The New Statistical Mechanics

By
KARL K. DARROW

HIS is the second article upon statistical mechanics which I have pub-

lished this year in this Journal. The first, which appeared in the
January (1943) issue, was devoted to the oldest form of the theory, which is
variously known as the old, the classical, or the Boltzmann statistics. The
word “statistics,” I repeat from the former article, is a synonym for statisti-
cal mechanics, objectionable but (because of the length of the alternative)
hardly to be avoided. The “‘new statistics,” frequently divided into “the
Bose-Einstein statistics’” and “‘the Fermi-Dirac statistics,” emerged in the
middle twenties and ever since it has been gradually pushing its ancestor
aside. In thisarticle I propose to expound the new statistics, laying especial
emphasis on the theory of monatomic gases, to which the former article was
strictly limited.

A definition of statistical mechanics may well be asked for at this point,
especially since in the former article I failed to give one. Like many other
things either subtle or familiar, statistical mechanics cannot fully be defined
till it is fully understood, by which time a definition may seem nugatory.
As an attempt at an advance definition, I suggest that stelistical mechanics -
is the theory which, starting from the assumplion that matier (and, in due conrse,
radiation) is an assemblage of particles, undertakes to explain (1) entropy, (2)
temperature, (3) specific heals, and (4) the distribution-in-energy of the particles
in thermal eguilibrium. The critical reader may justly say that these are
four aspects of a single problem, but I think it well to separate them not-
withstanding. The word “particle” often has to be construed as standing
for an elaborate structure, but in dealing with monatomic gases (and with
radiation) we may let it stand for a point endowed with energy and
momentum,

How does the classical statistics succeed in handling these four problems?
To take them in reverse order: it does very well with the fourth, for material
gases (but not for radiation). It does very well with the third, for mona-
tomic gases (but not for polyatomic gases nor for radiation). It produces
an adequate theory of temperature for monatomic gases, identifying the
temperature with the mean kinetic energy of the atoms multiplied by a
certain factor. It has a very strange adventure with entropy, producing
a theory which in part is remarkably successful and in part is disconcertingly
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fallacious, and has to be altered in awkward and dubious ways to be made
completely successful.

To consolidate these statements and introduce the new theory, I review
the Boltzmann statistics.

The N atoms of a gas in a container are represented by N numbered balls,
identical in every way except the numbering. In the earlier article a game
was proposed in which a collection of numbered baskets was provided for
these balls, and the balls were tossed into the baskets in a predetermined
way: N} of them into the first of the baskets, N, into the second, and so on
until each of the baskets contained its preassigned number of balls with ¥
in the Mth or last basket. The set of numbers N), Ny, Ny, +++ Ny was
called a “distribution,” and the question was asked: in how many different
ways can this distribution be realized? It demands a previous answer to
another question: how can a given distribution be realized in more than
one wayr It is the numbering of the balls which makes this possible. If
for instance we exchange two balls in different baskets, the distribution is
not changed, and yet there is a difference between the second situation and
the first, for an inventory of all the balls in all the baskets shows that in
those two particular baskets the assortment has been changed. We thus
have realized the same distribution in two different ways. If we had
exchanged two balls in one basket, this would not have been regarded as a
change; we should still be realizing the same distribution in the same way,
in the sense of the Boltzmann statistics. It was shown in the earlier article
that the number W of ways of realizing a distribution—or in more technical
language, the number of complexions in the distribution—is given by the
formula:

W = NI/IIN;I (1)

T have said that in the Boltzmann statistics, the balls stand for the atoms
of a gas. For what then shall the baskets stand? The baskets stand for
compartments in space; but “space” may have several different meanings,

Giving “space” the ordinary meaning: imagine the gas contained in a
box, and the box divided mentally (not physically!) into M compartments
of equal volume. I called these by the name of “cells” in the previous
article, but now, for a reason which will shortly appear, I rebaptize them
“regions.” These are the baskets. T has its smallest value, which is
unity, when all of the atoms are in the same region. It has its greatest value,
which is NI/{[N/M)!]¥, when in each of the regions there is the same
number N/M of atoms. But this corresponds, as nearly as the picture is
able to correspond, to the uniform spreading throughout the box which by
vast experience we recognize as the natural permanent state of the gas “in
equilibrium.” The uniform distribution is outstanding because it has the
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greatest value of W. If now we baptize W with the name of “probability,”
we may then say that the state which in Nature is the prevailing one is in
the Boltzmann statistics the most probable one. In the theory it is de-
scribed by the equation:

N;= N/M (2)

Now think of “momentum-space” in which there is a dot for every atom,
and the Cartesian coordinates of the dot are the momentum-components
P2, Py, ps of the atom. The coordinates of the dot determine the energy E
of the atom, by virtue (for material particles) of the relation:

E = (1/2m)(pi + py + p2) (3)

This is a fact of the first importance, as will shortly appear. Let us divide
the momentum-space into regions of equal volume. Each of the regions
will correspond to a small range of energy-values, as a sample of which we
may take any particular one among them. Therefore when we distribute
the dots—or let me say simply, the atoms—in any manner among them, we
have perforce a certain value of the total energy U of the gas, which we may
consider as preassigned if we so wish. Now we are to compare this distribu-
tion only with such others as show the same value of I'. Among these there
is one which is outstanding because it has the greatest value of W. This was
shown in the earlier article to be the canonical or Maxwell-Boltzmann
distribution, described by the formula:

N; = NA exp (—BEj) (4)

in which N; stands for the number of atoms in the region numbered j; E;
for the value of E appropriate to that region, i.c. obtained by substituting
into (3) the coordinates of some point in that cell; A and B for constants,
whereof A depends on B while B depends upon I//N the average energy of
the atoms of the gas. This distribution also is attested by experiment as
being truly that of a gas in its normal natural abiding state of equilibrium.

Now I mention the concept of a six-dimensional space which comprehends
both the ordinary space and the momentum-space, and is divided into six-
dimensional regions of equal volume. By this device one is able to speak of
(2) and (4) as two aspects of a single distribution in the “u-space.” Thisis
the distribution outstanding among those with which it may legitimately
be compared by reason of having the greatest W-value. It is the most
probable distribution, in the sense given in the Boltzmann statistics to the
word ‘‘probable.”

This is the first triumph of the Boltzmann statistics, attained by number-
ing the atoms. Tts other triumphs, and its ultimate confusion, come when
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it copes with the task of interpreting entropy. But if I continue longer
this review of the conclusions of the former article, the reader’s tolerance
may be exhausted. Let us make haste to find out how the newer statistics
sets forth to find out the most probable distribution.

One of the most appealing features of the new statistics is, that it does not
impose on atoms of a single kind that peculiar distinction which I described
above as “numbering”’ them. We therefore now remove the numbers from
the atoms, restoring thus to atoms of a single kind—it might for example
be helium—that quality of absolute indistinguishability which the classical
statistics took away from them in order to achieve its aims.

Having de-numbered the atoms, we start anew to play that very game
with numbered balls and numbered baskets which we played in the classical
statistics with such remarkable but incomplete success. But now that the
atoms are de-numbered, they can no longer be the balls {nor, for that matter,
the baskets), Something drastically new must now be done, and is.

I'n the new stalistics, the balls stand for the comparimenis and the baskels
for the populations.

I must define the word “population.” It means the number of atoms in
a compartment, or as I will say from thiz point onward, in a “cell.” The
balls which are tossed into the basket numbered 0 stand for the cells con-
taining no atoms; the balls which go into the basket numbered 1 correspond
to the cells containing one atom apiece, and so forth indefinitely. C; shall
be the symbol for the number of balls in the ith basket, which is to say, the
number of cells containing ¢ atoms apiece. C shall stand for the total
number of cells.

Let the cells at first be compartments of equal volume in the ordinary
space, obtained by dividing up (mentally) the box containing the gas. For
the number of complexions or inventories corresponding to a given distribu-
tion, defined by given values of the quantities C;, we have as before:

W = Cl/muc;! (5)
and taking the logarithm:
InW =CInC — ZEC;InC; (6)

In using this expression I have again, as often in the previous article, as-
sumed the walidity of what I there called *‘the super-Stirling approxi-
mation''; but notice that this no longer means that I assume each of the
cells to enclose an enormous number of atoms—it means instead that there
is an enormous number of cells having each particular population.’

