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Piezoelectric Crystals in Oscillator Circuits
By I. E. FAIR

12.00 INTRODUCTION

STUDY or an explanation of the performance of a piezoelectric crystal
in an oscillator circuit involves a study or explanation of oscillator
circuits in general and a study of the crystal as a circuit element. Nicolson®
appears to have been the first to discover that a piezoelectric crystal had
sufficient coupling between electrical electrodes and mechanical vibratory
movement so that when the electrodes were suitably connected to a vacuum
tube circuit, sustained oscillations were produced. In such an oscillator
the mechanical oscillatory movement of the crystal functions as does the
electrical oscillatory circuit of the usual vacuum tube oscillator. His
circuit is shown in Fig. 12.1. Cady® independently though later made the
same discovery, but he utilized it somewhat differently and expressed it
differently. He found that when the electrodes of a quartz crystal are
connected in certain ways to an electric oscillator circuit, the frequency is
held very constant at a value which coincides with the period of the vibrat-
ing crystal. He made the further discovery that due to the very sharp
resonance properties of the quartz crystal, the constancy in frequency to be
secured was far greater than could be obtained by any purely electric
oscillator. A
The development of analytical explanations of the crystal controlled
oscillator came along rather slowly. Cady explained the control in terms
of operation upon the electrical oscillator to which the crystal was attached.
He said that the “capacity” of the crystal changes rapidly with frequency
in the neighborhood of mechanical resonance, even becoming negative.
This “capacity” connected across the oscillator tuned circuit or in other
places prevented the frequency from changing to any extent, as any fre-
quency change caused such a “capacity’ change in the crystal as to tend to
tune the circuit in the other direction. Cady, however, devised one circuit,
Fig. 12.2, in which no tuned electrical circuit was used, but he confined his
explanation to “a mechanically tuned feedback path from the plate to the
grid of the amplifier”. Pierce’ came along later with a two-electrode crystal
connected between plate and grid, and no tuned circuit, and also with a
161
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Fig. 12.1—Nicolson’s crystal oscillator circuit
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Fig. 12.2—Cady’s oscillator circuit using a crystal as a “mechanically tuned
feedback path”
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Fig. 12.3—Equivalent electrical circuit of a piezoelectric crystal near its
resonant frequency

two-electrode crystal connected between grid and cathode and no tuned cir-
cuit, where the operation would not be satisfactorily explained by Cady’s
method. His circuits would require the crystal to exhibit inductive react-
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ance, rather than the capacitance Cady spoke of. Miller* also produced a
circuit with a two-electrode crystal connected between grid and cathode but
with a tuned circuit in the plate lead, which circuit required the crystal to
provide inductive reactance. '

It was not until after Van Dyke® showed that the crystal could be repre-
sented by the circuit network of Fig. 12.3 that it was possible to explain
these various phenomena. With this view of the crystal, and using the
differential equation method of circuit analysis, Terry® pointed out that,
as with electrical oscillators, the frequency is not completely governed by
the resonant element, in this case the crystal, but is influenced somewhat
by the circuit elements. The circuit as a whole is quite complex and the
equations are difficult to use. Wright’ and Vigoureux® also made analyses
of the Pierce type oscillator. Because of the complexity of the equations,
the frequency, amplitude, or activity are not computed directly, but the
effects of the circuit variables are analyzed in a qualitative manner and
the results compared with experimental data.

Oscillators employing crystals may be classified in a number of ways.
One classification is based upon whether or not the circuit without the
crystal is in itself an oscillator. If it is, the oscillator is called a “crystal
controlled” oscillator. If it is not, it is called a “crystal” oscillator. All
of Cady’s oscillator circuits, except the one shown in Fig. 12.2, are of the
first named class, This type of circuit will oscillate at a frequency deter-
mined by the tuned circuit if the crystal becomes broken or disconnected,
or if high resistance develops in the crystal, or if the electric tuned circuit
should become tuned too far from the resonant frequency of the crystal.
This property at times is an advantage and at other times a disadvantage.
This type of circuit will oscillate under control of the crystal with much
less active crystals than most of the othzr types.

Nicolson’s, Pierce’s, Cady’s of Fig. 12.2 and Miller’s oscillators belong to
the second named class. They will cease oscillating if the crystal breaks,
develops high resistance or is disconnected. Failure of the oscillator to
function at all then serves as a warning that something has happened to
the crystal.

This second named class of crystal oscillators has been used much more
than the first named. The crystal is the principal frequency determining
element in the circuit. Often there are required only resistances, or re-
sistances and an inductance, as the other elements to embody along with
the vacuum tube and crystal. The simplicity, low costs, and usually no
tuning, have made this class attractive. Most analytical studies of oscilla-
tor circuits have been made upon this class. For that reason the discussion
in this chapter will be limited to this class.

An analytic study of the crystal oscillator can readily start by looking



164 BELL SYSTEM TECHNICAL JOURNAL

upon the oscillator as consisting only of inductances, capacitances, and
resistances, along with the vacuum tube. The crystal is replaced by the -
proper circuital elements arranged as in Fig. 12.3.  This circuit or equivalent
of the crystal is that of a series resonant circuit having capacitance parallel-
ing it. The circuit will show both phenomena of series resonance and
parallel resonance, the two frequencies being very close together. By
making suitable measurements on a crystal, the magnitudes of the in-
ductance, resistance, and the two capacitances can be determined. It is
usually found that the series inductance is computed as hundreds or thou-
sands of henries, and the series capacitance is a small fraction of a micro-
microfarad. The magnitudes of the inductance and capacitance are beyond
what it is possible to construct in the usual forms of building inductances
and capacitances. This accounts for its superior frequency control
properties.

Although reducing the crystal to an equivalent electrical circuit provides
one notable step in understanding the performance of the crystal oscillator,
it does not readily lead to a full understanding. The electric oscillator in
itself is not fully and completely analyzed in all its ramifications, although
it has been under study for over 25 years. These studies have been mathe-
matical and experimental in character, but in all cases it appears there have
been approximations of some kind, made because the variable impedance
characteristics both of the plate circuit and the grid circuit of the tubes
did not lend themselves readily to a rigorous analysis. The earlier investi-
gations assumed a linear relation between grid voltage and plate current
and assumed constant plate impedance. Later investigations brought in
further elements and further variables, the different investigators attacking
the problem in different ways and attempting to prove different points.
By this means a large number of factors in oscillators have been ascertained
to a first degree of approximation so that a qualitative review of the per-
formance of the electric oscillator is very well known. Itisthe quantitative
view upon the first order magnitude which is still difficult or uncertain,
This is particularly true of the crystal oscillator because of the slightly
different circuit.

It is proposed, therefore, in this paper to cover briefly a number of the
studies on crystal oscillators so as to point out the different modes of attack
and the different behavior points in the oscillators which the various investi-
gators have studied. After covering these points, there will be discussed
the frequency control properties of the crystal and the frequency stability of
crystal oscillators. The performance of the crystal in the oscillator with
respect to activity is then treated. There will be introduced two new yard-
sticks for measuring or indicating crystal quality, one called “figure of
merit” and the other called “performance index.” These are related to
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the crystal constants and paralleling capacitances which are usually involved.
They will be defined and their method of use and application in oscillators
will be pointed out.

12.10 SorutioN BY DIFFERENTIAL EQUATIONS

The most direct method of determining the oscillating conditions in a
circuit is to analyze the differential equation for the current in some particu-
lax branch of the circuit. The relations existing between the coefficients
determine whether the current builds up, dies out, or is maintained at a
constant value and frequency. Unfortunately the equations resulting from
the application of this method to the crystal oscillator circuit are quite
complicated. However, lower order differential equations result from the
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Fig. 12.4—Equivalent circuit of oscillator with crystal connected between
grid and plate

application of this method to similar electric oscillator circuits, and certain
qualitative information obtained from the latter is applicable to crystal
oscillators. Thus Heising’s’ analysis of the Colpitts and Hartley circuits
gives much information directly applicable to the Pierce and Miller types
of crystal oscillators. From this the circuit conditions necessary for oscilla-
tions to exist and the effect of certain circuit variables upon the frequency
are ascertained. The more complex qualitative view is given by Terry®
who shows the relations of the coefficients of linear differential equations
of the 2nd, 3rd, and 4th orders, and applies them to the analysis of three
common types of crystal oscillator circuits. The resulting equations,
together with certain qualitative information regarding their interpretation,
are repeated here. In making this analysis the grid current is disregarded
and the static tube characteristic is considered linear.
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The equatidn is the same for the three types of circuits considered and is
derived for the current 7, , in Figs. 12.4 and 12.5, although it may be set up
in terms of any of the currents or voltages existing in the circuit. It is
of the form
d'iy d’i diy

+P2d—ﬁ"+P3—-+P4$1=O (12.1)

d'i
~—— 4+ P 7

dit ag

The P coefficients are functions of the circuit elements and are defined for
each type of circuit in the following sections.

The solution of (12.1) normally represents a doubly periodic function

arising from the two coupled antiresonant meshes (a) and (b). The normal
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Fig. 12.5—Equivalent circuit of oscillator with crystal connected between
grid and cathode

modes of oscillation consist of two currents in each mesh with frequency
and damping factors 8, and a1, B2 and as respectively.

The conditions for undamped oscillation as derived from the general
equation (12.1) are expressed in terms of the coefficients by

Py _ Pt VP - apy (12.2)
P 2

and the angular frequencies are

Py + /P! — 4P,
g ;’2 4P (12.3)

where the plus sign gives the condition for one damping factor to be zero
and the minus sign that for the other to be zero.
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The frequency at which oscillations are maintained is determined by the
required phase relation of voltages applied to the tube. With crystal from
grid to plate, as in Fig. 12.4, the phase difference of grid and plate voltages
is such that the circuit oscillates at only one of the normal modes, and with
crystal connected between grid and cathode, as in Fig. 12.5, it oscillates at
the other only.

