Mathematical Analysis of Random Noise

BY S. O. RICE
(Concluded from July 1944 issue)

PART IIT
STATISTICAL PROPERTIES OF RANDOM NOISE CURRENTS

3.0 INTRODUCTION

In this section we use the representations of the noise currents given in
section 2.8 to derive some statistical properties of I(¢). The first six sec-
tions are concerned with the probability distribution of 7(¢) and of its zeros
and maxima. Sections 3.7 and 3.8 are concerned with the statistical prop-
erties of the envelope of I(f). Fluctuations of integrals involving I*(1)
are discussed in section 3.9. The probability distribution of a sine wave
plus a noise current is given in 3.10 and in 3.11 an alternative method of
deriving the results of Part I is mentioned. Prof. Uhlenbeck has pointed
out that much of the material in this Part is closely connected with the
theory of Markoff processes. Also S. Chandrasekhar has written a review
of a class of physical problems which is related, in a general way, to the
present subject.”

3.1 TuHE DISTRIBUTION OF THE NOISE CURRENT

In section 1.4 it has been shown that the distribution of a shot effect
current approaches a normal law as the expected number of events per
second, », increases without limit.

In line with the spirit of this Part, Part ITI, we shall use the representation

N

I() = E (a, cos w,t + b, sin w,1) (2.8-1)

n=

to show that I(¢) is distributed according to a normal law. This is obtained
at once when the procedure outlined in section 2.8 is followed. Since a,
and b, are distributed normally, so are a, cos w,f and b, sin w,t when # is
regarded as fixed. I(7) is thus the sum of 2V independent normal variates
and consequently is itself distributed normally.

22 Stochastic Problems in Physics and Astronomy, Rev. of Mod. Phys., Vol. 15, pp.
1-89 (1943).

2 An interesting discussion of this subject by V. D. Landon and K. A. Norton is given
in the I.R.E. Proc., 30 (Sept. 1942) pp. 425-429.
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The average value of I(t) as given by (2.8-1) is zero since @, = &, = 0:
It) =0 (3.1-1)
The mean square value of (1) is
N — J—
IXt) = D (a cos’ wat + b2 sin® w, i)
n=1
N

> w(f)Af ‘ (3.1-2)

n=1

= [ @) ar = v = o

In writing down (3.1-2) we have made use of the fact that all the a’s and &’s
are independent and consequently the average of any cross product is zero.
We have also made use of

ay = by = WA, fa= nbf, w, = 2nf,

which were given in 2.8. () is the correlation function of I(f) and is
related to w(f) by

b = Ylr) = [ w(f) cos 2xfr df (2.1-6)

as is explained in section 2.1. In this part we shall write the argument of
¥(7) as a subscript in order to save space.

Since we know that 7(#) is normal and since we also know that its average
15 zero and its mean square value is Yo, we may write down its probability
density function at once. Thus, the probability of 7(¢) being in the
range [, I 4+ dI is

ar
vV 2m
"I'h1s 15 the probability ot finding the current between [ and I + dl at a
time selected at random. Another way of saying the same thing is to state

that (3.1-3) is the traction of time the current spends in the range 7, I + d/.
1n many cases it is more convenient to use the representation (2.8-0)

Rl (3.1-3)

I(t) = Z:l €n €08 (wnl — &), cn = 2w(f.)Af (2.8-0)

in which ¢, +-- ¢, are independent random phase angles. In order to
deduce the normal distribution from this representation we first observe
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that (2.8-6) expresses I(f) as the sum of a large number of independent ran-
dom variables

I(t) = 21+ x4 - + 2w
Xn = Cn COS (wnf — en)

and hence that as N — = I(t) becomes distributed according to a normal
law. In order to make the limiting process definite we first choose N and
Af such that NAf = F where

[ear<e] wna
where e is some arbitrarily chosen small positive quantity. We now let
N — o« and Af — 0 in such a way that NAf remains equal to F. Then

A=w+ 2+ +ak = 3 Zu(/2)Af cos® (wnt = ¢1)
(3.1-4)

N

= > u(y = [ wlh) df

1

B=[mpP+ - +[axpP = Z (2w(£)8f)*" [ cos (wat = ¢u) !

< 4(an™ A [w( )" df

where the bars denote averages with respect to the ¢’s, t being held constant,
If we assume that the integrals are proper, the ratio BA™*—=0as N — =,
and consequently the central limit theorem* may be used if w(f) = 0 for
f > F. Since we may make F as large as we please by choosing e small
enough, we may cover as large a frequency range as we wish. For this

reason we write = in place of F.
Now that the central limit theorem has told us that the distribution of

I(t), as given by (2.8-6), approaches a normal law, there remains only the
problem of finding the average and the standard deviation:

0 = Zl‘,c,. cos (@f— o) =0
() = ; ch c0s* (Wl — @n) (3.1-5)

= [ty df =

(]
* Section 2.10.
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This gives the probability density (3.1-3). Hence the two representations

lead to the same result in th’_case. Evidently, they will continue to lead

to identical results as long as the central limit theorem may be used. In the

future use of the representation (2.8-6) we shall merely assume that the

central limit theorem may be applied to show that a normal distribution

is approached. We shall omit the work corresponding to equations (3.1-4).
The characteristic function for the distribution of I(¢) is

ave, "' = exp — %‘-’ u (3.1-6)

-

3.2 Tue DistrRIBUTION OF I (f) AND I (¢ 4+ 7)

We require the two dimensional distribution in which the first variable
is the noise current /(#) and the second variable is its value (£ + 7) at some
later time r. Tt turns out that this distribution is normal®, as we might
expect from the analogy with section 3.1, The second moments of this
distribution are

yu=;'2—(5 =¢0=£mw(f)df

M2 = o

(3.2-1)
IO+ 7

|

12
= \111-

The expression for uy2 is in line with our definition (2.1-4) for the correla-
tion function:

T
¥r = ¥(r) = Limit Tl _{ IO + 1) dt (2.1-4)
T—
In order to get the distribution from the representation (2.8-6) we write

I,

N
I(t) = Z €n €08 (wnl — n)
1

L=1It+7) =ch cos (wnt — @n = wnT)
1

' Tt seems that the first person to obtain this distribution in connection with noise was
H. Thiede, Elec. Nachr. Tek. 13 (1936), 84-95,
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From the central limit theorem for two dimensions it follows that I; and I»
are distributed normally. Asin (3.1)

_ N o
m=T=2ai- [ wnd =
poz = ig = E = Yo (3.1-2)
o N
we = LI, = Z 62,1 ave, {cos (wnt — @n) €08 (wnf — @u + wn)
1

Now the quantity within the parenthesis is

08" (wal — @n) €OS war — €08 (Wl — @) SIN (Wnl — @n) SiN wpT
- and when we take the average with respect to ¢, the second term drops
out, giving

N L]
ps = D Cutd COS w,T —>j; w(f) cos 2mfrdf = .  (3.2-3)
1

where we have used w, = 27/, and the relation (2.1-6) between w(f) and Y(7).
The probability density function for I and /> may be stated. From the
discussion of the normal law in 2.9 it is

2 12 S - 2 ;

1 Tl R R 7Y %h+%hq (3.2-4)
2z 25 — ¥7)

For a band pass filter whose range extends from f, to f, we have

Iy
Yr = f wy cos 2mfr df
s

a

SIN wpT — SIN Wg T (3.2-5)
27T

= ?% sin #7(fs — fa) cos 71(fo + fa)
. Yo = wlfs — fa)

where wy is the constant value of w(f) in the pass band and
wp = 2nfs (3.2-6)

we = 27fa

= Uy

According to our formula (3.2-4), I, and I are independent when y,
is zero. For the ’s which make ¥, zero, a knowledge of I; does not add to
our knowledge of I, . For example, suppose we have a narrow filter. Then

¥ = 0 when 7 = [2(fy + fu)]™
V¥, is nearly — o when = = [fs + fal™
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Tor the first value of 7, all we know is that 7, is distributed about zero with
I3 = yu. For the second value of 7 I, is likely to be near —7,. This is
in line with the idea that the noise current through a narrow filter behaves
like a sine wave of frequency 3(f, + f.) (and, incidentally, whose amplitude
fluctuates with an irregular frequency of the order of (f, — f.)). The first
value of 7 corresponds to a quarter-period of such a wave and the second
value to a hali-period. By drawing a sine wave and looking at points sepa-
rated by quarter and half periods, the reader will see how the ideas agree.
The characteristic function for the distribution of 7; and I, is

ave, e — exp [—%ﬂ (o + %) — w,uv:l (3.2-7)

The three dimensional distribution in which
I=I()
L=I¢t+ n)
Is=I(t + 7+ 72)

where ; and 7 are given and / is chosen at random is, as we might expect,
normal in three dimensions. The moments, from which the distribution
may be obtained by the method of Section 2.9, are

B = p» = 3 = o
M1z = \1/1-1

Mg = ‘f/rg

H13 = 'l’(‘h + TE) = \l'/r1+r2

The characteristic function for Iy, I, I3 is

ave. eia;]]ﬁ:glgﬁlala
0 2 2 3.2-8
= expl:-—%o (zl + 2 + Z:}) — M12%122 — Me3Z2Z3 — #132123:, ( )
3.3 ExPEcTED NUMBER OF ZEROS PER SECOND
We shall use the following result. Let y be given by
y=F(ar,az, - ay ;x), (3.3-1)

and let the a’s be random variables. For a given set of a’s, this equation
gives a curve of v versus x. Since the a’s are random variables we shall call
this curve a random curve. Let us select a short interval xy, x; + du,



52 BELL SYSTEM TECHNICAL JOURNAL

and then draw a batch of a’s. The probability that the curve obtained by
putting these @’s in (3.3-1) will have a zero in x1, 1 + dxis

+0
dx LG [7] 200, n; 1) dn (3.3-2)

and the expected number of zeros in the interval (x1, x2) is

o +
[Cax [ 1190, w0 i (3.3-3)

In these expressions p(£, 7; x) is the probability density function for the

variables
£ = Fla, -+ ax;2)

oF (3.3-4)
Fr

Since the a’s are random variables so are £ and n, and their distribution
will contain x as a parameter. This is indicated by the notation Pp(E, m; ¥).

These results may be proved in much the same manner as are similar
results for the distribution of the maxima of a random curve. This method
of proof suffers from the restriction that the a’s are required to be bounded.”
Results equivalent to (3.3-2) and (3.3-3) have been obtained independently
by M. Kac.”® His method of proof has the advantage of not requiring the
a’s to be bounded.

Here we shall sketch the derivation of a closely related result: The prob-
ability that v will pass through zero in a1, a1 + dx with positive slope is

da f np(0, m; m1) d (3.3-5)

We choose dx so emall that the portions of all but a negligible fraction
of the possible random curves lying in the strip (x1, 21 + dx) may be re-
garded as straight lines. If ¥ = £atx and passes through zero for a1 < x <

nﬂ

a1 =+ dv, its intercept on y = 01is ¥, — = where 7 is the slope. Thus £ and 9

=3 e

must be of opposite sign and
&
p < — > <a+de
7

% 8. O, Rice, Amer. Jour. Maml. Vol. 61, pp. 409-416 (1939). However, L. A. MacColl
has pointed out to me that a set of sufficient conditions for (3.3-5) to hold is: (a) p(&, n; x)
is continuous with respect to (&, n) throughout the £n-plane; and (b) that the integral

f plan, m; 1) dn
0

converges uniformly with respect to & in some interval —a, < ¢ < az, where a, and a,
are positive. These conditions are satisfied in all the applications we shall make use of
(3.3-5).

2 M. Kac, Bull. Amer. Math. Soc. Vol. 49, pp. 314-320 (1943).



MATHEMATICAL ANALYSIS OF RANDOM NOISE 53

According to the statement of our problem, we are interested only in positive
values of 5, and we therefore write our inequality as

—pdx < £<0

For a given random curve i.e. for a given set of a’s £ and 5 have the values
given by

&= Flay, -+ ay; x1)

- [%]
m ox =1

If these values of £ and 7 satisfy our inequality, the curve goes through zero
in a1, 2 + dx. The probability of this happening is”

@ 0 ]
[an [ aepemmd = [ 10 = (=1 dolp(0, n; ) dn
0 ndz 0

where we have made use of the fact that dx is so very small that ¢ is effec-
tively zero. The last expression is the same as (3.3-5).

In the same way it may be shown that the probability of y passing through
zero in xy , &1 + dx with a negative slope is

0
—dx [ 9p(0, ;2 dn (3.3-6)

Expression (3.3-2) is obtained by adding (3.3-3) and (3.3-6).
We are now ready to apply our formulas. We let ¢, 7(2) and ¢, play the
roles of x, ¥, and a, , respectively, and use

I(t) = il Cn COS (wnt - ‘F'n): C?;n = 2W(f)Af (28—6)

*7 MacColl has remarked that the step from the double integral on the left hand side
of this equation to the final result (3.3-3) may be made as follows:
It is easily seen that the probability density we are seeking is

- 4 - 0
YUY d E) e
,_d(f_\x) ,[;‘ ! -[qu P& i =) dE]Az_o

Proceeding formally, without regard to conditions validating the analytical operations
(for such conditions see the footnote on page 52), we have

d ® 0 ©
‘E—"l dn [HA: P& n; x) dE = j(; np(—nAz, n; z) dn

and hence the required probability density is

©
f ﬂP(On LN x) d’?
0
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The first step is to find the probability density function of the two random
variables

N
£ = Elc,, cos (wnly — ©n)

. (3.3-7)
g =1I'(h) = —E Cnton SIN (wWndi — @n)
n=1

where the prime denotes differentiation with respect #.  IFrom section 2.10

Hir = ;;;_2 = Yo
ua2 = ?72 = E ¢ @y sin® (wnts — @n)
n=1
N
= 2, (nf)'w(f)af

n=1

— 47" _{ Fulf) df = —¢o

N
pe = &p = = chwn cos (wats — @a) sin (walt — ¢n)

n=1
=0 .
The expression for p arises from (2.1-6) by differentiation. In this expres-
sion ¢, denotes the second derivative of ¥(7) with respect to rat 7 = 0:

W) = —da f Fw(f) cos 2ufr df (3.3-8)
o
Hence the probability density is
[—dode | [ £, ]
) = ————— el i 3.3~
(& s t) 2 exp 2o + 2‘[/3’ ( 9)
where ¢, is negative. It will be observed that the expression on the right
is independent of £. Hence the probability of having a zero in /1, &1 + dt,
+ 1172 ’ 1/2
[—vovo) 220y dt [ ¥ '(0)]
a [ gL i gy S O 63
bl e =210 (3.3-10)
which follows from (3.3-3), is independent of £,

The expected number of zeros per second, which may be obtained from
(3.3-3) by integrating (3.3-10) over an interval of one second, is

1[_¢"(0) v ‘me“'w(f) dfT!g
[ ] 2 fo"' () de

2 0) (3.3-11)

™
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For an ideal band pass filter whose pass band extends from f, to f, the
expected number of zeros per second is

3 — 1/2
2 [;J{" f] (3 3-12)
b — Ju

When f, is zero this becomes 1.155 f; and when f, is very nearly equal to

fv it approaches fi + f. .
In a recent paper M. Kac™ has given a result which, after a slight gene-
ralization, leads to

1, 1 \[’:)’:|”2
— | ——| dt 5=
¢ 7 [ 7 (3.3-13)

for the probability that the noise current will pass through the value I
with positive slope during the interval ¢, t + dt. The expected number of
such passages per second is

¢t [+ the expected number of zeros per second] (3.3-14)

The expression (3.3-13) may also be derived from analogue of (3.3-5)
obtained by replacing the zero in $(0, 7; 21) by .
In some cases the integral

W= [ Funa

does not converge.

An example occurs when we apply a broad band noise voltage to a re-
sistance and condenser in series. The power spectrum of the voltage across
the condenser is of the form

w(f) = - (3.3-15)
j‘2 + a'.! N
Although \1«’;’ is infinite, o is finite and equal to /2a. A straightfcrward
substitution in our formula (3.3-11) gives infinity as the expected number
of zeros per second. '

Some light is thrown on this breakdown of our formula when we consider
a4 noise current consisting of two bands of noise. One band is confined to
relatively low frequencies, and its power spectrum will be denoted by
wi(f). The other band is very narrow and is centered at the relatively high
frequency fo. The complete power spectrum of our noise is then

w(f) = w(f) + A%(f — f2)

#* On the Distribution of Values of Trigonometric Sums with Linearly Independent
I'requencies, Amer. Jour. Math., Vol. LXV, pp 609-615, (1943).
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where the unit impulse function § is used to represent the very narrow band.
The power spectrum of the narrow band is approximately the same as that
of the wave A~/2 cos 2nfat.

The integrals occurring in our formula are

[wnar= [ wpa+a
=W+ 4

j:n w(f)ﬁ df = j;wfzwl(f) i + A“:f.'f

= U+ Az
We suppose that 4 and f, are such that
W A°
UK AY;.
Then our formula (3.3-11) gives us the expected number of zeros

Afs
Wi

We may give a qualitative explanation of this formula if we regard our
noise current as composed of a small component

I, = 2'*4 cos 2xfut

2

due to the narrow band superposed on a large, slowly varying component
due to the lower band. Since the r.m.s. value of the second component is
W'* we may assign it a representative frequency fi and write it approxi-
mately as

I = 2W)"* cos 2mfit

The zeros of the noise current are clustered around the zeros of the second

wave. Near such a zero
I = QW) *2xfiAt
where Al is the distance from the zero. The oscillations of I, produce zeros
when | I; | is less than the amplitude of I, or when
A > Wafy | At
and the interval over which zeros are produced is given by
AW

200 =
71
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The number of zeros is this multiplied by 2f». Since there are 2f such
intervals per second the number of zeros per second is

4 1/2
7—]' AW_ fl

This differs from the result given by our formula by a factor of 2/x.
This discrepancy is due to our representing the two bands by the sine waves
I, and I.

From this example we obtain the picture that when the integral for
converges corresponding to A4 — 0, while at the same time the integral for
yu diverges, corresponding to fy — « in such a way that Afs — oo, the
noise current behaves something like a continuous function which has ne
derivative. It seems that for physical systems the integrals will always
converge since parasitic effects will have the effect of making w(f) tend to
zero rapidly enough. The frequency which represents the region where
this occurs is of the order of the frequency of the microscopic wiggles.

So far we have been considering the formulas of this section in the most
favorable light possible. There are experiments which indicate the possi-
bility of the formulas breaking down in some cases. Prof. Uhlenbeck has
pointed out that if a very broad band fluctuation current be forced™ to flow
through a circuit consisting of a condenser, C, in parallel with a series com-
bination of inductance, L, and resistance, R, equation (3.3-11) says that the
expected number of zeros per second of the current, f, flowing through R

(and L) is independent of R. Tt is simply -I-(LC)_W. The differential
™

equation for 7 is the same as that which governs the Brownian motion of a
mirror suspended in a gas®, the gas pressure playing the role of R. Curves
are available for this motion and it is seen that their character depends
greatly upon the pressure®. Unfortunately, it is difficult to tell from the
curves whether the expected number of zeros is independent of the pressure.
The differences between the curves for various pressures indicates that there
may be some dependence*.

3.4 TuE DISTRIBUTION OF ZEROS

The problem of determining the distribution function for the distance
between two successive zeros seems to be quite difficult and apparently

?9 For example, by putting the circuit in series with a diode.

%0 This problem in Brownian motion is discussed by G. E. Uhlenbeck and S. Goudsmit,
Piys., Rev., 34 (1929), 145-151.

NI, Kappler, Annalen d. Phys., 11 (1931) 233-256.

* Since this was written M. Kac and H. Hurwitz have studied the problem of the ex-
pected number of zeros using quite a different method of approach which employs the
“shot-effect” representation (Sec. 3.11). Their results confirm the correctness of (3.3-11)
when the integrals converge. When the integrals diverge the average number of elec-
trons, per sec. producing the shot effect must be considered.
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nobody has as yet given a satisfactory solution. Here we shall give some
results which are related to the general problem and which give an idea of
the form of the distribution for the region of small spacings between the

Zeros.
We shall show (in the work starting with equation (3.4-12)) that the

probability of the noise current, I, passing through zero in the interval
7, 7 + dr with a negative slope, when it is known that / passes through zero
at + = 0 with a positive slope, is

d_" Yo i j_@ 2 24—3/2 -1
Qw[_%'] [H ] W — ¥ + Hcot ™ (—H)]  (34-1)
where Mo and Mo are the cofactors of ps = —-ybf,’ and psy = —yr in the
matrix

l' 0 0 " l[/:-' 1!’:

M = 0! _¢91 _-'lb:" '_Bbr

wa ¢ % 0 (3.4-2)
Y. —¢r 0 Yo_,

H = Mu[M3 — Mz

We choose 0 < cot™ (—H) < =, the value 7 being taken at 7 = 0, and the
value 7/2 being approached as 7 — . It should be remembered that we
are writing the arguments of the correlation functions as subscripts, e.g.,
—y7 is really

—y"(7) = 4z fo i fw(f) cos 2afr df (3.3-8)

As 7 becomes larger and larger the behavior of T at 7 is influenced less
and less by the fact that it goes through zero with a positive slope at 7 = 0.
Hence (3.4-1) should approach the probability that, for any interval of
length dr chosen at random, I will go through zero with a negative slope.
Because of symmetry, this is half the probability that it will go through
zero. Thus (3.4-1) should approach, from (3.3-10),

_ =112

as T — w. Tt actually does this since M approaches a diagonal matrix

and both M and H approach zero with Me/H — My — —¢§¢’.§. For a
low pass filter cutting off at f, (3.4-3) is

drfp3 (3.4-4)

The behavior of (3.4-1) as 7 — 0 is quite a bit more difficult to work out.



