Relations Between Attenuation and Phase in
Feedback Amplifier Design

By H. W. BODE

INTRODUCTION

HE engineer who embarks upon the design of a feedback amplifier
must be a creature of mixed emotions. On the one hand, he
can rejoice in the improvements in the characteristics of the structure
which feedback promises to secure him.! On the other hand, he
knows that unless he can finally adjust the phase and attenuation
characteristics around the feedback loop so the amplifier will not
spontaneously burst into uncontrollable singing, none of these ad-
vantages can actually be realized. The emotional situation is much
like that of an impecunious young man who has impetuously invited
the lady of his heart to see a play, unmindful, for the moment, of the
limitations of the $2.65 in his pockets. The rapturous comments of
the girl on the way to the theater would be very pleasant if they were
not shadowed by his private speculation about the cost of the tickets.
In many designs, particularly those requiring only moderate amounts
of feedback, the bogy of instability turns out not to be serious after all.
In others, however, the situation is like that of the young man who
has just arrived at the box office and finds that his worst fears are
realized. But the young man at least knows where he stands. The
engineer’s experience is more tantalizing. In typical designs the loop
characteristic is always satisfactory—except for one little point. When
the engineer changes the circuit to correct that point, however, diffi-
culties appear somewhere else, and so on ad infinitum. The solution
is always just around the corner.

Although the engineer absorbed in chasing this rainbow may not
realize it, such an experience is almost as strong an indication of the
existence of some fundamental physical limitation as the census which
the young man takes of his pockets. It reminds one of the experience
of the inventor of a perpetual motion machine. The perpetual mo-
tion machine, likewise, always works—except for one little factor.
Evidently, this sort of frustration and lost motion is inevitable in

! A general acquaintance with feedback circuits and the uses of feedback is as-
sumed in this paper. As a broad reference, see H. S, Black, “Stabilized Feedback
Amplifiers,” B. S. T. J., January, 1934,
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feedback amplifier design as long as the problem is attacked blindly.
To avoid it, we must have some way of determining in advance when
we are either attempting something which is beyond our resources,
like the young man on the way to the theater, or something which is
literally impossible, like the perpetual motion enthusiast.

This paper is written to call attention to several simple relations
between the gain around an amplifier loop, and the phase change
around the loop, which impose limits to what can and cannot be done
in a feedback design. The relations are mathematical laws, which in
their sphere have the same inviolable character as the physical law
which forbids the building of a perpetual motion machine. They show
that the attempt to build amplifiers with certain types of loop char-
acteristics must fail. They permit other types of characteristic, but
only at the cost of certain consequences which can be calculated. In
particular, they show that the loop gain cannot be reduced too ab-
ruptly outside the frequency range which is to be transmitted if we
wish to secure an unconditionally stable amplifier. It is necessary to
allow at least a certain minimum interval before the loop gain can be
reduced to zero.

The question of the rate at which the loop gain is reduced is an im-
portant one, because it measures the actual magnitude of the problem
confronting both the designer and the manufacturer of the feedback
structure. Until the loop gain is zero, the amplifier will sing unless the
loop phase shift is of a prescribed type. The cutoff interval as well
as the useful transmission band is therefore a region in which the
characteristics of the apparatus must be controlled. The interval
represents, in engineering terms, the price of the ticket.

The price turns out to be surprisingly high. It can be minimized
by accepting an amplifier which is only conditionally stable.2 For the
customary absolutely stable amplifier, with ordinary margins against
singing, however, the price in terms of cutoff interval is roughly one
octave for each ten db of feedback in the useful band. In practice,
an additional allowance of an octave or so, which can perhaps be re-
garded as the tip to the hat check girl, must be made to insure that the
amplifier, having once cut off, will stay put. Thus in an amplifier
with 30 db feedback, the frequency interval over which effective con-
trol of the loop transmission characteristics is necessary is at least four
octaves, or sixteen times, broader than the useful band. If we raise
the feedback to 60 db, the effective range must be more than a hundred
times the useful range. If the useful band is itself large these factors

2 Definitions of conditionally and unconditionally stable amplifiers are given on
page 432.
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may lead to enormous effective ranges. For example, in a 4 megacycle
amplifier they indicate an effective range of about 60 megacycles for 30
db feedback, or of more than 400 megacycles if the feedback is 60 db.

The general engineering implications of this result are obvious. It
evidently places a burden upon the designer far in excess of that which
one might anticipate from a consideration of the useful band alone.
In fact, if the required total range exceeds the band over which effective
control of the amplifier loop characteristics is physically possible, be-
cause of parasitic effects, he is helpless. Like the young man, he
simply can’t pay for his ticket. The manufacturer, who must con-
struct and test the apparatus to realize a prescribed characteristic over
such wide bands, has perhaps a still more difficult problem. Un-
fortunately, the situation appears to be an inevitable one. The
mathematical laws are inexorable.

Aside from sounding this warning, the relations between loop gain
and loop phase can also be used to establish a definite method of
design. The method dépends upon the development of overall loop
characteristics which give the optimum result, in a certain sense, con-
sistent with the general laws. This reduces actual design procedure to
the simulation of these characteristics by processes which are essen-
tially equivalent to routine equalizer design. The laws may also be
used to show how the characteristics should be modified when the
cutoff interval approaches the limiting band width established by the
parasitic elements of the circuit, and to determine how the maximum
realizable feedback in any given situation can be calculated. These
methods are developed at some length in the writer’s U. S. Patent No.
2,123,178 and are explained in somewhat briefer terms here.

RELATIONS BETWEEN ATTENUATION AND PHASE IN
PuysicAL NETWORKS 3

The amplifier design theory advanced here depends upon a study of
the transmission around the feedback loop in terms of a number of
general laws relating the attenuation and phase characteristics of
physical networks. In attacking this problem an immediate difficulty
presents itself. It is apparent that no entirely definite and universal

3 Network literature includes a long list of relations between attenuation and
phase discovered by a variety of authors. They are derived typically from a Fourier
analysis of the transient response of assumed structures and are frequently ambigu-
ous, because of failure to recognize the minimum phase shift condition. No attempt
is made to review this work here, although special mention should be made of Y. W,
Lee's paper in the Journal for Mathematics and Physics for June, 1932, The proof
of the relations given in the present paper depends upon a contour integration in the
complex frequency plane and can be understood from the disclosure in the patent
referred to previously.
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relation between the attenuation and the phase shift of a physical
structure can exist. For example, we can always change the phase
shift of a circuit without affecting its loss by adding either an ideal
transmission line or an all-pass section. Any attenuation characteris-
tic can thus correspond to a vast variety of phase characteristics.