12.11 CrystAL BETWEEN GRID AND PLATE

With the crystal connected between the grid and plate of the tube, as in
Fig. 12.4, the coefficients of the general equation (12.1) are

_ B R 1
T L L R,C
1 RiR; 1 1 (Rl Rz) 1

Py

Ch

L L,

h=reatontona™t R,

(12.4)

pp=-B_ R 1/ 1  RR 1
' LiLCy " LiLaCy ' Ry\LiCuCy ' LiLyCy  LiCwnCi

po_ 1 LR 1 1
T LInCaCy LiLaChn T Ry \LiLyCiCy L1 L.CoCh/) |

where

1 1 1 ¢ 1 C
a~ata~"a o~ ac
1_1_¢G 11 G
G G C Crn = Cu CoCs
L1, G 11t 1
a- ot ad .~ atats

px = the amplification factor of the tube.

de
R, = 7= (e, constant)

pid
diy
The uncoupled damping factors, @, and a3, the uncoupled undamped

angular frequencies, 8, and 85 , and the coupling coefficient 7 may be intro-
duced as follows:

_ R . _ 1
Og = 2L1) ﬁn - L1Ca \ Can
R , 1 T

ap =
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Note that C, is the total capacitance across L, and Ry, and Cj is the total
capacitance across Ly and Rs.
The coefficients of (12.4) become

1
P1=2(aa+aa)+ﬂg W

R 1 2
m=ﬁﬁ+MMV+m+§%%+aoa

) (12.5)
Py = 2esB: + aaBs) + 5 [(ﬁﬂ + 4aaaa) cl m]
Cn

.n=£ﬂb—r+ (g g#H

The coefficients as given by (12.5) satisfy (12.2) and (12.3) only when the
plus sign is used.
The equations are simplified by dividing through by B: thus

+V« y = (12.6)

peﬂ-Pl

Lo/ (B) -
g _ b Ba Ba (12.7)
Ba 2

which gives the ratio of driven frequency of the crystal to its undriven value.
The common variable R, must satisfy both (12.6) and (12.7). The method
of computing the frequency would be to solve for R, in (12.6) and substitute
in (12.7). However, the equations are too complicated a function of R,
for this to be practical. Terry solved them graphically by plotting (12.6)
and (12.7) as functions of R, for assigned values of the circuit, and the inter-
section of these curves gave the frequency for the different circuit conditions.
The results are shown in Fig. 12.6. The G-P curves show the frequency
change as a function of plate circuit tuning for the grid to plate connection
of the crystal.

.

12.12 CrysTAL BETWEEN GRID AND CATHODE

With the crystal connected between the grid and cathode of the tube,
the circuit is as shown in Fig. 12.5. The coefficients of equation (12.1)
are as follows:
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h=LtLtra
1 RR 1 1(R R
h=rctnLTLco TR, (L1 Lz) 09
Re Ry 1 1 RiRs 1 '
=1 netnnet E(Llcuc;,’ LiLCl ™ Llc,,.c:,i)
1 1 R/ 1 1
P = LL,C.C T LiLC (Llec cr Lngc,,,c:,i)

With the substitution of uncoupled frequencies, damping factors and
coupling coefficient as described in the previous section, they become

Py = 2(as + ) + R.C"
r

1 2
= B + dac + B + 5 (aa )
) (12.9)
.P3 = Z(Gbﬂa "l“ Ofg,Bb) + l:(ﬂu + 4anab) b - LlCmC:;:]
Cb Cm
P4=B§B§[1~T +3x (cb —C—;fg):l i
Where :
1 _1
c=c. T
1 1 n B p = amplification factor of tube
Cl T C T Cn
R, = 9¢y (e, constant)
1_ G e,
Cn Cs (o
_ GGy r_1r.,.1.,.1
G=Grteie c-otate
CaCy
= C 2
Ca o+ Cot G

These equations of conditions for oscillation in this case satisfy (12.4)
and (12.5) only when the minus sign is used. That is

P; P, — /P — 4P,
P} — 4P
!3 — ‘\/ 4

(12.11)
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Again dividing by 8; to obtain the frequency as a ratio of driven to undriven
crystal frequency, we have

p - 1/ (—’33)2 _ AP
D _ B B2 B (12.12)

16:: Pl 2
P P\! 4P
: 2~ =) - =
A AV (12.13)
B2 2
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Tig. 12.6—The oscillating frequency as a function of the plate circuit frequency for the
crystal connected grid to plate (G-P) and grid to cathode (G-C)

The frequency change as a function of plate circuit tuning was determined
graphically in the manner described in section (12.11) and the curves are
shown in Fig. 12.6 as the G-C curves.

12.13 ReEsistance Loap Circuir

This is a special case of Plate-Grid connection of the crystal described in
section (12.11) in which the plate circuit consists of a capacitance and re-
sistance in parallel. This is a very common Pierce type of oscillator circuit
and has the advantage that no tuning adjustment is necessary when using
crystals of different frequencies.
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Since this circuit is singly periodic, the differential equation for 4, is
of the third order and is derived from (12.1) by setting the plate inductance
Ly of the P coefficients equal to zero. The general equation then becomes

d 11 d ‘h d‘tl

+ P1 + Pz + Pah = (1214)
where
p, - R +_1_ + 1 ]
' T LT RG T R,Cy
1 R R
P, = + ! ! (12.15)

nc Y roo T RLC

{ 1 1/ 1 !
Py = RLC.Cy T RLiCE TR, (Llcac; = Llcmc,’..)_

With the substitution of the uncoupled damping factors and frequencies,
(12.15) becomes

Py =2 L + L ]
1= 2.tz TR
2ctq 20,
— 2 —
P=f+ pat R (12.16)
p — B L 2 1
' 7 ReCy  RLiCn " R, \C, LiCnCn)

The frequency as obtained from (12.14) is

g =P, (12.17)
with the conditions for oscillation
P
P, P, (12.18)

obtained by setting the damping factor a equal to zero. The ratio of driven
to undriven frequency is obtained by dividing (12.17) and (12.18) by Be.

That is
g P P

2T BT AR

12.14 INTERPRETATION OF THE EQUATIONS

(12.19)

It is learned from this analysis that the frequency of oscillation while
governed principally by the frequency of the crystal also depends upon all
the constants of the circuit. The effect of the plate circuit impedance is
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Fig. 12.7—Calculated increase in mean plate resistance against capacitance of the
. oscillatory circuit

50 f
o G-C
z
<]
]
n 25 F
&
o Cg Ci
a 84 2.4
- - .
9
G
o
o
g of
-]
L]
" 6.4 124
Y
<
@ 4
@ 26___ 2.
>
0
]
3 25

le—WCo=

o 2T,
[

50

Cap —=
Fig. 12.8—Experimental curves, showing the influence of interelectrode capacitances on

the frequency

shown in Fig. 12.6. Itis pointed out that the effect of the crystal resistance
Ry is to decrease the frequency for the G-C connection and increase the
frequency for the G-P connection. The discrepancy between the measured
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and experimental values shown on the curves is attributed to the difference
between chosen and actual value of R;. The effect of the input loss of the
tube is not shown because the grid current was disregarded; however, this
loss may be reduced to an equivalent R;. The resistance of the plate cir-
cuit R, affects the frequency in a similar manner. The effects of these
resistances on frequency are less for low values of plate circuit impedances.

The required value of R, gives a measure of amplitude of oscillation
because it is necessary for oscillations to build up until the internal plate
resistance is equal to the calculated value. It is found that R, increases
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Fig. 12.9—Txperimental curves, showing the relation between the frequency and the
resistance of the oscillatory circuit

gradually to a maximum as the common frequency for the two types of
circuits is approached then abruptly drops.

Vigoureux® analyzes the crystal oscillator in a manner similar to
Terry and correlates his interpretations of the equations with considerable
experimental data, some of which are shown in Figs. 12.7, 12.8, 12.9 and
12.10. He points out that there is an optimum value of grid capacitance
with the crystal connected between grid and plate and a certain amount
of grid-plate capacitance is required when the crystal is connected between
grid and cathode.

Wheeler' does not assume a linear static tube characteristic but
represents it by a three-term nonlinear expression. The results are more
complex and it is necessary in the end to disregard certain resistance terms.
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Fig. 12.10—Experimental curves, showing the relation between the frequency of a quartz
oscillator and the capacitance of the oscillatory circuit for various values of
the grid leak

12.20 SoruTtioN BY CoMPLEX FUNCTIONS

The analysis of oscillator circuits may be simplified when only steady
state conditions are of interest, all circuit elements are considered linear,
and certain requirements which define the conditions necessary for oscilla-
tions are known. Under these conditions the common circuit equations
of complex numbers give the information desired. In this method the
voltage induced in the plate circuit is considered the driving voltage which
produces a current in the grid circuit (see Fig. 12.11). The network be-

.

Z3
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= s |
Rp
zZ, 22% Vg
Hvg

Fig. 12.11—Equivalent circuit of Pierce and Miller types of oscillators shown
in Fig. 12.12
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tween plate and grid may be of any type and oscillations are maintained
when the total gain through the circuit is unity (gain of tubes = attenuation
through circuit) and the phase relation between the induced plate voltage
(uV,) and the grid voltage (V,) is 180° (the phase shift is zero when p is
considered negative). The expression pf = 1 defines these requirements.
Llewellyn'' applies this method to oscillator circuits in general and Koga®
uses it to study the crystal oscillator in particular.