MATHEMATICAL ANALYSIS OF RANDOM NOISE 59

M and My go to zero as 7°, My, — My, as 7', and consequently H goes
to infinity as 7 '. The final result is that (3.4-1) approaches

W _ gm :
ar 7 [‘W“—W"i] (3.4-5)
—Yovyo

as 7 — 0, assuming ¢ exists. Here the superscript (4) indicates the fourth
derivative at r = 0,

v = 162 fﬂ Tw(r) df (3.4-6)
For a low pass filter cutting off at f; (3.4-5) is
dr i) (2afy)? (3.4-7)

When (3.4-1) is applied to a low pass filter, it turns out that instead of =
the variable

¢ = 2ufpr, de = 2nfydr (3.4-8)

is more convenient to handle. Thus, if we write (3.4-1) as p(¢) de, it fol-
lows from (3.4-4) and (3.4-7) that

1
p(e) _>27|'\/§ = .0919 as p— =
(3.4-9)
o)=L s g o

#(¢) has been computed and plotted on Fig. 1 as a function of ¢ for the
range 0 to 9. From the curve and the theory it is evident that beyond
9 ple) oscillates about 0.0919 with ever decreasing amplitude.

We may take p(p) de to be the probability that I goes through zero in
¢, ¢ + dg, when it is known that I goes through zero at ¢ = 0 with a slope
opposite to that at ¢. p(e) de exceeds the probability that I goes through
zero at ¢ = 0 and in ¢, ¢ + dy with no zeros in between. This is because
Ple) de includes all curves of the latter class and in addition those which
may have an even number of zeros between 0 and ¢. From this it follows
that the curve giving the probability density of the intervals between zeros
must be underneath the curve of #(p).

A partial check on the curve for p(¢) may be obtained by comparing it
with a probability density function obtained experimentally by M. E.
Campbell for the intervals between 754 successive zeros. He passed thermal
noise through a band pass filter, the lower cutoff being around 200 cps and
the upper cutoff being around 3000 cps. The upper cutoff was rather grad-
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ual and it is difficult to assign a representative value. The crosses on figure
1 are obtained from his data when we assume that his filter behaves like a
low pass filter with a cutoff at f, = 2850, this choice being made in order
to make the maximum of his curve coincide with that of p(e).

It is seen that some of the crosses lie above p(p). This is probably due
to the fact that the actual filter differs somewhat from the assumed low pass
filter. .

On Fig. 1 there is also plotted a function closely related to (3.4-1). Tt
is the low pass filter form of the following: The probability of I passing

/T
0.2 PN ~
- \ i
/N T
\ .

o
« o
&
-
-
”’

Q.10 o
"\ —_—_.0919

o \ IB/ ‘

.08 .o - ‘
B o~ v °
° EXPERIMENTAL POINTS
|5/ o
o
o 2 a 6 a 10 12 14
p=2mFT

Fig. 1—Distribution of intervals between zeros—low-pass filter
v4Ae is probability of a zero in Ap when a zero is at origin.
ygle is probability of a zero in A when a zero is at origin and slopes at zeros are of
opposite signs. v
vp = plp), fo = filter cutoff, - = time between zeros.

through zero in 7, 7 + dr when it is known that I passes through zero at
T=0Iis

dr[ o [ M e o i
= [_%,] [ B ] W — )™ + H tan H]  (34-10)

where the notation is the same as in (3.4-1) and — 7_2r < tan ' H < g
This curve should always lie above p(g) and the small difference between
the curves out to ¢ = 4 indicates that !the true distribution of zeros is given
closely by () out to this point.

When (3.4-1) is applied to a relatively narrow band pass filter or some
similar device we may make some approximations and obtain an expression

somewhat simpler than (3.4-1). As a guide we consider our usual ideal
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band pass filter whose range extends from f, tofy . The correlation function
is given by (3.2-5).

v :_: sin wr(fy, — f.) cos wr(fs + fa)

(3.2-5)
Yo = wolfo — fa)

From physical considerations we know that in a narrow filter most of the
distances between zeros will be nearly equal to

=1
fb +fa

Le., nearly equal to the distance between the zeros of a sine wave having
the mid-band frequency. We therefore expect (3.4-1) to have a peak very
close to r;.  We also expect peaks at 371, 57; etc. but we shall not consider
these, We wish to examine the behavior of (3.4-1) near 7.

It turns out that M is nearly equal to My so that H is large and (3.4-1)
becomes approximately

g[%Tﬂ Mas
2 L—vwo ] [ — i
where 7 is near 7;.

In order to see that My is nearly equal to M, we use the expressions
My = —yo 5 — ¥7) — Yoby’
Moy = ¥ (Y — ¥7) + dugs?
Mz + M = (Yo — )0 + ¥ — ¥) — ¥r°]
(%o — ¥:)[B + C]
My — My = (Yo + ¢)[(o — ¥o)(— ¥7 — o) — ¥r']
= (o + ¥:)[— B + (]
B = yop; — yup0
C = —yabo + ¥ty — ¢’
From (3.2-5) it is seen that y, may be written as
Yr=Acosfr, B=m(fo+fa)

where 3r; = 7 and A is a function of r which varies slowly in comparison
with cos Br. We see that near 7, , ¥, is nearly equal to —yy. Likewise

T1
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Y- hovers around zero and ¥ is nearly equal to —n,b(','. Differentiating with
respect to 7 gives

U'/: A’ cos Br — AP sin Br

g = (4" — AB") cos Br — 24'Bsin Br

o = Ay — A, o= 4o

where Ag and A4 are the values of A and its second derivative at r equal
to zero. These lead to

B = (4,4 — AAg) cos Br — 2404'Bsin Br
O = (44" = A"™) cos® Br — Aody + (45 — 4)%8°

We wish to show that C + B and C — B are of the same order of magni-
tude. If we can do this, it follows that Mes — Ma; is much smaller than
M -+ Mg since Yo — ¥, is approximately 2o while Yo + 1 is quite small.
Consequently we will have shown that My is nearly equal to M, .

So far we have made no approximations. We now express the slowly
varying function 4 as a power series in 7. Since o and ¥ must be zero
for the type of functions we consider, it follows that

.
A=dot 540+ -
A" =140 + -~ "
A7 = AT AP+
2

where we neglect all powers higher than the second. Multiplication and
squaring gives

A: — A = 74040

2

AA” — A" = A, Ay +% (Ao A — 40
= Agdy + F

AgA” — AAq = TE (oA — 4*) = F

Since, for small 7, 4 and A” are nearly equal to 4o and Ay, respectively
we see that the difference on the left is small relative to Ao Ag, ie.,

|F| << |4040 |
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Our expression for B and C become approximately
B = F cos Bt — 24,4y Br sin Br
C = Fcos’ Br — Ao Ay sin® Br — Ao Ao

When 7 is near r, , 87 is approximately . Hence both C + Band C — B
are approximately — Ao Ay 7" and are of the same order of magnitude. Con-
sequently Ma and My are both nearly equal and

My = 0olC + B]
= —AjAsm

When this expression for M is used our approximation to (3.4-1) gives
us the result: If the correlation function is of the form

¥, = A cos Bt

where A is a slowly varying function of 7, the probahbility that the distance
between two successive zeros lies between 7 and 7 4 dr is approximately

dj a
21+ a*(r — )2

where a is positive and
2 :‘10 52
= P =T

o2y
—Adym) |U

For our ideal band pass filter with the pass band f, — f.,

(fb + fa 1
a = 33— ) T = —
Vs fo—Ja " fot fa
and the average value of | 7 — 7 f is a”'. Thus
ave. |t —mn| _ 1 _ fi—fa _ 1 band width
- n . an \/ 3 ( fo + fo) 203 mid-frequency

When the correlation function cannot be put in the form assumed above
but still behaves like a sinusoidal wave with slowly varying amplitude we
may use our first approximation to (3.4-1). Thus, the probability that the
distance between two successive zeros lies between r and = 4 d7 is approxi-

mately
bdr
o — ¢7"
when 7 lies near 7 where 7, is the smallest value of r which makes ¢,
approximately equal to —yo. This probability is supposed to approach
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zero rapidly as 7 departs from 71, and b is chosen so that the integral over
the effective region around 7, is unity.

It seems to be especially difficult to get an expression for the distribution
of zeros for large spacing. One method, suggested by Prof. Goudsmit, is
to amend the conditions leading to (3.4-1) by adding conditions that I be
positive at equally spaced points along the time axis between 0 and 7.
This leads to integrals which are hard to evaluate. For one point between
0 and 7 the integral is of the form (3.5-7).

Another method of approach is to use the method of “in and exclusion”
of zeros between 0 and 7. Consider the class of curves of I having a zero
at = 0. Then, in theory, our methods will allow us to compute the func-
tions po(7), prlr, 7), pa(r, 5, ), associated with this class where

po(7) dr is probability of curve having zero in dr

pi(r, 7) dr dr is probability of curve having zeros in dr and dr

palr, s, 7) dr dr ds is probability of curve having zeros in dr, dr, and ds
In fact pn(-r) dr is expression (3.4-10). The method of in and exclusion
then leads to an expression for Py(7) dr, the probability of having a zero
at 0 and a zero in 7, 7 + dr but none between 0 and r. Itis

T 1 T T
Polr) = polr) — % fo pilr, 1) dr + o fc fo palr, 5, 7) dr ds
(3.4-11)

_%fn fn j:pa(r, s, t,7)drdsdt + . ..

Here again we run into difficult integrals. Incidentally, (3.4-11) may be
checked for events occurring independently at random. Thus if » d7 is
the probability of an event happening in dr, then, if »is a constant and the
events are independent, we have po, p1, p2, -+ given by », v e
From (3.4-11) we obtain the known result Pu(“l’) =pe "

We shall now derive (3.4-1). The work is based upon a generalization of
(3.3-5): If y is a random curve described by (3.3-1), the probability that y
will pass through zero in xy, a1 + dx; with a positive slope and through
zero in x , 4z + daz with a negative slope is

—dxldﬁ dm_[ dnemma p(0, m, 2130, 12, 2)  (3.4-12)

where p(&1, m, ¥1; &, 72, ) is the probability density function for the
four random variables

& = Fla, as, ces,an; XQ)

oF .
N = [(ﬁ-]:—z‘, = 1, 2.
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The x1 and xs play the role of parameters in (3.4-12). This result may be
established in much the same way as (3.3-5).

When we identify F with one of our representations, (2.8-1) or (2.8-6),
of the noise current I(¢) it is seen that $ is normal in four dimensions. We
may obtain the second moments directly from this representation, as has
been done in the equations just below (3.3-7). The same results may be
obtained from the definition of ¥(7), and for the sake of variety we choose
this second method. We set 1 = &1, a2 = & + 7. Then

—E—% =—E_§ = P) = %
te = IOIC+ 1) = ¥r (3.4-13)

— _far\for\ _ ... 1[", )
mae = (ﬁ)a(ﬁt_)wf B I;-!{-n:t T-}; re+ T)I (t) &

where primes denote differentiation with respect to the arguments. Inte-
grating by parts:

fo I+ 2 dI() = (I + DIEK — fo I + DI &t

We assume that 7 and its derivative remains finite so that the integrated
portion vanishes, when divided by 7', in the limit. Since

62
e+ = I+ 1)
ar
we have
—_ 9° "
mn = _ﬁ ‘,/(7') = —¢r
Setting 7 = 0 gives
2 “a "
m= "M = —dp -

in agreement with the value of ps obtained from (3.3-7). In the same
way

fome = Limit ) [ 1+ D10 &t = 3 (o)
=y
fne = Limit % fo OIE+ 1) dt

" (_)%f: T4+ 7)) dt
-
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where we have integrated by parts in getting £, . Setting r = 0 and using
1,!'/; = () gives

b =fm =0

In order to obtain the matrix M of the second moments u., in a form
fairly symmetrical about its center we choose the 1, 2, 3, 4 order of our
variables to be &, m, 72, & . From equations (3.4-13) etc. it is seen that
this choice leads to the expression (3.4-2) for M.

When we put £ and & equal to zero, we obtain for the probability density
function in (3.4-12) the expression

Eidn

472

1
BKP[ 2| Ml M227?1 + 2Momne + Masn: )]

Because of the symmetry of M, M1 is equal to M3;. When, in the integral
(3.4-12) we make the change of variable

o My 2 _ My M2
Tl ™ YT Tl ™

dx B2 “

X1 —a2—y? 2 M 23/ M

Pl [ wdy [ dyge ey
T M J 0

we obtain

The double integral may be evaluated by (3.5-4). Let

p— M" — 9 —
¢ = cos ’(— 117) ot (—H),  H = MulM — M
22

where H is the same as that given in (3.4-2). Our expression now becomes |

'dxl dxz ‘ M l:”2

-1 -
s M:z _ Mgg [1 + H cot ( H)]

From a property of determinants
MuMy — Mz = |[M| W — ¥7)

Using this to eliminate | M | and dividing by

d’\"l n1/2
[ o :I

which, from (3.3-10), is the probability of going through zero in xy, x; + dxy
with positive slope, gives the probability of going through zero in dxy with
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negative slope when it is known that I goes through zero at x; with positive
slope:

dx; Yo " 2 2 11/2, 42 2\ —3/2 ~1
[ u] (M3 — M) (Yo — ¢2)"[1 + H cot™ (—H)]

2r [ —vo

This is the same as (3.4-1).

The expression (3.4-10) is the same as the probability of I going through
zero in dr when it is known that I goes through zero at the origin with posi-
tive slope. This second probability may be obtained from (3.4-1) by add-
ing the probability that 7 goes through dr with positive slope when it is
known to go through zero with positive slope. Thus we must add the ex-
pression containing the integral in which the integration in both »; and 72
run from 0 to «. In terms of x and y this integral is

-] an
[ S "
f ;rd.vf dy ye 22—y?—2(M 93/ Mag)zy
0 0

This is equivalent to a change in the sign of M and hence of H. After
this addition we must consider

1+ Hcot ' (—H)+1— Hcot™" H
2 + H [cot™ (—H) — cot™ H]
=2+ H[r — 2 cot™ H]
= 2(1 + H tan™' H]
and this leads to (3.4-10).
3.5 MULTIPLE INTEGRALS

We wish to evaluate integrals of the form
J = f dxy f diy ¢ 7120 (3.5-1)
o 0

Our method of procedure is to first reduce the exponent to the sum of
squares by a suitable linear change of variable and then change to polar
coordinates. This method appears to work also for triple integrals of the
same sort, but when it is applied to a four-fold integral, the last integration
apparently cannot be put in closed form.

The reduction of the exponent to the sum of squares is based upon the
transformation: If*

xn = 1113’1 + ]!2D21y2 + kstly:: e R hnDa.I}'n
x =0 + haDwys + - + hnDaayn (3-5—2)

.............................................

=0 40 + -+ +0 A4 aDaniyn

* T. Fort, Am. Math. Monthly, 43 (1936), pp. 477-481. See also Scott and Mathews,
Theory of Determinants, Cambridge (1904), Prob. 63, p. 276.
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where Dy = 1, D, = au, D,, = D1, and Dy, is the cofactor of a,, (or
of a,, because they are equal) in D, :

an  ay * - dir /
—1/2
D, = |an an ) hy = [Dr-lDr] )
air e Ayy |

then, if none of the D,’s is zero,

;ar.xfx. =n+rn+t-+9
From (3.5-2); the Jacobian a(x;, - -+ ,)/8(31, -+~ ¥a) is equal to D32
Applying our transformation to the exponent:
xm =y — aDy"’y
x =0 + Di'y,

Dy=1-4

Since xs runs from 0 to « so must y». The expression for x; shows that y,
runs from @ D7y, to . The integral is therefore

J = 2—1!2] dyzf e—vf—:rz dy
0 aDz_”"

We now change to polar coordinates:

Y1 = pcosf
. dyidys = pdpdf
y2 = psin @
y2 > 0gives0 <8< 7w
V> aDg_myz gives cot § > aD;"?

and obtain
cot~labn 1’2 o
J =Dt f do f e dp
0 o

= D7 cot™ (aD7'?)
where the arc-cotangent lies between 0 and w. This may be written in the
simpler form
J=31—-a)"cosa=43pcsco
where
a = cos o,
it being understood that 0 < ¢ < 7. '



MATHEMATICAL ANALYSIS OF RANDOM NOISE 69

Other integrals may be obtained by differentiation. Thus from

@ L]
j'; dx j; dy e"z—"z__h” °%¢ — locsc o (3.5-3)
we obtain
L de dy xy T TVITIN s e 1 ooe? (1 — o cot o) (3.54)

By using the same transformation we may obtain

© ® —z2—y22azy — ﬁ 1 -
fo dx fo dy yé T (3.5-5)

Of course, we may expand part of the exponential in a power series and
integrate termwise but this leads to a series which has to be summed in each
particular case:

.£ dx L dy x" y"'e_’z_”z'g"""

=1i(-2a)'r(n+r+l)r(m+r+1)

2 2

If we take —1 < R(m) < —%, —1 < R(m) < —3, the series may be
summed when ¢ = 1. The result stated just below equation (3.8-9) is ob-
tained by continuing m and » analytically.

The same methods will work when the limits are &= . We obtain, when
m and n are integers,

+ +o 2,2 9r
dx.[ dya"yme T vTINEe®
LW -] y

(0, n + m odd

r ("E+T”+l) (3.5-6)
SOV g

F(—n, —m;l —1; — m;l —zcos ‘p), n -+ m even

The hypergeometric function may also be written as

n m 1 —n—m ..
TERERETIIY
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By transformations of this we are led to the following expression for the
integral
0, # + m odd,

r(m;}—1>r(u-2f-l) ; .
- F ( -2 ; cos” ) , m, n both even,

(in g)ml —,=;C08 @

T2 272
n m
r(1+9)r(1+5)
-2 2 2 COS(pF(l———ﬂz L ”'s'coszgp),

(sin g)mtmH 2 ' 2 2

m, # odd

As was mentioned earlier, the method used to evaluate the double inte-
grals may also be applied to similar triple integrals. Here we state two
results obtained in this way.

f dxf dyf dz exp [—x" — y° — 2° — 2evy — 2bsx — 2ayz]
o o o

1r”2
[53] [a-l—,B—l-'y—ar]

W | =

-] @ @
f dx f dyf dz yzexp [—a® — 9" — 2° — 2cxy — 2bsy — 2ayz]
o 0 o

=‘ﬁ|:1+““""‘—“_b“(a+a+v—w)] (3.5-7)

8D3 1 + a D;m
where 8 and v are obtained by cyclic permutation of a, 4, ¢ from
= cos ' a — cb = sin”’ Dy "
T U= — e T—ad -8
— ot a — bc
= CO D;,lg
where «, 3, v all lie in the range 0, = and where
1 ¢ b
Dy=|c 1 a|=14+2abc—d —b -7
b a 1

For reference we state the integrals which arise from the definition of the
normal distribution given in section (2.9)

n

+o0 +0 n o- 1/2
[ dx [ dx, expl:-z a,,x,x,J = [_]

] E] 1 l a.l

+ g n L
iw dxy -+ ‘[w dx, x, 2, exp [—E a,.;v,x,] = I:l . Jg:l ;jfl‘

(3.5-8)

|
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where the quadratic form is positive definite and | a | is its determinant.
A . is the cofactor of @, . Incidentally, these may be regarded as special
cases of

+o ’ += n L]
dxy -+ - f d.\:,,f(E @rs Xy xs) F (z b,-.l‘,-)
- 1 1

o0 o

2 Trn—l 1/2 += o s » R
e ¥ d 2 2
r(”_ )[m] L ‘?”fo yy S+ ) (3.5-9)

2
n =1/2
Fla ;A,,b,b. ’
' la|

which is a generalization of a result given by Schlémilch.*

3.6 DisTRIBUTION OF MAXIMA OF NoISE CURRENT

Here we shall use a result similar to those used in sections 3.3and 3.4. Let
y be a random curve given by (3.3-1),

y = F(ay - an ; x). (3.3-1)

1f suitable conditions are satisfied, the probability that y has a maximum in
the rectangle (x1, x1 + dxy, y1, Y1 + dy1), dx: and dyy being of the same
order of magnitude, is"”

0
—drdy [ plon, 0,90 &5 (3.6-1)

and the expected number of maxima of y in ¢ £ x < b is obtained by in-
tegrating this expression over the range —= < y1 < =, a < x £ b
p(& n, ©) is the probability density function for the random variables

£ =Fla, -, ay;x)

aF
n = (a?) (3.6-2)

*'F
€= (5‘)
X =7

* Hoheren Analysis, Braunschweig (1879), Vol. 2, p. 494, equ. (29).

2 Am. Jour. Math., Vol. 61 (1939) 409-416. A similar problem has been studied by
E. L. Dodd, The Length of the Cycles Which Result From the Graduation of Chance
Elements, Ann. Math. Stat., Vol. 10 (1939) 254-264. He gives a number of references
to the literature dealing with the fluctuations of time series.
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In our application of this result we replace x and y by ¢ and I as before.
Then

N

E=1=2 cpcos (wnt — ¢n) -

1

=1

s- = IH
where the primes denote differentiation with respect to¢. According to the
central limit theorem the distribution of £, %, { approaches a normal law.
The second moments defining this law may be obtained either from the

above definitions of £, », ¢, or may be obtained from the correlation{funct-ion
as was done in the work following equation (3.4-13).

