by the field interaction and
therefore the velocity with which the integration is performed depends
upon the integrated value of the field up to the point in question. This
has nothing to do with the concept of voltage in a resonant cavity. The
cavity voltage can, however, be considered as the maximum change in
squared velocity expressed in volts which an electron could receive if its
entrance velocity was very large so that the transit time was small compared
with the period of the cavity field.

The four basic concepts which I have chosen to recall to your mind are,
by way of summary: (1) the total current is the same in all parts of a circuit,
that is div. J = 0; (2) the only way we can act on an electron is to change its
velocity; (3) the changes in the velocity .component of an electron along
any one rectangular coordinate have no effect on the velocity components
along any other coordinate; and (4) for convenience, a voltage can be defined
in a resonant circuit as the line integral of the electric field taken along some
prescribed path.

TRANSIT ANGLE

Since we are to deal with the interaction of electrons and high-frequency
fields, we frequently find it convenient to measure electron velocity not
directly but in terms of the equivalent potential difference through which an
electron must fall to obtain the velocity in question, and the unit of measure
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will be a volt. Instead of measuring the time required for an electron to
traverse any given distance in seconds, it is also convenient to use, as a
unit of time, one radian of angle at the operating frequency. We frequently
refer to the transit angle of an electron rather than the transit time, although
both terms are used. In fact, we may on occasion measure distances in
terms of transit angle, and this usage is extended to measure dimensions
transverse to the direction of travel of the electron beam. When used in
this fashion, we mean that the dimension in question is such that were an
electron to be projected in this direction with a velocity equal to that of the
electrons in the main beam, the high-frequency field would change through
the stated number of radians during the transit time,

TeE Five FuncTioNs IN AN ErecTrONIC DEVICE

With this preliminary discussion out of the way we can now answer the
question which has probably been troubling quite a few of you. If the only
thing we can do to an electron is to change its velocity, then in what basic
way does the velocity-modulation tube differ from the conventional negative
grid tube or from the magnetron?

Well, this is an involved story. If we are to make any use at all of an
electron beam we must in general perform five distinct operations or func-
tions. Tirst we must produce the beam, Then we must impress a signal
of some sort onto the beam. From what I have just said this can be done
only by varying the velocities of the electrons contained in the beam. The
third operation consists in converting this variation into a usable form.
It is in this way that the diverse forms of electronic devices differ to the
greatest degree. We will go into this matter in more detail shortly. The
fourth operation consists in abstracting energy from the beam, and the final
operation consists in collecting the spent electrons. While these operations
are distinct from an analytical point of view, in many actual devices they
are performed more or less simultaneously and more than one operation
may be performed by certain portions of the tube structure. In fact, in
some devices, for example in the space-charge-control tube, the confusion
is so great as to make the separation seem rather forced. This very confu-
sion may partly explain why vacuum-tube engineers who were steeped in
the art were so slow to realize the advantages of this new way of looking
at things which I will call the velocity-modulation concept.

By way of mental exercise in this new way of thinking let us see how
we can analyze a simple space-charge-control triode. Well, first of all we
have to identify the electron gun which produces the beam. The electrons
most certainly come from the cathode, but where is the first accelerating
electrode? Actually there isn’t any unless we think of the combined d-c
field resulting from the d-c potentials on the grid and plate as assisted by
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the initial emission velocities as performing this function, The next func-
tion, that of varying the electron velocities, is performed by the grid which
varies the potential gradient in the vicinity of the cathode and hence the
velocity of the electrons as they approach a potential minimum or virtual
cathode which is formed a short distance in front of the cathode by the
action of space charge. This virtual cathode performs the third function,
that of conversion, by sorting out the electrons and allowing only those elec-
trons with emission velocities greater than some specific value to pass.
This, then, is one of the conversion mechanisms which we will call virtual-
cathode sorting. In this example the virtual cathode occurs very close to
the real cathode but this is not always the case. The fourth function,
that of utilization, is performed by allowing the sorted electrons to traverse
an electromagnetic field between the virtual cathode and the plate. This
operation is completed by the time the electrons have reached the plate.
Of course in the triode the plate then performs the final operation, that of
collecting the spent electrons and dissipating the remaining energy as heat.
It should be clearly realized, however, that this last function need not neces-
sarily be performed by the same electrode which provides the output field.
Indeed the so-called inductive-output tube proposed by Haeff is a space-
charge-control tube in which these two operations are separated.

CONVERSION MECHANISMS

But now to get back to a cataloguing of the different kinds of conversion
mechanisms. The first general type involves sorting. The first kind which
we have mentioned is by virtual-cathode sorting. A second kind of sorting
might involve deflecting the electron beam in proportion to its longitudinal
velocity instead of reflecting or transmitting it. Various deflection tubes
have been proposed from. time to time using this mechanism. We shall
be forced to neglect this phase of the problem this evening because of time
limitations but those of you who are interested will find the literature filled
with detailed discussions. ‘Still a third type of sorting, sometimes called
anode sorting, is used in certain Barkhausen tubes when the plate is oper-
ated at or near the cathode potential so that fast electrons are collected while
slow electrons are reflected and caused to retraverse a high-frequency field.
There are still other types of sorting mechanisms but I will not burden
you with these.