The equations are developed on the assumption that the grid-voltage vs,
plate-current characteristic of the tube is linear. The fundamental equa-
tion of uB is given by the ratio of the voltage developed across the grid

C3 Z;
A —1
d
|
|
' __\ECz]tLa
Z, 1| LE 1
z, =3 ilcg
| 1Y
|
A B

Fig. 12.12—Circuit diagrams of crystal oscillators with crystal connected from grid
to cathode (A) and grid to plate (B)

circuit' by the fictitious driving voltage uV, to the voltage V,. For the
general circuit, Fig. 12.11, it is

_Ln_ —uns
M= Y T Rz ¥ 2t Zy) (12.20)

where
Ze=2Z1+ 2o+ Zs
It is more convenient to write this in the reciprocal form
1 RoZ, + Z:(Zs + Zy)
— = =1 12.21
uB —'#lez ( )

In applying this to the crystal oscillator, the additional assumptions made
are that the grid current is negligible and the resistance in the plate im-
pedance Z, is zero.

12.21 CrysTAL GrID T0 CATHODE

With the assumptions made above and the crystal connected from grid
to cathode of the tube according to Fig. 12.12A, the impedances are

Z]_ = j.Yl Zg = ch +J‘XW Zg = an
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where R, is the effective resistance and X., the effective reactance of the
crystal, the grid resistance R, and the circuit capacitance C, in parallel at
the oscillating frequency. Upon substitution of these in (12.21)

1 _ [RyRy — X1s(Xeo + Xo)] + j(XiRey + RX) _
uB pX1 Xy — juX1Rey

where (12.22)

X32X1+X50+X3

1
Thus — is of the form
up

=P 0

which means that P = 1 and Q = 0.
This results in the following two equations obtained from the real and
imaginary parts of (12.22) both of which must be satisfied for oscillations

to be maintained.
The real part of (12.22) gives

= Xiw + 1) (REU + XEa) + Xy X5

—R 12.23
’ ReXs + Xo) (12.23)
and from the imaginary part is obtained
Xl X3 - ch-Rn
Xo = —F——— 1224
R;D ¢('ﬂ' ( )
Xeo . . . o

where ¢, = (This ratio of reactance to resistance of the crystal circuit

cg

will appear in various equations later.)
Equation (12.24) may be said to define the oscillating frequency and is in
a convenient form to examine the effect of the various circuit variables upon
the frequency. Theimpedances X1, Ry, X and X3 may be thought of as
forming an oscillating loop (See Fig. 12.11). For oxcillations to be main-
tained in such a loop the sum of the reactances must equal zero and the
sum of the resistances must equal zero. But the sum of the resistances
cannot equal zero since R, is the only resistance in the loop and it is posi-
tive. Tt is therefore necessary for the driving voltage uV; to act upon the
circuit and supply the energy dissipated by the resistance R, (and also R,
through which the energy is supplied). This alters the frequency some-
what and it is no longer determined by setting the three reactances equal
to zero as may be seen by equation (12.24). Nevertheless, the right side
of this equation is small and approaches zero when R, approaches zero.
It also becomes very small when the reactance X; becomes small and R,,
is not too great. This is the same condition as found by the differential
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equation method and illustrated in Fig. 12.6 by the G-C curves. As the
plate reactance X, is made small the frequency increases and approaches a
limiting value but does not quite reach it. This limiting value is the fre-
quency at which X, = 0. The dotted G-C curve shows that R., tends to
lower the frequency and determines how close the limiting frequency is
approached. The plate circuit resistance R, (component of Zy), if con-
sidered, would have a similar effect as shown by the experimental curves
12.9. The grid resistance R, (component of Z,) has an opposite effect as
shown in Figure 12.10 because increasing R, is equivalent to decreasing
the effective resistance R,, .

The effect of the various constants of the crystal and circuit upon the
oscillating frequency may be obtained from (12.24) upon substitution of
these constants for the reactances and resistance R,,. The equation is put
in a more convenient form for this purpose by Koga."” Equation (12.21)
is written,

7
Zs(l + Rp/Z: +

1
e

1
Tz,

R, ) =0 229
Zy + Z,

It is assumed that the current in the grid branch is small compared to the
plate current. This reduces the equation to
1 K

1 :
v T 0+ ryz) = ° (12.26)

The admittance expression for the crystal is

1 1
1 Rl‘f[“LI T el (G +c4)] Ci \' . GGy
Z, Rﬂ+[mL R 1 ]2 (co+c4) T, ¥ G
! Y wC T w(C + C)
(12.27)

Note that Koga considers the air gap capacitance Cy as a separate factor
but it may be included in the other constants of the crystal in which case
the equivalent circuit is as shown in Fig. 12.3. With the crystal con-
nected between grid and cathode the various circuit admittances are:

(R S

" july TG
T 11

Z=Z+R—g+mc"
1

o = juCs

£F ]
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After substitution of these values of the admittances in (12.26) and setting
the real and imaginary parts equal to zero, the following two equations are
obtained:

yidl ( Cy 2+i
1 1 :r Co + Gy R,

2 —_ _— —
R+ [le wCi w(Co + Ca)
1 12.28
Rp (ﬁ - wCQ) ( )
wlo -0

o f 1 *
1+ R, ((:L‘n - wCz)

— paCs

and

1 1
ol T T wG+C) (Gt Gy
1 1 ]2 Cy

Ry + [“’Ll T Wl w(Co + G

{q+‘“‘+a+ KCa

, f 1 2
C[) + C'l 1 + R-;, (‘.‘_‘E - OJC2)}
2

Equation (12.28) gives the conditions necessary for oscillations and (12.29)
gives the oscillating frequency as explained below:

(12.29)

12.22 FREQUENCY OF OSCILLATIONS FOR G-C CONNECTION OF CRYSTAL

Equation (12.29) for frequency is simplified by the fact that over the
narrow frequency range considered, the reactances of L: and C» do not
change appreciably. Also at the oscillating frequency,

1 1 *
2 —_——— e ———
Rl < I:le wC1 w(Co + Cq):l

With these approximations (12.29) may be written

m2 = _L + ,_1_ 1 — _—1_.__
LiC, LG Co+C: , G (12.30)
-0 + =0
C¢ C4
where
uC
Co=Co+ G+ :

1 2
1+ K&, (;;—L; - woCz)

and wp is a constant approximating the oscillating frequency.
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Since the frequency is a function of the internal plate resistance of the
tube (R,) and this is in turn a function of the other circuit variables, the
frequency equation (12.30) is not sufficient to calculate the frequency.
However, qualitative effects of the various circuit components upon fre-
quency are obtained by assuming R, an independent variable. It is readily
seen that an increase in R, increases the frequency. The effect of the air
gap between crystal and electrodes, which is represented by the capacitance
Cy, and the effect of the capacitance across the crystal C, are illustrated in
Fig. (12.13).* To determine the frequency change caused by tuning of
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Fig. 12.13—Experimental curves, showing the effect of crystal air gap and grid
capacitance on the frequency of oscillations

the plate circuit (variations of C,) requires the calculation of the change of
the variable part of C,. This quantity is

1Cs

1 p
2 - a2

1 + Rp (wuLa wgC_)

The plot of C, is shown in Fig. (12.14A). The frequency decrease is pro-

portional to the increase in C,. This is indicated in Fig. (12.14B). Oscil-

G = (12.31)

1
lations stop before the point wyCs = oL is reached. The frequency thus
L2

varies in the same manner as shown in Fig. (12.6) but the curve is reversed
because of the fact that the independent variable is taken as C, instead of
the frequency function of C,.

The frequency change resulting from variations in the grid-plate capaci-
tance C3 depends also upon the value of C, as seen from (12.31). Itis also

* See also: “The Piezoelectric Resonator and the Effect of Electrode Spacing upon Fre-
quency,” Walter G. Cady, Physics, Vol. 7, July 1936.
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seen that the smaller the value of C: (lower the plate reactance) the less
effect will the tube constants u , R, and C; have upon the frequency. The
circuit is therefore more stable. For this reason it has become customary
to measure the frequency of crystals with the capacitance Cs reduced to a
value below that which gives maximum amplitude of oscillations.

12.23 AMPLITUDE OF OSCILLATIONS FOR G-C ConNECTION OF CRYSTAL

A measure of the amplitude of oscillations is obtained from (12.28)
which expresses the necessary conditions for oscillations to be maintained.
In order for oscillations to start the expression must be negative, and, as
the amplitude builds up, R, increases which reduces the negative terms

Cv

——

Ca—
A B
Fig. 12.14—The variation of grid to cathode capacitance (A) and oscillator frequency
(B) with change in plate circuit capacitance. Crystal connected grid to cathode

until the equality is satisfied. The difference between the positive and
negative terms is therefore a measure of the 1mp11tude of oscillations,
Equation (12.28) may be written

1
v —[cpo + ITJ =4 (12.32)

where A is a measure of the amplitude,

1
Rp (LE_; - o Cg)

¥ = pCswn : 2 (12.33)
14+ R;)(OE - wan)
and

C 2

5, = Roi(2 FONEE v v+ e

Cs Co + Cy 2 f 1 2
1 + Rp - WOC2
wuLz

(12.34)
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where again R} is assumed small compared to
I 1 1 ]’
ST @l w(C+ G
and wy is considered a constant.