2=, n=—-¥%, =0

T
= I = Limit - [ rorea
T —+c0 T 0

=
2

I

. l 2 o2 _
I‘Tl_rfﬂt T [I™(T) — I"*(0)] = 0
‘1 T
= Limit — f N OYOY
T—x T 0

2
— Limit 27

=0 672 = ll/o

T
£ = Limit & f () 1"(t) dt
Th

T—0
1 T
= Limit f 1°WI0) dt
T =0 T 0

(4)
= Yo

where the superscript (4) represents the fourth derivative. The matrix M
of the moments is thus

Yo 0 Yo
M=|0 =y O
v 0 ¥’
The determinant | M | and the cofactors of interest are
| M] = —¥(Wats” — ") (3.6-3)

1y

Mu= =9, Ma=w" Mg=—¥i%
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The probability density function in (3.6-1) is

p(I,0,8) = @)™ | M| exp
(3.6-4)
[ -’HMi (MuI 4+ Mu® + 2MlaI§‘):|

and when this is put in (3.6-1) and the integration with respect to { per-
formed we get

dI dt g{—ﬂﬂ [I M | lfﬂgfﬂlulzﬂlul

My
+ Myl (—”—)m "””"(1 +erf — Ml )]
7 \2My (2 M| M)

for the probability of a maximum occurring in the rectangle dI dt. Asis
mentioned just below expression (3.6-1), the expected number of maxima
in the interval {1, {» may be obtained by integrating (3.6-1) from ¢, to £
after replacing x by £, and [ from — =« to + = after replacing yby . When
we use (3.6-4) it is easier to integrate with respect to I first. The expected
number is then

4 Lol )
—“ d! [ ¢ exp 3T Maa—M di

f — (4 —/2
—b-n" “b“ it =t “["D ,,]
“' —o

(3.6-5)

Hence the expected number of maxima per second is

1 [ e :lm _ lafw(f) df-lu2

7 e
w [ e
For a band pass filter, the expected number of maxima per second is

Ejﬂf — fé:lm (3.6-7)

where f, and f, are the cut-off frequencies. Putting f; = 0 so as to get a
low pass filter,

(3.6-6)

3 1/2
o [3] = 7750, (3.6-8)
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From (3.6-8) and (3.6-5) we may obtain the probability density function
for the maxima in the case of a low pass filter. Thus the probability that
a maximum selected at random from the universe of maxima will lie in
I, I+ dIis

dl oy LAY 5\
a2 (5) e (e (§))] o9

where
I

T Vi

] | | I R
] I = OUTPUT NOISE CURRENT
| Y,=FRMS VALUE OF I
0.4 : .
|/ o
‘ 0.
/.
! —V P. (7) '
1 0.1 ]
| | |

-2 =1 o y I 2 3

____Ag

Bp—

Fig. 2—Distribution of maxima of noise current. Noise through ideal low-pass filter,

i‘iﬂ dI = probability that a maximum of I selected at random lies between [ and I +dI.

When v is large and positive (3.6-9) is given asymptotically by
A5

Vi 3
If we write (3.6-9) as p,(y) dy, the probability density p,(y) of ¥ may be

plotted as a function of y. This plot is shown in Fig. 2. The distribution
function P(I,..x < v/ y,) defined by

Pllaus < V90 = [ 2i3)-dy

and which gives the probability that a maximum selected at random is
less than a specified y4/yy, = I, is one of the four curves plotted in Fig. 4.

If 7 is large and positive we may obtain an approximation from (3.6-5).
We observe that

My '}'é” > _1_
| M | ¢V”—W Yo
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so that when I is large and positive .
e—)u,lﬂleMl & e—ﬂfﬂu!vn

Also, in these circumstances the 1 + erf is nearly equal to two. Thus re-
taining only the important terms and using the definitions of the M’s gives
the approximation to (3.6-5):

— H1/2 .
j;f ! [%:’ oRal (3.6-10)
0 0

From this it follows that the expected number of maxima per second lying
above the line I = I, is approximately® when I, is large,

172
1 [— 0 ] 13
2| Yo (3.6-11)

= ¢'1™0 % 1[the expected number of zeros of I' per second]

Tt is interesting to note that the approximation (3.6-11) for the expected
number of maxima above I; is the same as the exact expression (3.3-14) for
the expected number of times I will pass through I with positive slope.

3.7 REsuLTs ON THE ENVELOPE OF THE NOISE CURRENT

The noise current flowing in the output of a relatively narrow band pass
filter has the character of a sine wave of, roughly, the midband frequency
whose amplitude fluctuates irregularly, the rapidity of fluctuation being
of the order of the band width. Here we study the fluctuations of the

envelope of such a wave.
First we define the envelope. Let f. be a representative midband fre-

quency. Then if
wm = 21fn (3.7-1)

the noise current may be represented, see (2.8-6), by

N
I =2 cucos(wnt — wmt — ¢n + wnl)
n=1 (3.7"2)

= J,cos wpt — I,sin wnt

where the components /. and 7, are

N
> €n €08 (Wal = wmt — n)

n=1

I.

" (3.7-3)
D Casin (wnl — wmt — @n)

n=1

I,

# This expression agrees with an estimate made by V. D. Landon, Proc. I. R. E., 29
(1941), 50-35. He discusses the number of crests exceeding four times the r.m.s. value
of I. This corresponds to I} = 16y, .
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The envelope, R, is a function of  defined by
R = [I; + L]" (3.7-4)

It follows from the central limit theorem and the definitions (3.7-3) of I,
and I, that these are two normally distributed random variables. They are
independent since 7., = 0. They both have the same standard deviation,
namely the square root of

E=L=T=[ wnia=w (3.7-5)

Consequently, the probability that the point (I, I,) lies within the ele-
mentary rectangle df.df, is

dI, dI, I+ Ifjl
i =~ expl: 2 (3.7-6)

In much of the following work it is convenient to introduce another ran-
dom variable § where

I.= Rcos#f

(3.7-7
I, = Rsin § )

Since I, and I, are random variables so are R and §. The differentials are
related by

dI . df, = Rd0dR (3.7-8)

and the distribution function for R and 8 is obtainable from (3.7-6) when
the change of variables is made:

d9 RAR _wny,

e (3.7-9)

Since this may be expressed as a product of terms involving R only and 6
only, R and 6 are independent random variables, & being uniformly dis-
tributed over the range 0 to 2r and R having the probability density™

R g R0 (3.7-10)
)

Expression (3.7-10) gives the probability density for the value of the en-
velope. Like the normal law for the instantaneous value of I, it depends
only upon the average total power

Yo = 'me(f)df

# See V. D. Landon and K. A. Norton, I.R.E. Proc., 30 (1942), 425-429,
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We now study the correlation between R at time ¢ and its value at some
later time £ + 7. Let the subscripts 1 and 2 refer to the times f and ¢ + T,
respectively. Then from (3.7-3) and the central limit theorem it follows
that the four random variables I, Ia, I, I have a four dimensional
normal distribution. This distribution is determined by the ‘second mo-
ments

131=I231 =I§ =I§2=1P0=#11

cels = 0

[

~
~

clI.ll =

N
ch COS (WnT — WmT)
n=1

Ic!.It:E = IllIa‘.i =

bl =

—’_£ w(f) cos 2n(f — fu)Tdf = s (3.7-11)

1 <& .
=D chsin (wat — wnT)
2 n=1

IclIsL‘ = _Ic'.‘Ill =
— [ w(s) sin 22(f = )7 df = s
The moment matrix for the variables in the order Iy, I'n, T2, [s2is
l—\llo 0 M1z M14 ]
0 Yo —Hu M3
M=
|_.l-113 —ums Yo O J
pe ms 0 Yo
and from this it follows that the cofactors of the determinant | M | are

My = My = My = My = do¥i — pis — p11)

., (3.7-12)
= yod, A=y — ps — pu
Mp= Mu=20
My = My= —ppd
My = —My= —HMA
|M| = 4"

The probability density of the four random variables is therefore

1 2 2 2 2
A exp — Z_A[%(Il +L+5L+ 1)

— 2ua( Iz + L Ts) — 2uu(li Iy — I 15)]
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where we have written [y, I», I3, Isfor Iy, I, e, Ia. We now make
the transformation
I1= R]_COSBI Ia= R2C0562

Ig = Rl Sil‘l 31 I4 Rz Sill Hg

andfaverage the resulting probability density over 8; and # in order to get
the probability that Ry and R; lie in dR; and dR,. Itis

2r 2r
Rl R; de dRe f dﬂl f d82 exp
1I"‘

1 a 2 -
~ 3 [WoRi + Yo R> — 2u3 Ry Ro cos (82 — 61) — 2uis Ry R, sin (6, — 6))]

Since the integrand is a periedic function of #: we may integrate from
f; = 0, to 6. = 6+ 2m instead of from O to 2r. This integration gives the
Bessel function, Iy, of the first kind with imaginary argument. The result-

ing probability density for R; and Ra is

R Rs s 9
R;IR? Iu( L2 [uds + pid]” )exp - 2%2 (R} + R3) (3.7-13)

where, from (3.7-12),
A =5 — pis — pia
g and py are given by (3.7-11).  Of course, R, and R are always positive.
For an ideal band pass filter with cut-offs at f, and f» we set

fo =Pl w) —w for fo<f<h

and obtain

Yo = wo(fo — fa)
Ib
pz = f wy cos 2n(f — fu)r df =

fa

fb
Hiy = f wo 5]-.11 211'(f _fm)T df = O
fa

The I term in (3.7-13), which furnishes the correlation between Ry and R. ,
becomes

wo sin w(fy — fa)r

™

sin %
Rl Rz X
Io L
Yo sin® x
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where xis (fy — fa)7. When xis a multiple of =, Ryand R; are independent
random variables. When x is zero Ry and R, are equal. Hence we may
say, roughly, that the period of fluctuation of R is the time it takes x to in-
crease from 0 to = or (fy — fa) . This is related to the result given in the
next section, namely that the expected number of maxima of the envelope
is .641 (fy — fa) per second. ' '

3.8 Maxma oF R

Here we wish to study the distribution of the maxima of R.* Our work
is based upon the expression, cf. (3.6-1),

]
—dR dt £ »(R, 0, R")R" dR" (3.8-1)

for the probability that a maximum of R falls within the elementary rec-
tangle dR dt. p(R, R’, R”) is the probability density for the three dimen-
sional distribution of R, R’, R"" where the primes denote differentiation with
respect to Z. )

We shall determine p(R, R, R") from the probability density of I, I,
1, I; , I, which we shall denote by a1, 22, - -+ % . The interchange
of I, and I, is suggested by the later work. It is convenient to introduce
the notation

by = 20" fu w(7)(f — fu)" df

ko= o

where f,, is the mid-band frequency, i.e., the frequency chosen in the defini-
tion of the envelope R. b, is seen to be analogous to the derivatives of
Y(r) at 7 = 0.

From the definitions (3.7-3) of I. and I, we obtain the second moments

x%=13=y’m=bu

(3.8-2)

xy =1 = bo

J— R N
xs =10 = zl w(f) AT (fa — fu)® = b
:g = ]—::é = b‘.l
2 = 1" = b
A =1 =b

* Incidentally, most of the analysis of this section was originally developed in a study
of the stability of repeaters in a loaded telephone transmission line. The envelope, K,
was associated with the “returned current” produced by reflections from line irregularities.
However, the study fell short of its object and the only results which seemed worth sal-
vaging at the time were given in reference® cited in Section 3.3.
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N N

nm = LI = 2 w(f)af2n(fu = fa) = b
xaxs = LI, = —b

.
Xy = IcI:I = - z ﬂ'(f)ﬂf41r2(fn _"fm)2 = --bz
xexs = LI, = —b,
wam = LI = —b
xswo = LI, = by

All of the other second moments are zero. The moment matrix M is thus

ba bh —b 0 0 0
by bo —bs 0 0 0
| —ba —bs by 0 0 0
M= 0 0 0 by —b —b
0 0 0o —h bs by
0 0 0 —b b3 by

The adjoint matrix is
By B, —B 0 0

0
By By —Bs 0 0 0
—B, —B; B, 0 0 0

0 0 0 By —B; —B,
0 0 0 —B, Bos By
0 0 0 —B, B; B,

By = (bobs — b3)B By =  (bobs — b3)B

B, = — (blb-i - bEbS)B By = — (b()ba - blbg)B

By =  (bybs — B3)B By =  (bob — b})B (3.8-3)

B = bobsbs + 2 bibabs
— b2 — bobs — babi
| M| =B
where B is the determinant of the third order matrices in the upper left and
lower right corners of M.

As in the earlier work, the distribution of x;, -+, ag is normal in six
dimensions. The exponent is — [2 | M | ] times

Ba(xf + xf) + 2Bi(x1x0 — waws) — 2Ba(xix; + Xae)
+ Bu(xs + x3) — 2Bg(xpx3 — Xgxe) (3.8-4)
+ Bay(x3 + 3)
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In line with the earlier work we set
m = 1I,= Rcosd xa=1I,= Rsin @

%y = I, = R’'sin @ + R cos 66’

xs = I. = R’ cos & — Rsin 66’

x3 = 1. = R" cos 6 — 2R’ sin 60’
— R cos 69" — Rsin 66"

xg = I, = R"sin 8 + 2R’ cos 66’
— Rsin 60" + R cos 60"

The angle 6 varies from 0 to 2z and 8’ and 8" vary from —= to 4. By
forming the Jacobian it may be shown that

dx, dxs -+ - dxg = R* dR dR’ dR" df d§’ d6”
Also, the quantities in (3.8-4) are
a1 +a; = K %1% + xa%s = RR” — R*6"
X2 — maxs = R0 23 4+ af = R® + R*¢”
xaxy — x50 = RR'0’ — 2R"9' — R'R¢" — R'¢"
al + xp = R'™ — 2RR"6” + 4R"6"” + 4RR'0'0"
+ R*¢" + R*¢'”

The expression for (R, 0, R") is obtained when we set these values of the
x's in (3.8-4) and integrate the resulting probability density over the ranges

of 8, 6, 8":
2R, 0, RY) = K f " i [m a [ ae (3.8-5)
! ! 87['3.3 0 o0 '

-]

exp — 2%2 [BoR® + 2B R*¢ — 2B:(RR" — R*¢")

+ BnR*@” — 2B; RO'(R" — RE"™)
+ By(R™ — 2RR"6" + R*6¢" + R*¢'"™)]

The integrations with respect to # and 8" may be performed at once leaving
p(R, 0, R") expressed as a single integral which, unfortunately, appears to
be difficult to handle. For this reason we assume that w(f) is symmetrical
about the mid-band frequency fn. From (3.8-2), b and bs are zero and
from (3.8-3), B; and Bj are zero.
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With this assumption (3.8-53) yields

+e0
5(R, 0, R") = R:(2m) 57t [ do’ (3.8-6)
exp _ziBz [BoR® + R([Bn + 2B:R6" — 2B, R"”) + B(R" — R8")"]

The probability that a maximum occurs in the elementary rectangle dR
dt is, from (3.8-1), (¢, R) dR dt where

b, R) = — [i (R, 0, R")R" dR" (3.8-7)
We put (3.8-6) in this expression and make the following change of variables.
s=— B po B g (3.8-8)

“V2B,B~ /2B
(Bay + 2B») [3 bolm] . 2

b = _—_——— = _— = F 3 -
2B b 2w 3 )

2 _ Bo 2By _ boby

where we have used the expressions for the B’s obtained by setting &, and
b3 to zero in (3.8-3). Thus

. 4 [Bs\*? = ® .
LR = 2 (Z2) [ yay [ i a 3.8-9
8 = (2) [Cya [ (3.8-9)
exp [—a’z" + 2bzx + 22y — (x + v)7

As was to be expected, this expression shows that p(¢, R) is independent of ¢.

A series for p(f, R) may be obtained by expanding exp 2z(y + bx) and
then integrating termwise. We use

fm dy fw dx oy e = Ve Ty + DI'(p + 1)
0 o

Qutrt2 r (“ + ¥ + 3)
2

which may be evaluated by setting

=p'cos’y, y=psin’e
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The double integral in (3.8—9) becomes

e Z (22)" n! " I'(m + HT(n — m + 2)
245 nl Smln — m)! g (7 7
373

2,2
n —alz
€

= 27" Z

n=0 7 7
r(3+3)

) (m —m 4+ 1)8", 0<n (3.8-10)

An

where 49 = 1 and

&1

P €)1 I

m=0 m!

5

5 (1 — )7 n large

Ay~ 4+ 1D =)™ —

The term corresponding to m = 0in (3.8-10) is # + 1.
We thus obtain

—a2z2 3/2 w n
pe, Ry = < B2 LA,
i Ve 5 (1)
2 4 (3.8-11)
ot ;"2 3/2 _3/2 S b4
. —
4/ by (e )7 E g:‘fl n 7
2711

We are interested in the expected number, N, of maxima per second.
From the similar work for 7, it follows that N is the coefficient of df when
(3.8-1) is integrated with respect to R from 0 to =. Thus from (3.8-7) and

= V2B, b:  dz = (26, B)*b5° dz
= [2bo(a® — 1] dz
we find

= fo 51, R) dR
n
@ =D (B P(§+ )A"
1 244 (3.8-12)
(2a) ho = n+ )a
(§ 1

P | H=| n

Equations (3.8-11) and (3.8-12) have been derived on the assumption
that w(f) is symmetrical about f, , i.e. the band pass filter attenuation is
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symmetrical about the mid-band frequency. We now go a step further and
assume an ideal band pass filter:

w(f) =w fo<[f<fo
w(f) =0 otherwise (3.8-13)
Um =fat+ 1o
Putting these in (3.8-2) we obtain zero for by and b and also
bo = wo(fo — fa) = Yo

by = ‘1'33“ (fo — fo)*
4
by = ”T”"' (fo — fa)°
@ =% , (3.8-14)

=36 —a) =3

b
R = [2b(a® — 1)]"*z = [B¢]"3

bz 1/2 _ T 1/2 13 QR'.!
(}b—u) - [g] (h=fo, o=

n A, ”n An

01 4 6.775
1 23 5 8.333
2 3.735 6 9.9002
3 35.238 7 114736

A, ~ 15811 n + .3953

From (3.8-12) we find that the expected number of maxima per second
of the envelope is

N = .64110 (fo — fa) (3.8-15)

assuming an ideal band pass filter.
The distribution of the maxima of R for an ideal band pass filter may be
obtained by placing the results of (3.8-14) in (3.8-11). This gives

_dR (fs — fa) , /7 (45\"" _ara
o man = i L5 ()

& g A,

>
=6
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It is convenient to define y as the ratio
y=—— == ("
.8, 3

where R is understood to correspond to a maximum of the envelope. Since
the value of R corresponding to a maximum of the envelope selected at
random is a random variable, v is also a random variable. Tts probability
density is pr(y), where

_ pt, B dR
Pe0) 4y = 5 1100 = 1)

pr(y) has been computed and is plotted as a function of yin Fig. 3.

asf—‘i : — ' ] I I

R = ENVELOPE OF QUTPUT
AT AT NOISE CURRENT

1“"u= RM S NOISE CURRENT

N R
f / | Y=
AT 1N

LA

0 0.5 1.0 1.5 2.0 y 2.5 3.0 3.5 4.0

Fig. 3—Distribution of maxima of envelope of noise current. Noise through ideal band-
pass filter.

Pr(y)
Vo
R 4+ dR.

dR = probability that a maximum of R selected at random lies between R and

The distribution function P(Ruux < y4/Yy) defined by

P(Rowe < W) = [ puly) dy

and which gives the probability that a maximum of the envelope selected
at random is less than a specified value y4/y, =_ R, is plotted in Fig. 4 to-
gether with other curves of the same nature.
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When y is large, say greater than 2.5,

)T
/'/6 2 — 22
~ T __ -1
() 64110 (y )e
%
6 2

P(Rmax<y\/%)~1_—mye

A 777

o _ — [/ ////

- AW/
; | a4

N
N
Nl
B

/ / / I = NOISE CURRENT - LOW PASS FILTER

I / R = NOISE CURRENT ENVELOPE -

BAND PASS FILTER

0.5 / | [ // Vo= RMS NOISE CURRENT

/ l
o0 //
.01 -2 - oy | 2 3 yy 5

Fig. 4 —Distribution of maxima
A = P(I < y\/%s) = probability of I being less than y/ . Similarly € = P(R <
¥V o).

B = P(I max < y\/ﬂ) = probability of random maximum of I being less than y\/aﬂ .
Similarly D = P(R max < yV/¥a).
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The asymptotic expression for px(v) may be obtained from the integral
(3.8-9) for p(t, R). Indeed, replacing the variables of integration x, y in
(3.8-9) by

al =

yo=a+y,

integrating a portion of the ' integral by parts, and assuming b < 1
(a® > 1, by Schwarz’s inequality, so that b < 1 always) leads to

bz)g 6—32.'2% ( 2 )
t,R) ~|— — —1
P, B) (2"r %o 0

when R is large.

If, instead of an ideal band pass filter, we assume that w(f) is given by
1

W) = e I S (3.8-16)
we find that
by=1
by = 4n'0”
by = 16r" 34"
@ =3b=0
Ap=(n+1)

Some rough work indicates that the sum of the series in (3.8-12) is near
3.97. This gives the expected number of maxima of the envelope as

N =252 (3.8-17)

per second.
The pass band is determined by ¢. It appears difficult to compare this
with an ideal band pass filter. If we use the fact that the filter given by

vt = o[+ (25)]

passes the same average amount of power as does an ideal band pass filter
whose pass band is f, — fa, we have

fo — fa= o\ 27
and the expression for N becomes 1.006 (fs — fa).

3.9 ENERGY FLUCTUATION

Some information regarding the statistical behavior of the random vari-
able

t1+T
E = I*(t) dt (3.9-1)

31
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where I(f) is a noise current and #; is chosen at random, has been given in a
recent article.* Here we study this behavior from a somewhat different
point of view.

If we agree to use the representations (2.8-1) or (2.8-6) we may write, as
in the paper, the random variable E as

T/2
E = _[ I*(t) dt (3.9-2)
/2

where the randomness on the right is due either to the a,’s and b,’s if (2.8-1)
is used or to the ¢,'s if (2.8-6) is used.
The average value of E is m. where, from (3.1-2),

_ T2 /2
E=my = I*(f) dt = [ ¥(0) dt = Ty
T/2 /2
- (3.9-3)
=1 [ wpa
The second moment of E is
_ TI2 T2
= ‘[ dtl dtzlz(h)lz(tz) (3.9—4)
T/2 T/2

If, for the time being, we set &» equal to #; + 7, it is seen from section 3.2
that we have an expression for the probability density of I(t;) and I(t + 7)
and hence we may obtain the required average:

e Y [Ta [Tane
12—m . 1 ol1 L2 €XP

o0

1 .
(—rAz Wi + ol — ZIPrIlIz)) (3.:9-5)
A=y —y:, L=1I(), L =1It+r7) =I()
The integral may be evaluated by (3.5-6) when we set
2 2
I, = Ax —, Io.= A =
LA 1/;0 T
Yr = —YoCOS ¢ (3.9-6)
A= Illn sin %]

% “Filtered Thermal Noise—Fluctuation of Energy as a Function of Interval Length”,
Jour. Acous. Soc. Am., 14 (1943), 216-227.
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Thus
II: = yi(1 + 2 cos¢)
= Vo + 2;
Incidentally, this gives an expression for the correlation function of I*(f).