1 Clearly this cannot be so for all populations no matter how great! This is a difficulty

which also pops upin the old statistics, though there itis not met until the ordinary space
is replaced by the momentum-space.
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We seek a set of values C; such that when it is realized, the quantity W
shall have a value stationary with respect to all variations 5C; conforming
to fwe conditions: first, that the number of cells shall remain the same, which
is to say, Z8C; shall vanish; and second, that the number of atoms shall
remain the same, which is to say, Zi6C; shall vanish.

Such a set is the followng:

Ci= Coe™ ™ (7

« and f§ standing for constants yet to be determined; for taking the first
variation of InW from (6), we find:

5(ln W) = —Z3C,(1 + In C)
= — Z3Ci1 + In Ca) + BEisC; (8)

and the required condition is fulfilled. Assuming without proof that the
stationary value of W is also a maximum value, and referring to W as the
“nrobability” of the distribution of cells among populations, we have come
to the startling conclusion that the most probable distribution is the one
given by (7)!

1 call this a startling conclusion, because it contravenes our inbred con-
viction that the natural distribution of a gas in ordinary space is the uniform
distribution. Of course, in the last two sentences I have used the word
“distribution’ in two senses, and this must be rectified at once. What I
have just called “’the uniform distribution” is the uniform distribution in the
old sense—the same number of particles in every cell. In the new sense of
the word, this is a distribution in which all of the cells have the same popula-
tion, and therefore in which one basket contains all of the balls. Definitely,
this is not, in the new statistics, the most probable distribution! Indeed
it is not even a conceivable distribution, for the number of cells is infinite.

To mitigate this clash of theory with experience we can do nothing else
than assume our cells to be so tiny that in any region of the gas large enough
to be surveyed by observation, there is a mighty number of the cells. Then
at worst we can take it from experience that in the normal natural abiding
state of the gas the number of atoms in each region will be the same if all
the regions are of equal volume, while within each region we can distribute
the atoms among the cells as the new statistics tells us to. However, it
may yet be possible to come to this conclusion from the theory. In prepara-
tion for the effort, I sketch the procedure for evaluating the constants o
and 8 in the distribution (7).

A similar task was set before us in the earlier article: that of evaluating
the constants of the Maxwell-Boltzmann law in terms of the total number
and the total energy of the atoms. Here for any region we are to evaluate
the constants @ and § in terms of the number of cells C and the number of
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atoms V. The task is greatly eased by the opportunity of using two well-
known formulae:

l+x+24 oo =(1—2" (9)
142243+ ---=(1—2)" (10)
The start is made from the two self-evident equations:
C=32C; = CZac ™ (11)
N = ZiC; = CZiae * (12)

By putting x for ¢ * and using (9) and (10), the student can easily win
through to the results,

a=(l—¢%, C/N=#=1 (13)
and then to the final form of the distribution-law (7):
il c N Y
G_CN+CGWI) (14)

and finally, after consulting \5), to the expression for the number of ways
Weax in which this the most probable distribution—‘‘most probable” in the
eyes of the new statistics—can be realized. Its logarithm is:
N+C N+C
lanmu—CmT—l—Hl - i
This is the most important formula of the new statistics, as will presently
be clear.

Divide now the space containing the gas into “regions™ of equal size,
each comprising the same number C of cells, which number shall be great.
For the benefit of those to whom the memory of the previous article may
still be vivid, I say now that insofar as there is any correspondence of the
new to the old statistics, these “regions" correspond to the “cells’ of the older
theory. This is the reason why, in my recent brief synopsis of the old
statistics, I used the word ‘“‘region™ to replace the word “cell” used in the
prior article. Let the subscript j be the marker for these regions, so that
N; shall stand for the number of atoms in the jth region. Put N; for N
in (15). Now each member of (15) refers explicitly to the jth region, and
on the left I should put (In W u.s ), but for two purposes—one of which is
brevity, while the other will appear in due time—I put In W, instead:

N+ C N;+C
o= + Nl ==

The quantity W; is an odd sort of “probability” relating only to the
contents of the region j. It is, to repeat, the number of ways in which the

(15)

InW; = Cln —— (16)
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most probable distribution of the C cells among the possible populations can
be realized, there being N; atoms in the region. Nothing of the sort ap-
peared in the old statistics.

Now form the product of all of the quantities W;  This is a “probability™
relating to the entirety of all the regions, therefore to the whole of the gas.
It is the total number of ways in which the most probable distribution can
simultaneously be achieved within each of the regions. It is taken to be the
total number of ways in which the most probable distribution of the gas-
as-a-whole can be realized; for in the new statistics we have no other way
of defining the most probable distribution of the gas-as-a-whole, than this
way of subdividing first into cells and then into regions comprising many
cells. ‘The symbol for this product shall be W, for although I have already
used that symbol in this article, its former meaning is now taken over by
W;, and it is free again. We have:

InW =ZXIn H‘r; “.?}

the quantities WW; being still those functions of N; which were shown in
(16).

We seek now a set of values of Ny such that when it is realized, in W,
and therefore W also, shall have a value stationary with respect to all
variations 5V ; conforming to the sole condition that the total number of
atoms shall remain the same, which is to say, 3V ; shall vanish.

It may be recalled that a similar problem arose in the old statistics. I
treat it here in a more general and hardly less simple way, by writing the
self-evident equation:

— O
SInW = X ~dN, 5N, (18)
For the fulfilment of our wish it is a sufficient condition that all of the deri-
vatives on the right-hand side should have the same value; since than 8ln W
will be £6N; multiplied by a constant, and when one vanishes so will the
other. For this it is in turn a sufficient condition that all of the independent
variables N ; should have the same value.

Uniform spreading of the atoms among the regions, with equal numbers in
all regions of equal size, is therefore the condition in which In W has a
““stationary” value, which as always is assumed to be a maximum value.
With the new definition of probability, the state of uniform spreading be-
comes the most probable in the new statistics, as with the old definition of
probability it was in the old.

We go into the momentum-space to see whether the Maxwell-Boltzmann
law results from the new statistics.

The momentum-space is now to be divided into regions of equal size,
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each large enough to comprise a great number C of cells and small enough
so that the function E of equation (3) may be deemed sensibly constant
throughout it; E; shall stand for the value of E appropriate to the region.
(It is convenient to imagine the regions as layers separated from one another
by concentric spheres having the origin for their common centre). For
each of the regions W;, the number of ways in which the most probable
distribution of the cells among the possible populations can be realized, is
given again by (16); and W, the number of ways in which the most probable
distribution can simultaneously be achieved within each of the regions, 1s
given again by (17).

We now seek a set of values of N; such that when it is realized, InW¥" shall
have a value stationary with respect to all variations 5V ; conforming to two
conditions: first, that the total number of atoms shall remain the same, which
is to say, £&N; shall vanish; and second, that the total energy of the gas
shall remain the same, which is to say, £E 4N ; shall vanish,

Referring back to (18), we see that for the fulfilment of our wish the
following is a sufficient condition:

d(ln W)
P i anl P + QE; (19)

P and ( standing for constants; for when these substitutions are made into
every term of the summation on the right of (18), the expression to which
dinW is there equated may be regrouped into one term proportional to
¥5N; and one proportional to ZE#N;, and vanishes when it ought to
vanish.

Gone is the comfortable ease with which we disposed of the corresponding
problem in the ordinary space! There we did not even have to know what
sort of function W, is of N;; whatever it might be, we were able to conclude
that ; must be the same for every region. Here the outcome must depend
upon the functional relation between W; and N;. There is, however, no
ground for apprehension, for though the function in question looks rather
involved in equation (16), its derivative is surprisingly simple, and we come
with ease to the condition which we seek:

In(N;+C)—InN;= P+ QF; (19)
which may be rewritten thus:
C P+QE
—_—= —1 —I—- i
N; y (20)

This is not the Maxwell-Boltzmann law, but approaches that desired law in
what T will call the “limit of extreme rarefaction,” where the number of
cells in the region exceeds manyfold the number of atoms. As C/N; grows
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greater and greater, the first term on the right recedes into relative insignif-
jicance; and with an ever-increasing degree of approximation, we have:

N;= NAeg "% (21)

with N4 put for Ce™" and B for 0—which s the Maxwell-Boltzmann law
and the law confirmed by experiment.