Equation (12.32) shows that in order to obtain a large amplitude ¥
should be large and @, should be small. With this in mind equations (12.33)

FHWeC

¢°+R|_g\

\

FUNCTION ——=

-WwpCs =0

Wolz

Cp —=

Fig. 12.15—Functions from which the activity variations (A) are determined as the
plate circuit capacitance is varied. Crystal connected grid to cathode

and (12.34) may be analyzed to determine the relation between the circuit
components and amplitude. It is found that for maximum amplitude

Cy and Ry should be small,
C,y should be large,
C; has an optimum value, and
R, should be large.
1

1
As to the plate circuit, the amplitude is maximum when — = — —
.R_p WQLQ

1
wiC2. A plot of ¢ and &, 4 I is shown in Fig. 12.15. The difference

g
between these two curves is a measure of the amplitude and is shown by

1
curve A. Oscillations can exist only where ¢ lies over &, + %, Thesharp-
a

ness of Y varies considerably with the value of R, and the resistance of the
Ly — Cycircuit. The latter is disregarded for simplicity. Here again the
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results can only be considered a first approximation, but agree with actual
conditions sufficiently to be of considerable interest.

12.24 CrystAL GRID TO PLATE

The equation (12.20) is general and for the condition of crystal connected
between grid and plate of the tube (See Figure 12.12B) Z; represents the
crystal impedance which will be called Z, = R, + X, , also: Zy = jXi,
Zg=jX2aﬂdX. = X1+ Xg-f- Xc.

Note that R, and Cj are disregarded in this case because their effects are
similar to those determined for the foregoing case of crystal connected grid
to cathode.

After substitution of these values in (12.20) the real part is found to be

_ XX+ XX,

R, R (12.35)
and the imaginary part is
x, = XX (12.36)
Ry

which shows the effect of the various variables on the frequency. The right
hand side of equation (12.36) is comparatively small and the frequency is
therefore close to a value fo which makes X, = 0. In this case the frequency
is above the limiting frequency fy because the right hand side is positive
since X is negative, whereas it was found that the frequency was below fo
for the crystal connected between grid and cathode. As R, and X, are
increased the frequency will increase and as R, increases the frequency
decreases. These interpretations are verified by the G-P curves of Figures

12.6, 12.9 and 12.10.
The effects of the various circuit and crystal constants are determined

by Koga™ by writing the general u8 equation as

A _
14 R,/Z, ~

After substitution for the Z’s, the real and imaginary parts are respectively,
1 d R1 113
— + =
(wCo) B4 [ 1 1 ]2 wC,

f.IJL] - C -
‘R WC
P [ 2

wl 1 wCu
. 5 1 5
1+ R, (@ — wCz)

Zy+ Z, + 0 (12.37)

(12.38)




PIEZOELECTRIC CRYSTALS IN OSCILLATOR CIRCUITS 183

and
RN S
wCi * wCy
R2+|:L > i]z
P T wG T WG (12.39)
el G ¢, T 1 2
0 4 '] 01+R§J wL NCE)
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Fig. 12.16—Frequency and activity change for variations in the plate circuit
capacitance. Crystal connected grid to plate

There are two values of w which satisfy (12.39) but only one of these w,
will satisfy (12.38). At this value of w.,

1 1P
2 -
R & [le o Co:l (12.40)

By introduction of this and the assumption that wy is essentially constant,
(12.38) may be written

1 2
R]Cg + + + C . 1 2
g —
1+ R (wuLz (:Jucz)
1 (12.41)
A SR

+

2 =10

wy C 1
. ! 1 + Ri(mu—Lg - woCz)
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This is an approximation for the conditions for oscillation and relative
amplitude.
The frequency equation (12.39) becomes

w=rlata ¢ (12.
where’ .
RS IS S S S ) 1
G=ClotaTe T

1
1+ an(‘m—l.2 - quz)2
and wp is a fixed value written in place of w, . Figure 12.16 shows the fre-

quency and amplitude changes as a function of C; for the crystal connected
between grid and plate.

Rp
~AA ‘T
HVg FILTER % Vg

Fig. 12.17—Generalized oscillator circuit in the form of a filter network

12.25 ConpITION g8 = 1 For CIRCUITS IN GENERAL

It is convenient to apply the rule y3 = 1 as the condition for sustained
oscillations to more complex oscillator circuits. The circuits may be drawn
as shown in Figure 12.17 and the characteristics of the filter network between
transmitting and receiving end may be analyzed by conventional filter
theory to determine the conditions which fulfill the oscillation requirements.
An example of this is the oscillator shown in Figure 12.18A. The equiva-
lent configuration, Figure 12.18B, indicates that the crystal is part of a low
pass filter and the frequency of operation is that at which the total phase
shift is 180°.

Oscillators involving more than one tube may also be inspected in this
manner. Figure 12.19 is a two tube oscillator designed to operate at a
frequency close to the resonant frequency of the crystal. The proper phase
shift is obtained by a two-stage amplifier and, therefore, no phase shift is
required through the crystal network. The crystal thus must operate as a
resistance which it can only do at its resonant or antiresonant frequency.
Since the transmission through the crystal branch is very low at the anti-
resonant frequency of the crystal, it will oscillate only at the resonant
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frequency. Heegner" explains a number of crystal oscillator circuits by
the method briefly outlined above.

Lo

Rp

HVg

I
I
|
I
. i 1 4
TCp Tcz T8 3R
1
I
1
I
I
1

A B
Fig. 12.18—The oscillator circuit (A) is equivalent to the filter circuit (B)

[

Fig. 12.19—Oscillator circuit in which the crystal operates at its series
resonant frequency

12.30 VEcTorR METHOD OF OSCILLATOR ANALYSIS

A convenient method of examining the effect of certain circuit variables
on frequency and the necessary conditions for oscillation is by the vector
representation of the voltages and currents in the circuit. Much of Heis-
ing’s" early work on the analysis of electric oscﬂlators by vector methods is
directly applicable to crystal oscillators. Boella analyzed the crystal
oscillator circuit by this method and treated in detail the eﬁect of the
decrement of the crystal on the oscillating frequency. Since some engmeers
prefer this method of qualitative analysis to approximate equations it will
be briefly explained.

The vector diagrams for the two conditions, crystal between grid and
plate and between grid and cathode, are shown in Figure 12.20A and B as
applied to the circuit diagrams, Figure 12.12A and B, respectively when in
the simplified form of Figure 12.11. The necessary conditions for oscilla-
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tions are that ¥, is in phase with and equal to pV, (note that p is considered
negative). Like Koga, Boella assumes the current I, small compared to I,
hence the voltage drop across Z; is approximately ZiI;. The angle this
makes with V, is determined by the value of Z; and the internal plate
impedance R,. Any change in either of these requires a change in the
angles ¥ and ¢/ in order that V, shall be in phase with u¥,. This means
that the frequency must vary to produce this change iny andy’. Because
of the rapid change in the reactance and resistance of the crystal with
frequency, these requirements are met with very little change in frequency,
which accounts for the high degree of frequency stability obtained with
crystals. This is described more in detail in a later section.

G-C G-P
z,1, Iz

=214

[ALS

A B

Fig. 12.20—Vector diagrams of currents and voltages in the oscillator circuit Figure
12.11 with crystal connected grid to cathode (A) and grid to plate (B)

12.31 CHANGE IN FREQUENCY WITH DECREMENT OF CRYSTAL

It has been found that for the crystal connected from grid to cathode
there is a maximum theoretical frequency at which the circuit can be made
to oscillate by reducing the plate circuit impedance. This also corresponds
to the minimum frequency which can be obtained with the crystal connected
between grid and plate. This was called the limiting frequency fo. It is
interesting to note that f; is determined by the intersection of the reactance
curve of the crystal plotted as a function of frequency and the reactance
curve of the capacitance in series with the crystal. This series capacitance
is the grid-plate capacitance for one case and the grid-cathode capacitance
for the other. As illustrated in the curves Figure 12.21, the limiting fre-
quency fo increases as the decrement of the crystal increases.

The difference between the true frequency of oscillations and f; increases
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as the plate impedance is increased and as the losses in any of the circuit
elements increase. This is necessary for the proper angle of ¢ + ¢ in the
vector diagram. With the G-P connections, the departure from f, and
change in f; as the decrement of the quartz varies are in the same direction,
while for the grid-cathode connection they vary in opposite directions,
and the net result will depend upon the value of the internal plate resistance
and plate circuit impedance. The curves of Figure 12.21 show that the

0.4
x 104

0~ 0.6
[¢]
0.7
A
wCsa _—08

f —

Tig. 12.21—The change in reactance characteristic of a crystal resulting from a change
in decrement

change in f, for a given change in decrement is less for smaller values of
1
oC. (larger values of series capacitance Cg). That is, the effect of the de-
3

crement of the crystal upon the oscillating frequency is small when the crys-
tal is operated near its frequency of resonance.

12.40 NEGATIVE RESISTANCE METHOD OF ANALYSIS

The methods of analyzing oscillator circuits described in the previous
sections define the operation in terms of the individual circuit elements and
the crystal is treated as one of the circuit elements. Certain advantages
result, however, by grouping all the circuit elements, except the crystal,
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into a single impedance as shown in Fig. 12.22A. Here Z, represents the
impedance looking into the oscillator from the crystal terminals.

The requirements for sustained oscillations are that the sum of the
reactances around the loop equal zero and the sum of the resistances equal
zero as previously stated in section 12.21. These conditions are obtained
when Z, is a negative resistance p in parallel with (or in series with) a
capacitance C; as shown in Fig. 12.22C. The crystal is considered to be
operating as an inductance L, and resistance R, as determined in the pre-

O ~0— 0= -0~

Ly

| be
= Zt§ = <R =—=Cp P% ct:]: = p§ e

<

c Re
Lo o0 L—-o_—c -0

A B Cc
Fig. 12.22—Equivalent representations of crystal and oscillator circuit

vious sections. The frequency equation has hbeen derived by Reich™
from the differential equation for the current in the loop. It is

_ p+ R 1
" 1/ ——"IE. (12.43)
and the condition for oscillation is shown to be
L.
|Cep| = z (12.44)

We shall consider the crystal connected between the grid and cathode of
the tube, in which case Z, is the input impedance of the vacuum tube.