Replacing 7 by its value of t» — #; and returning to (3.9-4),

T2

T/2
B=1¥+2[ dan| o~ (3.9-8)
T/2 T/2

(3.9-7)

When we introduce o7, the standard deviation of E, and use
or = B — m%
we obtain

) _ T/2 T/2
b= E-B =2 [ g -1
T/2 T/2

—4 fo (T — D) du

where the second line may be obtained from the first either by changing the
variables of integration, as in (3.9-27), or by the method used below in
dealing with 5. Tam indebted to Prof. Kac for pointing out the advantage
obtained by reducing the double integral to a single integral. It should be
noted that the limits of integration —T'/2, T//2 in the double integral may
be replaced by 0, T by making the change of variable = ¢ — T/2 for both
t;y and fs.
When we use

() = j; " w(f) cos 2nfr df (2.1-6)

we obtain the.result stated in the paper, namely,

2 ® w ® sin® (i + )T
Op = _L. (fl) dfl'/; w(f?.) dfﬂ[w (3.9—9)

4 Sill2 1r(f; —fz)T]
=(fi — f2)?
I this formula is applied to a relatively narrow band-pass filter and if

T(fs — fa) >> 1 the contribution of the f; 4 f» term may be neglected and
we have the approximation

2 fo e in® ™ - T
o= ‘/;a e dfl ‘[ﬂ wo dfz s'm—ﬂ-z(jglfl—__'fﬁ—;z—)

=Wy T(fs — fa)

= Wo My

(3.9-10)
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where, from (3.9-3)
my = wol(fo — fa) (3.9-11)

The third moment /% may be computed in the same way. However, in
this case it pays to introduce the characteristic function for the distribution
of I(ty), I(t2), I(ts). Since this distribution is normal its characteristic
function is

Average exp [izy [ + izIs + iz 1s]
= exp —[%“ (1 +mtm) F vl —Wun (3949

+ Yty — t)zz + Yl — 52)5223]

From the definition of the characteristic function it follows that

25 2523
12223 .
“~* in ch. f.

a2 e
W+ Wolyn + ¥ + vi)

+ Sy ae

where we have written yu for $(t; — #), etc.  When (3.9-13) is multiplied
by dt; di; dts , the variables integrated from 0 to T, and the above double
integral expression for o used, we find :

_— T T T
(E — E) = 212° fo dty fo dty f° dlsor Ya s -

I*I:1; = —coefi. of

- (3.9-13)

Denoting the triple integral on the right by J and differentiating,

dJ r ’
W= [an [ dege — w@ -y -1

s [ | " dyp(e — DPE@YO)

=6 for dx fo dyg(x — YY)

In going from the first line to the second /; and £ were replaced by T — xand
T — v, respectively. In going from the second to the third use was made of

the relations symbolized by
T T T T
fdxfdy+f ax [ dy
0 0 0 T

T T
fudxfo dy
—_—LTd.v'[dy-l—j:dyLydx
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and of the fact that the integrand is symmetrical in x and y.. Integrating
dJ/dT with respect to T from 0 to Ty, using the formula '

f T fnrﬂx) dv = f (T1 — *)f () dv,

noting that .J is zero when T is zero, and dropping the subscript on T} finally
gives

E-B =8 [ ax [ (T — Do - ).

E* may be treated in a similar way. It is found that

~ = T T T T
(E—-—E'—3E-E"= 3!2*’!J dzlfo dzzfu d£3£ Al P Poa ss

which may be reduced to the sum of two triple integrals. Tt is interesting
to note that the expression on the left is the fourth semi-invariant of the
random variable E and gives us a measure of the peakedness of the dis-
tribution (kurtosis). Likewise, the second and third moments about the
mean are the second and third semi-invariants of E. This suggests that
possibly the higher semi-invariants may also be expressed as similar multiple
integrals.

So far, in this section, we have been speaking of the statistical constants
of E. The determination of an exact expression for the probability density
of E, in which T occurs as a parameter, seems to be quite difficult,

When T is very small £ is approximately I°({)T. The probability that
E lies in dE is the probability that the current lies in —7, <7 —dI plus the
probability that the current liesin I, I + d7:

ﬂ £. — 2 ET —1/2 ME dE I
2, exp o (2mpo ET) ™" exp ol (3.9-14)

where £ is positive,

T

and T is assumed to be so small that I(f) does not change appreciably during
an interval of length T.

When T is very large we may divide it into a number of intervals, say #,
each of length T'/n. Let E, be the contribution of the 7.th interval. The
energy F for the entire interval is then =

E=E+FE+ - +E

If the sub-intervals are large enough the E’s are substantially independent
random variables. If in addition # is large enough E is distributed nor-

1/2 .
1= (‘—E) 4= -:12 (ET)™* dE
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mally, approximately. Hence when T is very large the probability that E
lies in dE is

dE (E — mrp)? 3.0-1
Y exp — ,201 (3.9-15)
where
my = Tj; w(f) df
(3.9-16)

ar -waﬁg)df

the second relation being obtained by letting T’ — e in (3.9-9). The
analogy with Campbell’s theorem, section 1.2, is evident. When we deal
with a band pass filter we may use (3.9-10) and (3.9-11).

Consider a relatively narrow band pass filter such that we may find a T
for which Tf, >> 2r but T(fy — fa) << .64. Thus several cycles of fre-
quency f, are contained in T but, from (3.8-15), the envelope does not change
appreciably during this interval. Thus throughout this interval /({) may
be considered to be a sine wave of amplitude R. The corresponding value
of E is approximately

R
E = T?
where the distribution of the envelope R is given by (3.7-10). Irom this
it follows that the probability of E lying in dE is
dE E dE —E[mT
—exp— — = —¢& 3.9-17
R AT (3:0-17)
when E is small but not too small.

When we look at (3.9-14) and (3.9-17) we observe that they are of the

form

an+1En
I'n + 1)

Moreover, the normal law (3.9-15), may be obtained from this by letting »
become large. This suggests that an approximate expression for the dis-
tribution of E is given by (3.9-18) when a and # are selected so as to give
the values of my and o4 obtained from (3.9-3) and (3.9-9). This gives

¢ F dE (3.9-18)

2
My

a=""  a+1=" (3.9-19)

2
T ar

Q
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and if we drop the subscript T and substitute the value of a in (3.9-18) we
get

(%E)n exp (_2@) d ('"E) n="_1 (39-20)

T(n 4+ 1) a? a? a?
An idea of how this distribution behaves may be obtained from the
following table:

n T(h—fd) s x50 X3 Tz s

X.60 .50

0 0 .29 L6095 1.39 415 2.00

1 1.45 .96 1.68 2.69 .572 1.60

2 2.4 1.73 2.67 3.94 647 1.47

3 3.4 2.54 3.67 5.12 .692 1.39

5 5.4 4,22 5.67 7.42 744 1.31

10 10.5 8.63 10.67 13.02 .808 1.22
24 25 21.47 24.67 28.17 .870 1.14
48 50 4.1 48.7 53.5 .905 1.10

where # is the exponent in (3.9-20). The column 7( f3 — f,) holds only for a
narrow band pass filter and was obtained by reading the curve vy, in Fig. 1
of the above mentioned paper. The figures in this column are not very
accurate. The next three columns give the points which divide the dis-
tribution into four intervals of equal probability:

Xgp = mﬁ'%, E 5 = energy exceeded 759 of time
mE 5 .

X0 = EE Es = energy exceeded 509 of time
mE 3 .

¥ = — 5, En = energy exceeded 25% of time

The values in these columns were obtained from Pearson’s table of the in-
complete gamma function. The last two columns show how the distribu-
tion clusters around the average value as the normal law is approached.

For the larger values of » we expected the normal law (3.9-15) to be
approached. Since, for this law the 25, 50, and 75 per cent points are at
m — .675q, m, and m 4 .675¢ we have to a first approximation

X5 = ::—: =n+1) = T(fb — fa)

- :1’2 (m — 6750) = a0 — 675/ %0 (3.9-21)

X = X560 + .675‘\/:_3_5-0
This agrees with the table.
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Thiede® has studied the mean square value of the fluctuations of the
integral

A@) = [: I*(r)e " dr (3.9-22)

The reading of a hot wire ammeter through which a current [ is passing is
proportional to A(#). «is a constant of the meter. Here we study A(f) by

T T T T
2.0 : ‘ H—H
| | |
|
2.00_AT O ! ||
| |
| N e e |
y L | I |
| T
S R . —_ |
of- | ! |
'_-_———_——-—_-
__.—'——'—'""_—_'—_.__.__._— !
_—t ] 675
i yo =y, ——— T
2 =
o8l 0d@3at0 L | IS S ‘ I 1
1 . {
b ‘ PROBABILITY DENSITY
— : (3.9-20) 15 AsSUMED H
| ‘ ]
0 : | |
z 3 2 s & 8 o 20 B 20 50 60
T(fgfa)

Fig. 5*—Filtered thermal noise—spread of energy fluctuation

(4T
E = f I2(t) dt, t; random, I is noise current,

1-' -Evs/Em,,' E.5/E.50 .
— fa = band width of filter.
first obtaining its correlation function. This method of approach enables
us to extend Thiede’s results
The distributed portion of the power spectrum of A(Z) is given by (3.9-
30). When the power spectrum w(f) of I(t) is zero except over the band
fa < f < fo where it is wp , the power spectrum of A(¢) is
2ws(fs = fo — f)
—7 S 0<f<fo—fa
e J<ho=J
and is zero from f — faup to 2fs . The spectrum from 2f; to 2fs is not zero,

and may be obtained from (3.9-34). The mean square fluctuation of A ()
is given, in the general case, by (3.9-28) and (3.9-32). For the band pass

case, when (fs — fa)/e is large,

s A(t)—A [ P ]”2
o A 2(fo — fa)

a6 Elec. Nachr. Tek., 13 (1936), 84-95. This is an excellent article.
* Note added in pruof The value of ¥ at 0 should be .415 instead of .403.
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We start by setting r = { — » which transforms the integral for A(¢) into

AQ) = _{ "I — w)e ™ du (3.9-23)
by At + 7)

In order to obtain the correlation function ¥(7) for A(¢) we multiply A ()
and average over all the possible currents
¥(r)

AWNA¢ + 7)

I

f e duf e “dvave I'(t — W't + 7 — 1)
o o

Just as in (3.9-4) the average in the integrand is the correlation function of
I*(t), the argument beingt + 7 — v —t +u =74+ u — v. From (3.9-7)
it is seen that this is

Yo+ 2 (r+u—0)
where {(7) is the correlation function of I(z).

Hence

w(r) =% 42 fm du fﬂ dve ™Y (r +u—1v) (3.9-24)
o 0 0
A@) is

From the integral (3.9-23) for A(#) it is seen that the average value of

:I =

R 5y

Vo (3.9-25)
&
where we have used

Yo = $(0) = fo w(f) df = I?

Using this result again, only this time applying it to A (), gives
A2(t) = ¥(0)

=A +2 l dufo dv e u — v)

The double integrals may be transformed by means of the change of
variable # + v = x, u — v = ¥,

T(r) = A’ +

(3.9-26)
Then (3.9-24) becomes

[ [ & [ T+ L dy [ dx] T + )

1 (3.9-27)
EaE fo Y (r + y) + P — 3)] dy
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When we make use of the fact that ¢(y) is an even function of y we see, from
(3.9-26), that the mean square fluctuation of A(¢) is

40 —AF =0 - & =2 [ eporay (929

¥(7) may be expressed in terms of integrals involving the power spectrum
w(f) of I(f). The work starts with (3.9-24) and is much the same as in
going from (3.9-8) to (3.9-9). The result is

W) = 4+ [ d [ dptiut
[ cos 2w (fi + fa)T 4 oo 2r(fy — fo)r :I
o + 2r(fi + )} o+ [2x(fi — f)F

It is convenient to define w(—f) for negative frequencies to be equal to
w(f). The integration with respect to fo may then be taken from — = to
+ = and we get

¥ =4+ [ [: dfsw(f)w(fs) afiz[gfr{}:—f%]z (3.9-29)

The power spectrum W(f) of A(t) may be obtained by integrating W(r):
W(f) = 4_[ W(r) cos 2nfr dr
o

Let us concern ourselves with the fluctuating portion A(f) — 4 of A(?).
Its power spectrum W(f) is

W.(f) = 4 _£ C (W) — A°) cos 2ufr dr
The integration is simplified by using Fourier’s integral formula in the form
fo " i fw 42 F(fs) cos 2n(u — for = $F(u)
We get i | '

W) = [ dnteGur + 1) + w1 + 1)

o 4
+ f (3.9-30)

arap L st = P

The simplicity of this result suggests that a simpler derivation may be
found. If we attempt to use the result

a(/) = Limit M—T”'z (2.5-3)
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where S(f) is given by (2.1-2) we find that we need the result

T—rw0

.. 2 ’ : 2wif(ta—t1) 72 2
Limit T./; dt1L d!ge I (t])I (tg)

- (3.9-31)
= [ wte¢ - fdr

where f > 0 and I(t) is a noise current with w(f) as its power spectrum.
This may be proved by using (3.9-7) and

@ +w
SL (1) cos 2nfrdr = f_m w(x)w(f — x) dx

which is given by equation (4C-6) in Appendix 4C.
An expression for the mean square fluctuation of A(¢) in terms of w(f) may
be obtained by setting 7 equal to zero in (3.9-29)

(A — A2 =w(0) —4°
- e w(fr)w(f2) (3.9-32)
- fo I Y R
The same result may be obtained by integrating W(f), (3.9-30), from 0
to oo '

o d 4o
L mlw dfhiw(fw(f — fi) (3.9-33)

Although this differs in appearance from (3.9-32) it may be transformed
into that expression by making use of w(—f) = w(f). :
Suppose that I(¢) is the current through an ideal band pass filter so that
w(f) is zero except in the band f, < f < fy whereitiswo. Then, if 3f, > f,

A=20= 1 (3.9-34)
5 2ilfs —fa— 1) 0 <f<fi—Tfa
[ w@wts =) s = wir - 27 Yo << fotJa

w2 — /) fotfa <7<

and is zero outside these ranges. The power spectrum W.(f) may be ob-
tained immediately from (3.9-30) by dividing these values by o + 4r°f*.

From (3.9-33)
e Jo—1

— A = ol o = fu =) df
(A A)" = 2wy _,; o + 47 )7
o [P (f = 2fa) 2 (Y0 (2 = f)

Wy ~L A g Wy = d

tw j;fa o + 4r?f? o+ w fytia @ + dmtf?
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If an exact answer is desired the integrations may be performed. When we
assume that f, — £, << f» + f. we may obtain approximations for the last
two integrals.

mzw[u - 27r(fb 1)
T

_ 1 o + 471'2(fb — fa)* (fo — fa)* :|
i log — 2 + & + 47 (fo + fu)?

Furthermore, if 2w(fy — fo)/e is large we have

G = 47 = wi

and the relative r.m.s. fluctuation is

(A() — A) I
r.m.s. of |: i ] [2(fb f):l

This result may also be obtained from (3.9-10) and (3.9-11) by assuming
« so small that the integral for A(#) may be broken into a great many in-
tegrals each extending over an interval T. o7 is assumed so small that

an

¢ ™" is substantially constant over each interval,

3.10 DisTtrIBUTION OF NOISE Prus SinE WAVE

Suppose we have a steady sinusoidal current
I, = I,() = P cos (wxf — ¢p) (3.10-1)

We pick times #;, f2, - -+ at random and note the corresponding values of
the current. How are these values distributed? Picking the times at ran-
dom in (3.10-1) is the same, statistically, as holding ¢ constant and picking
the phase angles ¢, at random from the range O to 2r. If I, be regarded as
a random variable defined by the random variable ¢,, its characteristic
function is

2T
ave elep — l e"zr’ cos (wpl—¢) dy

2w Jo (3.10-2)
= .JTQ(PE)
and its probability density is

o 1,2 gev-p
,)i‘ B—MIFJO(PZ) dz = j;l' (P Ip) | I:D | <P (310_3)
o e L 0 |I,| > P

In this case it is simpler to obtain the probability density directly from
(3.10-1) instead of from the characteristic function.
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Now suppose that we have a noise current Iy plus a sine wave. By com-
bining our representation (2.8-6) for Iy with the idea of ¢, being random
mentioned above we are led to the representation

I(t) =I=IF+IN

M
= P cos (wpt — @) + 2 CaOS (wal — @a),  (3.10-4)
1

¢n = 2w(f)Af
where ¢, and ¢1, - -+ @y are independent random angles.

If we note I at the random times f, , fs - - - how are the observed values
distributed? Since I, and Iy may be regarded as independent random
variables and since the characteristic function for the sum of two such vari-
ables is the product of their characteristic functions we have from (3.1-6)

and (3.10-2)

, e
ave, ¢! = ave. ¢"»V

gt 3.10-5
= Jo(Pz) exp( 202) ¢ 3

which gives the characteristic function of /. The probability density of I

s 37
15

1 [t

R 1 s N
L[ et gy pry s = ——— f ¢ AP 0N gg (3106
2r L P 05 = b (3.10-6)
In the same way the two-dimensional probability density of (I, I),
where I; = I(¢) is a sine wave plus noise (3.10-4) and I, = I(t + 7) is its
value at a constant interval 7 later, may be shown to be

W — ¥ [__Bﬁ) ] -
T}ﬂ 8 exp 20— v (3.10-7)

where
B(#) = yo[(I; — P cos 6)’ + (I. — P cos (§ + w,7))]

— (I — Pcos ) (I — P cos (0 + w,7))
The characteristic function for ; and 13 is

ave. ¢ = Jo(PA/uE + v + 2up cos wpT)

3.10-8
X exp [—% (u* F %) — yb,uﬂ] ( )

37 A different derivation of this expression is given by W. R. Bennett, Jour. Acous. Soc.
Amer., Vol. 15, p. 165 (Jan. 1944); B.S.T.J., Vol. 23, p. 97 (Jan. 1944).
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Sometimes the distribution of the envelope of
I=Pcospt+ Iy (3.10-9)

is of interest. Here we have replaced w, by p and have set ¢, to zero. By
the envelope we mean R(f) given by

R =R=(P+I1)+1I (3.10-10)

where I, is the component of Ty “in phase” with cos p¢ and I, is the com-
ponent “in phase” with sin pi:

I. = 25 cocos [(wa — Pt — @il
I, = 2 casin[(wn — p)t — @)
Iy = I, cos pt — I, sin pt
L=L=I=
Since I. and I, are distributed normally about zero with a variance of
Yo, the probability densities of the variables

x=P4 1.
y=1
are
—1/2 _ (.’XJ - P)2
(2mgo) " exp o0

2
(2mg) " exp — Zy—%
respectively. Setting

x = Rcos?

y = Rsin§
and using these distributions shows that the probability of a point (x, y)
lying in the ring R, R + dR is

2T
RaR [ oo [—% (R + P* — 2RP cos e)] a8
0

2mo Jo
2 2
_ RdR exp [—R + P ] I (}E) (3.10-11)

Yo 2o Yo
where I is the Bessel function with imaginary argument.
o0 2n
3
I(s) = 2

0 22 nlnl
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and is a tabulated function. Thus (3.10-11) gives the probability density
of the envelope R.

The average value of R may be obtained by multiplying (3.10-11) by R"
and integrating from 0 to «. Expansion of the Bessel function and term-
wise integration gives

B o= (2901 (" TR (T
R - (2'#{)) F(z + l)e lFl(z + 1, 1; 2'#0)
= o (” . P
= (2¥0) F(§ + 1)1F1( 513 %) (3.10-12)

where ,F; is a hypergeometric function.®® In going from the first line to
the second we have used Kummer’s first transformation of this function.
A special case is

R=P 4+ 2 (3.10-13)

When only noise is present, P = 0 and

R = ewr) = (%)

(3.10-14)
]?é = 2!!10

Before going further with (3.10-11) it is convenient to make the following
change of notation

vm X H=E . (3.10-15)

11/2 G127 172
0 Yo Yo
“g” is the ratio (sine wave amplitude)/(r.m.s. noise current).
Instead of the random variable R we now have the random variable » whose
probability density is

2 2
$(v) = vexp l:—w -; a ] Io(av) (3.10-16)

Curves of (2) versus v are plotted in Fig. 6 for the values 0,1, 2,3, 5 of a.
Curves showing the probability that v is less than a stated amount, i.e., dis-
tribution curves for », are given in Fig. 7. These curves were obtained by
integrating p(v) numerically. The following useful expression for this

probability has been given by W. R. Bennett in some unpublished work.
1] 2 2 ) n
j; p(u) du = exp [_v _g a:l > (%) I.(av) (3.10-17)
n=1

¥ Curves of this function are given in “Tables of Functions”, Jahnke and Emde (1938),
p. 275, and some of its properties are stated in Appendix 4C.
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This is obtained by integration by parts using
f w" Iny(au) du = u" I.(au)/a

When av >> 1 but 1 << a — v, Bennett has shown that (3.10-17)

v 1/2 _ 2
£ pla) du = (2—;) aiﬂexp[—(v 3 a):l

(1 _3(a+ )’ - 49" )
S8av(e — v)*

leads to

(3.10-18)

0.4

o
[N

PROBABILITY DENSITY p(v]

Fig. 6—Probability density of envelope R of I(¢) = P cos pt + Iy

This formula may also be obtained by putting the asymptotic expansion
(3.10-19) for p(v) in (3.10-17), integrating by parts twice, and mneglecting
higher order terms.