A helpful and troublesome coincidence between two different quantities

When in the earlier article I used the section-heading repeated just above,
it referred to the near-equality between the logarithms of two different
numbers: one number being that of all the complexions compatible with the
most probable distribution (of numbered atoms sprinkled among numbered
cells in ordinary space) and the other being that of all the complexions
compatible with all conceivable distributions alfogether. The most probable
distribution had so great a share of all conceivable complexions, that no
grave error was committed in pretending (so long as we were dealing with
In W) that it actually had them all without exception!

A similar coincidence occurs in the new statistics, and will now be set
forth.

Consider the jth region by itself. In (15) I have given the expression
for In Wo.x, the logarithm of the number of ways in which the most probable
distribution of cells among populations can be realized. This is now to be
compared with In Wy, the logarithm of the total number of ways in which
all possible distributions of cells among populations can be realized. Note
that I say “‘all possible” and not “all conceivable” distributions! The only
possible ones are those which are compatible with the fixed number N;
of atoms. This limitation prevents us from proceeding by the easy route
of the earlier article. Indeed in order to solve the problem “in how many
ways can all possible distributions of cells among populations be realized?”
it is necessary, or at any rate customary, to restate it in a very different
manner, which is the following:

I'n how many different ways can N ; un-numbered balls be distributed among
C numbered baskets? Two ways are considered as different unless n; = n;
for every value of ¢ (#; and n,; standing for the populations of the ith basket
in the two ways).

Notice that again the balls stand for the atoms and the baskets for
compartments in space, as they did in the old statistics! We are playing
a new game with the old baskets and the old balls, instead of playing the
old game with new balls and new baskets as we have just finished doing.
It has to be a new game, for the numbers have been removed from the old
balls and the old game is therefore unplayable.

This is, to put it mildly, one of the less perspicuous problems of the
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“‘theory of probability.” I cannot do better than repeat, with slight changes
in wording, the process of solution given by the Mayers in their book.”
“A distribution is characterized by the number of balls in each of the
numbered baskets, since the balls are indistinguishable. Consider the
arrangement in a line of the symbols sy, 25, + -+ 50, @, a4, -+ - aw, as for
nstance,

Si w1y Zg 2g Py Z5 Zg Bp Mg v

Such an arrangement could be used to define an assignment of N numbered
balls, the a's, to C numbered baskets, the z's, by adopting the convention
that the balls to the right of each numbered z belong to the basket of that
number, For instance, the above corresponds to balls 2 and 4 in basket 1,
balls 8 and 9 in basket 8, no balls in baskets 5 or 4, and ball 6 in basket 9.
One must observe the convention that the row starts with a z, and we shall
consider only arrangements of the symbols which start with z,. However,
(C — 1)! such arrangements of the symbols correspond to onearrangement of
numbered balls in the same baskets, since permutations of the (C — 1) groups
of each s; with its following a's correspond to the same arrangement of
numbered balls in the baskets. In addition all ¥! permutations of the a’s
correspond to the same distribution of un-numbered and indistinguishable
balls in the baskets. In all, each distribution of the indistinguishable balls
among the numbered baskets corresponds to N'1(C — 1) ! arrangements of the
symbols, and the (¥ + C — 1) symbols (after the first) may be arranged in
(N 4+ C — 1)! different ways."

Thus we come to the formula® for I/, the total number of ways in which
all possible distributions of the cells of a region among the populations can be
realized; it is,

_(N;+C— 1)1

I
Wiot N;I(C — 1}!

(22)

Dropping the “ones” for the amply sufficient reason that they are insigni-
ficant by comparison with ¥; and C, and taking the logarithm with use of
the super-Stirling approximation, we find:

W= (N;+C)In(N;+C) = NylnN;—Ch C (23)

which with a little regrouping of terms is found to be the very same ex-
pression appearing in (15) for In W

2], E. and M. G. Mayer, “Statistical Mechanics” (John Wiley & Sons, 1940); p. 438.
Reprinted by permission,

1 For the historian of science it is interesting to note that the formula (22) was used
by Planck in his earliest derivation of the black-body radiation law. His un-numbered
balls were quanta of energy, his baskets were linear oscillators, and his k In W was the
entropy of the system of C oscillators sharing N; quanta among themselves. Cf, Najur-
wissenschaften, April 2, 1943,
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I review the situation. We began by dividing space (ordinary space, or
momentum-space, or p-space) into what were called cells in the earlier
article and are now designated “regions.” We wanted to reach, as most-
probable-distribution of the atoms among the regions, the uniform spread
in ordinary space and the Maxwell-Boltzmann law in momentum-space.
To do this by the method of the new statistics, we divided each region into
many ‘‘cells.”” The first stage of the argument then consisted in taking a
typical region, and ascertaining the most probable distribution of the cells
among the populations. We then evaluated Wi, the number of ways in
which this distribution could be realized. Inserting /n Wo.. into the argu-
ment we continued into the second stage, and attained the wanted result.
But now it turns out that in the first stage we might have omitted to ascertain
the most probable distribution of the cells among the populations in the
typical region. Anybody might win through to the same desirable outcome
without even suspecting that there is a most probable distribution of cells
among populations. All he needs is to evaluate Wy, the number of ways
in which all possible distributions of cells among populations within the
region can be realized. He may then replace In Wau by In W, and pro-
ceed with the second stage as before. Since the two logarithms are
practically equal, the outcome is the same,

There are accordingly two routes to the result, which do not merge until
the argument is carried partway to the conclusion. Is one of them right
and the other wrong? Or to ask a milder question: is either to be preferred
to the other?

So far as I can see, neither can be proved wrong, and the question must
be asked in the milder form. For myself I stand by the preference exhibited
in this article, for the basic reason that along this route each of the stages of
the argument consists in finding a most probable distribution: first for the
cells among the populations of each region by itself, and then for the atoms
among the regions. By the other route the two stages are differently
handled, since in the first stage one considers all the distributions (of cells
among populations in each region by itself) and then in the second stage the
most probable distribution (of atoms among regions). There is also the
minor advantage, that the value of W, is much easier to derive than the
value of Wi, or at least so it seems to me."  However, many physicists
of eminence have preferred the second route. Anyone may say of course
that the question is foolish, since the number of complexions subsumed under
the most probable distribution is so large a fraction of the total number of
complexions altogether that no danger arises from confusing them. This is
what the equations have been saying, and now I have said it again in words.

4 It was the other way about in the somewhat similar case which was treated in the
carlier article.
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Yet any policy which leaves this basic law unsaid, or even fails to emphasize
it, is (I think) a bad one for all but the very few to whom it is already obvious.

Another question: may the old statistics be regarded as the limiting form
of the new statisticz, in the limiting case of “extreme rarefaction” where
in every region the number of atoms is very much smaller than the number
of cells?

It may seem that this question has already been answered with a yes,
in view of the fact that in the limiting case the new statistics gives the same
distribution-law—in momentum-space as in ordinary space—as the old one
does. Nevertheless the answer is #no. Mathematically this appears in the
following way. In the old statistics the Maxwell-Boltzmann law springs
from the denominator IT N;! in the right-hand member of equation (1),
which turns up as (—ZN; In N;) in the expression for e, Now we look
at the equation (23) and see the term —NJn N; appearing with several
other terms in the right-hand member. In the limit of extreme rarefaction
it outweighs all the others and survives by itzself. We summed it over all
the regions and so arrived again at (—ZN; in N;), from which again the
Maxwell-Boltzmann law emerged. But in this method of the new statistics
each term of the summation comes by itself from the corresponding region,
whereas in the method of the old statistics the whole summation arrived
upon the scene en bloc or all in a single piece. The former method does not
pass into the latter method in the limiting case. The conclusions agree
in the limit, but the methods do not.

I have mentioned this because not infrequently one finds in print the
careless statement that the old statistics is the limiting case of the new
statistics, or words to that effect. Actually one can find more potent ways of
contradicting that statement, as for example by emphasizing that the old
statistics numbers the atoms and the new one leaves them un-numbered,
and in no way can the one policy be regarded as a limiting case of the other.
More convincing vet would it be to show that the new statistics and the old
lead to results which definitely differ even in the limiting case of extreme
rarefaction. This is what I next undertake to show as an incident of the
explanation of entropy which the new statistics affords.