A second general type of conversion mechanism I will call bunching, to
distinguish sorting in which electrons are separated according to their
velocities from bunching in which electrons of differing velocities are brought
together. Now it just happens that many of the older devices used sorting,
while many of the newer devices use bunching but this is not universally
the case, For example, the magnetron as used at high frequencies and the
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cyclotron both employ a combination of sorting and bunching. A peculiar
property of the motion of an electron in a magnetic field lies in the existence
of the so called Larmor frequency. You will recall that the angular velocity
of an electron in a magnetic field depends only upon the field-strength and
not at all upon the electron’s linear velocity. This time in seconds is
given by

_ 0357 X 107°

t
H ]

or in radians

10600
0 =27 NI
Electrons of widely differing velocity can thus revolve together in spoke-
like bunches with the faster electrons going around larger circles than the
slow ones, but just enough larger to keep them together. This, then, is
one kind of bunching, which for simplicity we shall call magnetic bunching.
It is used in the magnetron and in the cyclotron, We will have more to say
on this subject a little later.

A second kind of bunching was used in some of the early Barkhausen
tubes where the plate electrode was operated at a fairly high negative poten-
tial so that none of the electrons were able to reach it. Under such condi-
tions a uniformly spaced stream of electrons with varying velocities is re-
flected as a bunched stream, the slower electrons being reflected almost at
once and the faster electrons penetrating the retarding field for a greater
distance and hence taking longer to return. This same type of bunching is
used in a newer form of oscillator, commonly referred to as a reflex tube
which was suggested by Hahn and Metcalf in 1939, and by others at about
the same time. The reflex tube differs from the Barkhausen tube, not in
the basic mechanisms so much as in the fact that the conversion mechanism
occurs in a different region in the tube from the region devoted to velocity
modulation and to energy abstraction. A second kind of bunching is then
reflex bunching,

A third type of bunching was used in the diode oscillators of Muller and
of Llewellyn. The mathematical research done by W. E. Benham may be
mentioned as of interest in this connection. In these tubes a uniform stream
of electrons becomes bunched simply through the fact that faster moving
electrons overtake slower ones which precede them. In these earlier forms
of tubes we again have the case where this conversion is performed simul-
taneously with one or more of the other processes so that it is very difficult
to separate them. However, in 1935 Heil and Heil proposed a tube in
which the conversion region was separated from the other regions of the
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tube. This tube, the velocity-modulation tubes of Hahn and Metcalf, and
the klystron tubes of the Varian Brothers, are alike in their use of transit-
time bunching in a relatively-field-free drift tube. Since this separation of
functions renders these devices much easier to analyze and since the struc-
tures are quite interesting in any case we will spend most of our time con-
sidering them and will, I fear, rather neglect some of the other types of tubes.

We will, of course, keep our analysis as general as possible so that the
results may be applied to a variety of different devices.

InpUT GAP ANALYSIS

Let us begin by a small-signal consideration of a uniform electron stream
entering a region in which there is a longitudinal field defined as some func-
tion of the distance and of time. This can be the entire Llewellyn diode
or it can be the input region of a klystron. We ask ourselves with what
velocity will the electrons leave this region and what will be the net exchange
of energy between the electrons and the field. At any point within the field
a typical electron will experience an acceleration given by

y = %E + i) f(0) 1)

where 7 is proportional to the maximum amplitude of the h.f. field, but con-
tains a numerical constant so that ¥ is expressed in centimeters per second
per second. Now in the usual case f(#) will be a simple sine function but
f(y) may assume a variety of forms. Again, by way of simplifying our
work we will assume that it is also a sine function. Let us consider how
we can go about solving this apparently simple equation. Unfortunately
this expression can not be solved directly because the value of t at any plane
(that is, the time of arrival of an electron at this plane) depends upon the
interchange of energy between the electron and the field. Here we are
forced back to the time-honored mathematical device of assuming a solu-
tion in the form of a series and then evaluating these coefficients. Thereisa
large number of ways in which this can be done, and consequently a large
number of different solutions which look very different but which all give
comparable answers. Usually when such solutions are published, the arith-
metical work is omitted leaving one with the feeling that there is something
involved that is not within the ken of ordinary mortals. The fact is that
the work is usually extremely tedious but actually very simple. It will be
instructive to follow through one form of such an analysis in just enough
detail to see the amount of work involved.

Since we are interested in the energy which is proportional to % we will
write at once

(3}2)11=G=K:K0+77K1+ 772K2"|‘1]3K3+
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where the K’s are a function of the transit time, of the field distribution and
of the entrance phase, and we will proceed to evaluate these coefficients.
The average energy per unit of change as expressed in volts is then simply

Ef at the end of the field while the gain is:

nEKl 4+ 1 EKz

= &/ - K) = T

where the bar means that we are averaging over all values of the entrance
phase.

It is of interest to evaluate the value of velocity y* which individual elec-
trons receive as a function of the entrance phase, For small signals it is
usually sufficient to evaluate 7 maximized with respect to the starting
phase, then

2
Vm-x = (E/Z)(K — Ko)mnx = [’%I(l + 71%{(_2 + . -]max.

We can further define the ratio of ¥ max to the largest value it can have as a
coefficient 3, sometimes called the modulation coefficient.