When av becomes large we may replace Io(av) by its asymptonc expres-
sion. The expression for p(v) is then '

1/2 2
p(v) ~ (1 + %}) (ﬁ) exp [—(” “2 9) ] (3.10~19)

Thus when either @ becomes large or v is far out on the tail of the probability
density curve, the distribution behaves like a normal law. In terms of the
original quantities, the normal law has an average of P and a standard devia-
tion of ¢o'>. This standard deviation is the same as the standard deviation
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of the instantaneous values of 7y. When av>> 1 and ¢ > |v — a | we may
expand the coefficient of the exponential term in (3.10-19) in powers of

e 7

9:.u-7 - — | | ///

— y v
99.5|- ‘ — /// /

?f 3
N

|
N\

A

N

-
N
\S\
™~

‘230 | a/\/ N
| /40

7/

| / [ 1]

%2 j . / /

N 74V AN an

o
W
~
N
"'—-—._
\
'ﬁ“]"‘-
o
4
w
|
z

W /
TA )
A

0.05) /
|
0.0 !
-a =) 2 o o B 2 3 a

v—a
Fig. 7—Distribution function of envelope R of I{t) = P cos pt + Iy

N
™~

—]

(v — a)/a. Integrating this expansion termwise gives, when terms of magni-
tude less than a~° are neglected,

?—a

j: pla) du = erf V2

1 7 — a 1+(v~a)2]_ (v—a)‘-‘]
T 2a/2r |:1 T m T s e*p[" 2
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When 7 consists of two sine waves plus noise
I'=Pcospt+Qsingt + Iy, (3.10-20)

where the radian frequencies  and ¢ are incommensurable, the probability
density of the envelope R is

R fo TR To( PP To(r)e dr 3.10-21)

where Yo is Iy . When Q is zero the integral may be evaluated to give
(3.10-11). When both P and Q are zero the probability density for R
when only noise is present is obtained. If there are three sine waves instead
of two then another Bessel function must be placed in the integrand, and
so on. To define R it is convenient to think of the noise as being confined
to a relatively narrow band and the frequencies of the sine waves lying
within, or close to, this band. As in equations (3.7-2) to (3.7-4), we refer
all terms to a representative mid-band frequency fu = wn/2m by using
equations of the type

cos pt = cos [(p — wm)l + wnl]

cos (p — wm)l cOS wui — sin (P — wm)t SN Wyt

In this way we obtain
V = A cos wnt — Bsin wat = R cos (wad + 6) (3.10-22)
where 4 and B are relatively slowly varying functions of ¢ given by
A = Pcos (p — wmt + Q cos (g — wn)t
+ Zﬂ‘, € COS (wnt — wmt — @n)

(3.10-23)
B = Psin (p — wa)t + Q sin (¢ — wm)t
+ 2 Casin (Wt — wmt — @n)
and
RP= 4"+ B, R>0

(3.10-24)
tan§ = B/A |

As might be expected, (3.10-21) is closely associated with the problem
of random flights and may be obtained from Kluyver’s result” by assuming

# G. N. Watson, “Theory of Bessel Functions” (Cambridge, 1922), p. 420.
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the noise to correspond to a very large number of very small random dis-

placements.

Another way of deriving (3.10-21) is to assume (p — wn)t, (¢ — wat,
O1, @2, - -!are independent random angles. The characteristic function
of A, Bis

ave. eiuAHuB — JD(.P\/H2+ ﬂQ)JO(Q_\/uQ+v2)eﬁ(¢012)(u2+z~2)

The probability density of 4, B is

1\* rt= te . s
(é_) -[ dﬂ -[ diu' e—luA—wB ave. e|uA+|ﬂB
T 0 L)

When the change of variables
A = Rcosf % = rCos o
B = Rsin @ 7 = rsin ¢

is made the integration with respect to ¢ may be performed. The double
integral becomes

a0

1 f rTo(Pr) Jo(Or) Jo(Rr)e~#0/D™ gy
2 Jy

-

This leads directly to (3.10-21) when we observe that dAdB = RdRd6.
Incidentally, if

I =001+ kcos pt) coé gt + Iy
in which p << g, similar considerations show that the probability density
of Ris
R 2T @ Wof2)r?
2——f daf rJo(Rr) JoQr(1 + k cos a)]e 2" g
m Jo o

when wn is taken to be ¢. The integration with respect to r may be per-
formed. This relation is closely connected with (3.10-11).

Returning now to the case in which 7 is the sum of two sine waves plus
noise, we may show from (3.10-21) and

2 n+l 1 ’J‘f)
ir_z

j; " R (R dR = S
n+2 __g
r I‘( 2)
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that the average value of R*is, when —2 < 7e (n) < — 1§,

T“r(1+?) -
R = _ N Y f " Jo(PRTo(Or)e Y dr
0
n

n
P(‘z)

wep (7 353 (‘E)Hm(‘-”)"(—y)’" (3.10-25)
= (%) F(5 + 1) Z Z klE!m!m!

k=0 m=0
n k
— w2z (7 S (_i)k oG- vty
—WOPG+Q§ Ar h@—»

It appears very probable that this result could be extended, by analytic
continuation, to positive integer values of #n. We have used the notation

(a)o = 1, (@i = ala +1) +++ (@a+k—1)

P 0 (3.10-26)
—_— v = —

24’ T 2

and have denoted the Legendre polynomial by Pi(z). The series converge
for all values of P, Q, and yand terminate when nisaneven positive integer.

When « or y, or both, are large in comparison with unity we may use the
integral for R* to obtain the asymptotic expansion, assuming Q < P so
that y < w,

n n
=5 "~ (_E)k(_§>k no, o n, _y) -
R P §T2F1 k E’k E,I,E (3.10-27)

When 7 is an even positive integer this series terminates and gives the same
expression as (3.10-25). When nis an odd integer the oF; may be expressed
in terms of the complete elliptic functions E and A of modulus YA

X
2
2F1(—%; -3 1;2) = 4—E - = (1 - {E) K
x T T x

2F1(§: 3 1; y) = 'Z‘K
x T

The higher terms may be computed from
a(1 — 2)%aFi(a+ 1,0+ 1;1;5) = (26 — 1)1 + 2)2Fi(a, ¢;1;5)
+ (1 —a)Fi(a—1,a—1;1;2) (3.10-29)

(3.10-28)
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which is a special case of

ably + D)(1 = 2 aFi(a+ 1,0+ 1;¢;2) = AoFi(a, b; ¢; 2)
—(y—=D{c—a)(c—b)Fila—1,b—1;¢;3) (3.10-30)

where v = ¢ — @ — b and

A=@E—Dr+ Q=3 — De— 80 —1) + (v+ Dalc — a = 1)]

Although this expression does not show it, 4 is really symmetrical in a
and b. A symmetrical form may be obtained by using the expression ob-
tained by putting z = 0 in (3.10-30).

3.11 SmoTr EFFECT REPRESENTATION

In most of the work in this part the representations (2.8-1) or (2.8-6)
have been used as a starting point. Here we point out that the shot effect
representation used in Part I may also be used as a starting point,

" For example, suppose we wish to find the two dimensional distribution of
I(tyand I(t + 7) discussed in Section 3.2, This is a special case of the distri-
bution of the two variables

:{‘; F(t — t)

I(t) =
" (3.11-1)
I = 2, Gt — 4
where we now assume
+e0 oo d
f _Foa= [ GO =0 (3.11-2)

in order that the average values of I and J may be zero. In fact, to get
I{t + 7) from J(t) we set G(1) equal to F(t 4 ).

The distribution of I and J may be obtained in much the same manner
as was the distribution of I alone in section 1.4. The characteristic func-
tion of the distribution is

flu, v) = ave, "+

e . 3.11-3
= exp » [ Igzu!’(t)hu(}‘(!) _ 1] dt ( )

where » is the expected number of events (electron arrivals in the shot effect)

per second. The probability density of I and J is

1 +ea +e0 X A
-l_r‘.[ du dve " flu, ) (3.114)

0
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The semi-invariants An,. are given by the generating function
k

log fla 3) = 20 = (i) "(in)" + ol(iw)", (i0)']
and are
o =5 [ P0G &b (3.11-5)

-]

Asy— = the distribution of I and J approaches a two dimensional normal
law. The approximation to this normal law may be obtained in much the
same manner as in section 1.6. From our assumption (3.11-2) it follows
that Ao and Ao, are zero. From the relation between the second moments
and semi-invariants A we have

+eo

g = Ao + Ao = ¥ F*(1) dt

+
w2z = An + Apda = » F()G(1) di (3.11-6)

o0

+oo
p = Aoz + A1 = ¥ [ G*(t) dt

where the notation in the subscripts of the u’s differs from that of the N’s,
the change being made to bring it in line with sections 2.9 and 2.10 so that
we may write down the normal distribution at once.

The formulas (3.11-6) are closely related to Rowland’s generalization of
Campbell’s theorem mentioned just below equation (1.5-9).



PART 1V
NOISE THROUGH NON-LINEAR DEVICES

4.0 INTRODUCTION

We shall consider two problems which concern noise passing through
detectors or other non-linear devices. The first deals with the statistical
properties of the output of a non-linear device, that is, with its average
value, its fluctuation about this average and so on. The second problem
may be stated more definitely: Given a non-linear device and an input
consisting of noise alone, or of noise plus a signal. What is the power
spectrum of the output?

There does not seem to be much published material on the first problem.
However, from conversation with other people, I have learned that it has
been studied independently by several investigators. The same is probably
true of the second problem although here the published material is somewhat
more plentiful. This makes it difficult to assign credit where credit is due.
Much of the material given here had its origin in discussions with friends,
especially with W. R. Bennett, J. H. Van Vleck, and David Middleton.
Help was obtained from the recent paper” by Bennett, and also from the
manuscript of a forthcoming paper by Middleton.”

4.1 Low FrreqQueExcy OuTPuT OF A SQUARE Law DEVICE

Let the output current 7 of the device be related to the input voltage V by
I =aV? (4.1-1)

where « is a constant. When the power spectrum of V' is confined to a
relatively narrow band, the power spectrum of I consists of two portions.
One portion clusters around twice the mid-band frequency of V and the
other around zero frequency. We are interested in the low frequency
portion. The current corresponding to this portion will be denoted by
I, and is the current which would flow if a low pass filter were inserted
in the output to remove the upper portion of the spectrum. Itis convenient
to divide 7,¢ into two components:

I = Tic + Ity (4.1-2)

37 Loc. cit. (Section 3.10).

40 Cruft Laboratory and the Research Laboratory of Physics, Harvard University,
Cambridge, Mass. In the following sections references to Bennett's paper and Middle-
ton’s manuscript are made by simply giving the authors’ names.
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where the subscripts stand for “total low” frequency, “direct current.”
and “low frequency,” respectively. We have
Is. = average I,¢ = I (4.1-3)
Mean Square Ity = average (T4 — Ia)® = Ift - I

Probably the simplest method of obtaining 4. is to square the given ex-
pression for V" and pick out the terms independent of time. Thus if

V = Pcos pt + Qcos gt + Vy (4.1-4)
we have
2 2 J—
In=a (5;- +2 + Vi) (4.1-5)

Ity may also be obtained by picking out the low frequency terms. How-
ever, here we wish to use the square law device, and the linear rectifier in the
next section, to illustrate a general method of dealing with the statistical
properties of the output of a non-linear device when the input voltage is
restricted to a relatively narrow band.

If none of the low frequency spectrum is removed by filters,
2

Iu=a ‘% (4.1-6)

where R is the envelope of V. The probability density and the statistical
properties of T4 may be derived from this relation when the distribution
function ¢f R is known." Before discussing these properties we shall
establish (4.1-6).

Equation (4.1-6) is a special case of a more general result established
in Section 4.3. However, its truth may be seen by taking the example

V = Pcos pt + Qcos gt + Vu (4.1-4)

where f, = p/2x and f, = ¢/2w lie within, or close to, the band of the noise
voltage Vy .
By using formulas of the type
cos pt = cos [(p — wm)t + wat]
(4.1-7)
cos (P — wm)t COS wnt — Sin (P — wn)i sin wat

“ When part of the low-frequency spectrum is removed, the problem becomes much

more difficult. Iz may be obtained as above, but to get I i, it is necessary to first deter-
mine the power spectrum of I (Section 4.5) and then integrate over the appropriate por-
tion of it. Concerning the distribution of I¢; , our present knowledge tells us only that it
lies between the one given by (4.1-6) and the normal law which it approaches when only
a narrow portion of the low frequency spectrum is passed by the audio frequency filter
(Section 4.3).
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we may refer all terms to the mid-band frequency fm = wn/2m, as is done
in equations (3.7-2) to (3.7-4).
In this way we obtain

1" = A cos wnt — B sin wnt = R cos (wat + 6), (4.1-8)
where A and B are relatively slowly varying functiens of £ given by
A =Pcos (p — wa)t + Q cos (¢ = wn)t + 2 CacOS (wnt — @t — ¢n),
B = Psin (p — wa)l + Qsin (7 — @)t + 2, 6o 8in (wal — wnl — @n)
and
R=4*"+B, R>0
tan @ = B/A.

This definition of R has also been given in equations (3.10-22, 23, 24).
The envelope of V is R and the output current is

(4.1-9)

I =aR’ [% + % cos 2wnt + 29)] (4.1-10)
Since R is a slowly varying function of time, so is R’. The power spectrum
of R® is confined to frequencies much lower than 2f, and consequently the
power spectrum of R® cos (2w.! + 26) is clustered around 2f,,. Thus the
only term in 7 contributing to the low frequency output is aR*/2 which is
what we wished to show.

We now return to the statistical properties of I,¢. First, consider the
case in which V consists of noise only, V' = Vy, so that the probability
density of the envelope R is

R grizia (3.7-10)
. Yo
where
Yo = [rms Vil' = Vi (4.1-11)
Hence .
—_ R‘_’
Ide = I!C = az
= [u "_{E R o g
~0 2 ¢u
= a]l/n
s ) a . a2R5 270
Iy =Tu—li=| o~ eI GR — I,
o 4o (4.1-12)
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Second, consider the case in which
V =1Vy+ Pcos pt (4.1-13)

where p/2m lies near the noise band of Vy. The probability density of the
envelope R is

R R + p”] (RP)
- — I~ 3.10-11
% e"p[ w1\ (3-10-11)
From this and equations (3.10-12), (3.10-13), we find
Lie = 2 = oo - ol (4.1-14)
2 2
— 2
Iit = EE [2¢.)+2P2¢ + ]
In =T3¢ — I3, = o’ldo + Pl (4.1-15)

In (4.1-14) ¥ is the mean square value of Vy and P°/2 is the mean
square value of the signal. These two equations show that ;. and the
rms value of [ are independent of the distribution of the noise power
spectrumin Vy as long as the input V is confined to a relatively narrow band.
In other words, although this distribution does affect the power spectrum
of the output, it does not affect the d.c. and rms 7 when ypand P are given.
That the same is also true for a large class of non-linear devices was first
pointed out by Middleton (see end of Section 4.9).

When the voltage is*

V = Vs + P cos pt + Q cos ¢, (4.1-4)

p # q, we obtain from equation (3.10-25)
2 2
— %@ = £ Q)
I, 3 R a (llfo + 2 + 2
B (4.1-16)

2
Itf—a[o+P2%+Q2%+P%]

42 These results are special cases, obtained by assuming no audio frequency filter, of
formulas given by F. C. Williams, Jour. Inst. of E. E., 80 (1937), 218-226. Williams also
discusses the response of a linear rectifier to (4.1-4) when P>> Q + Vy. An account
of Williams’ work is given by E. B. Moullin, “Spontaneous Fluctuations of Voltage,”
Oxford (1938), Chap. 7.
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4.2 Low FreqQuEncy OUuTPUT OF A LINEAR RECTIFIER

In the case of the linear rectifier

Lo V<o @
eV, V>0 '

the low frequency output current, assuming no audio frequency filter, is

I = C%{ (4.2—2)

This formula, like its analogue (4.1-6) for the square law device, assumes
that the applied signal and noise lie within a relatively narrow band. It
may be used to compute the probability density and statistical properties
of 7,¢ when the corresponding information regarding the envelope R of the
applied voltage is known.

The truth of (4.2-2) may be seen by considering the output 7. It con-
sists of the positive halves of the oscillations of aV. The envelope of [ is
thesame as that of aV.  However, the area under the loops of 7 is only about
1/ of the area under aR, this being the ratio of the area under a loop of
sin a to the area of a rectangle of unit height and length 2r. TFrom the
low frequency point of view these loops of I merge into a current which
varies as aR/w.

When V is a sine wave plus noise,

V= "Vy + P cos pt (4.1-13)

the average value of I .is*

_ 1/2 2
Jo=2R=a ﬂ) 1F1(—1;1; _E_)
™ 27 2 2y

i (4.2-3)

—a(¥) |G+ 91 ”f)—}-xI v

2w '\2 "\2

where o, I; are Bessel functions of imaginary argument and

o = P _ ave. sine wave power (4.2-4)

2y ave. noise power

# This result was discovered independently by several investigators, among whom we
may mention W, R. Bennett and D. O. North. The latter has applied it to noise measure-
ment work. He has found that the diode detector, when adapted to noise metering, is a
great improvement over the thermocouple, and has used noise meters of this type satis-
factorily since 1940. See D. O. North, “The Modification of Noise by Certain Non-
Linear Devices”, Paper read before I.R.E., Jan, 28, 1944,
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Yo being the average value of V . Equation (4.2-3) follows from the
formulas (3.10-12) and (4B-9). When x is large the asymptotic expansion
(4B-3) of the 1) gives

@ Yo , ¥ 5
Ii - I:P + p T ap + ] (4.2-5)
Similarly, the mean square value of 7 is
- 2 ___ 2
Tit =5 =5 (P + 20) (4.2-6)

and the mean square value of the low frequency current I¢s, excluding the
d.c., is given by

When 2 is large we have
2 2 :
o ] o 1 : .
= — LY = — 1 — o — ... A
Fes - [% 2p? ] w vo [ 4x ] (42-7)

and when & = 0,

(]

. 2
It = St (2 - T—r) (4.2-8)
T 2

Curves for I, are given in Figures 1, 2 and 3 of Bennett’s paper. He

also gives curves, in Fig. 4, showing Ij; versus x. These show that the
effect of the higher order modulation terms is small when Ity is computed
by adding low frequency modulation products.

When V consists of two sine waves plus noise,

V = Vy + P cos pt + Q cos ¢, (4.1-4)

the average value of I is, from (3.10-25), a sort of double ;F; function:

1/2 = o0 1
Le=2F=a(2) 5 5 i (-0 (="

2r) b oash klkImiml (8.2-9
_ (o V(=D x4y )
_“(2?) P AR Py
where
2 2
x = P Q P.(z) = Legendre polynomial  (4.2-10)

" 7T W
If x is large and ¥ < , we have from (3.10-27) the asymptotic expression
© (1), (—1),
T~ P 3 CUCD g (k= 1 52) @2

T k=0 klxk x
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The »f'; may be expressed in terms of the complete elliptic functions E and
K of modulus /%%, Thus

)
2F1(%,-;1;E)=:K
x T

and the higher terms may be computed from the recurrence relation
(3.10-29). The first term, £ = 0, in (4.2-11) gives I;. when the noise is
absent."

The mean square value of I is

(3.10-28)

[EC

_ 2 2 .
Le=%R =% 200+ P + ) (4.2-14)
From this expression and our expression for /4., the rms value of the low
frequency current, 7¢; , excluding the d.c., may be computed. For example,
when the noise is small,

-y o 2 2 L.y :
I(;NP P+ Q — | PoFr | 3, —%,1:;

+ 2%(1 - gFl(-—%. -1 1;2) 5()]
X m

- The term independent of yq gives the mean square low frequency current
in the absence of noise. As () goes to zero (4.2-15) approaches the leading
term in (4.2-7), as it should. When P = Q our formula breaks down and
it appears that we need the asymptotic behavior of*

_ (N (IR,
e=a(3z) & SR o

(4.2-15)

In view of the questionable nature of the derivation given in Section 3.10
of equations (4.2-9) and (4.2-11) it was thought that a numerical check on
their equivalence would be worth while. Accordingly, the values x = 4,
¥ = 3 were used in the second series of (4.2-9). It was found that the
largest term (about 130) in the summation occurred at 2 = 11. In all, 24
terms were taken. The result obtained was

R
V24

# See W. R. Bennett, B.S.T.J., Vol. 12 (1933), 228-243.
% This may be done by the method given by W. B. Ford, Asymptotic Developments,
Univ. of Mich. Press (1936), Chap. VL.

= 2.5502
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For the same values of x and y the asymptotic series (4.2-11) gave
240 + 0171 4+ 075 + 052 + ----

If we stop just before the smallest term we get 2.57 for the sum. If we
include the smallest term we get 2.65. This agreement indicates that
(4.2-11) is actually the asymptotic expansion of (4.2-9).

When the voltage is of the form

V = Q(1 4+ kcos pt) cos gt + Vx

we may use

_ nf2 ?_Z i 2r
= (200 P(l + 2) wao

(4.2-16)
1F1[—;—z; 1; —y(1 4+ % cos 8)2] d

where R is the env_elope with respect to the frequency g/2r and y is given
by (4.2-10). The integral may be evaluated by writing 1"y as a power
series and integrating termwise using the result

2T
1 f (1 4 k cos 6)! cos mo db
T Jo
(4.2-17)

(=0 _pym .2
= R (=R | T, T ,m—l—l,k]

l:m-—l m—L+1
2™ m)

where m is a non-negative integer, { any number,

(@) = ala + 1) -+ (@ + m — 1), (a)o = 1, and 0)p = 1.

The integral may also be evaluated in terms of the associated Legendre

function.
By applying the methods of Section 3.10 to (4.2-16) we are led to

ﬁ=Q2(1 k)-f"ZI]/u

QE( 2)( 75)3 F( %,3;1;k2)

s=0

(4.2-18)

where the asymptotic series holds when y is very large and % is not too close
to unity. These expressions give

Ity ~ jri (Q*% +l2 — 1 =B + ) (4.2-19)
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The reader might be tempted to associate the coefficient of ¥ in (4.2-19)
with the continuous portion of the output power spectrum. However, this
would not be correct. It appears that the principal contribution of the
continuous portion of the power spectrum to 77, is a'yo/7", just as in (4.2-7)
when % is zero. The difference between this and the corresponding term
in (4.2-19) seems to arise from the fact that the amplitude of the recovered
signal is not exactly aQ%/7 but is modified by the presence of the noise.
This general type of behavior might be expected on physical grounds since
changing P, say doubling it, in (4.2-7) does not appreciably affect the I,
in (4.2-7) (which is due entirely to the continuous portion of the noise
spectrum). The modulating wave may be regarded as slowly making
changes of this sort in P.