For the purposes of amplifier design this ambiguity is fortunately
unimportant. While no unique relation between attenuation and
phase can be stated for a general circuit, a unique relation does exist
between any given loss characteristic and the minimum phase shift
which must be associated with it. In other words, we can always add
a line or all-pass network to the circuit but we can never subtract such
a structure, unless, of course, it happens to be part of the circuit
originally. If the circuit includes no surplus lines or all-pass sections,
it will have at every frequency the least phase shift (algebraically)
which can be obtained from any physical structure having the given
attenuation characteristic. The least condition, since it is the most
favorable one, is, of course, of particular interest in feedback amplifier
design.

For the sake of precision it may be desirable to restate the situations
in which this minimum condition fails to occur. The first situation is
found when the circuit includes an all-pass network either as an indi-
vidual structure or as a portion of a network which can be replaced by
an all-pass section in combination with some other physical structure.?
The second situation is found when the circuit includes a transmission
line. The third situation occurs when the frequency is so high that
the tubes, network elements and wiring cannot be considered to obey
a lumped constant analysis. This situation may be found, for example,
at frequencies for which the transit time of the tubes is important or for
which the distance around the feedback loop is an appreciable part of
a wave-length. The third situation is, in many respects, substantially
the same as the second, but it is mentioned separately here as a matter
of emphasis. Since the effective band of a feedback amplifier is much
greater than its useful band, as the introduction pointed out, the con-
siderations it reflects may be worth taking into account even when
they would be trivial in the useful band alone.

It will be assumed here that none of these exceptional situations is
found. For the minimum phase condition, then, it is possible to derive

4 Analytically this condition can be stated as follows: Let it be supposed that the
transmission takes place between mesh 1 and mesh 2. The circuit will include an
all-pass network, explicit or concealed, if any of .the roots of the minor A;s of the
principal circuit determinant lie below the real axis in the complex frequency plane.

This can happen in bridge configurations, but not in series-s:hunt configurations, so
that all ladder networks are automatically of minimum phase type.
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a large number of relations between the attenuation and phase char-
acteristics of a physical network. One of the simplest is

f Bdu = 7 (4o — 4u), (1)
where u represents log f/fs, fo being an arbitrary reference frequency,
B is the phase shift in radians, and 4, and A are the attenuations in
nepers at zero and infinite frequency, respectively. The theorem
states, in effect, that the total area under the phase characteristic
plotted on a logarithmic frequency scale depends only upon the differ-
ence between the attenuations at zero and infinite frequency, and not
upon the course of the attenuation between these limits. Nor does it
depend upon the physical configuration of the network unless a non-
minimum phase structure is chosen, in which case the area is necessarily
increased. The equality of phase areas for attenuation characteristics
of different types is illustrated by the sketches of Fig. 1.
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Fig. 1—Diagram to illustrate relation between phase area and changg in attenuation.

The significance of the phase area relation for feedback amplifier
design can be understood by supposing that the practical transmission
range of the amplifier extends from zero to some given finite frequency.
The quantity Ay — A, can then be identified with the change in gain
around the feedback loop required to secure a cut-off. Associated with
it must be a certain definite phase area. If we suppose that the maxi-
mum phase shift at any frequency is limited to some rather low value
the total area must be spread out over a proportionately broad interval
on the frequency scale. This must correspond roughly to the cut-off
region, although the possibility that some of the area may be found
above or below the cut-off range prevents us from determining the
necessary interval with precision.

A more detailed statement of the relationship between phase shift
and change in attenuation can be obtained by turning to a second
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theorem. It reads as follows:

B(f.) = ?lrj:m%log coth %du, (2)
where B(f.) represents the phase shift at any arbitrarily chosen fre-
quency f. and # = log f/f.. This equation, like (1), holds only for
the minimum phase shift case.

Although equation (2) is somewhat more complicated than its
predecessor, it lends itself to an equally simple physical interpretation.
It is clear, to begin with, that the equation implies broadly that the
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Fig. 2—Weighting function in loss-phase formula.

phase shift at any frequency is proportional to the derivative of the
attenuation on a logarithmic frequency scale. For example, if d4 [du
is doubled B will also be doubled. The phase shift at any particular
frequency, however, does not depend upon the derivative of attenua-
tion at that frequency alone, but upon the derivative at all frequencies,
since it involves a summing up, or integration, of contributions from
the complete frequency spectrum. Finally, we notice that the contri-
butions to the total phase shift from the various portions of the fre-
quency spectrum do not add up equally, but rather in accordance with
the function log coth || /2. This quantity, therefore, acts as a weight-
ing function. It is plotted in Fig. 2. As we might expect physically
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it is much larger near the point # = 0 than it is in other regions. We
can, therefore, conclude that while the derivative of attenuation at all
frequencies enters into the phase shift at any particular frequency
f = f. the derivative in the neighborhood of f. is relatively much more
important than the derivative in remote parts of the spectrum.

As an illustration of (2), let it be supposed that A = ku, which cor-
responds to an attenuation having a constant slope of 6 k db per octave.
The associated phase shift is easily evaluated. It turns out, as we
might expect, to be constant, and is equal numerically to k/2 radians.
This is illustrated by Fig. 3. As a second example, we may consider
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Fig. 3—Phase characteristic corresponding to a constant slope attenuation,

a discontinuous attenuation characteristic such as that shown in Fig. 4.
The associated phase characteristic, also shown in Fig. 4, is propor-
tional to the weighting function of Fig. 2.