THEORY OF ENTROPY

For a substance of a single kind in a single phase, the basiz of thermo-
dynamics is the single equation,

dU = TdS — PdV (31)

in which there are five variables: pressure P, volume V, absolute tempera-
ture I', energy ' and entropy 5. Two may be varied independently, and
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any two of the five may be taken as these two, the remainder I:-m;:uming the

dependent variables.
From (31) we deduce, to begin with,

T = (AU /a8y (32)

an equation which shows that if ever someone sets up a theory in which
entropy is expressed as a function of energy and vice persa, it is per 52 a
theory of absolute temperature, This, however, will find its due place
later. What is of instant importance is a second deduction,

(8S/0T)y = T7'(3U/0T)v (33)

for making use of which we take note of the fact (not explicitly stated till
now) that when the volume does not change no mechanical work is done
upon or by the substance, and therefore all of the change in energy is that
brought about by the inflow or outflow of heat. This fact is expressed in
another equation, :

(aU/aT)y = H, (34)

H, standing for the amount of heat that must be fed into the substance to
raise its temperature, at constant volume, by one degree—the “heat-
capacity at constant volume,” as some would call it. Combining the two,

(8S/8T)y = H./T (35)

Envisage now the entropy 5 as a function of volume and temperature,
and view the equation:

dS = (35/aV)s dV + (85/8T)e dT (36)

An equivalent for the coefficient of d7" has been provided, and now it is
needful to find one for the coefficient of 4V, To do this we use the function
(I — T5), to be denoted by A, which by aid of (31) is seen to have the
following differential:

dd = —PdV — SdT (37
Out of this one draws the following two deductions,
(84 /aV)e = —P, (84/8T)y = —8§ (38)

Differentiating both sides of each of these equations, the former with respect
to T while holding V" constant, the latter with respect to V" while holding T’
constant, one gets two expressions for what is one and the same quantity,
to wit, the second derivative 8°’4/8T8V. Equating these two expressions,
and saying goodbye to 4 which has fulfilled its purpose, one has,

(a5/8V)r = (@P/0T)¥ (39)
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which by the way is one of four equations collectively known as Maxwell's

relations—a memorial of Maxwell's creative work in early thermodynamics,

as the name of the distribution-in-energy law is of his work in early statistics.
Substituting from (335) and (39) into (36), we find:

48 = (aP/aT)dV + (H,/T)dT (40)

a usable and a useful expression for the entropy S—usable, that is to say,
to anyone who knows the heat-capacity H, and the derivative (8F/dT)y,
as functions of volume and temperature, for the substance in question.
Now take it on faith that there exists a gas having the following qualities:
first, its pressure and volume and absolute temperature are linked to-
gether by the equation,

PV =LT (41)
L being a constant; whence follows,
(@P/aT)y = LJV (42)

second, if the attempt is made to express its energy U as function of T
and any one of the remaining variables (to wit, P or V" or 5), then the latter
variable drops right out of the picture, leaving U7 as a function of T alone.
I suppose this seems a needlessly longwinded way of saying that I/ does not
depend on # or ¥V, but it is necessary to provide for the fact that I/ may be
expressed as (say) a function of § and V, whereupon it will be found that
neither variable drops out of the picture. This is one of the features that
make the science of thermodynamics very like a maze.

third, the heat-capacity H, is independent of all the variables.

With these stipulations, (36) becomes:

ds = (L/V)dV + (H,/T)dT (43)

integrating which, we readily find that for the peculiar kind of gas presented
just above as an article of faith, the entropy is given by the formula:

S=LhV+H T4+ (44)

The symbol C stands for one of the most useless things in the world: an
arbitrary additive constant of integration. The only purpose normally
served by such a constant is, to prevent people from thinking that the
equation is right if the constant is left off. Its presence means that the
absolute value of § is undeterminable, i3 beyond the reach of experiment to
determine. Nevertheless this constant is one of the principal themes of
statistical theory; and we shall see that in defiance of what I have just
said, and no part of which I retract, it does make sense to assign a particular
value to this constant, and remarkably good sense at that.
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I propose to begin very soon on the proof that the new statistics, applied to
a flock of atoms which are merely mass-points, gives an excellent description
of just such a gas. However, there is a detail, or rather an element of the
structure, waiting to be inserted correctly—a trivial one in appearance, but
in all of thermodynamics and all of statistics there is nothing further re-
moved from the trivial. It is the dependence of the entropy on the quantity
of the substance, the dependence of § upon N the number of atoms. To
put a question seemingly so simple that it almost answers itseli: given two
samples of the same kind of gas under identical conditions, one comprising
twice as many atoms as the other, what is the ratio of their entropies?

This is a remarkable question, because it seems so absurdly simple and is
actually so very complex. -

Before the advent of statistical theory, anyone versed in thermodynamics
would probably have answered it by replying either that & is proportional
to N, or that the question has no meaning. The first reply is suggested by
the consequences of the fact that thermodynamics proposes no way of
measuring the entropy of a gas (or other substance), but only ways of
measuring the entropy-difference between two states. Let Vy, T} and |
T, stand for the values of ¥ and 7" in two states of one gas. Equation (43)
informs us that the entropy-difference is L In (Va/V1) + H, In (T%/T3).
The constant C has vanished; the remaining terms are proportional to N
because L and H, are proportional to N. The entropy-difference is there-
fore proportional to N. It seems reasonable to conclude that & is propor-
tional to V, but so long as there is no specific assertion about C the conclu-
sion is not binding; and the proper reply is actually, that the question has
no meaning.

But the statistical theories do make assertions about C, and the question
is on the verge of acquiring a meaning; so it might be a good idea to ask in
advance what sort of answer we should like to have. It seems natural to
expect S to be proportional to N, so that the “double sample™ shall have
twice the entropy of the “single sample” under identical conditions. But
what are “identical conditions?” Here is the eatch. No more than two
of the three variables P, ¥, T can be made the same for both the samples.
I suppose that almoest anyone would choose T for one of these two, so un-
plausible would it seem to expect the double sample to have twice the en-
tropy of the single sample if their temperatures differed. But after this is
decided, shall we make V" the same for both, and accordingly give doubled
pressure to the double sample? or shall we make P the same for both, and
accordingly give doubled volume to the double sample?

This is no mere quibhle, for the choice will determine the dependence of

C on .
The first alternative requires that C be proportional to N. This is
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obvious from inspection of (44) when one remembers that L and H, are
hoth proportional to N. I rewrite that equation accordingly, and put
Ny for the number of atoms in a gramme-molecule, R and Cy and RK, for
the values of L and H, and C appropriate to N, atoms:

§= (N/No)RInV + (N/No) C. In T + (N/Ne)RKs (45)

5 iz doubled if & is doubled while ¥ and T stay the same, which is what was
intended.

This equation will not suit the second alternative; for if V' is doubled
along with N, 5 will be more than doubled. Ower and above the doubling,
S acquires an extra term 2(N/Ns) R In 2. Now if the constant C just
happened to include a term —2(N/Ng) R In 2, the extra term would be
obliterated, and § would just be doubled if ¥ and V were to be doubled
while P and T remained the same. Such a term is provided by replacing
(45) with the equation:

S=(N/N)RlnV 4+ (N/No)Cy In T — (N/Ne)RIn N + (N/Ny)RK, (46)

where the last two terms on the right are to be regarded as forming the con-
stant C. ‘This then is the dependence of C on N which is demanded by the
second alternative.

To guide the choice between the two alternatives there is, so far as I
know, but the one argument; it is, however, a powerful one, and seems likely
to hold the field unchallenged.

We have heen thinking of two samples of identical gas at identical temper-
ature. Think of them now as divided by a removable partition. When
the partition is taken away, what happens? If the initial pressures are not
the same, there is a swirling and a surging, dying away in time into a state
in which the pressure is the same throughout the volume now commeon to the
samples, but is not the same as it was before in either separate gas. This is
just the sort of trend of events with which one likes to think that an entropy-
change, and indeed an entropy-gain, is linked. Notice also that if the
partition is replaced, the state of affairs on either side does not become the
same as it was before! But now suppose the initial pressures to be the same.
The partition can be removed and replaced without entailing any perceptible
change in the gas such as one likes to associate with a change in entropy.