4.3 SOME STATISTICAL PROPERTIES OF THE OUTPUT OF A GENERAL
Non-LiNEarR DEvVICE

Our general problem is this: Given a non-linear device whose output 7 is
related to its input V by the relation

_ 1 f . iVu _
I= I CF(m)e du (4A-1)

which is discussed in Appendix 4A, Let the input V contain noise in addi-
tion to the signal. Choose some frequency band in the output for study.
What are the statistical properties of the current flowing in this band?

It seems to be difficult to handle this general problem. However, it
appears that the two following results are true,

1. As the output band is chosen narrower and narrower the statistical
properties of the corresponding current approach those of the random noise
current discussed in Part ITI (provided no signal harmonic lies within the
band). In particular, the instantaneous current values are distributed
normally,

2. When the input V' is confined to a relatively narrow band the power
spectrum of the output 7 is clustered around the 0™ (d.c.), 1st, 2nd, etc.
harmonics of the midband frequency of V. The low frequency output in-
cluding the d.c. is

Tt = Ao(R) = 2% fc F(iu)Jo(uR) du (4.3-11)

where R is the envelope of V.
The envelope of the nth harmonic of the output, when # > 0, is

A(R) = }r f F(iu)J(uR) du (4.3-1)
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The mathematical statement is

o0

I= ED A,(R) cos (Bwnmt + nb) (4.3-9)
where fn = wn/(27) is the representative mid-band frequency of V and 6
is a relatively slowly varying phase angle. The results of Sections 4.1
and 4.2 are special cases of this.

Middleton’s result that the noise power in each of the output bands (in
the entire band corresponding to a given harmonic) depends only on Vy =
Yo and not onl the spectrum of Vi, where Vi is the noise voltage component
of ¥, may also be obtained from (4.3-9). We note that the total power
in the #™ band depends only on the mean square value of its envelope
A.(R), and that the probability density of the envelope R of the input in-
volves Vy only through o .

The argument we shall use in discussing the first result is not very satis-
factory. It runs'asfollows. The output current I may be divided into two
parts. One consists of sinusoidal terms due to the signal. The other con-
sists of noise. We shall be concerned only with the latter which we shall
call Ty . The correlation between two values of Iy separated by an interval
of time approaches zero as the interval becomes large. Let 7 be an interval
long enough to ensure that the two values of Iy are substantially
independent. Choose an interval of time 7" long enough to contain many
intervals of length r. Expand Iy as a Fourier series over this interval.
We have '

Iy = %’—i— ;[an cos 211-_]71;6 + b, sin 2‘"13;]
) (4.3-2)

T

—i2xnt/T
= = Iy(t) di
T Jo € ~(?)

=,
o

L@, —

Let the ,b_é,nd.chosen for study be fo — —g tofo + g and let

T (fo - g) —m, T (fo + ‘-23) = 11y (4.3-3)

where 1, and 7» are integers. The number of components in the band is
(ns — m1). We suppose f is such that this is small in comparison with T/,
The output of the band is

Iv = 2 |:a,i cos 2mn t + b, sin Qﬂt] (4.3-4)
n="] T T
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where

T
a, — ib, = 12; f g ETIMTIOE TREI (1) d
0

' (4.3-5)
= M —!2_ 1z +n — ”;:;:ﬁz ='-f°T + = fHT)
We choose the band so narrow that
s —m<KT/r or Brk1 (4.3-6)

This enables us to write approximately

Ty ; 2 T .
a, — ib, = D ¢ T2 I (o) dt
r=1 T (=1t

r. = T/7, T being chosen to make r; an integer. Suppose we do this for
a large number of intervals of length 7. Then 7y(#) will differ from interval
to interval. The set of integrals for » = 1 gives us an array of values which
we regard as defining the distribution of a complex random variable, say
a1. Similarly the set of integrals for r = 2 defines the distribution of a
second random variable a2, and so on to ar, . Because we have chosen =
so large that Tx(f) in any one integral is practically independent of its values
in the other integrals we may say that ay, xy, -+ - xr, are independent.

We have

T1 ..
Z e—:zwt(n!'r) folrr %

r=1

anl - 'ibnl =

r -
ﬁ: Do

r=1

Apyy1 — 1;b'nl-f-l =

1
Qna — ib,, = Z e—t-r((nal'f)—fu)rr %,
r=1

and if 7s — 1y << 11, as was assumed in (4.3-6), we may apply the central
limit theorem to show that @, , ba, , @ny41, *** @ny , by tend to become in-
dependent and normally distributed about zero as we let the band width
A — 0and T — o (and hence r, — <) in such a way as to keep ns — m
fixed. TIn this work we make use of the fact that Iy(¢) is such that the real
and imaginary parts of a1, ¥z, - - - - all have the same average and standard
deviation. It is convenient to assume foT is an integer.

Thus as the band width 8 approaches zero the band output Jy given by
(4.3-4) may be represented in the same way, namely as (2.8-1), as was the
random noise current studied in Part TII. Hence Jy tends to have the
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same properties as the random noise current studied there. For example,
the distribution of Jy tends towards a normal law. In our discussion we
had to assume that 87 << 1. If the voltage V applied to the non-linear
device is confined to a relatively narrow frequency band, say fy — fa, it
appears that the interval = (chosen above so that I(¢) and I(¢ 4 7) are sub-
stantially independent) may be taken to be of the order of 1/(fs — fa).
In this case Jy tends to behave like a random noise current if 3/(fs — fa) is
much smaller than unity. .

We now turn our attention to the second statement made at the begin-
ning of this section. Let the applied voltage be confined to a relatively
narrow band so that it may be represented by equation (4.1-8) of Section
4.1,

V = R cos (wut + 6), R = 0, (4.1-8)

where fm = ww/(27) is some representative frequency within the band
and R and 8 are functions of time which vary slowly in comparison with
cos wnf. We call R the envelope of V.

From equation (4A-1)

I= 21; f F(iu)e™® = “nt* gy (4.3-7)
C
We expand the integrand by means of
g = ZO €1 co8S npd (%) (4.3-8)

where ¢ is 1 and €, is 2 when # > 0 and J.(x) is a Bessel function.
Thus

I= i Au(R) cos (nwni + nb) (4.3-9)

n=0

where

ALR) = e;—ﬂ_ j; Flin)Ju(uR) du (4.3-10)

Since R is a relatively slowly varying function of time we expect the
same to be true of 4,(R), at least for moderately small values of #. Thus
from (4.3-9) we see that the power spectrum of I will consist of a suc-
cession of bands, the #*" band being clustered around the frequency #f,.
If we eliminate all of the bands except the #*" by means of a filter we
see that the output will have the envelope 4,(R) when # = 1. Taking
n to be zero, shows that the low frequency output is simply

AR) = - f F(iw) Jo(uR) du (4.3-11)
271' c
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Taking # to be one shows that the band around f,, is given by

5 (4.3-12)

The statistical properties of the low frequency output and of the en-
velopes of the output bands may be obtained from those of R. For ex-
ample, the probability density of 4,(R) is of the form

dA.(R)

?(R) TR (4.3-13)

where p(R) is the probablhty de1151ty of R. 1In this expression R is con-
sidered as a function of 4,

It should be noted that we have been assuming that all of the band
surrounding the harmonic frequency #nf, is taken. When we take only a
portion of it, ‘presumably the statistical properties will tend to approach
those of a random noise current in accordance with the first statement made
at the beginning of this section.

When we apply (4.3-11) to the square law device we have

2
F(iu) = @ a)s
)
ity = <25 [
— % p?
= 2 R

When we apply (4.3-11) to the linear rectifier:

Fliu) = — <

u?

+o0
Jo(uR) du = aR

AO(R) L —i
2T T

where the path of integration passes under the origin. These two results

agree with those obtained in Section 4.1 and 4.2 from simple considerations,

As a final example we find the low frequency output of a biased linear

rectifier in terms of the envelope R of the applied voltage. From the table

of F(iu) given in Appendix 4A we see that F(in) corresponding to

I=0 V < B
I=V—-B V>B
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is
—iuB

Fliu) = —

u

Consequently, the low frequency output is
1 ™ s —2
Ao(R) = —— e " Ty(uR)u " du
2r Lo

where the path of integration is indented downwards at the origin. When
B > R the value of the integral is zero since then the path of integration
may be closed in the lower half plane by an infinite semi-circle This value
also follows at once from the physics of the problem. When —R < B < R
we may integrate by parts and get

1 -

2r Lw

Ao(R) = ¢ ""P[iBJy(uR) + RI(uR) " du

= —2 + -.Tlrf [B sin #BJo(#R) + R cos uBJ(uR) ™" du
2 0
(4.3-14)
= _§+§ arc sinE —I—1 VR — B
2 R 7
B | R 1 1.1 B
="3t:r ("5’ ‘5’5'1@)’ R<B<R
This hypergeometric function turns up again in equation (4.7-6). Also
in the range —R < B < R,

dAn_l 1_.5_"
dR T R?

When B is negative and R < —B, the path of integration may be closed
by an infinite semicircle in the upper half plane and the value of the integral
is proportional to the residue of the pole at the origin:

Ao(R) = 2ri (—l) (—iB)
2T

= —B

Thus, to summarize, the low frequency output for our linear rectifier is,
for B > 0, (R is always positive)
Ao(R) = 0, R < B
. R —
Ao(R)=—§+§arcsm§+4\/R2—B'z, B <R
2 T R

&

(4.3-15)
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and for B < 0 it is
Ao(R) = |B|, R < |B]|

Ao(R) = + |BI |B |arcsm l-i— V'R |B| < R

where the arc sines lie between 0 and /2. A,(R) and its first derivative
with respect to R are continuous.
From (4.3-15), the d.c. output current is, for B > 0,

(4.3-16)

I = fnl: = + —arcsin 5 + \/R2 ]P(R) dR  (4.3-15)

where p(R) is the probability density of the envelope of the input V, e.g.,
#(R) is of the form (3.7-10) for noise alone, and of the form (3.10-11) for
noise plus a sine wave. Similarly, the rms value of the low frequency
current 74 , excluding d.c., may be computed from

7%1' = -I—f.f - Iﬁc
where, if B > 0,

I = fw |:—— + = arc sin < —I— \/JR2 Bz:l p(R)dR  (4.3-16)

If V consists of a sine wave of amplitude P plus noise Vy , so it may be
represented as (4.1-13), and if P >> rms Vy, the distribution of R is
approximately normal. If, in addition, P — B >> rms Vy.> 0, (4.3-15),
(4.3-16), and (3.10-19) lead to the approximations

Id,=——-[-—arcsm—+ \/—B"-l- Yo

2 2r\/ P2 — B?
B P B
- it (t3-17)
E P — B
Ty =~ ¥ .

The second expression for I4. assumes P 3> B. When B = 0, these re-
duce to the first terms of (4.2-5) and (4.2-7). By using a different
method Middleton has obtained a more precise form of this result.

Incidentally, for a given applied voltage, 74.(-+) for a positive bias | B |
is related to Tq.(—) for a negative bias — | B | by

Ii(—) = |B| + Ial+) (4.3-18)

Also rmus. Tp(+) is cqual to rms. f(—). Equation (4.3-18) follows
from a physical argument based on the areas underneath a curve of I for
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the two cases. Both of the above relations follow from formulas given by
Middleton when V is the sum of a sine wave plus noise. They may also be
derived from (4.3-15) and (4.3-16).

4.4 Ovutpur POWER SPECTRUM

The remainder of Part IV will be concerned with methods of solving the
following problem: Given a non-linear device and an input voltage con-
sisting of noise alone or of a signal plus noise. What is the power spectrum
of the output?

In some ways the answer to this problem gives us less information than
the methods discussed in the first three sections. For example, beyond
giving the rms value, it tells us very little about the probability density of
the current corresponding to a given frequency band of the output. On
the other hand, this rms value may be found (by integrating the power
spectrum) for any band we choose to study. The methods described earlier
depended on the input being confined to a relatively narrow band and gave
information regarding only the entire band corresponding to a given har-
monic (Oth, 1st, 2nd, etc.) of the input. There was no way to study the
output when part of a band was eliminated by filters except by obtaining
the power spectrum of some function of the envelope.

At present there appear to be two general methods available for the
determination of the output power spectrum each with its own advantages
and disadvantages. First there is the direct method which has been used
by W. R. Bennett*, F. C. Williams**, J. R. Ragazzini‘“i and others. The
noise is represented as the sum of a finite number of sinusoidal components.
The typical modulation product is computed and the output power spectrum
is obtained by considering the density and amplitude of these products.
The chief advantage of this method lies in its close relation to the known
theory of modulation in non-linear circuits. Generally, the lower order
modulation products are the only ones which contribute significantly to the
output power and when they are known, the problem is well along towards
solution. The main disadvantage is the labor of counting the modulation
products falling in a given interval. However, Bennett has developed a
method for doing this.”

The fundamental idea of the second method is to obtain the correlation
function for the output current. From this the output power spectrum may
be obtained by Fourier’s transform. The correlation function method and
its variations are of more recent origin than the direct method. They have

* Cited in Section 4.0. Also much of this writer's work on interference in broad band
communication systems may be carried over to noise theory without any change in the
methods used.

** Cited in Section 4.1.
4 Proc. I.R.E. Vol. 30, pp. 277-288 (June 1942), “The Effect of Fluctuation Voltages

on the Linear Detector.”
41 B.S.T.J., Vol. 19 (1940), pp. 587-610, Appendix B.
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been discovered independently and at about the same time, by several
workers. In a paper read before the IL.R.E., Jan. 28, 1944, D. O. North
described results obtained by using the correlation function. J. H. Van
Vleck and D. Middleton have been using the two variations of the method
which we shall describe in Sections 4.7 and 4.8, since early in 1943. A
primitive form of the method of Section 4.8 had been used by A. D. Fowler
and the writer in some unpublished material written in 1942, Recently,
I have learned that a method similar to the one used by Fowler and myself
had already been used by Kurt Friinz in 1941.%

The correlation function method avoids the problem of counting the
modulation products. However, in some cases it becomes rather unwieldy.
Probably it is best to have both methods in mind when investigating any
particular problem. The direct method will be illustrated by applying it
to the square law detector. Two approaches to the correlation function
method will then be described and applied to examples.

4.5 Noise THROUGH SQUARE LAw-DEVICE

Probably the most direct method of obtaining the power spectrum W(f)
of I, where : .

I =al? (4.1-1)
V being a noise voltage, is to square the expression
V="Vy=2,cncos (wmt — ¢m) (2.8-6)
1
in which ¢k is 2w( fu) Af, @m = 27fr , fro = mAfand @1, 2, - - - @y are random

phase angles.
Considerable simplification of the algebra results when we replace the

representation (2.8-6) by
) . .
Vy = % 3 nemation (4.5-1)

Here we have added a term ¢o/2 so as to not have any gaps in the summation
and have introduced the definitions

Com = Cm
A (4.5-2)
a = 2nAf

15 “Dije Ubertragung von Rauschspannung iiber den linearen Gleichrichter,” Hociifr.
w. Elektroakyst., June 1941. Other articles by Frinz are (I am indebted to Dr. North
for the following references) “Beitrage zur Berechnung des Verhaltnisses von Signal
spannung zu Rauschspannung am Ausgang von Empfingern”, EN.T., 17, 215, 1940 and
19, 285, 1942. “Die Amplituden von Geriuschspannungen”, E.N.T., 19, 166, 1942.
The May 1944 (p. 237), issue of the Wireless Engineer contains an abstract of “The In-
fluence of Carrier Waves on the Noise on the Far Side of Amplitude-Limiters and Linear
Rectifiers” by Frinz and Vellat, E.N.T., Vol. 20, pp. 183-189 (Aug. 1943).
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Squaring (4.5-1) gives the double series

+0 +o

. 1 et ) atfroei
V= LR 5 caca e

—en —o0

+co +o0

E Z CbnCn € :iat Ty a——

4 k=—c0 n=—c0

Suppose we wish to consider the component of V¥ of frequency fi = kAf.
It is seen to be

Ap cos (et — ) = 1 Z Crien Cn €OS (RAE — @rn — ©u) (4.5-3)
The power spectrum W(f) of I at frequency fi is o’ times the coefficient of
Af in the mean square value of (4.5-3) where the average is taken over the
¢’s. Thus

2+ao +o0

W(fk)Af e Z Z Ck—nCn Ck—m Cm

—0 —o0

X ave. cos (kat — ¢r_, — @) cos (kat — Qr_m — ¢m)
where the summations extend over m and #. Let n be fixed and consider
those values of 7 which give an average different from zero. We see that
m = nand m = k — n are two such values. The only other possibilities
are m = —nand m = —k 4+ n, but these lead to terms containing (except
when 7 or k equal zero) three different angles, ¢n, ¢rn, and @y, which
average to zero. Using the fact that the average of cosine squared is one-
half and that for a given » there are two such terms, we get

TI’(ﬁ)Af—-— Z h_C

n=—co

. (4.4-5)
= azAf E w(fy — fow(f.)Af

where in the last step we have used

fin = (b — mAf = fi —
and have implied, from c_, = c¢., that

w(f-a) = w(—nAf) = w(—/a)
is equal to w(fx).

Thus, from (4.5-4), we get for the power spectrum of 1

wW(f) = o _[M w(x)w(f — x) dx (4.5-5)
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with the understanding that f is not zero and
w(—x) = w(x). (4.5-6)

The result which is obtained by using (2.8-6), involving the cosines and
only positive values of m, is

f @
W) = a2£ w(x)w(f — x) dx + 20:2]; w(x)w(f + x) dx  (4.5-7)

This contains only positive values of frequency. (4.5-5) and (4.5-7) are
equivalent and may readily be transformed into each other.

The first integral in (4.5-7) arises from second order modulation products
of the sum type and the second integral from products of the difference
type. This may be seen by writing the current as

I=aV’=a Z D o €08 (wnl = @m) COS (wnf — @)
m=1 n=1
= « E E Cm Cn{COS [(mm - Wn)t — ©m (Pn] (45’“8)

2 m=1 n=1

+ cos [(wn + wut + om + eil}

The power in the range f; , fi + Afis the power due to modulation products
of the difference type, wiif — w¢, plus the power due to the modulation
products of the sum type, wi—¢ + w¢ . In the first type £ runs from 1 to «
and in the second type { runs from 1 to &£ — 1.

Consider the difference type first, and for the moment take both & and ¢
to be fixed. The twosetsm =k-+ €, n=Landm = £,n =k + {are the
only values of m and » in (4.5-8) leading to wry¢ — w¢. The two corre-
sponding terms in (4.5-8) are equal because cos (—x) is equal to cos x. The
average power contributed by these two terms is

(E; Crat f() X {Average of (2 cos [(wirt — w0t — orst + of])’}

2 (4.5-9)

= Hacast cf)?

The power contributed to fi , fr + Af by the difference modulation products
is obtained- by summing { from 1 to oo :

%i Giech = 2a22w(ﬁ+t)'¢’(fz)(ﬂf)

OYON; f w(fi + Fw(f) df

This leads to the second term in (4.5-7).
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Now consider the modulation products of the sum type. The terms of
this type in (4.5-8) which give rise to the frequency w are those for which
m + nisequal to k. Letnbelthenm =k — 1. The phase of this term
is random with respect to all the other terms except the one given by n =
E — 1, m = 1 which has the same phase. The average power contributed
by these two terms in (4.5-8) is, as in (4.5-9),

%(aclck.l)z
This disposes of two terms for which m + n is equal to . Taking » to be 2
and going through the same process gives two more. Thus; assuming for
the moment that k is an odd number, the power contributed to the interval
fi» f + Af by the sum modulation products is

] & \ = ) \ Sk
1S ey = L T e’ oy [ wut - N

2 =1

and this leads to the second term in (4.5-7).
When the voltage V applied to the square law device is the sum of a noise
voltage Vy and a sine wave:

V = P cos pt + Vy, (4.1-13)
we have
V* = PPcos® pt + 2PVycos pt+ Vi (4.5-10)

From the two equations

2, 1 1
cos pt-—é—l—zcosZpt

M L]
ave. Vy = 6,2,.1——>f w(f) df
1 2 ]
we see that I, or &V, has a dc component of
Ay Y (4.5-11)
0
which agrees with (4.1-14), and a sinusoidal component

‘%)-2 cos 2pt (4.5-12)

The continuous power spectrum W(f) of the remaining portion of I may
be computed from

2PVy cos pt + Vi.
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Using the representation (2.8-6) we see
M
2PV!\ Cos Pt =P Zl: Cm[COS (mmt + Pt - ‘Fm) + cos (C’-‘mt - Pt - ‘Pm)l

For the moment, we take p = 2wrAf. The terms pertaining to frequency
frn = nAf are those for which

wn + p = 2ufn |om — p | = 2afa
m-r =n |m—r| =mn
m=mn—7r m=rn

where only positive values of m are to be taken: If # > #, then mis # — »
ort + #n Ifn <r thenmisr — norr -+ u Ineither case the values
of m are | — v | and # 4+ ». The terms of frequency f, in 2PVy cos pt
are therefore

Pciyr cos 2ufut — @in—r|) + Pentrcos (2mfut — @nyr)

and the mean square value of this expression, the average being taken over
the ¢’s, is

o

Ll
2

(¢luerl + Cnpr) = PAf[@(finer) + w(fasr)]

PAflw(| fu = o) + w(fa + /2)]

where f, denotes p/2r.
By combining this with the expression (4.5-5) which arises from Vi
we see that the continuous portion W(f) of the power spectrum of I is

W(f) = o' Plw(f — /) + w(f + f,)]

+oe (4.5-13)
+ a2£ w(x)w(f — x) dx
where w(—f) has the same value as w(J).