The final example is shown by Fig. 5. It consists of an attenuation
characteristic which is constant below a specified frequency f; and has
a constant slope of 6 k db per octave above f,. The associated phase
characteristic is symmetrical about the transition point between the
two ranges. At sufficiently high frequencies, the phase shift ap-
proaches the limiting k7/2 radians which would be realized if the
constant slope were maintained over the complete spectrum. At low
frequencies the phase shift is substantially proportional to frequency
and is given by the equation

B="21. 3)
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Solutions developed in this way can be added together, since it is
apparent from the general relation upon which they are based that the
phase characteristic corresponding to the sum of two attenuation
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Fig., 4—Phase characteristic corresponding to a discontinuity in attenuation.
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Fig. 5—Phase characteristic corresponding to an attenuation which is constant below
a prescribed frequency and has a constant slope above it.

characteristics will be equal to the sum of the phase characteristics
corresponding to the two attenuation characteristics separately. We
can therefore combine elementary solutions to secure more complicated
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characteristics. An example is furnished by Fig. 6, which is built up
from three solutions of the type shown by Fig. 5. By proceeding
sufficiently far in this way, an approximate computation of the phase
characteristic associated with almost any attenuation characteristic
can be made, without the labor of actually performing the integration
in (2). '
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Fig. 6—Diagram to illustrate addition of elementary attenuation and phase char-
acteristics to produce more elaborate solutions of the loss-phase formula.
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Equations (1) and (2) are the most satisfactory expressions to use
in studying the relation between loss and phase in a broad physical
sense. The mechanics of constructing detailed loop cut-off character-
istics, however, are simplified by the inclusion of one other, somewhat
more complicated, formula. It appears as

fo Adf o Bdf

0 \/fnz—fz(f?—fuz)—*' Jo \ffz_f02(f2_fc2)
_7_ B(f)
T 2ffe = f2 Je <o
1 AU s r (@)

2= f

where f; is some arbitrarily chosen frequency and the other symbols
have their previous significance.

The meaning of (4) can be understood if it is recalled that (2) implies
that the minimum phase shift at any frequency can be computed if the
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attenuation is prescribed at all frequencies. In the same way (4)
shows how the complete attenuation and phase characteristics can be
determined if we begin by prescribing the attenuation below f; and the
phase shift above fo. Since fo can be chosen arbitrarily large or small
this is evidently a more general formula than either (1) or (2), while
it can itself be generalized, by the introduction of additional irrational
factors, to provide for more elaborate patterns of bands in which 4
and B are specified alternately.

As an example of this formula, let it be assumed that A = K for
f < fo and that B = kx/2 for f > fo. These are shown by the solid
lines in Fig. 7. Substitution in (4) gives the A and B characteristics
in the rest of the spectrum as

B=ksin—1%, f<fo
A=K+klog[ %:—2—1+£], f = fo (5)

These are indicated by broken lines in Fig. 7. In this particularly
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Fig. 7—Construction of complete characteristics from an attenuation character-
istic specified below a certain frequency and a phase characteristicaboveit. The solid
lines represent the specified attenuation and phase characteristics, and the broken
lines their computed extensions to the rest of the spectrum.

simple case all four fragments can be combined into the single analytic

formula
A+z‘B=K+klog[,/1_ﬁo2+ii]. ©)
0
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This expression will be used as the fundamental formula for the loop
cut-off characteristic in the next section,

OvVERALL FEEDBACK LooP CHARACTERISTICS

The survey just concluded shows what combinations of attenuation
and phase characteristics are physically possible. We have next to
determine which of the available combinations is to be regarded as
representing the transmission around the overall feedback loop. The
choice will naturally depend somewhat upon exactly what we assume
that the amplifier ought to do, but with any given set of assumptions
it is possible, at least in theory, to determine what combination is most
appropriate.

Fi6. 8—Nyquist stability diagrams for various amplifiers. Curve I represents
“absolute’ stability, Curve II instability, and Curve 111 “conditional” stability.
In accordance with the convention used in this paper the diagram is rotated through
180° from its normal position so that the critical point occurs at — 1, 0 rather than

+1,0.

The situation is conveniently investigated by means of the Nyquist
stability diagram ® illustrated by Fig. 8. The diagram gives the path

_ 5 Bell System Technical Journal, July, 1932. See also Peterson, Kreer, and Ware,
Bell System Technical Journal, October, 1934. The Nyquist diagrams in the present
paper are rotated through 180° from the positions in which they are usually drawn,
turning the diagrams in reality into plots of — pg. Ina normal amplifier there is one
net phase reversal due to the tubes in addition to any phase shifts chargeable directly
to the passive networks in the circuit. The rotation of the diagram allows this
phase reversal to be ignored, so that the phase shifts actually shown are the same as
those which are directly of design interest.
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traced by the vector representing the transmission around the feedback
loop as the frequency is assigned all possible real values. In accordance
with Nyquist's results a path such as II, which encircles the point
— 1, 0, indicates an unstable circuit and must be avoided. A stable
amplifier is obtained if the path resembles either I or III, neither of
which encircles — 1, 0. The stability represented by Curve III, how-
ever, is only *Nyquist” or ‘‘conditional.” The path will enclose the
critical point if it is merely reduced in scale, which may correspond
physically to a reduction in tube gain. Thus the circuit may sing
when the tubes begin to lose their gain because of age, and it may also
sing, instead of behaving as it should, when the tube gain increases
from zero as power is first applied to the circuit. Because of these
possibilities conditional stability is usually regarded as undesirable
and the present discussion will consequently be restricted to ‘‘abso-
lutely” or ‘‘unconditionally” stable amplifiers having Nyquist
diagrams of the type resembling Curve I.

The condition that the amplifier be absolutely stable is evidently
that the loop phase shift should not exceed 180° until the gain around
the loop has been reduced to zero or less. A theoretical characteristic
which just met this requirement, however, would be unsatisfactory,
since it is inevitable that the limiting phase would be exceeded in fact
by minor deviations introduced either in the detailed design of the
amplifier or in its construction. It will therefore be assumed that the
limiting phase is taken as 180° less some definite margin. This is
illustrated by Fig. 9, the phase margin being indicated as yr radians.
At frequencies remote from the band it is physically impossible, in
most circuits, to restrict the phase within these limits. As a supple-
ment, therefore, it will be assumed that larger phase shifts are permis-
sible if the loop gain is x db below zero. This is illustrated by the
broken circular arc in Fig. 9. A theoretical loop characteristic meeting
both requirements will be developed for an amplifier transmitting
between zero and some prescribed limiting frequency with a constant
feedback, and cutting off thereafter as rapidly as possible. This basic
characteristic can be adapted to amplifiers with varying feedback in
the useful range or with useful ranges lying in other parts of the spec-
trum by comparatively simple modifications which are described at a
later point. It is, of course, contemplated that the gain and phase
margins x and y will be chosen arbitrarily in advance. If we choose
large values we can permit correspondingly large tolerances in the
detailed design and construction of the apparatus without risk of in-
stability. It turns out, however, that with a prescribed width of
cutoff interval the amount of feedback which can be realized in the
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useful range is decreased as the assumed margins are increased, so that
it is generally desirable to choose as small margins as is safe.