But now to evaluate the K’s. There are many ways of doing this as I
have intimated. We will proceed by writing

vy = yo(t) + my1() + n*ya(t) + nays(@) + . ..

where the y’s are coefficients depending upon the transit time 7 which in
itself is a function of the applied field thus

t=to+nhh+ta+ 0+ .. ..

We can then expand each function of time into a series remembering that

f@+@)—ﬂ)+fwd+f%”f

or for our particular case

¥ 2 a P
M0=ywo+ﬂmmﬁ+ﬂﬁjna+ ]

+ yu(fu)[ﬂﬁ + 7 t2 + 7 !3 + - ]
21

Now we can expand y(f), ¥2(f) etc. in exactly the same way. Finally we
get a collection of terms which can be grouped in like powers of 9 thus

vy = vo(to) + 5 [terms in ¥, §, &1, f2, etc.] + 72 [ ]...

The coefficient of the % is in fact 9o(to) 1 + ¥1(fo). We will not bother to
write the rest. This expression can then be differentiated to get ¥ and then
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squared. However, we still have some undetermined coefficients the 4,
Is etc. terms, These we can evaluate by noting that we wish these values at
y = a, where a is a fixed distance in the actual device. At this distance
the ¢ coefficients in the expression for y must have such values that the value
of y does not change with the value of . This can only be true if the
individual expressions multiplying each power of 5 are each equal to zero.
Equating these expressions to zero one can evaluate all of the #’s.  For exam-
ple the first term yields :

Yolto)hr + y1(te)) = 0
or

_ i)
ulta) '

Introducing these values, differentiating and squaring, one finally gets an
expression for (§%)y = 0 as a power series in y, the coefficients all being of a
form easily evaluated for any specified field distribution. Since we have by
definition called these coefficients K, , K3, etc. these values are then

4=

Ko=jjg

Ky = 2(55 — 1)

1

Ko = (58 — 2991 + 25052) — 2§0ys + 222
0

This then constitutes the formal solution of the problem. We must
now particularize our problem to some specific field distribution and evaluate
the y coefficients. Suppose, for example, that there is a uniform d.c. field
(E of equation 1) and an alternating field which varies as some cosine func-
tion of distance. Then the latter is

f(y) = cos (? + c)

and
ji=éE+ncos(wt+tp)cos(%y+c)

we must eliminate the y which appears in this expression and replace y by
its equivalent

y=y+m+rr+...
and expanding
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cos(?—i—c):cos(fg—"-l-c)—l—

m™ .

-b-sm(qu%-I—c [‘ﬂy1+n2yg+ P R P
1!

and as before equating like powers of n with § defined as
Vy=d+ah+ri+ ..

we finally arrive at

o = ~E1- E
1 = cos (wf + ¢) cos (’lr)’_b_o + C)
Yo = —yymw/b cos (wt + ¢) sin (-"%’9 4- 5)_

Now we need only integrate these expressions to obtain the values of the §'s
and the y’s needed to evaluate the K’s.

If we average 3% over all values of the starting phase we can write the
energy contributed by the field to the electron’s velocity. When this is-
done one finds that the odd powers of x are identically zero leaving only the
even powers to be considered and for small signal analysis purposes we need
only consider K, . The energy per electron expressed in volts is

V = 249 X 10 °E2%(6)

where f(6) = w?K; , and the power is obtained by multiplying this expression
by the beam current in amperes.

The end results can be expressed as curves of f(f) against 6 as shown in
Tig. 1. Three examples are shown: the uniform field case and two different
harmonic distributions as indicated by the smaller plot in the lower left-
hand corner. You will note that there exist regions of positive f(0) where
the net transfer of energy is from the field to the electron and regions in
which the transfer is in the other direction; the former portions are of con-
siderable interest in connection with the input gaps in velocity modulation
tubes, and for that matter in the cathode grid region of the negative grid '
tube although this is more complicated than is here indicated, as this trans-
fer of energy constitutes a loss to the field which loads the input circuit.
The latter portions may be utilized as was done in the Muller and Llewellyn
diodes to obtain sustained oscillations.

If, as I have indicated, we maximize §* as a function of the starting phase
we can evaluate the modulation coefficient. The value for the uniform field
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sin 8/2
6/2 °
write the loss expression for this case as

f@ =2 (1 — cosf) — @siné.

case, as shown in Fig. 2, is simply, 8 = For future reference we will

DRIFT SPACE ANALYSIS

Now let us consider the conversion region in a typical velocity-variation
tube. Figure 3 is a drawing of several such devices with the conversion

16
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Fig. 1—The energy transfer between an initially uniform electron stream and a longitudi-
nal electromagnetic field as a function of transit angle,

regions indicated. We will assume for the moment that the electrons enter
this region with a small variation in velocity and at a perfectly uniform rate.
Since the total number of electrons entering the region must be equal to the
number of electrons leaving the region we may write

11 dty = tdly
or

i = g
1 odtl'
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Fig. 2—The (velocity) modulation coefficient between an initially uniform electron stream
and a uniform electromagnetic field as a function of transit angle.
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Fig. 3—Typical velocity variation devices employing transit-time bunching.
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However, a relationship exists between # and to,