Equation (4.5-13) has been used to compute W.(f) as shown in Fig.'8,
The input noise is assumed to be uniform over a band of width 3 centered at
f», cf. Filter ¢, Appendix C. By noting the area under the low frequency
portion of the spectrum we find

8
fo W.(f) df = o Buo(P* + Puwo)

Since the mean square value of the input Vy is Yo = Buwy, it is seen that
this equation agrees with the expression (4.1-15) for the mean square value
of Ity , the low frequency current, excluding the d.c. If audio frequency
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filters cut out part of the spectrum, W.(f) may be integrated over the re-
maining portion to give the mean square value of the corresponding output
current. This idea is mentioned in the footnote pertaining to equation
(4.1-6).
If V consists of Vi plus two sinusoidal voltages of incommensurable fre-
quencies, say
V = Pcos pt + Qcos qf + Vy,

CONTINUOUS PORTION OF OUTPUT SPECTRUM OF SQUARE LAW DEVICE

INPUT = P COS 2TIfpt + NOISE

OUTPUT D.C.= C{(PZ/2+ B W)

LET pwi=cC
o 2wf) T
2c ¢
! INPUT SPECTRUM
4 ﬁ\
——
c
N c/2
1‘ pommns __\NP:JI_I"VOiSE g e
2 c !
2pu, | " Pae N
l ! c/z2
| | i t
| i f, ' 2f, :
\ | P ! F
o PR B o—— p— 2f,-p 2f+p
FREQUENCY
Fig. 8

the continuous portion W(f) of the power spectrum of 7 may be shown to be
(4.5-13) plus the additional terms

fOlf — fo + w(f + o) (4.5-14)

where f, denotes g/2m.
When the voltage applied to the square law device (4.1-1) is®

V() = Q(1 + % cos pt) cos gt + Vw
k
=Qcosgt-|—%fms (p + qt +%—cos p—ot+ Vy
the resulting current contains the dc component
o o kﬂ .
X (1 + 2) + o fo w(f) df (4.5-16)

® A complete discussion of this problem is given by L. A. MacColl in a manuscript
being prepared for publication.
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The sinusoidal terms of I are obtained by squaring
Q1 + kcos pt) cos gt

and multiplying by «. The remaining portion of 7 has a continuous power
spectrum given by

W) = &0 [wr = 1) + wir + 1)

T R ’gw(fﬂp 1)
(4.5-17)

2 2
+ %w(f -+ )+ 'Z—w(f'l'fp - fq)}
+ o [+* w(x)w(f — x) dx

where f, denotes /27 and f, denotes g/2x.

4.6 Two CorreraTioN Function METHODS

As mentioned in Section 4.4 these methods for determining the output
power spectrum are based on finding the correlation function ¥(r) for the
output current. From this the power spectrum, W(f), of the output cur-
rent may be obtained from (2.1-5), rewritten as

W) = 4 fa i W(r) cos dnfr dr (4.6-1)

It will be recalled that TW(f)Af may be regarded as the average power which
would be dissipated by those components of 7 in the band f, f 4 Afif I were
to flow through a resistance of one ohm.

The input of the non-linear device is taken to be a voltage V(¢). It may,
for example, consist of a noise voltage Vy(#) plus sinusoidal components.
The output is taken to be a current J(f). The non-linear device is specified
by a relation between V(#) and I(¢). In this work I(f) at time ¢ is assumed
to be completely determined by the value of V(¢) at time ¢.

Two methods of obtaining ¥(7) will be described.

(a) Integrating the two-dimensional probability density of V'(f) and
V({t + 7) over the values allowed by the non-linear device. This
method, which is especially direct when applied to noise alone through
rectifiers, was discovered independently by Van Vleck and North.

(b) Introducing and using the characteristic function, which for the sake
of brevity will be abbreviated to ch. {., of the two-dimensional prob-
ability distribution of V(¢) and V{t + 7).
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4.7 LiNngAR DeTEcTiON OF NOISE—THE VAN ViEck-NortH METHOD

The method due to Van Vleck and North will be illustrated by using it
to determine the output power spectrum of a linear detector when the input
consists of noise alone.

The linear detector is specified by

1 fo, V(@) <0

=W, VO >0, (4.7-1)

which may be obtained from (4.2-1) by setting a equal to one, and the input
voltage is

V() = V(D) (4.7-2)
where Vy(t) is a noise voltage whose correlation function is ¢(r) and whose
power spectrum is w(f).

The correlation function ¥(7) is the average value of I(1)7(t + 7). This
is the same as the average value of the function

fT 1V, when both Vi, Va2 > 0

F(V1, Va) =9, all other 7%, (4.7-3)
where we have set
Vi= V()
Veo=V({+ 1)

The two-dimensional distribution of V; and Vy is given by (3.2-4), and
from this it follows that the average value of any function F(Vy1, V) is

tes te F(Vy, V
) dvliw dng’Er—’lﬂ}Ti)exp[ MMI(%V,—I—%% 2, V1 V)

(4.7-4)
where
| M| =vo — 7.
For the linear rectifier case, where F(Vy, V) is given by (4.7-3), the

integral is

| M |-1I2L avy | dVaViVaexp W V1 + Vs = Hu Vi V)
2w da 0

2|M’|

e[
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where we have used (3.5-4) to evaluate the integral. The arc cosine is
taken to be between 0 and . We therefore have for the correlation func-
tion of I(¢),

1 2 — ¥
V(r) = 5 (w«% — " + ¢ cos 1[ v ]) (4.7-5)
T ' Yo
The power spectrum W(f) may be obtained from this by use of (4.6-1).
For this purpose it is convenient to write (4.7-5) in terms of a hypergeo-
metric function, By expanding and comparing terms it is seen that

‘I’(T) == U'Ju (_%1 _%) %J,J/f)
2r ‘i"a
. (4.7-6)
- Z + o —]— _j&/ + terms involving y1, ¥, etc.

As will be discussed more fully in Section 4.8, a constant term A* in y(r)
indicates a direct current component of 7(f) of 4 amperes. Thus 7(¢) has
a dc component equal to '

172 1

[;b—:_:l = \/—ﬂ X rms value of V(¢) (4.7-7)

This agrees with (4.2-3) when the P of that equation is set equal to zero.
Integrals of the form

G.(f) = j: ¥ cos 2nfr dr

which result when (4.7-6) is put in (4.6-1) and integrated termwise are
discussed in Appendix 4C. Irom the results given there it is seen that if
we neglect ¥ and higher powers we obtain an approximation for the con-
tinuous portion We(f) of W(f):

G
Wi = Gip + 0
(4.7-8)
_wph, 11
4 T dmp 2
where w(—f) is defined as w().

When Vy(t) is uniform over a relatively narrow band extending from
fa to fuso that w(f) is equal to wo in this band and is zero outside it, we may
use the results for Filter c of Appendix 4C. The fo and 8 given there are
related to fs and f by

f—fo—é: fb=fo+§

w(x)w(f — %) dx
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and the value of @, taken there is the same as here and is ¢4/3. The value
of Ga(f) given there leads to the approximation, for low frequencies:

L, _f
Wﬂ(f} - mo 48 (1 .3)

2=
47 fo — Ja

when 0 < f < f, — fa,and to Wo(f) = 0 for fy — fo <f < fa. By setting
P equal to zero in the curve given in Fig. 8 for W .(f) corresponding to the
square law detector, we see that the low frequency portion of the power
spectrum is triangular in shape and is zero at f = 3. Thus, looking at
(4.7-9), we see that to a first approximation the shape of the output power
spectrum is the same for a linear detector as for a square law detector when
the input consists of a relatively narrow band of noise.

An approximate rms value of the low frequency output current may be
obtained by integrating (4.7-9)

(4.7-9)

Its

f L"f a
f.. Wo(f) df

- 'wo{fb fa) ﬂ
T 8w

' 1
rms low freq. current = \/—g X rms applied voltage (4.7-10)

It is seen that this is half of the direct current. It must be kept in mind
that (4.7-10) is an approximation because we have neglected ¥+ and higher
powers, The true value may be obtained from (4.2-8). Itis seen that the
coefficient (8x)™"* = 0.200 should be replaced by

1/2
1(2 - f)—’) = 0.209
o &

W.(f) for other types of band pass filters may be obtained by using the
corresponding G’s given in appendix 4C. Tt turns out that (4.7-10) holds
for all three types of filters. This is a special case of Middleton’s theorem,
mentioned several times before, that the total power in any modulation
product (it will be shown later in Section 4.9 that the termy; in(4.7-6)
corresponds to the n* " order modulation products) depends only on the
total input power of the applied noise, not on its spectral distribution.

4.8 TaE CHARACTERISTIC FUuNncrion METHOD

As mentioned in the preceding parts, especially in connection with equa-
tion (1.4-3), the ch. f. of a random variable x is the average value of exp
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(iux). This is a function of #. The ch. {. of two random variables x and
y is the average value of exp (iux + ivy) and is a function of # and ». The
ch. f. which we shall use here is the ch. f. of the two random variables V'(¢)
and V(t + ) where V() is the voltage applied to the non-linear device, and
the randomness is introduced by ¢ being selected at random, r remaining
fixed. We may write this characteristic function as

g(u, v, 7) = Limit %j; exp [V (1) + V(¢ + 7)]dt  (4.8-1)

If V() contains a noise voltage Vy(t), as it always does in this section, and
if we use the representation (2.8-1) or (2.8-6) a large number of random
parameters (a,’s and b,’s or o.’s) will appear in (4.8-1). In accordance
with our use of such representations we may average over these parameters
without changing the value of (4.8-1) and may thereby simplify the integra-
tion.

For example suppose

Vi) = Vo) + Vw0 (4.8-2)

where V.(t) is some regular voltage which may, e.g., consist of one or more
sine waves. Substituting this in (4.8-1) and using the result (3.2-7) that
the ch. f. of Vy(t) and Vy(t 4+ 7) is
ev(u, v, 7) = ave. exp [inVy(t) + toVy(t + 7)]
2 s (4.8-3)
= exp lj—-'{;u (" + v) — gb,uv]

¥, = Y(7) being the correlation function of Vy(f), we obtain for the ch. f.
of V(i) and V(1 + 7),
e(u, v, 1) = exp [—i;? (i + o) — :p,u'v]

X Limit . [ exp V) + iVt + )] de (4.8-4)
0

T—rm
= gn(u, v, 7)gs(2ty v, 7)

In the last line we have used g.(u, 7, 7) to denote the limit in the line above:

T
(1, v, v) = Limit % f exp [iuV () + iV (t + 7)]dt (4.8-5)
o

T—w

The principal reason we use the ch. f. is because quite a few non-linear
devices may be described by the integral

= if Flin)e'™™ du (4A-1)
2r Je
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where the function F(iz) and the path of integration C are chosen to fit the
device. Examples of such devices are given in Appendix 4A. The corre-
lation function ¥(r) of I(¢) is given by

) = Limit 1

T
= Limit L‘,f dtf F(iu)g‘“v“) d&f F(iv)ei'ul?(t+f) dv
T =0 4‘11"T 0 o c

fo LI + 1) dt

- 4% fc Flin) du fc F(iv) dv (4.8-6)

Limit 1 f exp [iuV (§) + @V (t + 7)] d¢
Tk

T—o

= ﬁ,_, j; F(iu) duj; F(iv)g(u, v, 7) dv

This is the fundamental formula of the ch. f. method.
When V{(¢) is the sum of a noise voltage and a regular voltage, as in
(4.8-2), (4.8-6) becomes

1 f - N o~ (Wl u? f : N ,—(o/2)v?
= d
¥(r) il F(iu)e LY F(iv)e (4.8-7)

e g, (u, v, 7) dv

where g.(u, v, 7) is the ch. f. of V,(¢) and V(¢ 4 7) given by (4.8-5). This
is a definite expression for ¥(r). All that follows is devoted to the evalua-
tion of this integral and to the evaluation of

W) = 4 fu " W(r) cos 2ufr dr (4.6-1)

for the power spectrum of 7.

Quite often 7(#) will contain dc and periodic components. It seems con-
venient to deal with these separately since they correspond to terms in
¥(7) which cause the integral (4.6-1) for W(f) to diverge. In fact, from
Section 2.2 it follows that a correlation function of the form

A2 4 % cos 21for (2.2-3)

corresponds to a current

A 4+ C cos (2nfdt — o) (2.2-2)



MATHEMATICAL ANALVSIS OF RANDOM NOISE 137

where the phase angle ¢ cannot be determined from (2.2-3) since it does not
affect the average power.

Consider the correlation function for V() = V,{) 4+ V() given by
(4.8-2). Itis

L1t T
LumtTl:jl; VOVt + 1) dt + fo VO Vst + 7) di

T—w0

. . (4.8-8)
+ fo Vi)Vt + 1) dt + fo V)Vt + ) dt]

Since V,(t) and Vy(f) are unrelated the contributions of the second and
third integrals vanish leaving us with the result

Correlation function of V(¢) = Correlation function of V.(t) 180

+ Correlation function of Vx(#). (4.59)
Now as  — = the correlation function of Vy(¢) becomes zero while that of
V(1) becomes of the type (2.2-3) given above. Hence the correlation func-
tion of the regular voltage V(¢) may be obtained from V(#) by letting 7—
and picking out the non-vanishing terms. ~Although we have been speaking
of V(#), the same results hold for Z(#) and this process may be used to pick
out those parts of ¥(7) which correspond to the dc and periodic components
of I(t). Thus, if we look at (4.8-7) we see thatas r — «, ¥, — 0, while the
g. (u, v, 7) corresponding to V,(¢) given by (4.8-5) remains unchanged in
general magnitude. This last statement may be hard to see, but examina-
tion of the cases discussed later show that it is true, at least for these cases.
Thus the portion of ¥(7) corresponding to the dc and periodic components
of I() is, setting ¢, = 0in (4.8-7),

V() = 1 F(iq.c)e_w'"m“2 du F(iv}e_w"lmggs(u, v, 7)dv (4.8-10)
47 J ¢ c

where the subscript @ indicates that W,(7) is that part of ¥(r) which does
not vanish as 7+ — «.
We may write (4.8-9), when applied to I(?), ad

V(r) = Wo(r) + Tel7) (4.8-11)

where ¥,(7) is the correlation function of the “‘continuous’ portion of the
power spectrum of I(#).

Incidentally, the separation of ¥(r) into the two parts shown in (4.8-11)
may be avoided if one is willing to use the §(f) functions in order to interpret
the integral in (4.6-1) as explained in Section 2.2. This method gives the
proper d¢ and sinusoidal components even though (4.6-1) does not con-
verge (because of the presence of the terms leading to ¥,(7)).
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4.9 Noise Prus SINE WAVE APPLIED TO NON-LINEAR DEVICE

In order to illustrate the characteristic function method described in
Section 4.8 we shall consider the case of a non-linear device specified by

— 17 : iVu
8 = 5 jc F(in)e'"™ du (4A-1)
when V consists of a noise voltage plus a sine wave:
V() = Pcos pi + Va(t) (4.1-13)

As usual, Vy(¢) has the power spectrum w(f) and the correlation function

Y(r). ¢(7) is often written as ¥, for the sake of shortness. Comparing
(4.1-13) with (4.8-2) gives

Vo) = P cos pt (4.9-1)

Our first task is to compute the ch. f. g.(u, v, 7) for the pair of random

variables V.(t) and V(¢ + 7). We do this by using the integral (4.8-5):

T
gs{u, v, 7) = Limit% f exp [iuP cos pt + @wP cos p(t + )] dt
T—0 0

= Jo(PVu? 4+ v* + 2uv cos pr)
where Jyis a Bessel function. The integration is performed by writing
wcos pt + veos p (¢ + 1) = (u+ vcos p7) cos pb — vsin pr sin pi
= /12 + v* + 2uv cos pr cos (pt + phase angle)

(4.9-2)

and using the integral
JU(Z) — if eiz coattﬂ
2r b

The correlation function for (4.1-13) has also been given in Section 3.10.
The correlation function ¥(7) for 7(/) may now be obtained by substi-
“tuting the above expressions in (4.8-7)

Y(r) = ! fdu F('iu)e_w“"z)"zf dy F(iy)g_(\"ufi’)f'z
¢ c

4r® (4.9-3)

e_wr'wfu(P\/uﬂ + #* + 2uv cos PT)

V,,(r), the correlation function for the d.c. and periodic components of I,
may, according to (4.8-10), be obtained from this by setting ¥, equal to zero.

When we have a particular non-linear device in mind the appropriate
F (i) may often be obtained from Appendix 44. For example, F(iu) for a
linear rectifier is —# °. Inserting this value in (4.9-3) gives a definite
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double integral for ¥(7). If there were some easy way to evaluate thisin-
tegral then evervthing would be fine. Unfortunately, no simple method of
evaluation has yet been found. However, one method is available which is
closely related to the direct method used by Bennett. It is based on the
expansion

g, v, 7) = Jo(PNu? + v* + 2uv cos pr)
= i en( —)"Tn(Pu)Jn(Pv) cos npr (4.9-4)

=1 e =2 for n>1
This expansion enables us to write the troublesome terms in (4.9-3) as
™ Jo(PN/1E = v + 2up cos pr)

) 4.9-5
—)"* e, cos npr ("bf ) J.(Pu)J,.(Pyv) (4.5-3)

IIMS

k=0

The virtue of this double sum is that it simplifies the integration. Thus,
putting it in (4.9-3) and setting

an
T = f Fliw)u To(Pu)e= P2 gy (4.9-6)
gives
¥(r) = E Z i Vs o e COS NPT (4.9-7)
=0 k=0

The correlation function ¥,(7) for the dc and periodic components of I
are obtained by letting + — = where > — 0. Only the terms for which

k = 0 remain:
o

Vo(7) = D €alino COS npr (4.9-8)

Comparing this with the known fact that the correlation function of

A+ Ccos 2nfd — o) (2.2-2)
is
2

A+ % cos 2nfor (2.2-3)

and remembering that ¢ is one while €, is two for # > 1 shows that

Amplitude of dc component of I = i

_ (4.9-9)
Amplitude of ;—‘: component of I = 2/
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Incidentally, these expressions for the amplitudes follow almost at once from
the direct method of solution. This will be shown in connection with equa-
tion (4.9-17).

Since the correlation function ¥,(7) for the continuous portion W.(f) of
the power spectrum for [ is given by

Y (r) = ¥(r) — Va(7), (4.8-11)
we also have
= E E i 3:'/ n.k €n COS nPT (4.9—10)
b Sl

When this is substituted in

W.f) = 4-/: V() cos 2xfr dr (4.9-11)
we obtain
Wf) = i ZIT I:Gk' ( — Z—P) + Gk (f + Zr_ﬁ)] (4.9-12)
im0 k1 T T
where
G(f) = '/; yY¥ cos 2afr dr (4.9-13)

is the function studied in Appendix 4C. Gi(f) is an even function of /. The
double series (4.9-12) for W, looks rather formidable. However, when we
are interested in a particular portion of the frequency spectrum often only
a few terms of the series are needed.

It has been mentioned above that the direct method of obtaining the out-
put power spectrum is closely related to the equations just derived. We
now study this relation.

We start with the following result from modulation theory™: Let the
voltage

V = Pycos xp + Picos a; + --- + Pwcos ay
(4.9-14)
X = pud, EF=0,1,--- N,

where the $’s are incommensurable, be applied to the device (4A-1). The

output current is

o oD

I = E U Z }?-41110---111_\'51”0

mom0  miy=0 (4.9-13)
* €my COS MoXg COS #1Xy =+ COS My Xy

s Bennett and Rice, “Note on Methods of Computmg Modulation Products,” Phil.
Mag. 5.7, V. 18, pp. 422-424 Sept. 1934, and Bennett’s paper cited in Section 4. 0.
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where g = 1 and e, = 2 for m > 1. When the product of the cosines is
expressed as a sum of cosines of the angles mo xo &= #2121 - - - Emyay , it is
seen that the coefficient of the typical term is Amg...my , €xcept when all
the m’s are zero in which case it is $40...0. Thus

1An...c = dc component of [

| Amg...my | = amplitude of component of frequency (4.9-16)
1
ﬂlmoﬁu:l:mlﬁli ook my by |

For all values of the m’s,

M N
Aoy = @; fc F(in) TI;[ﬂJm,(P,u) du ot

M =mo—|—m1+,--' +mN
Following Bennett’s procedure, we identify ¥ as given by (4.9-14), with
V =1Pcospt+ Vy (4.1-13)

by setting Po = P, po = p, and representing the noise voltage Vy by the sum
of the remaining terms. Since this makes Py, Py all very small, Laplace’s
process indicates that in (4.9-17) we may put

N 2
[Il Jo(Pyu) = exp — % (P} 4 -+ + PY)

= g Vot

(4.9-18)

We have used the fact that i is the mean square value of Vy. It follows
from these equations that

Il

dc component of T QL f F (i) Jol Pu)e P dy
TJe

Component of frequency ?Zﬁ_P = i? f F(’iu)fn(Pu)e“"““”” du
T c

These results are identical with those of (4.9-9).

The equations just derived show that Z,is to be associated with the n'
harmonic of p.  In much the same way it may be shown that Jini; is to be
associated with the modulation products arising from the n™ harmonic of
p and k of the elementary sinusoidal components representing Vy. We
consider only combinations of the form p; == ps & ps, taking £ = 3 for ex-
ample, and neglect terms of the form 3pyand 2py == p2 . The former type
is much more numerous, there being about N® of them while there are only
about N and N*, respectively, of the latter type.
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We again take 2 = 3 and consider m; , #2 , m3 to be one, and ma, -+« miy
to be zero, corresponding to the modulation product np &= py &= pa £+ p3.
By making the same sort of approximations as Bennett does we find

i"** Py Py P

An.l.l,l.ﬂ.ﬂ---n = T S

PPy Py
4

When any other modulation product of the form np &= p., & pr, £ Py is
considered we get a similar expression in which P,PsP; is replaced by
P, P, P,,. This may be done for any value of #. The result indicates
that /., and consequently also the (n, k)™ terms in the double series
(4.9-10) and (4.9-12) for ¥.(r) and W.(f), are to be associated with the
modulation products of order (n, k), the # referring to the signal and the %
to the noise components. ¢

We now may state a theorem due to Middleton regarding the total power
in the modulation products of a given order. For a given non-linear device
(i.e. F(iu) is given), the total power which would be dissipated by all of the
modulation products which are of order (n, k) if I were to flow through a
resistance of one ohm is

f F(i) T o Pu)ad® 7417%0 gy
c

;7113

Sy OF 2 _ elVilFus (4.9-19)

Yal0) = =57 He =

The important feature of this expression is that it depends only on the r.m.s.
value of Vy and on F(iu). It depends not at all upon the spectral dis-
tribution of the noise power in the input.