The essential feature in this situation is the requirement that the
diminution of the loop gain in the cutoff region should not be accom-
panied by a phase shift exceeding some prescribed amount. In view
of the close connection between phase shift and the slope of the attenu-
ation characteristic evidenced by (2) this evidently demands that the
amplifier should cut off, on the whole, at a well defined rate which is not
too fast. As a first approximation, in fact, we can choose the cutoff

YT RADIANS

Fig. 9—Diagram to illustrate definitions of phase and gain margins for the feedback
loop.

characteristic as an exactly constant slope from the edge of the useful
band outward. Such a characteristic has already been illustrated by
Fig. 5 and is shown, replotted,® by the broken lines in Fig. 10. If we
choose the parameter corresponding to % in Fig. 5 as 2 the cutoff rate
is 12 db per octave and the phase shift is substantially 180° at high
frequencies. This choice thus leads to zero phase margin. By choos-
ing a somewhat smaller k on the other hand, we can provide a definite

8 To prevent confusion it should be noticed that the general attenuation-phase

diagrams are plotted in terms of relative loss while loop cutoff characteristics, here
and at later points, are plotted in terms of relative gain,
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margin against singing, at the cost of a less rapid cutoff. For example,
if we choose £ = 1.5 the limiting phase shift in the p8 loop becomes
135°, which provides a margin of 45° against instability, while the rate
of cutoff is reduced to 9 db per octave. The value & = 1.67, which cor-
responds to a cutoff rate of 10 db per octave and a phase margin of 30°,
has been chosen for illustrative purposes in preparing Fig. 10. The loss
margin depends upon considerations which will appear at a later point.

Although characteristics of the type shown by Fig. 5 are reasonably
satisfactory as amplifier cutoffs they evidently provide a greater phase
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Fig. 10—Ideat loop cutoff characteristics. Drawn for a 30° phase margin.

margin against instability in the region just beyond the useful band
than they do at high frequencies. In virtue of the phase area law this
must be inefficient if, as is supposed here, the optimum characteristic
is one which would provide a constant margin throughout the cutoff
interval. The relation between the phase and the slope of the attenua-
tion suggests that a constant phase margin can be obtained by increas-
ing the slope of the cutoff characteristic near the edge of the band,
leaving its slope at more remote frequencies unchanged, as shown by
the solid lines in Fig. 10. The exact expression for the required curve
can be found from (6), where the problem of determining such a char-
acteristic appeared as an example of the use of the general formula (4).
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At high frequencies the new phase and attenuation characteristics
merge with those obtained from the preceding straight line cutoff, as
Fig. 10indicates. In this region the relation between phase margin and
cutoff slope is fixed by the % in the equation (6) in the manner already
described for the more elementary cutoff. At low frequencies, how-
ever, the increased slope near the edge of the band permits 6 £ db more
feedback.

It is worth while to pause here to consider what may be said, on the
basis of these characteristics, concerning the breadth of cutoff interval
required for a given feedback, or the * price of the ticket,"” as it was
expressed in the introduction. If we adopt the straight line cutoff
and assume the £ used in Fig. 10 the interval between the edge of the
useful band and the intersection of the characteristic with the zero gain
axis is evidently exactly 1 octave for each 10 db of low frequency feed-
back. The increased efficiency of the solid line characteristic saves
one octave of this total if the feedback is reasonably large to begin with.
This apparently leads to a net interval one or two octaves narrower
than the estimates made in the introduction. The additional interval
is required to bridge the gap between a purely mathematical formula
such as (6), which implies that the loop characteristics follow a pre-
scribed law up to indefinitely high frequencies, and a physical amplifier,
whose ultimate loop characteristics vary in some uncontrollable way.
This will be discussed later. It is evident, of course, that the cutoff
interval will depend slightly upon the margins assumed. For example,
if the phase margin is allowed to vanish the cutoff rate can be increased
from 10 to 12 db per octave. This, however, is not sufficient to affect
the order of magnitude of the result. Since the diminished margin is
accompanied by a corresponding increase in the precision with which
the apparatus must be manufactured such an economy is, in fact, a
Pyrrhic victory unless it is dictated by some such compelling considera-
tion as that described in the next section.

MaxiMuMm OBTAINABLE FEEDBACK

-

A particularly interesting consequence of the relation between feed-
back and cutoff interval is the fact that it shows why we cannot obtain
unconditionally stable amplifiers with as much feedback as we please.
So far as the purely theoretical construction of curves such as those in
Fig. 10 is concerned, there is clearly no limit to the feedback which can
be postulated. As the feedback is increased, however, the cutoff inter-
val extends to higher and higher frequencies. The process reaches a
physical limit when the frequency becomes so high that parasitic effects
in the circuit are controlling and do not permit the prescribed cutoff
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characteristic to be simulated with sufficient precision. For example,
we are obviously in physical difficulties if the cutoff characteristic
specifies a net gain around the loop at a frequency so high that the
tubes themselves working into their own parasitic capacitances do not
give a gain.

This limitation is studied most easily if the effects of the parasitic
elements are lumped together by representing them in terms of the
asymptotic characteristic of the loop as a whole at extremely high
frequencies. An example is shown by Fig. 11. The structure is a
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Fig. 11—Elements which determine the asymptotic loop transmission characteristic
in a typical amplifier,

L

shunt feedback amplifier. The 8 circuit is represented by the T com-
posed of networks N;, N; and N;. The input and output circuits are
represented by N and N: and the interstage impedances by N, and V.
The C’s are parasitic capacitances with the exception of C; and G,
which may be regarded as design elements added deliberately to V; and
N to obtain an efficient high frequency transmission path from output
to input. At sufficiently high frequencies the loop transmission will
depend only upon these various capacitances, without regard to the
N's. Thus, if the transconductances of the tubes are represented by
(1, Gs, and G; the asymptotic gains of the first two tubes are G1/wC;
and Gi/wCs. The rest of the loop includes the third tube and the
potentiometer formed by the capacitances C,, C4, Cs and Cs Its
asymptotic transmission can be written as G3/wC, where
C=CtCit g+