1
The expression for 7, was developed by Chaffee'” from which it is possible
t

to determine the circuit conditions necessary for the input resistance and
reactance to be negative. The effect of the circuit variables upon the abso-
lute values of p and C,; determines their effect upon the frequency and activity
according to equations (12.43) and (12.44).

12.41 InpUT ADMITTANCE OF THE VacuuM TUBE
With the assumption that the grid current is negligible and the static
tube capacitances C, and C, are part of the external circuit, Chaffee’s
equation for input conductance becomes

_ Ciw(K + Gy) + CswuK(Csw — By)

(K 4+ G)? + (Cyw — By)? (12.45)
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and for the input susceptance

CsouK(K + Gi) — Ciuw'’ (C30 — By
(K + G1)* + (Csw — By)?

where K and g are defined as follows:

b= —Cio — (12.46)

K = (%) (e, constant)
de,
a .
p o= ( 62:) (i, constant)

and G, and B, are the conductance and susceptance of the plate circuit.
If we let

Gy
k= —
| B
_ wCy _ B
A = ? and B I(

(12.45) becomes

(14—b8)+-#( +-q)
g*del— ‘

Fax (12.47)
(1 + hB)* + 1( — 71)

and (12.46) becomes

b= —Caw |1 +

9 B
s (1 N ‘iﬂ (12.48)
3 )

(1 + hB)* + Ai(l - A)J

When the resistance of the plate circuit is neglected (i.e. 2 = 0),and p>> 1
we may write

g _ wd — B)
k=414 @— By (12.49)
and
b e B(4 — B)
K~ {1+M—BJ (12:50)

These equations are in a convenient form to determine the effect of the
plate tuning f(B) and grid-plate capacitance f(4) upon the resistance p
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and capacitance C, with the assumptions of no grid current, low plate
circuit resistance, and p > 1,

From (12.49) it is seen that in order for g to be negative, B must be positive
and greater than A4, since A is normally positive. That is, the plate circuit
reactance must be positive and less than the grid-plate reactance when the
latter is a capacitance. Under these conditions /K and hence the input
reactance will be negative according to (12.50).

Curves of 8/K are shown in Fig. 12.23 with B as independent variable
and A as parameter. These curves indicate frequency change. On the

A=5 10
=20
¢g ':: 0
! 20
Iy / a0
1 : : ! £

\\ 5 B

“ I 0

|

|

20

[

Fig. 12.23—Variations in the input impedance functions of an oscillator circuit for
changes in plate circuit tuning

same figure is plotted b/g called ¢, . This may be considered the sensitivity
of the oscillator or, for a given value of wL./R. of the crystal, it represents
the activity. The similarity between these curves and the actual change in
frequency and activity normally experienced is apparent.

It should be pointed out here that the presence of harmonics is effective
in changing the input impedance of the vacuum tube and hence the fre-
quency and activity of the oscillator. The presence of harmonics results
from the non-linear characteristics of the vacuum tube. Llewellyn™
explains that a non-linear resistance may be represented by a linear re-
sistance plus a linear reactance. From what has been said concerning the
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frequency of the oscillating loop, it is apparent that this effective reactance
will alter the frequency. However, this reactance is small when the im-
pedance of the circuit is low at the harmonic frequencies and is zero when
the external circuit is a pure resistance,

12.50 EFFICIENCY AND POWER OUTPUT OF OSCILLATORS

In many applications of crystal oscillators the efficiency and power output
are important factors. These are not treated here but reference is made to
the work of Heising™ which covers this aspect for various electric oscillator
circuits. Much of the analysis is directly applicable to crystal oscillators.

12.60 FREQUENCY STABILITY OF CRYSTAL OSCILLATORS

The equations for frequency show that the frequency is governed some-
what by the amplification factor, the grid resistance and internal plate
resistance of the vacuum tube. Since these factors are functions of voltages
applied to the tube and amplitude of oscillation, they cannot be considered
fixed. If the frequency change resulting from these variables is great, the
frequency stability is said to be low, and if very little frequency change
takes place the frequency is determined principally by the circuit constants
and the frequency stability is said to be high.

Llewellyn" shows how it is possible to compensate for the change in plate
resistance by the proper value of circuit elements. This was done by deter-
mining the relations necessary for R, to be eliminated from the frequency
equation, It is sometimes helpful in designing very stable oscillators for
frequency standards to select circuit elements which will reduce the effect
of plate voltage changes on the frequency. It is more the purpose of this
section, however, to show Llewellyn’s derivation of the equations for fre-
quency stability which have not heretofore been published and from them
point out the characteristic of crystals which enable them to stabilize
oscillators.

12.61 THE FREQUENCY STABILITY EQUATION

The steady state oscillating condition is
w=1 (12.51)

In general 8 is a function of the frequency, the amplitude of oscillations,
and of some independent variable V. This independent variable is the one
for which it is desired to stabilize the frequency. It may be the potential
applied to the tube, or it may be a capacitance located somewhere in the
circuit. 3 depends upon these three variables thus:

ud=f(p,a,V) (12.52)
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Instead of the frequency, a more general symbol p is used and may be
thought of as the differential operator d/d¢ which occurs in the fundamental
linear differential equations taken as describing the oscillatory system.
That is

d

p =g =atis (12.53)
The function uB may have the form ‘
B = Ae” (12.54)

The result of taking a general variation & of (12.54) is then
%4 + i =0 (12.55)

Since (12.54) is a function of the three variables p, ¢, and V' the variational
equation (12.55) may be expressed in terms of partial derivatives with
respect to these three variables. That is

1
[pap-|-_a -1—_51/} [ ap+ +6V5V:|

(12.56)
The solution of (12.56) for the variation in p is
ll(gf,al +ﬂ 3)+f(§5, V+gq5a)
5p = @ (12.57)
104 + i 99 )
dAap Tt ap

It is a property of functions of complex variables that, provided they
possess derivatives at all, then the value of the derivative is the same regard-
less of the direction in which the limiting point is approached. This fact is
expressed by

oA _ o4 _ . aA'|

@ " aa |
90 a0 % (12.58)
1'9? T da é’w

and 8p = da + dw

and provides means by which the real and imaginary parts of (12.57) may
be separated to yield the two equations

(408 (v + ) 232+ 1 84)
do = LT IONTY - 1 (12.59)

(5) + ()

& l




PIEZOELECTRIC CRYSTALS IN OSCILLATOR CIRCUITS 193

a4 (1 a4 104 ) aa( )]
— oV + 4 5 da + 5V +
[A AavV 9a dw \aV da (12.60)

b = 1 04 a8
(zaﬂ'+(a)

The variable p in general may be written as the sum of « and iw. With
the remembrance that p is the differential operator d/dt and that a set of
linear equations expresses the transient condition, it is evident that the
current will have the form 7e”* which is equivalent to I et Inspection
of this shows that the real part of p, namely «, determines whether the cur-
rents in the system are going to build up with time, or die away with time,
or remain constant, depending respectively upon whether a is greater than
zero, is less than zero, or is actually equal to zero. With this in mind we
see that (12.59) and (12.60) state the change in & and w respectively which
would result from some change in the circuit condition. Initially the
circuit was oscillating in a steady manner so that « was zero and  had some
particular value. A change in V then occurred. This produced a change in
the amplitude accompanied by a change in the frequency as expressed by
(12.60) and a change in the transient terma. Suppose now that the change
in V were very small. Then in order for oscillations again to assume a
steady value it is necessary for the amplitude “a” to change a sufficient
amount to cause « to become zero. Thus in (12.59) we put e equal to
zero and solve for the required amplitude change. This may then be elimi-
nated from (12.60) resulting in the final expression

Lod0 104 %
A aV ada A da aV 5V (12.61)
19496 134 96

49w da A da o

and

which gives the frequency change 6w in terms of the change of the inde-
pendent variable 67,
12.62 FREQUENCY STABILITY OF CONVENTIONAL OSCILLATOR

In applying this equation to the oscillator circuit, Fig. 12.24, we must
first set up the conditions for oscillations. The pB equation is

_ ,U.Xl XgR
M = X, RyR, — X1 XoXs] — (R, Xa(Xy + X3) + R, Xu(Xe + X3)]
(12.62)

The oscillating conditions u3 = 1 requires
X,Rp.Rg bl X1X2X3
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and

pX1XoR, + RJJX2(X1 + Xa) + RgX1(X2 + X3) =0 (12-63)
It will be assumed that the following relations exist:

w=fi(V),R; = fa(a), X; = X1 + X2+ X5 = f3s(w), R, = a constant

A

X3

npé
()

2 2. En

Fig. 12.24—Equivalent oscillator circuit analyzed for frequency stability

Then we obtain from (12.63)

Lod 1o  _,
AoV uoV av
tod LGk [ Kb X)) 010k Xk,
A4 da R, da nXe da R, da pX X,
1od _ 10Xa[, 4 ReXa + Ry(Xs + Xy)
4 dw X, dw pRy X
1 0X, R,(X> 4+ X;) + R Xl]
— 11 i 7
+ X2 dw [ + uR, X, (12.64)
10X, [Xsue,,,x2 + R, Xl):l
X:; Bw pLRpX1X2
a6 R, 1 90X, 10X,
@w_ _ — X,)— , — X)) - o4
Ow uX1Xe [(XI )X1 dw + (X Xo) Xy dw

1 0X;
+ (X:{ Xa }—3 E]
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By substitution of these values in (12.61) and disregard of X, in comparison
with all other X’s the equation for frequency stability is obtained as

1 dp

- — X1 XX,
%‘? B X #a;V aX: . oX, (12.65)
_ X\ (X, 90Xy | 09X,
(1 ,qu)(aw * dw + Bw)RpR"

From this we learn that the values of the reactances X;, X, and X;
should be small and the values of R, and R, large to give small changes in
w when V' is varied. These variables are more or less limited, however, by
the conditions necessary for sustained oscillations according to equation
(12.63). TItisimportant to notice that the denominator of (12.65) contains
functions which do not appear in equation (12.63) and hence may be of any
value. These factors are the rates of change of the various reactances with
frequency. For given values of circuit constants, the equation shows that
the frequency stability increases as these rates of change increase.