Where

Now if « < 1

and

_and finally

but

so that finally

This says that the velocity variation impressed on the beam at the en-
trance to the drift space or conversion region has resulted in a current varia-
tion at the output. For those of you who think in vacuum tube parameters
it is of interest to differentiate this expression with respect to the a-c voltage

¢
t1=lu+~.
v

1 = Y V1 + asin wi,
14

tl = fu+)—_—_.—_—.__..
'Ua‘\/l “+ @ sin wt;

t1=t0+£(1—esinwtl+---)
Yo 2

df[; _ 8 aw
dftl-—‘ 1 +TTO-§COSwt1
1, = 1o (1 + fow cos wtl)
30-2
o _y
4]

i - 1‘0(1 +a£cos wt.).

and obtain the transconductance

rewriting

o | di
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dVﬂﬂ - vQ_V.
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This result is obtained by neglecting all of the higher order terms and is
therefore only a small signal theory of a very restricted sort.

Now let us consider what we have done. Well, we have followed a small
interval of time through the drift tube. At the input this time df, had a
current 4y associated with it; at the output the size of this unit of time is
different—it is now dt, and the current associated with it is 7, . The physi-
cal picture corresponding to this phenomenon is that of a uniform distribu-
tion of electric charge becoming bunched with time as it traverses the drift
space.

The next step in the analysis is to carry our approximation a step further
and consider higher-order terms. Expanding the expression for ¢, and using
our nomenclature the desired expression is

i, = 1y [1 + 2 (.I] (%B)cos wi + 12(2%9)c05 2wt + T, (n %B)cos nwt):l.

This equation is not exact since it neglects space charge effects but it does
indicate the presence of harmonics in the beam current and it reveals cer-
tain non-linear effects which can also be illustrated by the so-called phase-
focusing diagrams of Bruche and Rechnagel.

PrASE-Focusing DIAGRAMS

Bruche and Recknagel pointed out that an analogy exists between the
focusing in space of a parallel light beam and the focusing in phase of the
electrons in a uniform electron beam. In fact a small-signal theory can be
developed entirely in terms of optical equations. We will not go into
this aspect in detail but we will use their diagram (Fig. 4) to illustrate the
bunching effect graphically. A uniform beam of electrons is represented by
a series of parallel lines in distance and time coordinates, focus being indi-
cated by a crossing of these lines after they have been deflected by the veloc-
ity modulation.

This general type of diagram has been popularized in this country by the
Varians, anl their associates under the name Applegate diagram, the only
difference being an interchange of axis. Figure 5, taken from a recent paper
by Dr. A. E. Harrison, illustrates this version of the Bruche and Recknagel
diagram.

Now if instead of judging the current density by the density of the lines
on the diagram, we make a plot of the current density as a function of time
for different fixed distances from the input gap, the pictures are somewhat as
shown on Fig. 6. Figure 7 represents a plot presented by Kompfner and
combines in one illustration the type of presentation used by Tombs.
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Puast FocusinGg IN A REFLEX TUBE

It might be well to pause for a moment in our discussion of transit time
bunching to consider how the phase focusing diagrams can be applied to a
reflex tube. The elements of a modern reflex tube are shown in Fig. 8
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Fig. 4—The phase-focusing diagram of Bruche and Recknagel showing the analogy to

optical focusing.

which was taken from a recent I.R.E. paper by Dr. J. R. Pierce. Electrons
from the cathode pass through an input gap defined by two grids where they
are modulated in velocity. In traveling in the retarding field produced by
the repeller those electrons which passed the gap when the field was becom-
ing progressively less accelerated, become bunched; the faster electrons
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penetrating the field to a greater extent and waiting, as it were, for the
slower electrons which follow to catch up. The electrons which pass across
the gap while the field is becoming progressively more accelerating are
spread out. If the retarding field is uniform it can be likened to the earth’s
gravitational field and the phase-focusing paths on our time-distance plot are
parabolas. Figure 9, taken from Pierce’s paper, illustrates this while Fig.
10 is such a plot taken from the paper by Harrison. One interesting and,
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Fig. 9—The gravitational-field analogy to reflex bunching (Pierce).
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Fig. 10—The phase-focusing diagram for a reflex oscillator (Harrison),

in a way, unfortunate difference between reflection bunching and direct
transit-time bunching is the fact that for reflection bunching the slow elec-
trons catch up with the fast ones while the reverse is true for the other type.
This means that if both types of bunching are present as shown in Fig. 11,
(also taken from Harrison’s paper) one will tend to undo the effect of the
other.

Another way of combining effects of separate bunching actions is to build
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a cascade transit-time-bunching amplifier in which a series of three gaps is
used together with two drift spaces. The first gap velocity modulates the
beam; this modulation is converted into a current modulation in the first
drift space. The beam then excites the second cavity, which again velocity
modulates the beam in quadrature with the original modulation. This
action of course occurs in the output gap of a two-gap tube but it is not
there used. Here this second and larger velocity modulation is converted
to current modulation in the second drift space. The output is finally
taken off the beam by the third gap. A phase-focusing diagram of this
sort (again taken from Harrison’s paper) is shown in Fig. 12.