Each of these terms diminishes at a rate of 6 db per octave. The com-
plete asymptote is G1G3G3/w?CC2Cy. It appears as a straight line with
a slope of 18 db per octave when plotted on logarithmic frequency

paper,
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A similar analysis can evidently be made for any amplifier. In the
particular circuit shown by Fig. 11 the slope of the asymptote, in units
of 6 db per octave, is the same as the number of tubes in the circuit.
The slope can evidently not be less than the number of tubes but it may
be greater in some circuits. For example if C; and C; were omitted in
Fig. 11 and N; and Ns were regarded as degenerating into resistances
the asymptote would have a slope of 24 db per octave and would lie
below the present asymptote at any reasonably high frequency. In
any event the asymptote will depend only upon the parasitic elements
of the circuit and perhaps a few of the most significant design elements.
It can thus be determined from a skeletonized version of the final
structure. If waste of time in false starts is to be avoided such a
determination should be made as early as possible, and certainly in
advance of any detailed design.

The effect of the asymptote on the overall feedback characteristic is
illustrated by Fig. 12. The curve ABEF is a reproduction of the ideal
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Fig. 12—Combination of asymptotic characteristic and ideal cutoff characteristic.

cutoff characteristic originally given by the solid lines in Fig. 10. It
will be recalled that the curve was drawn for the choice & = 5/3, which
corresponds to a phase margin of 30° and an almost constant slope, for
the portion DEF of the characteristic, of about 10 db per octave. The
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straight line CEK represents an asymptote of the type just described,
with a slope of 18 db per octave. Since the asymptote may be assumed
to represent the practical upper limit of gain in the high-frequency
region, the effect of the parasitic elements can be obtained by replacing
the theoretical cutoff by the broken line characteristic ABDEK. In
an actual circuit the corner at E would, of course, be rounded off, but
this is of negligible quantitative importance. Since EF and EK diverge
by 8 db per octave the effect can be studied by adding curves of the
type shown by Fig. 5 to the original cutoff characteristic.
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Fig. 13—Phase characteristics corresponding to gain characteristics of Fig. 12.

The phase shift in the ideal case is shown by Curve I of Fig. 13.
The addition of the phase corresponding to the extra slope of 8 db per
octave at high frequencies produces the total phase characteristic
shown by Curve I’. At the point B where |p8| = 1, the additional
phase shift amounts to 35 degrees. Since this is greater than the
original phase margin of 30 degrees the amplifier is unstable when
parasitic elements are considered. In the present instance stability
can be regained by increasing the coefficient & to 1-5/6, which leads to
the broken line characteristic AGKH in Fig. 12. This reduces the
nominal phase margin to 15 degrees, but the frequency interval be-
tween G and K is so much greater than that between B and E that the
added phase is reduced still more and is just less than 15° at the new
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cross over point G. This is illustrated by II and II" in Fig. 13. On
the other hand, if the zero gain intercept of the asymptote CEK had
occurred at a slightly lower frequency, no change in % alone would have
been sufficient. It would have been necessary to reduce the amount
of feedback in the transmitted range in order to secure stability.
The final characteristic in Fig. 13 reaches the limiting phase shift
of 180° only at the crossover point. It isevident that a somewhat more
efficient solution for the extreme case is obtained if the limiting 180°
is approximated throughout the cutoff interval. This result is attained
by the cutoff characteristic shown in Fig. 14. The characteristic con-
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Fig. 14—Ideal cutoff modified to take account of asymptotic characteristic. Drawn
for zero gain and phase margins.

sists of the original theoretical characteristic, drawn for & = 2, from
the edge of the useful band to its intercept with the zero gain axis, the
zero gain axis from this frequency to the intercept with the high-fre-
quency asymptote, and the asymptote thereafter. It can be regarded
as a combination of the ideal cutoff characteristic and two character-
istics of the type shown by Fig. 5. One of the added characteristics
starts at B and has a positive slope of 12 db per octave, since the ideal
cutoff was drawn for the limiting value of .. The other starts at C and
has the negative slope, — 18 db per octave, of the asymptote itself.
As (3) shows, the added slopes correspond at lower frequencies to ap-
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proximately linear phase characteristics of opposite sign. If the
frequencies B and C at which the slopes begin are in the same ratio,
12 : 18, as the slopes themselves the contributions of the added slopes
will substantially cancel each other and the net phase shift throughout
the cutoff interval will be almost the same as that of the ideal curve
alone. The exact phase characteristic is shown by Fig. 15. It dips
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Fig. 15—Phase characteristic corresponding to gain characteristic of Fig. 14.

slightly below 180° at the point at which the characteristic reaches the
zero gain axis, so that the circuit is in fact stable.

The same analysis can evidently be applied to asymptotes of any
other slope. This makes it easy to compute the maximum feedback
obtainable under any asymptotic conditions. If f; and f, are respec-
tively the edge of the useful band and the intercept (C in Figs. 12 and
14) of the asymptote with the zero gain axis, and » is the asymptotic
slope, in units of 6 db per octave, the result appears as

A, =40 10gm@‘, (7)
fo

where A,, is the maximum feedback in db.”

" The formule for maximum feedback given here and in the later equation (8)
are slightly conservative. It follows from the phase area law that more feedback
should be obtained if the phase shift were exactly 180° below the crossover and rose
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For the sake of generality it is convenient to extend this formula to
include also situations in which there exists some further linear phase
characteristic in addition to those already taken into account. In
exceptional circuits, the final asymptotic characteristic may not be
completely established by the time the curve reaches the zero gain axis
and the additional phase characteristic may be used to represent the
effect of subsequent changes in the asymptotic slope. Such a situation
might occur in the circuit of Fig. 11, for example, if Cs or Cs were made
extremely small. The additional term may also be used to represent
departures from a lumped constant analysis in high-frequency ampli-
fiers, as discussed earlier, If we specify the added phase characteristic,
from whatever source, by means of the frequency fq at which it would
equal 2n/r radians, if extrapolated, the general formula corresponding

to (7) becomes
4 fufa
A, =401 — .
0810 nfofa + fa

It is interesting to notice that equations (7) and (8) take no explicit
account of the final external gain of the amplifier. Naturally, if the
external gain is too high the available u circuit gain may not be sufficient
to provide it and also the feedback which these formule promise.
This, however, is an elementary question which requires no further
discussion. In other circumstances, the external gain may enter the
situation indirectly, by affecting the asymptotic characteristics of the
8 path, but in a well chosen § circuit this is usually a minor considera-
tion. The external gain does, however, affect the parts of the circuit
upon which reliance must be placed in controlling the overall loop
characteristic. For example, if the external gain is high the u circuit
will ordinarily be sharply tuned and will drop off rapidly in gain beyond
the useful band. The 8 circuit must therefore provide a decreasing
loss to bring the overall cutoff rate within the required limit. Since
the 8 circuit must have initially a high loss to correspond to the high
final gain of the complete amplifier, this is possible. Conversely, if
the gain of the amplifier is low the g circuit will be relatively flexible
and the B circuit relatively inflexible.