12.63 FrEQUENCY STABILITY COEFFICIENT OF CRYSTALS

The rate of change of the reactance of an element is referred to as the
“frequency stability coefficient”* of the element. Expressed in per cent,
we have for the frequency stability coefficient of a reactance

dX w
F(X) = o X (12.66)
Let us now examine the frequency stability coefficient of a crystal which
is used as the reactance X'y when connected between grid and cathode of the
tube and as X3 when connected between grid and plate (See Fig. 12.24).
The resistance of the crystal will be assumed to equal zero due to the negli-
gible effect of the resistance variations upon the reactance for crystals with
average () and operated at a frequency not too near the anti-resonant
frequency. (This may be observed in Fig. 12.21.)

The reactance of the crystal then is

. 2 2
J w —uw
X = — Y .
) wCo w2 - wg (12 67)

where

w = 2r X frequency
w1 = 27 X resonant frequency
wy = 2w X anti-resonant frequency

* First suggested by N. E. Sowers.
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By substitution of the relations

into (12.67) we obtained

2
X, = Xo [1 G @ ] (12.68)

2
Cﬂwg - w

and by differentiation
dX,=ﬁ&[ G wi_ﬂ] X0C||: w,zm_] (12.69)

dw w Comg-—w (wz-—w)

Multiply by — to obtain the stability coefficient

X,
wdX, X[, G o
FX) = X. dw Ycl:l Co wi — w2]

12.70
_ Xu C1 w2 2w1 ( )

¢ Co i (wh — o)

and eliminate w by substituting in (12.70) the relations obtained from
equation (12.68). These are

i (1-X)a
ws — W Xo/ C1
d
an ) (12.71)
w C: C 1
L T
P 0 + Co 1 — X,
Xo |
Thus
Ca 1 T
X X\ 1 R
Fx) = —1—2% (1 - 2 T & x. | 2.2
Xc Xl] 1 - f
0_

which may be written

F(X.) = —% [1 +( X") + 2— ( ;:) | (12.73)

The stability coefficient of a coil and condenser #(X)' may be obtained
from (12.73) by letting C; = . Then

F(X) = —% [1 + (1 - %’):I (12.74)
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The comparative stability of the crystal and tuned circuit is given by the

ratio
(-%)
F(X.) Co X
SA\Ae) gt fel 12.75
F )’ +C‘1+(1—£') (279
X,
10,000
1000
:9'.‘.-.
Z|1Z 100
| L
10
11 1.0 l(;O 10100 10_,0100
Co
<

Fig. 12.25—The stability coefficient of a crystal as compared to a coil and condenser
for variations of the ratio of capacitances

This ratio is plotted in Fig. 12.25 for ? = —1 and with g—" the independent
c 1

Co
G
determines its frequency stability for given operating conditions. For an
AT crystal in an air gap holder, the ratio of capacitances is of the order of
10° and its stability coefficient is therefore 2.6 X 10° greater than for a simple
anti-resonant circuit. Since this is so much greater than the stability
coefficients for the other reactances which appear in the denominator of
equation (12.65) it represents the order of magnitude of improvement of the
frequency stability of an oscillator obtained by the use of a crystal.

function. Itisapparent that the value of —- of a crystal is the factor which
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The fact that the frequency stability of a crystal oscillator is a function

of % explains why a BT cut crystal is in general more stable than an AT
1
cut. The two may be made equal, however, by adding capacitance across

the AT cut crystal.

Actually we have compared the frequency stability obtained by the use
of one type of circuit (the equivalent crystal circuit) with one of a different
configuration obtained by making C; = . In practice this is usually the
case since C; must be large to obtain oscillations when using coils and con-

densers. The limiting factor is therefore the value of %] at which oscilla-
1

tions stop and this is determined by the Q of the circuit elements as shown
in the next section which deals with activity. It will be shown that the Q

s . C .
required is proportional to (70 and therefore the maximum frequency sta-
1

bility that can be obtained is directly related to Q.

12.70 RELATION BETWEEN CRYSTAL QUALITY AND AMPLITUDE OF
OSCILLATIONS

The activity of a crystal is usually thought of as the relative amount of
grid current produced in an oscillator circuit. This method of defining
activity affords a means of comparing the quality of one crystal with another
for a particular set of conditions. The disadvantages are first; it is only a
relative measure, and second; it is not possible to compute the activity as
thus defined by any method of oscillator analysis so far presented. Curves
have been shown of amplitude of oscillations as a function of certain circuit
variables, but these represent only qualitative changes associated with
plate resistance variations. The first objection has been somewhat recti-
fied by the use of reference oscillators* in which all the circuit elements
including the tubes have been carefully matched. There is still the diffi-
culty, however, of comparing crystals of different frequencies for it cannot
be assumed that the measurements are independent of this variable. It
would be more desirable to have some absolute measure of activity and
particularly one which would lend itself to convenient computation from
readily measurable constants of the crystal.

12.71 DEerFINITION OF CRYSTAL QUALITY FOR OSCILLATOR PURPOSES

In deriving an expression for the quality of a crystal, it is convenient to
use the negative resistance concept of the oscillator as described in section
12.40. The equations are general and in a form which admit of separating

* Developed by G. M. Thurston.
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the crystal from the oscillator circuit. Equation (12.44) which gives the
conditions necessary for oscillations to exist, may be written in the form

wl,

-G

(L)Cgp =

(12.76)

In order for oscillations to start, the right side of this equation must be
equal to or greater than the left side. 1If it is greater, oscillations build up
causing p to increase until the equality is satisfied. The difference between
these two terms before oscillations start is therefore a relative measure of
the final amplitude for a particular oscillator. The absolute value of am-
plitude cannot be obtained from equation (12.76) since we do not know the
relation between p and amplitude. However the greater the magnitude of

wle the greater will be the amplitude of oscillations for a given set of oscil-

c

lator conditions. This term may therefore be considered a measure of
crystal quality. Tt is the effective Q of the crystal unit as measured at its
two terminals and at the operating frequency. To distinguish this from
the Q of the crystal as usually spoken of, it will be called ¢. .

In the same respect the left side of equation (12.76) may be thought of asa

measure of quality of the oscillator circuit, that is, pwC; = ;, then (12.76)
. 0

becomes
pope = 1 (12.77)

12.72 FIGURE OF MERIT OF CRYSTALS — M

It is very inconvenient to use ¢, as a figure of merit of the crystal because
it is a complex function of the constants of the crystal circuits, Figure 12.3,
and also the-frequency. The computation of ¢, from such measurable
characteristics as frequency of resonance f,, frequency of anti-resonance
f2, resonant resistance R,, and static capacity Cy, requires considerable
time and effort. ‘

Tt is highly desirable that a simple, easily determined expression for a
figure of merit be found. The steps to indicate a suitable one are as follows:

The equation for ¢, in terms of measurable quantities for computing it is
derived from equation (12.27) and given by the formula

Lol (@ — e’ — o)

-1

wl. R'}’ w?
R ¢ 12.78
TR @by = o1 e
R1 w?
By letting
M o= Clie — o (12.79)
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and
wz — w?
" =33 (12.80)
Wy — Wi

and with the assumption that over the narrow frequency range that the

crystal will operate

2 2 2 2 .
wy — w1 ~ Wz — w1 (12 81)
w, T ww :

equation (12.78) is reduced to
_ 14 n -1
e M
In this equation it will be observed are only two variables, namely, »
which varies widely as the frequency is varied between f and f2 and M
which is substantially constant over the same range.

A set of curves is plotted in Fig. 12.26 for a hypothetical set of crystals
having values of M of 1, 2, 5, and 10 with » varied over a range that falls
between measured frequencies f; and f». Studies will show that whenever
M increases ¢, will increase. M is readily calculated from measured
constants as seen from the following: From (12.79)

(12.82)

oo eliod — ol _ oliw = ol (12.83)

R] w2 Rl wiw

With the assumption in (12.81)

R G w1 CD-RI (12'84)
which is a simple expression containing three of the four measured quanti-
ties mentioned above, and which bears a direct relation to activity for a
given value of the frequency variable n. M is the new figure of merit of
the crystal.

Figure 12.26 contains a further indication which is useful on occasions.
Here ¢, is not positive at any frequency unless M is greater than 2. Bute.
must be positive for the crystal to oscillate in the two general types of cir-
cuits considered here.* It provides a measurable index to separate com-
pletely non-useful crystals from those that can oscillate in a given circuit.

Equation (12.84) may be written

M:

= QO

(12.85)

* For a description of oscillator circuits which do not require the crystal to exhibit a

ositive reactance see: “A New Direct Crystal-Controlled Oscillator for Ultra-Short-

lV)Vave Frequencies” by W. P. Mason and L. E. Fair, Proc. I.R.E., Vol. 30, p. 464, Oct.
1943.
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where Q is the Q of the crystal and r its ratio of capacitances. Thus the
figure of merit involves the dissipation in the crystal determined by Q
and the piezo-electric effect determined by r.