SPACE-CHARGE-WAVE ANALYSIS

This phase-focusing approach is rather intriguing as one feels that one
has a physical picture of what is going on. The picture is, however, very
inexact except under certain highly specialized cases, as it completely ignores
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FIELD FREE |
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Fig. 11—Diagram showing reflex bunching combined with field-free transit-time bunching
(Harrison).

space-charge effects. These space-charge effects are of two sorts: a d-c
effect, if you will, and an r-f effect; that is, the presence of the electrons of
the beam will alter the average velocity of the electrons at different parts of
the beam, and will tend to undo the bunching action. Because of this
second effect, the electrons are effectively prevented from passing each other
as the graphical solution suggests. Instead, as the density of the electrons
in the bunch becomes greater, the mutual repulsion forces tend to prevent a
further concentration of charge. The electron bunch then tends to disperse.
The action could be likened to the propagation of a sound wave in a moving
column of air. While there are several approximate ways to handle this
problem, Hahn was the first to propose a really satisfactory theory. Inci-
dentally it should be noted that the Benham, Muller, Llewellyn and Peter-
son type of theory is capable of treating this aspect of the problem in a
rigorous way and including all space-charge effects, but unfortunately these
theories are limited in that they have been applied only to the parallel-
plane case, and of course they are only small-signal theories.
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Hahn'’s analysis starts by treating an infinitely long electron beam, using
cylindrical co-ordinates and is limited to a small signal theory where the a-c
motions are small compared to the d-c but it does not.ignore the r-f effects

of the space charge forces. The electron beam is thought of as a moving
dielectric rod which is capable of propagating axial waves much as a dielec-
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Fig. 12—Diagram for a cascade amplifier (Harrison).

tric wave guide will do. He assumes an axial magnetic field and a stream of
positive ions having the same velocity axially and the same charge density.
These ions are assumed to have infinite mass. The solution is much too
complicated and involved to present here even in abstract. It involves the
complete solution of Maxwell’s equations subjected to the stated assump-
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tions as restricted by the assumed boundary conditions at the edge of the
beam,

It is found that two waves are possible, one traveling slightly faster than
the electron beam and the second traveling slower. A point where the
velocity components are in phase will correspond to the input to the beam,
while points where the current components are in phase correspond to the
desired positions for the output. The propagation constants for these two
waves in a simplified special case where the magnetic field strength is
infinite are given by Hahn, as well as expressions for the optimum drift
tube length. He goes on to consider the case where the magnetic field is
zero and finds that for this case the density of the charge does not vary much
but instead the beam swells in and out so that instead of being lumps of
charge with spaces between, the lumps appear in the outer boundary. Hahn
has extended his general method of analysis to consider the modulation
coefficient of gaps through which the beam must pass. His results are a
great deal more general than those we have presented.

Ramo has reformulated Hahn’s theory by means of retarded potentials
for the most important case. This results in some simplification of the
theory. He computes the more important design constants for a velocity
modulated tube, such as the optimum drift tube length and the amount and
phase of the transconductance. Those of you who are particularly inter-
ested are referred to the original paper. An interesting aspect brought
out rather forcibly by Ramo’s analysis is the existence of higher-order waves
on the beam, always occurring in pairs, one faster and the other slower than
the beam velocity.

Tur MAGNETRON

In what time remains I want to say just a very few words about the mag-
netron. This is a very complicated subject and one which cannot be ade-
quately dealt with in an entire evening, and certainly not in the time
remaining.

As you all know, the magnetron was invented and named by Dr. A. W.
Hull. Habann, Zacek, Okabe and others pioneered in the use of the mag-
netron as an ultra-high-frequency oscillator. As envisioned today a
magnetron is a two-element device, usually cylindrical with a centrally
located cathode and a surrounding anode. The anode may be continuous
or it may be split into a number of segments as suggested by Okabe, and
these segments joined together either externally or internally by resonant
circuits,

The basic ballistic problems of the magnetron, and hence the only prob-
lems which directly concern us at this time are (1) that of determining the
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electron paths within the magnetron and having determined these paths (2)
that of getting an understanding of the mechanism whereby electrons in
traversing these paths are able to deliver energy to the connected high-
frequency circuits. One might think that the first problem would be a
relatively easy job. As a matter of fact the literature is surfeited with
papers purporting to give the answer. Unfortunately almost all of the
published work ignores the effect of space charge. A few moments’ thought
will suggest that space charge may be a controlling factor because of the
long electron paths which are sure to result in crossed electric and magnetic
fields, and indeed more detailed computations bear this out. Nevertheless
the neglect of space charge greatly simplifies the problem. There are those
who believe that the no-space-charge theories have no bearing on the way
actual magnetrons work and that any correspondence between the predic-
tions of such theories and the actual behavior of magnetrons is simply the
result of an unfortunate coincidence. In fact Brillouin points out that
the simplified form in which the Larmor theorem is applied by many, is in
itself an approximation which was perfectly valid as originally applied by
Larmor to the electronic orbits within the atom but which does not apply
to conditions as they exist in the magnetron.