(8)

rapidly to its ultimate value thereafter. These possibilities can be exploited ap-
proximately by various slight changes in the slope of the cutoff characteristic in the
neighborhood of the crossover region, or a theoretical solution can be obtained by
introducing a prescribed phase shift of this type in the general formula (4). The
theoretical solution gives a Nyquist path which, after dropping below the critical
point with a phase shift slightly less than 180°, rises again with a phase shift slightly
greater than 180° and continues for some time with a large amplitude and increasing
phase before it finally approaches the origin. These possibilities are not considered
seriously here because they lead to only a few db increase in feedback, at least for
moderate n's, and the degree of design control which they envisage is scarcely feasible
in a frequency region where, by definition, parasitic effects are almost controlling.
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In setting up (7) and (8) it has been assumed that the amplifier will,
if necessary, be built with zero margins against singing. Any surplus
which the equations indicate over the actual feedback required can, of
course, be used to provide a cutoff characteristic having definite phase
and gain margins. For example, if we begin with a lower feedback in
the useful band the derivative of the attenuation between this region
and the crossover can be proportionately reduced, with a corresponding
decrease in phase shift. We can also carry the flat portion of the
characteristic below the zero gain axis, thus providing a gain margin
when the phase characteristic crosses 180°. In reproportioning the
characteristic to suit these conditions, use may be made of the ap-
proximate formula

n— 2
n

Am — 4 = (Am ‘I‘ 17.4)y + x + %xy' (g)
where 4,, is the maximum obtainable feedback (in db), 4 is the actual
feedback, and x and vy are the gain and phase margins in the notation of
Fig. 9. Once the available margin has been divided between the x and
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Fig. 16—Maodified cutoff permitting 30° phase margin and 9 db gain margin.

v components by means of this formula the cutoff characteristic is, of
course, readily drawn in. An example is furnished by Figs. 16 and 17,
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where it is assumed that A, = 43db, 4 = 29db,x = 9db, » = 3 and
y = 1/6. The Nyquist diagram for the structure is shown by Fig.
18. It evidently coincides almost exactly with the diagram postulated
originally in Fig. 9.
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Fig. 17—Phase characteristic corresponding to gain characteristic of Fig. 16.

WP (PHASE SHIFT) IN DEGREES

1)

Fig. 18—Nyquist diagram corresponding to gain and phase characteristics of
Figs. 16 and 17. As in Fig. 8 the diagram is rotated to place the critical point at
— 1, Orather than 4+ 1, 0.

With the characteristic of Fig. 16 at hand, we can return once more to
the calculation of the total design range corresponding to any given
feedback. From the useful band to the intersection of the cutoff
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characteristic with the zero gain axis the calculation is the same as
that made previously in connection with Fig. 10. From the zero gain
intercept to the junction with the asymptote, where we can say that
design control is finally relaxed, there is, however, an additional interval
of nearly two octaves. Although Fig. 16 is fairly typical, the exact
breadth of the additional interval will depend somewhat on circum-
stances. It is increased by an increase in the asymptotic slope and
reduced by decreasing the gain margin.

RELATIVE IMPORTANCE OF TUBES AND CIRCUIT IN
LiMiTING FEEDBACK 8

The discussion just finished leads to the general conclusion that the
feedback which can be obtained in any given amplifier depends ulti-
mately upon the high-frequency asymptote of the feedback loop. It -
is a matter of some importance, then, to determine what fixes the
asymptote and how it can be improved. Evidently, the asymptote is
finally restricted by the gains of the tubes alone. We can scarcely
improve upon the result secured by connecting the output plate directly
to the input grid. Within this limit, however, the actual asymptotic
characteristic will depend upon the configuration and type of feedback
employed, since a given distribution of parasitic elements may evi-
dently affect one arrangement more than another. The salient circuit
problem is therefore that of choosing a general configuration for the
feedback circuit which will allow the maximum efficiency of transmis-
sion at high frequencies.

The relative importance of tube limitations and circuit limitations
is most easily studied if we replace (7) by

Am = 40 IOg’m':—j..; —_ %! (10)
where f, is the frequency at which the tubes themselves working into
their own parasitic capacitances have zero gain ® and 4, is the asymp-
totic loss of the complete feedback loop in db at f = f,. The first term

8 The material of this section was largely inspired by comments due to Messrs.
G. H. Stevenson and J. M. West.

G, . ,
°le., fi = 2——"'C , where G, and C are respectively the transconductance and capaci-
m
. . Gm. i -

tance of a representative tube. The ratio —E'" is the so-called “ figure of merit" of the
tube. The analysis assumes that the interstage network is a simple shunt impedance,
so that the parasitic capacitance does correctly represent its asymptotic behavior.
More complicated four-terminal interstage networks, such as transformer coupling
circuits and the like, are generally inadmissible in a feedback amplifier because of the
high asymptotic losses and consequent high-phase shifts which they introduce.
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of (10) shows how the feedback depends upon the intrinsic band width
of the available tubes. In low-power tubes especially designed for the
purpose f; may be 50 mc or more, but if f, is small the first term will be
substantial even if tubes with much lower values of f, are selected.
The second term gives the loss in feedback which can be ascribed to the
rest of the circuit. It is evidently not possible to provide input and
output circuits and a 8-path without making some contribution to the
asymptotic loss, so that 4, cannot be zero. In an amplifier designed
with particular attention to this question, however, it is frequently
possible to assign A4, a comparatively low value, of the order of 20 to
30dborless. Without such special attention, on the other hand, 4, is
likely to be very much larger, with a consequent diminution in available
feedback.