The second alternative is in harmony with these facts, the first is not.
So to the question “is the entropy of a gas of 2V atoms double the entropy
of a gas of N atoms?” the acceptable answer is: “yes, if the volume of the
double gas is twice that of thesingle gas, their temperatures being the same.”
Now, this is also the answer given by the new statistics; for as we shall
presently see, it leads to a formula like (46). It is not the answer given
by the old statistics, which (as I said in the earlier article) leads to a formula
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like (44). This is one of the dominant reasons for preferring the new sta-
tistics to the old.

Now I proceed to the theory of entropy and temperature derived from
the new statistics.

New Statistical TreEorY oF ExNTROPY

Entropy is identified with the quantity In W, multiplied by a constant &
which as yet is disposable:

S=kInW (47)

It is now to be shown that for the picture of a gas which is a flock of mass-
points in the “most probable state™ as defined by the new statistics, and in
the limit of extreme rarefaction, this expression becomes the same as (46),
with further consequences of much value.

As in the previous article, I separate the entropy into 5, the “contribution
of volume to entropy” which springs from the sprinkling of the mass-points
in ordinary space, and S, the “contribution of temperature to entropy™
which springs from the sprinkling of the mass-points in momentum-space.
This is an artificial separation and worse than artificial, for it leads to a
fault in a detail which is not trivial. Nevertheless I think that for ease of
exposition the procedure is justified, and the detail will be made correct at
the end of the argument.

We must now take (16) down to the “limit ﬂf extreme rarefaction.”
I repeat this equation:

nW;=(N;+CIh(N;4+C)=—ClnC—N;InN; (16)

The journey toward the limit is menaced by some of the oddest pitfalls,
and must be travelled with care. I recall that by Taylor's expansion, In
(N; + C) is equal in first approximation to (N;/C + In C) when N; is
small by comparison with C. Making this substitution into (16), one finds
that the right-hand member consists of six terms.  The two largest of these,
CIn C and —C In C, destroy one another. The smallest, N*/C, is to be
neglected (if we couldn’t neglect it, the dependence of entropy upon N
would be hopelessly misrepresented). All of the remaining three terms
must be kept, for even the smallest—which is N;—will play a perceptible
part in the check of theory with experiment. We have:

InW;=N;InC — N;InN; 4+ Ny (48)

The quantity In W is the summation of In W; over all the regions.
Notice that we are interpreting entropy in such a way, that the entropy of
the gas in the container is the sum of the entropies of the portions thereof
in the individual regions. This is why we are destined to come to a result
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in harmony with the “second alternative” aforesaid, wherein the total
entropy of two gases of identical P and T is the sum of their separate entro-
pies! Tt is otherwise in the old statistics, and that was the source of the
troubles of that elder theory. But to proceed:

mW= lW;=NIhC—EN;,InN;+ N (49)

In the ordinary space and in the most probable state, N; is the same for all
the regions, as we have found already (page 363) and therefore is equal to ¥
divided by V/ Vs, or to NVi/V; here Vy is the volume of the region (not the
celll). The next step is to put this into (49), realizing now that each term
becomes the same and the whole summation is V/V, times the typical term.
One is agreeably surprised to find that Vy tumbles out of the expression:
this is a feature of the new statistics—the regions have but an intermediate
and an auxiliary quality, the size assigned to them is gone from the final
equations. In its place appears the volume of the cell, which is Vu/C,
and which I denote by g.. For 5. we have:

S.=NklnV—NtlnN—Nklng.+ N (50)

Note the last three terms, for future comparison with the two last of (46);
but at thiz moment note especially the first, and compare it with the first
of (46). Entire agreement is attained by assigning to & the value,

k= R/Ny (51)

as in the old statistics. The “Boltzmann constant” & is the “‘gas-constant™
R divided by the “Avogadro number™ No.

Seeking now the “contribution of temperature to entropy,” Sm, we turn
to the momentum-space. Here the most probable distribution is given by
(21), and is to be inserted into (50):

mW=NhC—ZN;nN;+ N
=NInC—Nlnd+ NZABE; "™ + N (52)

It will be recalled from the earlier article, or failing this can easily be seen,
that,

NZA™ ™ = N, NZAEg ™ =U (53)

[/ standing as heretofore for the total energy of the gas. The expression
(52) is simplified of aspect, and multiplying it by &, we find for S,

Sm=klnW = ENInC — BN In A + kBU + kN (51)

Though [ have spoken of this as the contribution of temperature to entropy,
the temperature is nowhere to be seen! It is waiting on the doorstep;
but before allowing it in, I wish to operate on the quantity In 4,
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This quantity, by (53), is given thus:
— In'd = In Ze "5 (55)

The so-called “partition-function,” which is the sum appearing on the right,
15 made of terms contributed one from each region, the term from the jth
region being exp(— BE ;)—herein £; stands (it is proper to say) for the aver-
age value in the jth region of the function,

E = (1/2m) (g3 + p; + 13) (56)

If the regions were of unit volume, this summation would be (approxi-
mately) equal to the triple infegral of exp(— BE;) over the whole of momen-
tum-space. But the volume of each region is Cjqm, wherein g, stands for the
volume of the cefll. This signifies that while the integral contains one term
for each unit of volume, the summation comprises 1/C . terms for each
unit of volume. The summation is accordingly 1/Cjm times as great a-
the integral. Denoting the integral by I, we have in place of (55),

—Ind=mlnl—-=Ing,— InC; (57)
and in place of (54),
Sm=ENInI — kN In gu + RBU — AN In N 4+ kN (58)

We note with satisfaction that the size of the region has disappeared, even

as it did while we were operating in ordinary space!
The next step is to consult a table of definite integrals for the value of the

integral I (or to work it out one's self, if one's memory of the mathematical
technique is vivid). The tables give:

I=(2xm/B)"" (59)
Before returning the table of integrals to the library, the student should
also look up the value of the definite integral _L x'e ™ dx; for with its aid he

will be able to find a very simple relation between B and I'. I have already
said that either determines the other, and now for this special case we shall
find the relationship. The procedure consists in going back to the second of
equations (53), realizing that

X E; exp(—BE;) = (1/C;qu) f f f E exp " dp. dp,dp,  (60)

and performing the triple integration over the whole of momentum-space,
a feat which is not so hard as it looks. Multiplication by 4, as indicated in
(53), removes the factor (1,/C;¢=), and the simple conclusion is,

U = 3N/2B (61)
a relation valuable in two ways.
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In the first place, (61) enables us to eject either B or U from the expression
for Sm. It seems more sensible to do away with B, leaving S, expressed asa
function of the energy of the gas; but I will let the reader do that for his own
instruction. In view of the peculiar significance of B this is for our purposes
the better one to keep.

Now it is high time indeed to show what is that peculiar significance.
Differentiating 5 with respect to U, we find kB for the derivative. Turning
back to (32) we are reminded that this derivative is 1/T" by the definition
of the absolute temperature T. Now the temperature has stepped across
the threshold, and S, assumes the form:

Su=(3/2)NeInT — NkIn N + Nk In [(2emk)"e* /qu]  (62)

Notice that the term + AN has been absorbed into the final term, so that
¢ has been replaced by €' in the argument of the logarithm: this is a usage
with which the student must become familiar. (Some writers also incorpo-
rate —Nk In N into this final term, which thereby acquires a factor N
in the denominator of the argument; the term then ceases to be a constant,
which is why I do not follow this policy.)

Comparing (62) with (46) we see that S, embodies correctly the
dependence of entropy on temperature, provided that C, (the specific heat
per gramme-molecule) is equal to (3/2)kNs. Since a value for k—to wit,
R/Nys—has already been forced upon us as a necessary and a sufficient
condition for making § depend correctly on the volume, this new require-
ment is that C, should be equal to (3/2)R. Now this is a fact of experience
for the gases called monatomic!