A number of recent workers have attempted to include the effects of
space charge but have unfortunately largely restricted themselves to small
signal theories while the magnetron is seldom operated under small signal
conditions, at least not intentionally. Most theories are further restricted
to a consideration either of the coaxial case where the cathode radius is
small compared to the anode radius or of the plane case. Most practical
structures are intermediate between these extremes,

As an example of the difficulties involved, Fig. 13, reproduced from a
paper by Kilgore, shows the electron paths as computed neglecting space
charge and also shows experimental proof that these paths actually exist.
This illustration has been frequently reproduced and widely accepted.
The experimental picture was obtained in the presence of gas, to make
the electron beam path visible, and unfortunately the ionization which
makes the beam visible also tends to neutralize space charge effects, The
experimental arrangement departs still further from reality in that the
electron emission from the cathode was restricted to a limited region so
that the space charge forces were still further reduced. Now it is probably
true that some magnetrons operate with electron paths as shown; still it is
not true that all magnetrons operate in this way.

Contrasting with this picture which was until recently commonly ac-
cepted, Brillouin, Blewett and Ramo, and others have shown that stable
distributions are possible in which a space charge of almost uniform density
rotates with a uniform angular velocity about the axis. Brillouin goes so
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far as to label the curves due to Kilgore as wrong, and pictures the possible
electron trajectories as shown in Fig. 14.

One of the earliest papers to consider this newer picture of the electron
paths in the magnetron was published by Posthumus in 1935. This was
definitely a ballistic approach and hence suitable for discussing tonight.
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Fig. 13—Typical electron paths in a two-segment magnetron showing how electrons arrive
at the plate-half of lower potential (Kilgore).

Posthumus limits his discussion to but one type of oscillation which can be
obtained in the split-anode magnetron. Those of you who are familiar
with the early literature on the magnetron will recall that two distinct types
of oscillations were frequently described. One type usually called “elec-
tronic” was found to occur under conditions when the magnetic field was just
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high enough to cut off the anode current under static conditions. This field
has the value computed by Hull; '

_ 672V

o R

Hull’s first computation, by the way, was made neglecting space charge,
but, strangely enough, the result is not changed by space charge. These
electronic oscillations were assumed to be related in frequency to the time
of transit of an electron from the cathode to the anode, and at cutoff this is
inversely proportional to the field strength, as expressed by the empirical
relationship

M = 13,100.
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Fig. 14—Electronic trajectories for different magnetic fields varying from weak fields to
the critical field shown to the right (Brillouin).

In general, it was found that best operation occurred when the magnetic
field was not quite perpendicular to the electric field. The efficiency and
outputs as reported for this type of oscillator were always low, in spite of
the large amount of effort devoted to it by an equally large number of work-
ers. A second type of oscillation, usually referred to as negative resistance
oscillations, has also been the subject of considerable study and some practi-
cal use has been made of it at relatively low frequencies.

Contrasting. with this, Posthumus described a third kind of oscillation
which he called rotating field oscillations. As in the electronic oscillations
the preferred frequency is determined by the magnetic field-strength and the
anode potential, the frequency being inversely proportional to the magnetic
field-strength, Contrasting with the electronic oscillations, the rotating
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field oscillations occur with the magnetic field-strength very much above the
critical cutoff value and the efficiency on occasion reached as much as 70%,.
While a careful reading of the literature will reveal that some of the earlier
experimenters were occasionally dealing with these oscillations, Posthumus’
ohservations represent a new departure in magnetron theory and practice
and one which we might do well to investigate.

Posthumus’ approach consisted in studying the electron paths in a mag-
netron in detail in order to find the conditions under which electrons may
reach the plate with considerably less energy than that corresponding to the
plate potential. He assumed a magnetron having k pairs of plates and
based his calculations on the supposition of a rotating electric field with &
pairs of poles. In reality there exists a simple alternating field but this
can be resolved into two rotating fields rotating in opposite directions.
Power engineers will recognize this as identical with the procedure used in
analyzing single-phase rotating machinery. Posthumus neglected the field
opposite to the static angular velocity and considered only one component.
This is an approximation but a fairly plausible one which can be partially
justified.

In the absence of oscillations there is a radial electric field independent
of the angular position and inversely proportional to radius (for the coaxial
cylindrical case). When oscillations are present there is an additional radial
field which varies as some periodic function of the angle and with a period
2, and a tangential component of the same general type. For simplicity
these functions are taken to be simple harmonic functions and can therefore
be split into two circular rotating fields.

Posthumus writes the two simultaneous differential equations determining
the path of an electron, neglecting space charge, and inquires if a solution
is possible for an elecron path which travels at approximately the same
angular velocity as the rotating field but lags it by an angle a. An equally
satisfactory way of looking at this is to say that we transform our coordinates
from a fixed system to one rotating with the field and inquire if a solution
is possible where & the angular motion is always small. He finds that such a
solution is indeed possible and that for the electron motion to be stable the
value of @ must be such that the electrons are somewhat behind the line for
which the field has its maximum retarding value. The electrons are thus
in a position to lose energy to the field and to spiral out toward the anode.