In addition to f, and 4,, (10) includes the quantity », which repre-
sents the final asymptotic slope in multiples of 6 db per octave. Since
the tubes make no contribution to the asymptotic loss at f = f; we
can vary n without affecting A, by changing the number of tubes in the
circuit. This makes it possible to compute the optimum number of
tubes which should be used in any given situation in order to provide
the maximum possible feedback. If A4, is small the first term of (10)
will be the dominant one and it is evidently desirable to have a small
number of stages. The limit may be taken as #» = 2 since with only
one stage the feedback is restricted by the available forward gain,
which is not taken into account in this analysis. On the other hand
since the second term varies more rapidly than the first with #, the
optimum number of stages will increase as 4, is increased. It is given
generally by

A,
or in other words the optimum 7 is equal to the asymptotic loss at the
tube crossover in nepers.

This relation is of particular interest for high-power circuits, such as
radio transmitters, where circuit limitations are usually severe but the
cost of additional tubes, at least in low-power stages, is relatively un-
important. As an extreme example, we may consider the problem of
providing envelope feedback around a transmitter. With the rela-
tively sharp tuning ordinarily used in the high-frequency circuits of a
transmitter the asymptotic characteristics of the feedback path will be
comparatively unfavorable. For illustrative purposes we may assume
thatf, = 40kc.and# = 6. Inaccordance with (7) this would provide
a maximum available feedback over a 10 kc. voice band of 17 db. It
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will also be assumed that the additional tubes for the low-power por-
tions of the circuit have an f; of 10 mc." The corresponding 4, is 33
nepers ! so that equation (11) would say that the feedback would be in-
creased by the addition of as many as 27 tubes to the circuit. Natur-
ally in such an extreme case this result can be looked upon only as a
qualitative indication of the direction in which to proceed. If we add
only 4 tubes, however, the available feedback becomes 46 db while if we
add 10 tubes it reaches 60 db. It is to be observed that only a small
part of the available gain of the added tubes is used in directly increas-
ing the feedback. The remainder is consumed in compensating for
the unfortunate phase shifts introduced by the rest of the circuit.

AMPLIFIERS OF OTHER TYPES

The amplifier considered thus far is of a rather special type. It has
a useful band extending from zero up to some prescribed frequency fo,
constant feedback in the useful band, and it is absolutely stable. De-
partures from absolute stability are rather unusual in practical ampli-
fiers and will not be considered here. It is apparent from the phase
area relation that a conditionally stable amplifier may be expected to
have a greater feedback for a cut-off interval of given breadth than a
structure which is unconditionally stable, but a detailed discussion of
the problem is beyond the scope of this paper.

Departures from the other assumptions are easily treated. For
example, if a varying feedback in the useful band is desired, as it may
be in occasional amplifiers, an appropriate cut-off characteristic can
be constructed by returning to the general formula (4), performing the
integrations graphically, if necessary. If the phase requirement in
the cut-off region is left unchanged only the first integral need be
modified. The most important question, for ordinary purposes, is that
of determining how high the varying feedback can be, in comparison
with a corresponding constant feedback characteristic, for any given
asymptote. This can be answered by observing the form to which the
first integral in (4) reduces when f. is made very large. It is easily seen
that the asymptotic conditions will remain the same provided the

19 In tubes operating at a high-power level f; may, of course, be quite low. It is
evident, however, that only the tubes added to the circuit are significant in interpret-
ing (11). The additional tubes may be inserted directly in the feedback path if they
are made substantially linear in the voice range by subsidiary feedback of their own.
This will not affect the essential result of the present analysis.

1 It is, of course, not to be expected that the actual asymptotic slope will be con-
stant from 40 ke. to 10 me. Since only the region extending a few octaves above 40

ke. is of interest in the final design, however, the apparent A, can be obtained by
extrapolating the slope in this region,
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feedback in the useful band satisfies a relation of the form
/2
f Adg¢ = constant, (12)
0

where ¢ = sin~! f/fo. Thus the area under the varying characteristic,
when plotted against ¢, should be the same as that under a correspond-
ing constant characteristic having the same phase and gain margins
and the same final asymptote. This is exemplified by Fig. 19, the
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Fig. 19—Diagram to illustrate the computation of available feedback when the
required feedback in the useful band is not the same at all frequencies.

varying characteristic being chosen for illustrative purposes as a
straight line on an arithmetic frequency scale.

The most important question has to do with the assumption that the
useful transmission band extends down to zero frequency. In most
amplifiers, of course, this is not true. It is consequently necessary to
provide a cut-off characteristic on the lower as well as the upper side
of the band. The requisite characteristics are easily obtained from
the ones which have been described by means of frequency transforma-
tions of a type familiar in filter theory. Thus if the cut-off characteris-
tics studied thus far are regarded as being of the “‘low-pass’’ type the
characteristics obtained from them by replacing f/fo by its reciprocal
may be regarded as being of the '‘high-pass” type. If the band width
of the amplifier is relatively broad it is usually simplest to treat the
upper and lower cut-offs as independent characteristics of low-pass and
high-pass types. In this event, the asymptote for the lower cut-off is
furnished by such elements as blocking condensers and choke coils in the
plate supply leads. The low-frequency asymptote is usually not so
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serious a problem as the high-frequency asymptote since it can be
placed as far from the band as we need by using large enough elements
in the power supply circuits. The superposition of a low-frequency
cutoff on the idealized loop gain and phase characteristics of a ‘low-
pass’’ circuit is illustrated by the broken lines in Fig. 20,

&

1

1

]
—

Fig. 20—Modification of loop characteristics to provide a lower cutoff in a broad-
band amplifier.

If the band width is relatively narrow it is more efficient to use the
transformation in filter theory which relates a low-pass to a symmetrical
band-pass structure. The transformation is obtained by replacing
f/fo in the low-pass case by (f2 — fife/f(f: — f1)), where fi and f; are
the edges of the prescribed band. It substitutes resonant and anti-
resonant circuits tuned to the center of the band for the coils and con-
densers in the low-pass circuit. In particular each parasitic inductance
is tuned by the addition of a series condenser and each parasitic capac-
ity is tuned by a shunt coil. The parameters of the transformation
must, of course, be so chosen that the parasitic elements have the cor-
rect values for use in the new branches.