It was pointed out in the preceding section that the frequency stability
increases as r is increased. The above equation shows that Q must increase

M=10

oc
1 ] 0
2 \\
d 1 N
w? 3

Fig. 12.26—The dependence of the quality function ¢. of a crystal upon frequency
and figure of merit M

proportionately if the same figure of merit is to be maintained. The fre-
quency stability obtainable in a particular oscillator is therefore limited
by the @ of the crystal and the frequency stability coefficients should be
compared on this basis.

12.80 ActIvity oF CRYSTALS

In deriving a figure of merit for crystals as oscillators, it was found that
the amplitude of oscillations in a given circuit not only depends upon M
but also it is a function of frequency relative to the resonant frequency
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of the crystal. This may be explained by referring to Fig. 12.27 which
shows curves of the reactance X, of the crystal plotted as a function of fre-
quency. The frequency at which oscillations occur depends principally
upon the value of circuit capacitance C,. Equation (12.43) shows that
the frequency must adjust itself to a value at which C; resonates with
the reactance of the crystal. This value of reactance is represented on the
curve as X, and the corresponding frequency of oscillations as f,. The

Xc
Xc bc
¢F°
$co
bc
o
2

Fig. 12.27—Two crystals having the same figure of merit but with different reactance
characteristics X; and X/ will operate with different amplitudes according to the
relative values of ¢, and ¢; respectively

circuit capacitance (or X) has been so chosen in the illustration that f,
lies equidistant between the resonant frequency fi and the anti-resonant
frequency f». Then at this value of f,, ¢ is a maximum, as shown by the
. curve, and for a given value of ¢, this will result in the greatest activity.
Now let the capacitance Cy of the crystal be increased. The frequencies f
and f» will then become closer and at the same time the height of the ¢,
curve is reduced. Assume also that the () is increased in order to maintain
the same value of M and hence the same maximum value for ¢.. The
reactance-frequency curve for the modified crystal and the corresponding
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curve for :p: are represented by the dotted curves. Note that the osc1lIa.t1ng
frequency f, for the new curve is closer to f than it is for f, , therefore gu, is
less than ¢, and the amplitude of oscillations will be less. Thus two
crystals may have the same value of M but will not give the same output
unless operated at the same relative frequency with respect to their resonant
and anti-resonant frequencies. It would not have been possible to increase
the oscillator output by increasing C, so as to lower the frequency f, because
by doing so ¢, is decreased more rapidly than ¢, is increased, and the result
would be a further decrease of activity. Itis therefore necessary in deriving
an expression for activity to include the variable of relative frequency or n
which we have shown to be a function of the reactance of the circuit and
the crystal constants.

12.81 D=ERIVATION OF PERFORMANCE INDEX OF CrYSTALS—PI

It will be assumed in the first derivation that the negative resistance p of
the circuit is much greater than the effective resistance of the crystal R,
under stable oscillating conditions. Equation (12.43) which expresses the

frequency then becomes
~J 1
W = 1/ LBC‘ (12.86)

This leads to a very simple solution from which a more exact expression is
later obtained.

Equation (12.44), which expresses conditions necessary for oscillations,
may be written

wl,
wC; Rc

As before, the numerical difference between p and the right side of the
equation is a measure of activity. In fact, the right side of the equation
may be considered to be an expression of the activity performance provided
the terms are themselves independent of p. This is not quite true, since
previous sections show that the capacitance C, is not entirely independent of
the activity. (See equations (12.30) and (12.46).) However, this effect
may be considered negligible for most practical purposes and the value of
the right side of (12.87) called the Performance Index (PI) of the
crystal. From equations (12.86) and (12.87) the performance index is found
to be

(12.87)

lp| =

PI = 1 12.88
T R.W'Ch (12.88)

This equation may be greatly in error under operating condition which makes
R, large compared to p. Also R, varies rapidly with frequency and is
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difficult to evaluate. R, is most readily eliminated from the equation by
revising the picture slightly. With reference to the simplified oscillator
circuit, Fig. 12.22B, it is apparent that the static crystal capacitance Co and
the circuit capacitance C; may be combined. This leaves for the crystal
branch the inductance L, (different from L) which is a function of frequency
and the resonant resistance of the crystal R; which is not a function of
frequency. Now R;may be assumed small compared to p with considerable
accuracy. It is only necessary, then, to replace C: in equation (12.88) with
(Co + C,) and R, by R;. This equation then becomes
N S
T R (Co + 01)2

An exact equation for PI is derived in section 12.83 and it is shown that the
error in the simple expression above will in most cases be very small.

An approximate equation for the relation between R; and R, is obtained
by dividing (12.88) by (12.89). We thus find

_ Ri(Co+ C)?

PI (12.89)

R.C: (12.90)
or the effective resistance of the crystal at the operating frequency is
2
R, =R (-E,—‘O + 1) (12.91)
¢

Because of the approximation in equation (12.88) the equation for R. above
2
is accurate only when (g—o + 1) < M? as will be shown in section 12.83.
]

The expression for PI as given by (12.89) may be written
1

_ 2
PI = s02p (1 N g.) (12.92)
0,

which is the most convenient form for calculating PI from the constants
of the crystal and the oscillator circuit.

12.82 RELATION BETWEEN M AND PI
It was found that

_ 1
T wC R

(12.93)

1 .
and this is essentially equal to oCo R, OVer the narrow frequency range
041

considered. Therefore,

pr=—2—

= 2

wCu(l +Q) (12.94)
Co
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This gives a relation between the performance index and the figure of merit
of the crystal.

Another useful relation between M and PI is obtained from (12.89) and
(12.93). Equation (12.93) may be written

M =3 (12.95)

This is of the same form as the Q of a coil when X, is considered to be the
reactance of the coil and R, its resistance. Like the Q of a coil M is essen-

100,

80

o
o

PERCENT PI
“n
o

20

1
Y]
o
T

CHAINGE TIMES T
IS
o
1

PERCENT FREQUENCY

-60L

Fig. 12.28—The change in PI and oscillating frequency of a crystal as the shunt
capacitance is increased

tially constant over a wide frequency range. Now if we let C; approach
zero in (12.89) it becomes

1 X
Ro'C: R
This equation for PI is of the same form as the anti-resonant impedance of a
coil and condenser in parallel, and like this impedance it changes rapidly

with frequency. The maximum value of P is therefore X, times M and is
obtained when C;, = 0. Figure 12.28 shows a curve of 9, PI plotted as a

PI =

(12.96)

. C . . . .
function of —'. This curve represents the change in activity as capacitance
]

is added across the crystals (increase in C;).
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12.83 Exact ExpressioNs For PI AND R,

The error in PI caused by the assumption that the frequency is independ-
ent of the crystal resistance R, that is, by use of approximate equation
(12.86) for the frequency, may be investigated as follows:

The impedance of the crystal and C in parallel is given by

1
= o(Co + CH(1 + m* P

Z [P — j(1 + mP*m — 1))] (12.97)

where
MCy wi — W
= m=— 2
Co+ Ce w3 — w1

P

wg = 2 times frequency of anti-resonance of the crystal and C; combina-
tion when Ry = 0

w; = 2 times frequency of resonance of the crystal and C; combination
when Rl =0

w = 2 times operating frequency

(Note that P is the figure of merit of the crystal and C, in parallel.) The
imaginary part of Z is

1 4+ mP’m — 1)

T w(Co ¥ CH(L + miP?) (12.98)

X =

The condition for stable oscillations requires X = 0. For this condition

1 1
+ 1/4: - (12.99)

which defines the exact frequency of oscillation. The negative sign before
the radical is used since the effective resistance is greater at this frequency,
thus requiring less negative conductance for oscillation.

With P large (m — 0) the frequency of oscillations coincides with w3
which is the same as given by the approximate frequency equation (12.86).
The real part of (12.97) is

m =

b=

P
= w(Co + C)(1 + m* P

R (12.100)

and whenm = 0
P M

K= w(Co + Co) B mCo(l + 9>2
Co

(12.101)
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This is identical to the expression for PT of equation (12.94). PI is therefore
the anti-resonant resistance of the crystal and capacitance C, in parallel.
Substitution of the value of m as given by (12.99) into (12.100) gives the
anti-resonant resistance at the oscillating frequency. Thus

2 - P (12.102)
* w(Co + Cy) 2
50
o
2=
2
a 40 -
a- <
z T2
F=
e
B 00~
L~ R
u h i
& =
g 20p2 5~
a A
oz
9=
10
00 2‘ 4Iv é é [[o] l.2 |I4 |I8
P'l-l!-‘I?Co

Fig. 12.29—The error in P/ resulting from the use of approximate equation (12.94)

which is the exact expression for PI. The differential error resulting from
the use of approximate equation (12.94) is then

4
PI_RG_I"VI_-FQ

4

1+ 1 — P2
The per cent error as a function of P is shown in Fig. (12.29). The error
diminishes rapidly with increase in P and is negligible for crystals that are of
sufficient quality for most oscillator purposes.

Equation (12.91) for R, is also approximate because of the assumption
that the frequency is independent of R,. A more exact expression will be
derived.