I said that the relation of [/ and B expressed in (61) is valuable in two
ways. The second is only the first seen from a different viewpoint, for
which I rewrite (61) in the form:

U/N = U = (3/2kT (63)

For the flock of mass-points distributed in momentum-space in the manner
indicated as the most probable by the new statistics (as, for that matter, by
the old) the average energy is (3/2)k times the absolute temperature. This
is the very result obtained from simple kinetic theory for the ideal-gas scale
of temperature. The statistical theory therefore identifies the absolute
scale of temperature with the ideal-gas scale, which is as it should be. Itis
therefore an adequate theory of temperature and (as we lately saw) of the
specific heat of monatomic gases.

Now I have given an expression for 5., the “contribution of volume to
entropy,” which is (50); and an expression for 5., the “contribution of
temperature to entropy,” which is (62); and it seems natural to proceed by
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adding the two and identifying their sum with the entropy of the gas. But
each of the summands contains the so-ardently-wanted term — Nk In N,
and therefore the sum must contain a term — 2Nk In N, which is — Nk In
N*®. This term is not at all of the wanted form, and its mere presence in
(Swm + S.) spoils the chance of identifying that sum with entropy. We
have in fact come to a result in contradiction with equation (46) and with
the assumption on which that equation was founded, viz. that if two samples
of a gas are at the same pressure and temperature their entropies are in
proportion to their volumes. The reasoning has not been suited to its aim.

The origin of this final misadventure lies in the circumstance that in the
hope of making easier the exposition, I made what now has proved to be an
undue separation between the two “‘contributions” to the entropy. The gas
was mentally divided into groups of atoms, each occupying a certain region
of limited size and distribution among the cells of that region according to
the law of the new statistics. In computing 5. I defined the jth region as a
small piece of ordinary space, and then counted all the atoms in that region
regardless of the fact that they have very diversified momenta. In com-
puting S I defined the jth region as a small piece of momentum-space, and
then counted all the atoms in that region regardless of the fact that they are
sprinkled all through the total volume of the container. I may properly
say that I used a six-dimensional region throughout, but in the first stage
it was a region limited in ordinary space and comprising the whole infinity
of momentum-space, while in the second stage it was a region limited in
momentum-space and comprising the whole volume of the box in ordinary
space. I should instead have carried through the operation in a single stage,
using a six-dimensional region limited in both ordinary space and momentum-
space. It may seem that this procedure must either lead to the same result
as the other, or must be much more dificult, or both. Neither is the case.

Instead of writing down a number of new equations which would look
precizsely like the old ones, I invite the student to go back to page 368 and
recommence the argument at the words “We go into the momentum-space.
...." If he will replace “momentum-space” by “u-space,” he need
make no other change as far along as equation (21); the argument is just the
same, Now let him turn ahead to page 379, and equation (52): this is
valid for the u-space as it was for the momentum-space, and =0 are equations
(53). The novelty, however, is latent in the first of equations (53), which
reappears as (35), and which I now rewrite for one more time:

—InA=InZe"™ (64)

On page 380, the summation was shown to be equal to (1/Cj.) times a
certain integral denoted by [; the integral was over the three dimensions of
momentum-space; ¢. was the size of the elementary cell in momentum-
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space. In p-space, however, the corresponding integral is over the six
dimensions, and may be written thus:

f” A% 5 3 f” e " dp. dp, dp

This sixfold integral is nothing but the product of V the volume of the
container (resulting from the first three integrations) by the integral here-
tofore denoted as I' (resulting from the last three integrations). It is to be
multiplied by (1/C3h"), C; now standing for the number of cells in the six-
dimensional region and k" for the volume of the six-dimensional cell (I
explain the curious symbel later). The product is the reciprocal of A,
and therefore:

EInW =ANInV+Inl+ kBU — kNIn N + AN — ENIn k' (65)

The term (— &N In N) appears just once, and not twice as it did in the sum
S, and S, all is well in this regard. The presentation of f, of B and of I/
as functions of T follows just the same lines as above.

(Notice, for future reference, that we should have attained to the same
result had we ignored the ordinary space, operated in the momentum-space
exclusively, and assigned the value K*/V to the volume of the elementary
cell in momentum-space.)

So, identifying & In W with S, we come to the consummation of the new
statistical theory of entropy, the equation:

S=kNInV+ (3/DENInT — N In N + kN In[(2 7mk)" e /K] (66)

The dependence on volume is right; it was qualitatively so to start with,
was made exactly so by choice of the value of & as K/N.. The dependence
on temperature is exactly right, since it is a fact of experience that for
monatomic ideal gases the specific heat at constant volume is (3/2)R per
gramme-molecule. The dependence on number of atoms is exactly right,
that is to say, it makes S proportional to V for given Pand T. The additive
constant is fixed in value absolutely, or will be when we assign a numerical
value to A"; for k is a universal constant, e the base of natural logarithms, and
m the mass of an atom of the gas.

For the benefit of such as may still be interested in comparing the old
statistics with the new, I recall that the old statistics in its theory of entropy
furnished the first and the second terms of (66), and apparently furnished
also the fourth term though with ¢ in place of ¢"”. The third term it
omitted, thereby lending itself to the untenable doctrine that entropy should
be proportional to N for given V and T (and not for given Pand T'). Since
there was no term &N In N, I committed no error when in the previous article
I deduced S. and S, separately and then added them together to get 5.
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This procedure is right in the old statistics, becomes wrong in the new. I
suppose that this is what some expositors mean when they say that in the
new statistics there is a correlation between positions and momenta, or
words to that effect. I say that the old statistics apparently furnished a
term equal to the fourth of (66) except for the power to which e is raised.
Actually the old statistics gives an additive term Nk In [(2xmke)"” /0] and
the new statistics gives an additive term Nk In [(2emek) %" /0], but (? in the
former case is the volume of the region and in the latter case is the volume
of the cell. Giving the same value &’ to ( in the two cases is positively not
doing the same thing. However by doing this notwithstanding, and by
“tampering” with the old statistics in a certain way which I described at the
end of the previous article, it is possible to produce an expression exactly
like (66).

Size oF THE EreumeEnTArRY CELL

We have reached the final step, which consists in assigning a value to the
size of the elementary cell in u-space. For this I have used the symhol A,
implying (as everyone has guessed already) that it is taken to be the cube of
Planck's constant & so promiscuously found in Nature, What arguments
can be advanced to justify this choice?

It may be remarked very simply, that since the volume of the elementary
cell has the “dimensions” of the cube of the product of length by momentum,
and since these are also the dimensions of &, and since both &' and that
volume are very fundamental things, what could be more natural than to
identify them the one with the other? This was the argument used when
formula (66) was first derived from the old statistics with the aid of judicious
tampering.

An argument more precise of aspect may be adduced from wave-me-
chanics. Imagine the box containing the gas to be a cube, its edges—these
being of length L so that Ly = F—being along the coordinate-axes x, ¥, &.
The doctrine of wave-mechanics avers that the momentum-components
Pz Py, Ps of any atom are perforce integer multiples of k/2L; for this is the
condition that the waves which are associated with the atom shall form a
stationary wave-pattern with nodes at the walls of the cube, and upon this
condition wave-mechanics is insistent.” Now let us reenter the momentum-
space, and place a dot at every point for which p., #, and p, are integer
multiples of &/2L. The dots form a cubic lattice, and it would seem very

¥ The wave-length of the waves associated with a particle moving paralle]l to the z-axis
is &/ s, and there must be an integer number of half-wave-lengths between the walls of
the cube which are perpendicular to the axis of r and [ace one another at a distance L.
The same may be said, mutalis mufandis, of a particle moving parallel to the axis of v or g,
with momentum #y or #,; while if an atom is moving obliquely so that two or all three of

its momentum-components differ from zero, each of these components is to be treated as
if it alone existed.