Posthumus defined the value of the electron’s radial velocity squared at
the anode as P and the total velocity squared at the anode as . Nor-
malized plots of these two parameters are shown in Iig. 15 as a function of
frequency. The upper plot shows the radial velocity. Obviously for elec-
trons to reach the plate at all they must have a positive velocity at the plate.
Electrons can therefore reach the plate with any given field value, say Z = 2,
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Fig. 15—Electron velocities in the magnetron according to Posthumus.

that is with a field equal to twice the cutoff value, for all frequencies less
than the equivalent value defined by the intercept of the Z = 2 line with
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the abscissa axis. The line for P = 0 appears on the lower curve as the
dotted line 5. Here the ordinate is the total velocity squared, normalized
with respect to the value without oscillation. Efficiencies can therefore be
put on the plot directly as shown by the right-hand scale in per cent. The
line s is therefore a plot of the maximum possible efficiency. This refers
to what we might call the electronic efficiency since no account is taken of
circuit losses. Now in any physical device there are some circuit losses and
hence a lower value of electronic efficiency for which sustained oscillations
are not possible. The dotted line p is Posthumus’ experimental value for
this lower limit. Between the lines p and s, then, oscillations are possible
at frequencies given by the abscissae and with field values shown on the
solid lines. Actual data for an experimental tube are shown on the plot,
oscillations occurring at the wavelengths indicated and over the ranges in
field shown by the lines terminating in arrows.

One additional line ¢ is shown on the plot connecting points on the different
Z lines for which the efficiency is a maximum. The optimum design would
be one based on the intersection of this line with the p line.  Still other facts
will appear from a detailed study of these results but we shall not be able
to devote any more time to this interesting subject.

CONCLUSION

In concluding a talk of this sort and particularly in concluding a series of
talks, it is usually appropriate to look ahead to the future and predict the
trend of affairs, or perhaps to peint out certain fruitful fields of research.
I find this a singularly difficult thing to do. However, it is not revealing
any military secrets to say that much of the progress of the last few years
has been in the direction of making things work and not toward getting a
clearer understanding of the underlying theory. If, for example, an il-
luminating approach could be devised which would make the problems
associated with transverse fields, both electric and magnetic, appear as
simple and straightforward as do longitudinal-electric-field problems, as a
result of the velocity-modulation concept, then I helieve even more striking
advances could be made in the ultra-high-frequency field than those which
the war years have brought forth.

SELECTED BIBLIOGRAPHY

A. Papers of a Historical or Review Nature

H. Backhausen and K. Kurz, “The Shortest Waves Obtained with Vacuum Tubes”, Plhys.
Zeits, vol. 21,.p. 1 (1920).

E. W. B. Gill and G. H. Morrell, “Short Electric Waves Obtained by Valves", Phil. Mag.,
vol. 44, p. 161 (1922).

A. W. Hull, “The Effect of a Uniform Magnetic Field on the Motion of Electrons between
Couxinl Cvlinders”, Phys. Rev., vol. 18, p. 31 (1921).

E. Habann, “A New Vacuum Tube Generator”, Zeils f. Hochifreg., vol. 24, p. 115 (1924).



ELECTRON BALLISTICS IN HIGH-FREQUENCY FIELDS -351

A. Zacek, “A Method for the Production of Very Short Electromagnetic Waves”, Zeits f.
Hockfreg., vol. 32, p. 172 (1928).

K. Okabe, “Production of Intense Extra-Short Electromagnetic Waves by Split-Anode
Magnetron”, I.E.E. Jour., Japan, 1928, p. 284. See also L.R.E. Proc., vol. 17, p. 652
(1929); I. R. E. Proc., vol. 18, p. 1748 (1930).

K. Kohl, “Continuous Ultra-Short Electric Waves”, Ergebnisse der exaktlen Naturwissen-
schaften, vol. 9, p. 275 (1930). Bibliography of 135 titles.

M. J. Kelly and A. L. Samuel, “Vacuum Tubes as High-Frequency Oscillators”, Elec. Eng.,
vol. 53, p. 1504, Nov. 1934,

E. C. S. Megaw, “Electronic Oscillations”, Jour. I. E. E. (London), vol. 22, p. 313, April
(1933). (Bibliography of 47 titles.)

G. R. Kilgore, “Magnetron Oscillators for the Generation of Frequencies Between 300 and
600 Megacycles”, Proc. I. R. E., vol, 24, p. 1140, Aug. (1936).

B. Papers Dealing With Parallel Plane Electronics

W. E. Benham, “Theory of the Internal Action of Thermionic Systems at Moderately

High Frequencies”.
Part I, Phil. Mag., vol. 5, p. 641, March (1928).
Part II, Phil. Mag., vol. 11, p. 457, February (1931).

Johannes Muller, “Electron Oscillations in High Vacuum”, Hockfreq. u Elek. Akus, vol. 41,
p. 156, May (1933).

F. B. Llewellyn, “Vacuum Tube Electronics at Ultra-High Frequencies”, I. R. E. Proc.,
vol. 21, p. 1532, Nov. (1933).

C. J. Bakker and G. de Vries, “Amplification of Small Alternating Tensions by an Induc-
tive Action of the Electrons in a Radio Valve with Negative Anode", Physica, vol. 1,
p. 1045, Nov. (1934).

C. J. Bakker and G. de Vries, “On Vacuum Tube Electronics”, Physica, vol. 2, p. 683,
July (1935).

G. Grunberg, “On the Theory of Operation of Electron Tubes”, Tech. Phys. (U. S. S. R.),
vol. 3, No. 2, p. 181, Feb. (1936).