This leads to a simple but important result. If the inductance of a
series resonant circuit is fixed, the interval represented by f, — f. in
Fig. 21, between the frequencies at which the absolute value of the
reactance reaches some prescribed limit X, is always constant and
equal to the frequency at which the untuned inductance would exhibit
the reactance X, whatever the tuning frequency may be. The same
relation holds for the capacity in an anti-resonant circuit. Thus the
frequency range over which the branches containing parasitic elements
exhibit comparable impedance variations is the same in the band-pass
structure and in the prototype low-pass structure. But since the
transformation does not affect the relative impedance levels of the
various branches in the circuit, this result can be extended to the com-
plete pB characteristic. We can therefore conclude that the feedback
which is obtainable in an amplifier of given general configuration and with
given parasitic elements and given margins depends only upon the breadth
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Fig. 21—Frequency interval between prescribed reactances of opposite sign in a
resonant circuit with fixed inductance.

of the band in cycles and is independent of the location of the band in the
frequency spectrum.

These relations are exemplified by the plots of a low-pass cutoff
characteristic and the equivalent band-pass characteristic shown by
Fig. 22. The equality of corresponding frequency intervals is indi-
cated by the horizontal lines A4, B and C.
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Fig. 22—Diagram to illustrate the conservation of band width in the low-pass
to band-pass transformation with fixed parasitic elements. A, B and C represent
tvpical corresponding intervals of equal breadth.

ExAMPLE

An example showing the application of the method in an actual de-
sign is furnished by Fig. 23. The structure is a feedback amplifier
intended to serve as a repeater in a 72-ohm coaxial line.!? The useful
frequency range extends from 60 to 2,000 kc. Coupling to the line is

12 The author’s personal contact with this amplifier was limited to the evolution of

a paper schematic for the high frecl(uency design. The other aspects of the problem
are the work of Messrs. K. C. Black, J. M. West and C. H. Elmendorf.
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obtained through the shielded input and output transformers 7"y and
T5. The three stages in the u circuit are represented in Fig. 23 as single
tubes. Physically, however, each stage employes two tubes in parallel,
the transconductances of the individual tubes being about 2000 micro-
mhos. The principal feedback is obtained through the impedance Zs.
There is in addition a subsidiary local feedback on the power stage
through the impedance Zx. This is advantageous in producing a
further reduction in the effects of modulation in this stage but it does
not materially affect the feedback available around the principal loop.

The elements shown explicitly include resistance-capacitance filters
in the power supply leads to the plates and screens, cathode resistances
and by-pass condensers to provide grid bias potentials, and blocking
condenser-grid-leak combinations for the several tubes. In addition to
serving these functions, the various resistance-capacitance combina-
tions are also used to provide the cutoff characteristic below the useful
band. The low-frequency asymptote is established by the grid leak
resistances and the associated coupling condensers and the approach
of the feedback characteristic to the asymptote is controlled mainly by
the cathode impedances and the resistance-capacitance filters in the
power supply leads to the plates. The principal parts of the circuit
entering into the pB characteristic at high frequencies are the interstage
impedances Z; and Z,, the feedback impedance Zg,'* the cathode im-
pedance Zg, and the two transformers. The four network designs are
shown in detail in Figs. 24, 25, 26, and 27.

The joint transconductance, 4000 micromhos, of two tubes in parallel
operating into an average interstage capacity of 14 mmf, as indicated
by Figs. 24 and 25, gives an f; of about 50 mc. The parasitic capacities
(chiefly transformer high side and ground capacities) in the other parts
of the feedback loop provide a net loss, 4, of about 18 db at this fre-
quency. Since the asymptotic slope is 18 db per octave the intercept
of the complete asymptote with the zero gain axis occurs about one
octave lower, at slightly less than 25 mc. This is a relatively high
intercept and may be attributed in part to the high gain of the vacuum
tubes. The care used in minimizing parasitic capacities in the con-
struction of the amplifier and the general circuit arrangement, including
in particular the use of single shunt impedances for the coupling and
feedback networks, are also helpful.

13 The relative complexity of this network is explained by the fact that it actually
serves as a regulator to compensate for the effects of changes in the line temperature.
(See H. W. Bode, *“ Variable Equalizers,” Bell System Technical Journal, April, 1938.)
The present discussion assumes that the controlling element is at its normal setting.
For this setting the network is approximately equal to a resistance in series with a
small inductance, The fact that the amplifier must remain stable over a regulation
range may serve to explain why the design includes such large stability margins.
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Fig. 24—First interstage for the amplifier of Fig. 23.
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Fig. 26—8 circuit impedance for the amplifier of Fig. 23.
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Fig. 27—Cathode impedance for the amplifier of Fig. 23.
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In accordance with (7) the maximum available feedback A, is
48 db. For design purposes, however, x and y in (9) were chosen as
15 db and 1/5 respectively. This reduces the actual feedback 4 to
about 28 db. The theoretical cutoff characteristic corresponding to
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Fig. 28—Loop gain characteristic for the amplifier of Fig. 23.
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Fig. 29—Loop phase characteristic for the amplifier of Fig. 23.

these parameters is shown by the broken lines in Figs. 28 and 29, and
the actual design characteristic by the solid lines. Since this is a
structure in which the required forward gain is considerably less than
the maximum available gain, the general course of the cutoff character-
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istic is controlled, in accordance with the procedure outlined previously,
by the elements in the pcircuit. The sharp slope just beyond the edge
of the useful band is obtained from a transformer anti-resonance. The
relatively flat portion of the characteristic near its intersection with the
asymptote is due partly to an anti-resonance of the 8 circuit with its
distributed capacitance and partly to an increase in the gain of the
third tube because of the filter-like action of the elements of Zg in
cutting out the local feedback on the tube in this region.

The large margins in the design made it possible to secure a substan-
tial increase in feedback without instability. For example, with a loss
margin as great as 15 db the feedback can be increased by adjusting the
screen and plate voltages to increase the tube gains. A higher feed-
back can also be obtained by adjusting the resistance in the first inter-
stage. As this interstage was designed, an increase in the resistance
results in an increased amplifier gain and a correspondingly increased
feedback which follows a new theoretical characteristic with a some-
what reduced phase margin. The adjustment, in effect, produces a
change in the value of the constant & in equation (6). With this ad-
justment the feedback can be increased to about 40 db before the

amplifier sings.