THE NEW STATISTICAL MECHANICS 385

nice if T could say at once that the elementary cube of this lattice has the
volume #'/L* which is &*/V. However, this cannot be said, for there is an
obstinate factor which makes the elementary cube have the volume k'/8L".
People get around this by remarking that since an atom reverberating to
and fro between the walls of the cube changes the sign of one of its mo-
mentum-components whenever it strikes against one of the walls, therefore
every dot is one of a group of eight dots all of which correspond to the same
motion of the atom, and all eight should be counted as though they were
one.! Therefore in the region of momentum-space enclosed between any
two spheres centred at the origin (such as we used in determining the distri-
bution-in-momentum) we are to count one-eighth of the dots. The number
so obtained is the same as the number of cells of volume &'/ contained in
the region. Thus it comes to the same thing whether one says that the
atoms are distributed among one-eighth of the dots or among cells of volume
W/V. Now I recall my remark (page 383) that equation (66) down to the
last detail can be derived by playing the game of balls and baskets by the
rules of the new statistics in the momentum-space alone, provided that to the
elementary cell in this space we assign the volume &'/ V. For doing this last,
wave-mechanics has now offered a kind of retroactive basis. There seem
to be flaws in the basis, but they are of a kind which cannot be mended (if at
all) without a thorough study of a very hard subject, to wit, the art of
interpreting wave-mechanics in the ordinary language of space and time.’
I think it will be better to proceed at once to the test by experiment.

TesT BY EXPERIMENT OF THE NEW STATISTICAL FORMULA FOR ENTROPY

Enough has been said already to cover the first three terms of the formula
(66), which correctly give the dependence of entropy S upon volume V,
temperature 7', and number of atoms N. The present question is: what
does experiment say of the fourth term, the additive constant which involves
the mass m of the atom and the universal constants & and 7

Having treated this question at length in the June 1942 issue of this
Journal, I will here give only the barest outline. For this purpose I rewrite
(66), by the aid of the equation of state of the perfect gas,

PV = N&T (67)

¢ 1§ (a, b, ¢} are the coordinates of one dot, those of the other seven of its group are:
{ﬂ! '_bl E.:Il [u, b. _‘-.:I: [I.i. 'ﬁ! _;}.l {_"Ir br ‘}; {"‘I]. _ﬁl! l:}; {_ﬂl h'l —-I'.'::I; {_-ﬂl -b! -_E}‘

7 In previous pages I said that the proper way of playing the game of balls and baskets
is to play it in the six-dimensional space, with N; representing a definite number of atoms
located in a six-dimensional region which is composed of a narrowly-limited region in
ordinary space and another narrowly-limited region in momentum-space. Wave-
mechanics, in the current interpretation, will not allow this; it claims that, if the N'; atoms
are located in a limited region of momentum-space, they are spread all over the box con-
taining the gas.
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g0 as to give entropy 5 as function of pressure and temperature:

PR

§5=—kNInP+ (5/20ENInT + kN m[“"’}m‘rk‘} ] (68)

Notice that here every term iz strictly proportional to N, in accordance
with the “second alternative” of page 377.

Let P and T be so chosen that the gas is in equilibrium with its solid
crystalline phase. To keep this choice in mind, I will replace T by T,,
signifying “‘temperature of sublimation” at pressure P. Let the N atoms
of gas now be cooled to the absolute zero. First they will condense, still at
temperature T, into the crystalline solid. In so doing they will disgorge
the “heat of sublimation,” L per gramme-molecule, amounting to N.L/No;
and their entropy will decline by NL/N.T,, since the process is reversible.
Let the cooling continue. As the crystal declines in temperature from any
T down to (T" — dT), it disgorges heat in the amount of (N/N)CpdT and
entropy in the amount of (N/No)(Cy/T)dT; here C, stands for the specific
heat (per gramme-molecule) of the crystal. The pressure is supposed to
remain the same throughout the entire process. When the crystal arrives
at absolute zero, its entropy has the value:

(2arm)* (ke)™

Ef-—'éﬂ.l“

So=—kNInP + (5/2kNInT, + kN ln[

— (N/N(L/T.) — (N/No) J[ (Co/T)dT

The right-hand member of this equation embodies the new statistical
theory of entropy. If on the left I put the valué sero for Si, I express what
is known as “Nernst's Heat Theorem" or the “Third Law of Thermo-
dynamics.” If experiments say that the right-hand member of (69) is
equal to zero, they ratify not indeed the statistical theory by itself or the
Third Law by itself, but the assumption that both are true. Now, this is
what the experiments do say. Better to describe the situation, they say
that the first three terms on the right of (69) are equal to the last two terms
with sign reversed. All of the noble gases have been tested with suitable
accuracy, and eight or nine of the metals with accuracy not so high, yet
better than “order-of-magnitude accuracy.” For further details I must
refer to my article already cited.”

*I cannot refrain from mentioning a detail of the statistical theories, which is amusing
il one seea it at once and confusing il one sees it belatedly (mine was the latter experience).
It pertains to the power to which e is raised in the third term on the right in (69). If in
the new s.tali:ilil:nﬁhnur_lr we leave out the term N in (49), thus stopping with a first
approximation instead of going on to the second, we arrive ultimately at £ instead

e, If in the old statistical theory as modified by Tetrode we use the first-order Stirlip
approximation instead of the second-order one for N, we arrive ultimately at ¢/ ins
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TrEORY OF RADIATION

Black or total radiation, which is the electromagnetic radiation within a
cavity enclosed by walls at a uniform temperature, may be regarded as a
monatomic gas of which the atoms are called “photons.” It has two
peculiarities. [First, the relation between energy and momentum is not the
same for a photon as for a material atom. If by I represent the magnitude
v/ + p2 + p: of the momentum, then the energy E is given no longer by
the familiar equation (3), but rather by this one:

E=pc (70)

¢ standing, of course, for the speed of light. This is no insignificant change,
but recedes into secondary importance when compared with the other
contrast. Not only the distribution-law for the photons, but the actual
total number of photons itself, is fixed by Nature when the temperature of
the walls of the cavity is fixed by the observer. To the quantity called N,
the number of atoms in a container of volume V', no specific value has ever
yet been assigned in these pages; for with a material gas it may be raised or
lowered at will, by pumping gas into or out of the box. In this section,
however, it will have to have a value, for Nature has given it one.

Can the theory achieve what Nature demands of it? It can, and this is
the way.

The momentum-space is divided as heretofore into regions of equal
volume, each containing C cells of volume gn. A distribution is described
by giving the number of photons in each region, N; standing for the number
in the jth region. The probability W of a distribution is given as always
by the formula (16) and this is it:

InW=ZIhW;=Z[(N;+C)In(N;4+C)—ClaC—N;InN;] (71)

We are not now proceeding to the limit of extreme rarefaction! Radiation
presents itself to us under conditions remote from this limit, and must be
treated without recourse to the approximation hitherto used in these pages.

When the quantities N; are altered by the small amounts or “variations”
8N;, W undergoes the slight alteration or variation given thus to first

approximation:

W = = Gﬁ"") N, = = [In (N; + C) — In N;] &N, (72)

of £ (see the text preceding equation (35) of the prior article on page 134 of the January
issue of this Journal). Thus in both cases we arnive at ¢4/ or &%, according as we pause
at a first approximation or go on to a second; bul T discern no mathematical or physical
similarity whatever in the two situations in which these approximations are made.
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In the quest for the “most probable distribution™ this quantity is required to
vanish for variations which are controlled by a certain condition.

On a previous page (368) where we were dealing with maferial atoms in
ordinary space, the sole condition was that the total number of atoms should
remain the same (and equal to ¥). This led to the uniform distribution,
N; = &; here & stands for a constant, which turns out to be the product of ¥
by the ratio of the volume V) of the region to the volume V of the box.

On another previous page (369), where we were dealing with material
atoms in momenium space, the condition imposed was twofold: that the
number of atoms ¥ and the total energy U7 of the atoms should remain the
same. This led to the distribution (20), which in the limit of extreme
rarefaction became the Maxwell-Boltzmann or canonical distribution N; =
NA exp (—BE,); here E; stands for the energy-value appropriate to the
jth region, and A4 and B for two constants which were shown to be determined
by N and U.

In this case where we are dealing with phofons in moemenium space, the
condition which leads to the right result is simple but surprising. We must
admit only such variations as leave the total energy constant, but we must
nof require that the total number of photons should likewise remain the same.
Applying this strange condition, we find it taking the form,

In (N;+ C) — In N; = BE; (73)

with only one constant, which is going to be controlled by the total energy 7.
Rewriting this:
1
e (74)

One sees immediately that N, which is the sum of all the quantities N, is
no longer at liberty to take whatever value the experimenter pleases!