The impedance of the crystal alone is

(12.103)

-0

1
Ze = Col + oy M — i+ aM’n — 1)) (12.109)
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where

M = the figure of merit of the crystal
2 2
_ W T w
L
W2 — w1
wy = 2r times frequency of resonance of the crystal
wy = 27 times frequency of anti-resonance of the crystal
w = the independent variable, 2 times frequency

Cp = the static capacitance of the crystal
The resistive component of Z, is
M R,

T wC( + 7MY T 1 .
0 Ez‘_!_n

R (12.105)

In order to express R, in terms of Coand C , the quantity » must be expressed
in terms of these variables which define the oscillating frequency. This is
accomplished as follows:

The equation of ratio of capacitances of a crystal is

2 _ 2
G_w—a (12.106)

2
CD w1

Similarly, when the capacitance C, is placed across the crystal

G _wi— o (12.107)
Co+ C !

where w is 2w times the anti-resonant frequency of the crystal and C; in
parallel. The ratio of (12.107) and (12.106) is

G _ei—ol (12.108)
Co+ C wg — w% ’

The oscillating frequency is given by (12.99) in which m is as defined
under (12.97). The oscillating frequency w is therefore given by

2 2 1 — 1 - 4 7
wy — @ _ P? (12.109)

or

w — _ 1+ - P (12.110)
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The angular frequency w; is eliminated by multiplying this by (12.108).
Thus

4
- _ =G |17 1/1 bz (12.111)
w —w G+ G 2

1
B _ =G [1+'|/1_ﬁe’+1 (12.112)
ws —w; Co+ C 2

This is the value for # at the oscillating frequency and may be reduced to

the form,
1 1
g/ h rayfi]
. L 7 Ll (12.113)
() |

When this value of » is substituted in (12.105), the value of R, is found to
be

or

n =

Ry

3 5T
1 {1— 1= 1+’|/1_1_92 (12.114)
2 +

i+
Co
(&+1)

R, =

“

4
For crystals of usable quality —3 < < 1 and by this assumption the equation
Y q Yy P

reduces to

R <
R =7 1

I + m (12.115)
Ce
) 2
This again reduces to (12.91) when M* > > ((C"—" + 1) .
t

12.84 FrEQUENCY CHANGE RESULTING FROM PARALLELING CAPACITANCE

It is often desirable to know how much the frequency of an oscillator may
be changed by varying the capacitance C, across the crystal. This is de-
termined from (12.112) which gives the oscillating frequency as a function
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4
of C;. For practical considerations we may assume P <& 1 which reduces

the equation to

2 2
From this and (12.106) we obtain
2 2
Since
= _ (et e) o 2 = )
wi wi - w1
then
@ — w —1
o = m (12.118)
C,

where 7 is the ratio of the capacitances of the crystal.
A curve of per cent frequency change multiplied by r as a function of

% is shown on Fig. 12.28 for comparison with the associated P/ change.
0

12.85 RELATION BETWEEN PI AND OSCILLATOR ACIIVITY

The relation between PI and activity obtained in a particular oscillator
will now be examined. Let the curves of Fig. 12.30 represent the variations
of p with amplitude for two oscillators A and B, or they might be for the
same oscillator at widely different frequencies. These are characteristics of
the oscillator circuits and may be of any shape. However, for oscillators
with grid leak bias, the curves normally have no negative slopes. The rate
of change of p depends upon the rate of change of p and plate resistance of
the vacuum tube as shown by (12.45) for input conductance.® Since p
builds up to a value equal to PI we may plot PI for p. The grid current
I, is usually taken as a measure of amplitude. Therefore, Fig. 12.30 may
be plotted as shown in Fig. 12.31 where PI is the independent variable.
These curves are the characteristics of the oscillator circuits 4 and B with PI
defining the quality of the crystal when used with a particular value of C; .
It is characteristic of oscillators to ‘“‘saturate” as shown by the curves.

* Tt is also a function of grid resistance but this does not appear in the approximate

equation (12.45) because of the assumption of no grid current. See Chafiee’s'” complete
equation for input admittance.



PIEZOELECTRIC CRYSTALS IN OSCILLATOR CIRCUITS 211

AMPLITUDE —

Fig. 12.30—Hypothetical curves illustrating the normal relation between the negative
resistance of oscillator circuits and the amplitude of oscillations

PI—

Iig. 12.31—By interchanging the coordinates of Figure 12.30 the curves will represent
the relation between PI and oscillator grid current
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Some oscillators saturate very rapidly and completely according to curve B
and no further output is obtained regardless of the improvement in the
crystal quality. For this reason it has not been possible in the past to
separate the performance of the oscillator and the crystal since both were
based upon the grid current as a measure of quality. By defining crystal
activities and oscillator sensitivity in the manner outlined, the crystal and
circuit can be studied separately. The per cent of crystals obtainable with
PI above a certain value will be known and the design and improvement of
oscillator circuits will be facilitated.

12.86 Use or PI 1IN CrySTAL DESIGN
The expression of PI in terms of the crystal constants and C, as given by
equations (12.89) or (12.92) assists in the design of crystals. As an ex-
ample, the effect of changing the area of the crystal electrodes will be com-
puted. The Q of a <rystal is defined as
1
Q = w1 C1R1

(12.119)

By introduction of the ratio of capacitances of the crystal r = % equation
1

(12.119) becomes

r
0= -oR, (12.120)
or
(_2 = 1 =
ey Rl (12.121)

Assuming Q and r do not vary, that is, disregarding effects such as secondary
modes, change in damping produced by the mounting etc., and substituting
(12.121) in (12.94) we obtain

0 G
PI = o O (12.122)

where 0 is considered constant. Differentiating (12.122) with respect to
r

Co we find that PI is a maximum when Co = C,. Since Cy is proportional
to the area of the electrodes this establishes the optimum area for a par-
ticular value of circuit capacitance.

The capacitance of BT-cut plates is 1.68 mmf. per square centimeter per
megacycle.* Substitution of this for Cy in (12.122) gives

268 X 10°MA
(1.68 Af + C.)?

* All frequencies are referred to the time interval of one second throughout this papers
i.e. megacycles per second is called simply megacycles as is customary in the radio field.

PI = (12.123)
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where A = the area of the crystal in square centimeters.
f = the frequency in megacycles
C; = circuit capacitance in mmf,
M = figure of merit of the crystal (assumed constant)

Thus for crystals of a given area, the performance index should decrease as
the frequency increases. Figure (12.32) shows the theoretical variations of
PI as the function of the diameter of the electrodes of three frequencies and

10

1 1 s 1 E— 1
o 4 8 12 16 20 24
ELECTRODE DIAMETER IN MM

Fig. 12.32—Theoretical curves showing the relations of PI, electrode diameter, and
crystal frequency for BT crystals and a circuit capacitance of 50 puf

for a circuit capacitance of 50 mmf. The activity of a 4-megacycle crystal
with 11-mm. diameter electrodes is about the same as a 10-megacycle
crystal with 18 mm. electrodes. It must be remembered in making this
comparison that it is assumed that the damping introduced by the mounting
is the same in both cases. Actually the damping is much greater for low-
frequency crystals of this type than for high-frequency ones and maximum
PI occurs at some intermediate frequency as shown by the curves of Fig.
12.33. These curves show that the damping caused by the particular
mounting used was small for frequencies above 6 megacycles but increases
rapidly below this value.
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CALCULATED
PI —_
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Tig. 12.33—Calculated and measured values of PI for BT crystals. The discrepancy
is a measure of mounting loss

12.87 MEASUREMENT OF PI AND M

In all the discussions so far regarding the performance of crystals in
oscillator circuits, the crystal has been represented by the equivalent circuit
of Fig. 12.3 in which all the elements were considered constant. It is
possible to obtain crystals in which this is essentially the case, but in general
there are three secondary effects which complicate the picture. These are,
first, the effect of other modes of vibration of the crystal, second, variations
in the crystal constants resulting from variations in the amplitude of vibra-
tion, and third, the leakage or dielectric loss in the crystal holder. These
factors will be considered in the order named.

Secondary modes of vibration affect the crystal for oscillator purposes
only when the frequencies of these modes are sufficiently close to the princi-
pal one to alter its impedance characteristic in the frequency range of
oscillation; that is, to alter the reactance as shown in Fig. 12.27 between the
frequency f1 and f» and the corresponding effective resistance between these
two frequencies. With interfering modes present, the equivalent crystal
circuit is so complicated as to make it impractical to compute PI or M from
such measurable quantities as resonant resistance R;, series resonant
frequency fi, anti-resonant frequency f2, etc. For this reason it is
necessary to measure the reactance and effective resistance of the crystal at
the operating frequency in order to obtain a measure of crystal quality
which will correlate with the crystal performance. For the same reason
it is important when comparing oscillator circuits that the crystal should be
operated at the same frequency in each case.

It is believed that the non-linear effect noticed in crystals when used as
oscillators is produced by the changes in the mounting as the amplitude of
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vibration varies. The PI of some clamped or pressure-mounted crystals
has been found to vary as much as 509, with change in drive. Noticeable
frequency change also occurs. A change in the nature of secondary modes
as the amplitude is varied has also been observed. Some secondary modes
which interfere with large amplitude of vibrations practically disappear
when the amplitude is reduced. This may be explained by the fact that
certain modes are damped out by the pressure of the mounting and with
large amplitude of vibration the effect of the pressure is reduced.

The dielectric loss of the holder was considered negligible in the theory
but it is found that certain phenolic holders have equivalent high-fre-
quency leakage resistances less than 100,000 ohms. This resistance is in
parallel with the crystal and will therefore reduce the PI according to the
equation

PI.R,

where
PI = resulting PI
PI, = calculated PI

R, = equivalent high-frequency leakage resistance

Because of these secondary effects which are not negligible it is essential
in measuring crystal activity that the frequency and voltage across the
crystal be known. Standard test circuits should simulate operating condi-
tions in this respect. With these considerations, a crystal PI meter has
been developed in which the frequency and amplitude may be adjusted to
correlate with various oscillators. The principle of operation and perform-
ance of this meter is described by C. W. Harrison.*
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