The proof of (4.9-19) is based on the relation

7,4(0) = fo W) df

hetween the total power dissipated by all the (», k) order products and the
corresponding correlation function obtained from (4.9-7).

This theorem has been used by Middleton to show that when the input
is confined to a relatively narrow frequency band, so that the output spec-
trum consists of bands, the power in each band depends only on V% and not
on the spectrum of Vy.

4,10 MisceLLaNEoUS Resurts OBTAINED BY CORRELATION FuNcTION
METHOD

In this section a number of results which may be obtained from the theory
given in the sections following 4.6 are given.
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When the input to the square law device
I=al?® (4.1-1)
consists of noise only, so that V' = Vy, the correlation function for 7 is
U(r) = o'W + 2¢7] (4.10-1)

where ¢, is the correlation function of V. This may be compared with
equation (3.9-7). When V' is general,

V(r) = ave. I()I(t + 1)
= ave. o' V(O)V(t + 1)
e N2 022
= o X Coefficient of (ZL!) (—1%)- in power series expansion (4.10-2)

of ch. f. of V(2), V(t + 1)

where we have used a known property of the characteristic function. An
expression for the ch. f., denoted by g(u, 7, 7), is given by (4.8-4). Tor
example, when V' consists of a sine wave plus noise, (4.1-13), the ch. f. is
obtainable from (4.9-3). Hence,

2 2
¥(7) = Coeff. of ﬁ% in expansion of

& Jo(PA/ut + v 4 2uv cos pr)

X exp [_dg W+ 1) — Ww:l (4.10-3)

2| (P : P 2 2
=« 5-|-|,bu +-gcos2pr+2Pn,b,cospr+2¢f

The first two terms give the dc and second harmonic. The last two terms
may be used to compute W.(f) as given by (4.5-13).

Expressions (4.10-1) and (4.10-3) are special cases of results obtained by
Middleton who has studied the general theory of the quadratic rectifier by
using the Van Vleck-North method, described in Section 4.7.

As an example to which the theory of Section 4.9 may be applied we con-
sider the sine wave plus noise, (4.1-13), to be applied to the »-law rectifier

I=0, V<o
(4.10-4)
I=1 V>0
From the table in Appendix 44 it is seen that

Flin) = T(v + D)~
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and that the path of integration C runs along the real axis from — = to =
with a downward indentation at the origin. The integral (4.9-6) for /in:

becomes -

n+k—r—1
i = S T+ 1) f T (Pu)e PP
c
wu)(i—k).'z nf2
Ly 2" T+ 1) _
- (2 — Fy (k +’2’ Yon 4+ 1; -—-x) (4.10-5)
2r (—T?ﬂ) 7!
P2
X = —
o

where the integration has been performed by expanding J,(Pu) in powers
of # and using '

—au? oA . him A s
f e ™ gy = e M a7 sin ArT(M)
c

—A

=% (=PI (4.10-6)
_ e T
= AT =N

it being understood that arg # = 0 on the positive portion of C.
From (4.9-9), the dc component of I is

»/2
o = 4 E (%) Py (—g 15 —x) (4.10-7)
ar (1 + 5) .

which reduces to the expression (4.2-3) when » = 1 for the linear rectifier
(aside from the factor «).

When the input (sine wave plus noise) is confined to a relatively narrow
band, and when we are interested in the low frequency output, consideration
of the modulation products suggests that we consider the difference products
from the products of order (0, 0), (0, 2), (0, 4), --- (1, 1), (1, 3), --- (2, 0),
(2, 2), --- etc. where the typical product is of order (u, k). The orders
(0, 0) and (2, 0) give the dc and second harmonic and hence are not con-
sidered in the computation of W.(f). Of the remaining terms, either (0, 2)
or (1, 1) gives the greatest contribution to the series (4.9-12) and (4.9-10)
for Wo(f)and ¥.(7). The remaining terms contribute less and less as 7 and
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k increase. The low frequency portion of the continuous portion of the
output power spectrum is *sen, from (4.9-12),

Wc(f) = hosz(f) + 110464(,1’) + -

=

+ — hu[ (f — fo) + Gi(f + fo)] + - k?a[Gs(f fo)  (4.10-8)

+ G+ f)l + % BGalf — 2fo) + Galf + 2] + -

From Table 2 of Appendix 4C we may pick out the low frequency portions of
the G’s. It must be remembered that G.(x) is an even function of & and
that 0 < /<K fo.

As an example we take the input noise Vy to have the same w(f) and
Y(7) as Filter a, the normal law filter, of Appendix 4C, so that

—(J'—J"u)ﬂ.'zﬂ2

w(f) = o/ 2n°
and assume that the sine wave signal is at the middle of the band, giving
$ = 2xfo. Thus, from (4.10-8), for low frequencies and the normal law
distribution of the input noise power,

4 —j%[8a?

We(f) = iy \fﬁoﬂffz ¢l 4 640 \/2— Tosgoe

+ \/fku% T \/6 Raghe ™ (4.10-9)

2 -f“,’du-

_\/H ilzz‘ll

Although we have been speaking of the »-law rectifier, equation (4.10-9)
gives the low frequency portion of We(f), corresponding to a normal law
noise power, for any non-linear device provided the proper ;s are inserted.

When we set » equal to one in the expression (4.10-3) for /i, we may ob-
tain the results given by Bennett. Middleton has studied the output of a
biased linear rectifier, when the input consists of a sine wave plus noise, and
also the special case of the unbiased linear rectifier. He has computed the
output for a wide range of the ratios P*/\o, B*/\o where B is the bias. In
order to cover the entire range he had to derive two series for the corre-
sponding /m:’s, each series being suitable for its particular portion of the
range.
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A special case of (4.10-9) occurs when noise alone is applied to a linear
rectifier. The low frequency portion of the output power spectrum is

VoS (“Bn(=Dn 1 erane
" T
We(f) = ";1 m"mIr a\/-'lﬁ‘ﬁre
_ Yo i 1p/He% —1—_{“’2”‘{"2 (410-10)
e |1 64+/2 '

1
fo,'u,Q .
T 256+/3 ¢ + ]

where we have used (4.7-6) and Table 2 of Appendix 4C.
The correlation function of

Vs, = P cos pt + Q cos ¢,
where p and ¢ are incommensurable, is
Jo PN 1w + o + 2uw cos pr) X Jo(QVu? + * + 2uv cos gr)

From equations (4.9-16) and (4.9-17) it is seen immediately that

oy = El?r f Fiw) Jo(Pu) To(Qu)e % . (4.10-11)
c

is the d.c. component of I when the applied voltage is
P cos pt + Qcosqgt + Vy. (4.1-4)

J. R. Ragazzini has obtained an approximate expression for the output
power spectrum when the voltage

V = Vs + VN
= Q(1 + 7 cos pt)cos gt

P . . 46 - - .
is impressed on a linear rectifier.” In terms of our notation his expression
for the continuous portion of the power spectrum is (for low frequencies)

1 W(f) given by equation
V] " e —
W) w2 a?(Q* + 24y) X [(4.5—17) for square law device (4.10-13)

The o is put in the denominator to cancel the &’ in the expression (4.5-17).
We take the linear rectifier to be

0, V<0 _
I = {1 i (4.10-14)

(4.10-12)

and replace the index of modulation, &, in (4.5-17) by r.

6 Equation (12), “The Effect of Fluctuation Voltages on the Linear Detector,” Prac.
IR.E., V. 30, pp. 277-288 (June 1942).
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‘Ragazzini’s formula is quite accurate when the index of modulation 7 is
small, especially when v = (°/(2yy) is large. To show this we putr =0
in (4.10-13) and obtain

! [@‘-’w(f,, — 1) + Culfs + 1)

MR

B (4.10-15)
+ L w@w(f — %) dx:l

where f; = ¢/(2x). This is to be compared with the low frequency por-
tion of W(f) obtained by specializing (4.10-8) to obtain the output power
spectrum of a linear rectifier when the input consists of a sine wave plus
noise. The leading terms in (4.10-8) give

We(f) = knlw(fy = f) + w(fy + )]

. 1 [ (4.10-16)
+ 03 [ vl — v dx
4 Lo
The values of the /’s appropriate to a linear rectifier are obtained by set-
ting » = 1 in (4.10-5) and noticing that Q now plays the role of P.
1

y 1/2
b = 5(—-) (35 25 )
T

hor = (2mpo) T* 1 Fi(3; 15 —9)
y = Q*/(2)

Incidentally, the first approximation to the output of a linear rectifier
given by (4.10-16) is interesting in its own right. Tig. 9 shows the low fre-
quency portion of We(f) as computed from (4.10-16) when the input noise
is uniformly distributed over a narrow frequency band of width 3, Jq being
the mid-band frequency. /iy and /e may be obtained from the curves
shown in Fig. 10. In these figures P and x replace  and v of (4.10-17) in
order to keep the notation the same as in Fig. 8 for the square law device.
These curves may also be obtained from equations (33) to (43) of Bennett’s
paper.

The following values are useful for our comparison.

(4.10-17)

When & = 0 When # is large
iIn =0 ]Z]]_ = 1/7i' (410"18)
]I()z = (2#1[/0)_”2 ;J()z = 1/(?@)

The values for large x are obtained from the asymptotic expansion (4B — 3)
given in Appendix 4B.
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LOW FREQUENCY OUTPUT OF LINEAR RECTIFIER
APPROXIMATION - SECOND ORDER PRODUCTS ONLY

INPUT=Vv=Pcos 2nfpt + NOISE
_._J]o v<o
OUTPUT=1I= {v’ v>o}
- OUTPUT DC.= Phy+ B W, hga
2 BV _ (pn, ) (BN
w. (F) . LET c=hy, = = (Phoz P
2c c
l INPUT SPECTRUM
_7‘-—-( === EV_FFT_ESINSE
a 1 |
zh“ Wg c ‘ wD i
|
l : |
i f fe i
0 B/2 B —p—
4 .
FREQUENCY
Fig. 9

Qo 0.5 1.0 1.5 2.0 2.5 30 3.3 a9
% _AVE SINE WAVE POWER__ p2
AVE. NOISE POWER 2P W

Fig. 10—Coefficients for linear detector output shown on Fig. 9

: 1
Phy = /‘/E Fi3 1 —x) I = f/‘/g Fuld; 2 —x)
™ 2 T

We make the first comparison between (4.10-15) and (4.10-16) by letting
Q — . It is seen that both reduce to

W) = Sy =)+l +) @10-19)
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which shows that the agreement is perfect in this case. Next welet Q = 0.
The two expressions then give

1 420
W.(f) = Dot [m w(x)w(f — x) dx

where 4 = x for Ragazzini’s formula and 4 = 4 for (4.10-16). Thus the
agreement is still quite good. The limiting value for (4.10-16) may also
be obtained from (4.7-8).

Even if the index of modulation 7 is not negligibly small it may be shown
that when Q¢ — « W,.(f) still approaches the value given by (4.10-19).
Ragazzini’s formula gives a somewhat larger answer because it includes the
additional terms, shown in (4.5-17), which contain %°/4, but this difference
does not appear to be serious. If the Q° + 2y in the denominator of (4.10~
13) be replaced by Q* 4+ 3Q°k* + 2y the agreement is improved.

APPENDIX 4A
TABLE oF NON-LINEAR DEVICES SPECIFIED BY INTEGRALS
Quite a number of non-linear devices may be specified by integrals of the
form

_ lf . iVu :
I= 7 CF(m)e du (4A-1)

where the function F(iu) and the path of integration C are chosen to fit the
device.* The table gives examples of such devices. Some important cases
cannot be simply represented in this form. An example is the limiter

I = —aD, V< -D
I =aVl, —-D<V <D
I = aD, DV (4A-2)

which may be represented as

I

Z—a f sin Vu sin Du f_i‘
T Yo U
(4A-3)

I
|
R
)

..|_
|

: . du
f e’ sin Du —
c u?

where C runs from — « to + e« and is indented downward at the origin.
This is not of the form assumed in the theory of Part IV. However it
appears that it would not be difficult to extend the theory in the particular
case of the limiter.

* Reference 50 cited in Section 4.9,
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Non-Linear Devices Specified by Integrals

1 .
I =— f F(iu)e'V* du
2,

I Flin) C Type of Device
I = aVn, ninteger anl Positive Loop nth power device
(Gu)n1 around # = 0
I=aV—Bnrn an!l _.p Positive Loop nth power device
integer TGy © around % = 0 with bias
I =0, V<o a o« Real # axis from | Linear rectifier
I=aV, 0<V Guyp ~— — o to 4o with[  cut-off at
downward in- V=0
dentation at
uw=0
I=0, V < B al'(v + 1) g “ vth power recti-
I =a(V — B)Y, Guy °© fier with bias
V>B
y any positive number
I=0, V<0 1 —iuD “ Linear rectifier
I—aV, 0<V<p| «l—e¢™?) plus limiter
I=aD, DLV (iu)?
I,=0, V<0 © “
r=ew, v3o | mp = [ emewa
0

APPENDIX 4B

Tee FuncrioN 1Fi(a; c; x)

In problems concerning a sine wave plus noise the hypergeometric func-
tion
az  ala+ 17
E!+c(c+1)f!+ (4B-1)
arises. Here we state some of its properties which are of use in the theory
of Part IV. Curves of 1F(a; ¢; z) are given for a = — 4, — 3.5 -+, 3.5,
40andc= — 1.5, — .5, 4+ .5,1,1.5,2,3,4 in the 1938 edition, page 275,
of “Tables of Functions”, by Jahnke and Emde. A list of properties of the
function and other references are also given. In addition to these refer-
ences we mention E. T. Copson, “Functions of a Complex Variable” (Ox-

ford, 1935), page 260.
If ¢ is not a negative integer or zero

1F1(G; c; Z) =1 +

Fi(a; c; 5) = eFilc — a;¢; — 3). (4B-2)
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When R (z) > 0 we have the asymptotic expansions
I'(c)e I:l i+ (1 —a)(c — a)

1Fila;c;2) ~

I'(a)z* 1!z
1—a)2—a)c—a)c—a+1)
. (4B-3)
Fia: Ci'"z) - I1(61‘—(5)@# I:l i a( -!—1': -0
. pale+na +c;!; A2 +e=0 ]

Many of the hypergeometric functions encountered may be expressed in
terms of Bessel functions of the first kind for imaginary argument. The
connection may be made by means of the relation®

b4

o (v -l—%; 2v 4+ 1; z) =2"T(v + l)z—”e”'zI,(i) (4B-4)

together with the recurrence relations

Fay Fa_ Fop Fe F
1. a (e — ¢) c— 2a—z2
2. ac (c — a)z — ¢la + 3)
3. a 1—c¢ c—a—1
4. —c . —z c
S. a—c c—1 1—a—3
6. (c — a)z clc— 1) ¢l —¢c—32)

For example, the first recurrence relation is obtained from line 1 as follows
aFla + 1;¢;2) + (@ — ¢)F(a — 1;¢;5)

+ (¢ — 2a — z)F(a; c;z)= 0 (4B-5)
These six relations between the contiguous 1F; functions are analogous to

the 15 relations, given by Gauss, between the contiguous »/'; hypergeometric
functions and may be derived from these by using

b—w ’ b

\Fy(a; ¢; 5) = Limit 2F1(a, b; e 5) (4B-6)

A recurrence relation involving two 1/'ys of the type (4B—4) may be ob-
tained by replacing @ by @ + 1 in the relation given by row four of the table

5 G. N. Watson, “Theory of Bessel Functions” (Cambridge, 1922), p. 191.
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and then eliminating 1Fi(a + 1; ¢; z) from this relation and the one obtained
from row 3 of the table. There results

Fie;69) = Fiesc — 139 + rop Fla+ e+ 155 (4B-)

Setting » equal to zero and one in (4B—4) and @ equal to %,cequal to 2in

(4B-7) gives
1 :
1F1(2;1; Z)=€Iqu(g) -

F (‘; ;33 z) =47%"* I, (g) (4B-8)
1 :
(i) [Q) (0]

Starting with these relations the relations in the table enable us to find
an expression for 1F1(n + %; m; ) where n and m are integers. A number
of these are given in Bennett’s paper. In particular, using (4B-2),

1 —zf3 z i
S ‘) —e=[aran(G)+n(5)] e

APPENDIX 4C

TrE POWER SPECTRUM CORRESPONDING TO ¥7

Quite often we encounter the integral
Gulf) = [ W cos 2afr dr (4C-1)

where ¥(7) is the correlation function corresponding to the power spectrum
w(f). From the fundamental relation between w(f) and ¢¥(7) given by
(2.1-5),
w

G =L (4c-2)
The expression for the spectrum of the product of two functions enables us
to write G.(f) in terms of w(f). We shall use the following form of this
expression: Let F,(f) be the spectrum of the function ¢.(7) so that

+= i
‘Pr('r) = Fr(f)eznﬁ df! r=1,2

—20

40
F) = [ el
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Then

fﬁ o) ea(r)e M dr = . Fi@)Fy(f — x)dx  (4C-3)

i.e., the spectrum of the product ¢i(r)¢2(7) is the integral on the right.
If ¢1(7) and ga(7) are real even functions of 7, (4C-3) may be written as

fn " ex(r)galr) cos 2ufr dr = % [:ﬂ Fix)Fa(f — x) dv  (4C—4)

In order to obtain Gi(f) we set ¢1(7) and ¢s(7) equal to ¢(r). We may
then use (4C-4) since () is an even real function of 7. When ¢,(7) is an
even real function of = we see, from the Fourier integral for F,(f), that F,(f)
must be an even real function of f. We therefore set

2F,(f) = w(f), r=1,2
and define w( f) for negative f by
w(— f) = w(f) (4C-5)
Equation (4C—4) then gives

+o0
G) =5 [ we(s — v ax
= —é j;f w(x)w(f — x) dx (4C-6)

+3 [ w@wq + 2 as

where in the second equation only positive values of the argument of w(f)
appear.

In order to get Gs(f) we set ¢1(7) equal to ¢(7), 2F(f) equal to w(y), and
eo(7) equal to (7). Then

Fo(f) =2 —/o@ wa(7) cos 2nfr dr

= ZGz(f)

and from (4C-4) we obtain

1
G =1 [ w6 = w) dx
1 C (4c-7)

+2
=%l w(x) dx [m wyw(f — ¥) dy
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Equation (4C-7) suggests that we may write the expression for Go(f) as
1 [t
Gif) =1 [ w@Gis — ) v (4C-8)
This is seen to be true from (4C-2) and (4C-6). In fact it appears that
1 +o
) = 5 [ 0 = 9DGua(a) d (4C-9)

might be used for a step by step computation of Ga(f).
We now consider G,(f) for the case of relatively narrow band pass filters.
As examples we take filters whose characteristics give the following w(f)’s

and ¢(7)’s

TABLE 1
Filter w(f) forf >0 y(7)
a _¥o e~ —f0)2[2® Yoe 2T cog 2nfor
oy 2x
1 .
b Yoo 1 oe~ 2™l cos 2nfyr

x o + (f — fo?
w(f) = wy = /B for

c fu—g<f<fﬂ+g 0o ST s 2fyr

wBr

w(f) =0 elsewhere

We shall refer to these filters as Filter a, Filter b, and Filter c, respectively.
All have fy as the mid-frequency of the pass band. The constants have
been chosen so that they all pass the same average power when a wide band

voltage is applied:
Yo = f w(f) df = mean square value of T () or V(t)
o

and it is assumed that fo 3> o, fo 3> @, fo >> B so that the pass bands are

relatively narrow.
Expressions for Ga(f) corresponding to several values of n are given in

Table 2. When n = 1, Gy(f) is simply w(f)/4. Ga(f) is obtained by set-
ting # = 2 in the definition (4C-1) for Ga(f), squaring the Y(r)’s of Table 1,
and using '

cos® 2rfor = 3 + 3 cos 4xfor
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The expression for Ga(f) given in Table 2 corresponding to Filter ¢ is
exact. The expressions for Filters a and b give good approximations around
f = 0and f = 2fo where Go(f) is large. However, they are not exact because
terms involving f + 2/, have been omitted. It is seen that all three Gs's
behave in the same manner, Each has a peak symmetrical about 2fo whose
width is twice that of the original w(f), is almost zero between 0 and 2f,,
and rises to a peak at 0 whose height is twice that at 2fo.

Gs(f) is obtained by cubing the y(7) given in Table 1 and using

cos’ 2nfor = 2 cos 2nfor + % cos 6mfor.

From the way in which the cosine terms combine with cos 2afr in (4C-1) we
see that Gs(f), for our relatively narrow band pass filters, has peaks at fo
and 3fy, the first peak being three times as high as the second. The ex-
pressions given for Gs(f) and Gs(f) are approximate in the same sense as are
those for Go(f). Tt will be observed that the coefficients within the brackets,
for Filters a and b, are the binomial coefficients for the value of 2 concerned.
Thus for # = 2, they are 2and 1, for » = 3 they are 3and 1,and for = = 4
they are 6, 4, and 1.

The higher G.(f)’s for Filters a and b may be computed in the same way.
The integrals to be used are

® . —f2{2na?
f ¢ "% cos 2mfrdr = —————
0 20/ 2nm
. 1 no

—2nrar
€ cos 2mfrdr = — ————
j(; wfr dr 2w vt a? 4 f*
In many of our examples we are interested only in the values Gn(f) for
f near zero, i.e., only in that peak which is at zero. It is seen: that G.(})
has such a peak only when # is even, this peak arising from the constant
term in the expansion

cos™x = 22%1 l:cos 2kx + 2k cos2(k — 1)x + (—7%)(2; —1) cos 2(k — 2)x
(28)! (2k)!
SR e y Ty et k!k!z:l