Hitherto I have assumed that all the regions are of equal volume, but I
can free myself from this assumption by pointing out that N;/C is the
average number of photons per cell in the portion of momentum-space .
where E has the value E,. Now let us carve up the momentum-space into
regions separated by spherical shells all centred at the origin. The region
extending from the sphere of radius p to the sphere of radius p + dp will be
of volume 4xp’dp, and will accordingly contain 4wp’dp,/q. cells, if by gm I
denote the volume of a cell. The appropriate value of E will be pe. The
number of photons in the region will accordingly be given thus:
drp® 1
w e — 1%

dN = (75)
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Unrecognizable as it may seem, this is actually a statement about the
spectrum of black radiation! This is because a photon of momentum p
and energy pc is associated with light-waves of wave-length given by the
“Rule of Correlation™: '

AL (76)

4
If I therefore multiply both members of (75) by pe, I have an expression for
the amount of energy associated with the waves ranging in wave-length
from k/p to k/(p + dp).

There are instruments able to sort out the waves of different wave-lengths
with their associated photons; they are called spectroscopes. There are
instruments able to indicate the total energy borne by the photons thus
sorted out; they are called by such names as bolometer and thermopile.
There are people able to use these instruments; and so (75) can be tested.
It is customary to rewrite (75) so that either wave-length or frequency
hecomes the independent variable, in place of #; but nothing would be
gained for the purpose of this article by doing so. The fact of experience is,
- that (75) is a correct description of black radiation provided that three
maodifications be made:

a) For g, we are to write &'/}, presuming that this comes to the same as
though we had operated in six-dimensional space and put /' as the volume
of the elementary cell therein (page 383);

h) For B we are to put 1/2T;

¢) We must double the right-hand member of (75), the factor 2 being
ascribed to the fact that light is polarizable.

Making these modifications, and putting V" = 1 so that the forthcoming
equation shall refer to the radiant energy contained in unif volume, we have

_ &xp’ 1
av =52 L )

for the number of photons in unit volume endowed with momenta between
pand p + dp, energies between cp and ¢(p + dp). This is the distribution-
formula for black radiation of temperature T, commonly known as “Planck’s
law."

To have derived this law is the first, the great and the historic achievement
of the new statistics, Other ways have indeed been found for deriving it,
heginning with Planck’s own; but the way of the new statistics is smoothest
and quickest. Quite different is this story from that of the theory of mate-
rial gases! There, the distribution law was correctly given by the old
statistics long before it was tested. Here, the distribution-law was found
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by experiment years before it was explained, and a great puzzle it was.
There, the old statistics and the new (in the limit of extreme rarefaction)
led to the same result. Here the old statistics was impotent, and the new
had to be invented.

Reverting to the identification of B with 1/kT": this may be proved in
the following way®. Refer back to equations (74) and (71), and for ease
of operation write a; for (¢""¢ — 1), We then have:

N; = Cx; (78)
S=kinW=FZ|{CO+2)In[C(1+ x)] —Cx;In[Cx]—CInC} (79)
U= N,'E,: = 'Z Eﬁl‘-‘j [Eﬂ:l

Differentiate 5 with respect to B and do the like with U/, and divide the
former derivative by the latter, so as to get the derivative d5/dU7. It
will be found that this is equal to kB; and since by definition of absolute
temperature it is also equal to T, the identification is made.

THE BosSE-EINSTEIN AND THE FERMI-DIRAC STATISTICS

Hitherto in this article, except for one protective allusion, I have spoken
as if the new statistics were one and indivisible, There are, however, two
branches of it, known respectively as the Bose-Einstein statistics and the
Fermi-Dirac statistics, It is the former of which I have treated throughout
this essay. The point at which the latter branches off is to be found on
page 365, where I introduced the game of balls and baskets, the balls stand-
ing for cells and the baskets for populations. On reaching this point the
game is to be played with the supplemental assumption that there are only
two baskets, those numbered 0 and 1. That is to say: a cell may either be
empty or may contain a single atom, but never more than one.

I leave to the student the task of revising equations (7) to (16) accord-
ingly, but I take it upon myself to point out how easily the problem can be
solved by the second method—that of pages 370-71, the method involving
the counting of all the different ways in which un-numbered atoms can be
distributed among numbered cells. In the Bose-Einstein case the funda-
mental formula is (22), which is not very easy to derive. In the Fermi-Dirac
case we proceed by playing anew the game of balls and baskets. There are
but the two baskets, one being set out to receive the balls corresponding to
the empty cells and the other for the cells containing one atom each—the
“filled cells,” we may call them. There being in the jth region N; atoms
and C cells all together, the first basket is destined to contain (C — N,)
balls and the second to contain N;, The question is then: in how many

*I am indebted for this proof, as well as for much other assistance in the preparation
of the article, to Dr. L. A. MacColl,
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ways can C numbered balls be distributed among two baskets, these to
contain (C — N;) and N; of the balls respectively, two ways being con-
sidered as different unless the inventory of each basket is just the same for
both ways? But this is the problem set up and solved in the earlier article,
though there the balls stood for atoms and the baskets for regions. The

answer is:

instead of equation (22). Using the first or second order Stirling approxima-
tion—it doesn’t matter which—one comes to the analogue of (23), which is:

InWee=ClhhC—-—(C—N)ln(C— N;) — NiInN; (86)

Different as this looks from (23), the two become alike in the limit of extreme
rarefaction, and in this limit equation (48) expresses the result both of the
Bose-Einstein and of the Fermi-Dirac statistics. Since equation (48) is the
parent of the Maxwell-Boltzmann distribution-law and of the expression
(66) for the entropy of a monatomic gas, both of these flow from either type
of statistics, and experiment does not decide for either over the other.

When we avoid the limit of extreme rarefaction, the two forms of statistics
do depart from one another. If photons obeyed the Fermi-Dirac statistics,
the distribution-law for black radiation would not be (75). We should be
obliged, in the denominator on the right-hand side of that equation, to re-
place the negative sign of the second term by the positive sign. In so doing
we should contradict the data of experiment in an unmistakable way; and
for photons accordingly, the Fermi-Dirac statistics is to be rejected.

This form of the new statistics being no better than the other for material
gases, and definitely wrong for radiation, where is it to be preferred and why?

To answer the first question, I point to the “electron-gas” which pervades
the metals and is accountable for their quality of being excellent conductors.
Experiment (as I recounted in these pages fourteen years ago'®) confirms that
these intra-metallic electrons form a gas which obeys the Fermi-Dirac
statistics. It is not, however, the limit of extreme rarefaction which here
we meet but the opposite one, the limit of extreme condensation. These
electrons are as densely concentrated as the atoms of the solid itself, a degree
of condensation never even approached by any ordinary gases. In this
limit the distribution-law attains a form entirely different from both the
Maxwell-Boltzmann law and the black-radiation law, and very remarkable.
I dare not, however, expose this article to the risk of a doubling in length,
which a treatment of this topic would probably entail; and I can avoid it
with a fairly clear conscience, for the experimental evidence that electrons

W This Journal, £ 672 (1929); also Physical Review Supplement (Reviews of Modern
Physics) I, 90 (1929).
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obey the Fermi-Dirac statistics has been enlarged but little since my article
of 1929,

As for the second question, I can give only the shadow of an answer.
The reason for adopting sometimes the Bose-Einstein and sometimes the
Fermi-Dirac statistics springs from wave-mechanics, and that requires an
article of its own. I can say, without proof, that the choice depends upon
the number of elementary particles in the atom. The gas is supposed to
conform to the Bose-Einstein or the Fermi-Dirac statistics, according as that
number is even or odd. An electron is an elementary particle all by itself,
wherefore the preceding paragraph,

For material gases, the crucial number is obtained by adding up the
numbers of the protons and the neutrons in the nucleus, and the number of
orbital electrons which surround the nucleus and complete the atom. In
nature the atoms for which the crucial number is even vastly outnumber
those for which it is odd, and the Bose-Einstein statistics iz therefore the
prevalent one. The principal isotope of nitrogen and the second isotope of
hydrogen do indeed belong to the rarer category, but in the gaseous state
their atoms always pair themselves into diatomic molecules, a circumstance
which restores these gases to the realm of Bose and Einstein. A detail in
the band spectrum of a diatomic molecule is available for telling which form
of statistics the individual atom would obey if free; it confirms what I have
just been saying—but this is an intricate story.