D. O. North, “Analysis of the Effects of Space Charge on Grid Impedance”, I. R. E. Proc.,
vol. 24, p. 108, Jan. (1936).

W. E. Benham, “A Contribution to Tube and Amplifier Theory,” Proc. I. R. E., vol. 26,
p. 1093, Sept. (1938).

F. B. Llewellyn and L. C. Peterson, “Vacuum Tube Networks”, Prec. I. R. E., vol. 32,
p. 144, March (1944).

C. Velocity Modulation Papers

A. Arsenjewa-Heil and O. Heil, “Electromagnetic Oscillations of High Intensity”, Zeits f.
phys., vol. 95, p. 752, and p. 62, Nov. & Dec. (1935).
(English Translation in Electronics, vol. 16, p. 7, July 1943).

E. Bruche and A, Recknagel, “On the Phase Focusing of Electrons in Rapidly Fluctuating
Electric Fields”, Zeits ¥. phys., vol. 108, p. 459, March (1938).

W. C. Hahn and G. F. Metcalf, “Velocity-Modulated Tubes” I. R. E. Proc., vol. 27, p. 106,
Feb. (1939).

R. . Varian and S. F. Varian, “A High-Frequency Oscillator and Amplifier”, Jour. Apl.
Phys., vol. 10, p. 321, May (1939).

W. C. Hahn, “Small Signal Theory of Velocity Modulated Electron Beams”, G-E. Rer.,
vol. 42, p. 258, June (1939).

D. L. Webster, “Cathode Ray Bunching”, Jour, Apl. Plys., vol. 10, p. 501, July (1939).

W. C. Hahn, “Wave Energy and Transconductance of Velocity-Modulated Electron
Beams”, G-E. Rev., vol. 42, p. 497, Nov. (1939).

S. Ramo, “The Electronic Wave Theory of Velocity Modulation Tubes”, Proc. I. R. E.,
vol. 27, p. 757, Dec. (1939).

J. R. Pierce, “Reflex Oscillators”, Proc. I. R. E., vol. 33, p. 112, Feb. (1945).

D. Graphical Solutions for Velocity Modulation Tubes

E. Bruche and A. Recknagel, “On the Phase Focusing of Electrons in Rapidly Fluctuating
Electric Fields”, Zeits f. Phys., vol. 108, p. 459, March (1939).
D. M. Tombs, “Velocity-Modulation Beams”, Wireless Eng., vol. 17, p. 54, Feb. (1940).



352 BELL SYSTEM TECHNICAL JOURNAL

R. Kompiner, “Velocity Modulation—Results of Further Considerations”, Wireless Eng.,
vol. 17, p. 478, Nov. (1940). :

A. E. Harrison, “Graphical Methods for Analysis of Velocity Modulation Bunching”,
Proc. I. R. E., vol. 33, p. 20, Jan. (1945).

E. Magnetrons

W. E. Benham, “Electronic Theory and the Magnetron”, Proc. Phys. Soc., vol. 47, p. 1,
Jan. (1935).

K. Posthumus, “Oscillations in a Split Anode Magnetron”, Wireless Eng., vol. 12, p. 126,
March (1935). .

L. Tonks, “Motion of Electrons in Crossed Electric and Magnetic Fields with Space
Charge”, Physik Z Sowjet, vol. 8, p. 572 (1935).

H. Awendu, H. Thoma and M. Tombs, “Paths of Electrons in Magnetrons Taking Account
of Space Charge”, Zeits. f. Phys., vol. 97, p. 202, Oct. (1935).

W. E. Benham, “Electronic Theory and the Magnetron Oscillator”, Proc. Pirys. Soc.,
vol. 47, p. 1, Jan. (1935).

M. Grechowa, “Investigation of the Curve of the Electron Path in a Magnetron”, Tech.
Phys. Jour. (U. S. S. R.), vol. 3, p. 633 (1936).

S. V. Bellustin, “Theory of the Motion of Electrons in Crossed Electric and Magnetic
Fields with Space Charge”, Physik Z. Towjel, vol. 10, p. 251 (1936).

Grunberg and Wolkenstein, “The Influence of a Homogeneous Magnetic Field on the
Motion of Electrons Between Coaxial Cylindrical Electrodes”, Tech. Phys. Jour.
(U.S.S. R.), vol. 8, p. 19 (1938).

F. Herringer and F. Hulster, “Oscillations in Tubes with Magnetic Fields”, Hock freg
Tech u Elek Akus, vol. 49, p. 123 (1937). :

E. B. Moullin, “Consideration of the Effect of Space Charge in the Magnetron’’, Phys.

e Soc. Proc., vol. 36, p. 94, Jan. (1940).

J. P. Blewett and S. Ramo, “High-Frequency Behavior of a Space Charge”, Phys. Rev.,
vol. 57, p. 635, April (1940).

J. P. Blewett and S. Ramo, “Propagation of Electromagnetic Waves in a Space Charge
Rotating in a Magnetic Field”, Jour. A ppl. Phys., vol. 12, p. 856, Dec. (1941).

L. Brillouin, “Practical Results from Theoretical Studies of Magnetrons”, Proc. I. R. E.,
vol. 32 p. 216, April (1944).



