A Solution for Faults at Two Locations in Three-Phase
Power Systems

By E. F. VAAGE

This paper is an outgrowth of studies of double faults to ground
in three-phase power systems made by the author in connection
with work of the Joint Subcommittee on Development and Re-
search, Edison Electric Institute and Bell Telephone System. The
paper provides a systematic solution, based on the method of
symmetrical components, by means of which currents and voltages
can be determined at times of fault involving any combination of
phases at one or two locations on three-phase power systems.

1. INTRODUCTION

KNOWLEDGE of the magnitude and phase relation of power
system voltages and currents for various types of faults in three-
phase systems is of importance in the study of various problems, among
which are relaying studies, the efficacy of current limiting devices and
their reaction on the power network, and estimates of induction in
paralleling communication circuits.

The method of symmetrical components as developed by Fortescue !
and others is now extensively used in the solution for currents and
voltages in three-phase power systems under fault (short-circuit)
conditions. Formulas for special cases of faults, such as single and
double line-to-ground faults, can be found in various text books on this
subject. The solution for simultaneous faults at two locations has
been treated by Miss Clark,? in a form particularly adaptable to the
use of a calculating board.

The present development provides a complete and systematic solu-
tion for currents and voltages at times of fault on any number of
phases at one or two locations in a three-phase system, in which gener-
ators may be assumed in phase and of the same internal voltage, and
where load currents can be neglected. These are the usual assumptions
made in computing fault currents, except for certain special problems,
such as that of power system stability. The methods employed herein
could be extended to cases where generators of different phase angles
and voltages of more than two points of fault are involved. Formally
such cases can be treated in a manner similar to that given in the
paper. The number of impedances to which an n-terminal network

1 Reference numbers refer to references appearing at the end of the article.
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can be reduced is given by the expression 3n(n — 1). For n = 3,
the case treated in this paper, three impedances are required which
necessitate six equations for the general solution of the six fault
currents. For # = 4, which would be the case for three points of
fault (or two points of fault and two generating voltages), six im-
pedances would appear in the reduced network and this would necessi-
tate twelve equations for the general solution of the fault currents.
For larger values of n, the necessary number of equations increases
rapidly, thus making the solution impractical. Such problems
usually, as a practical matter, are more readily solved by the use of a-c.
calculating boards.

While no departure from the general methods of symmetrical com-
ponents is made in the present development, a systematic method of
handling the equations is presented and means of determining the
coefficients given so that numerical calculations can be directly carried
out when the constants of the network are known.

2. GENERAL SOLUTION

The equations developed in this paper are based on the sequence
impedances looking into a three-phase network from two points of fault.
Consider the network shown in Fig. 1. This system can be reduced

CONTAINS ENTIRE NETWORK

Iaa Iab Iac
Raa Rab 1 Rac 1

IaF
RaF 1

FAULT A FAULT B
Fig. 1—General network diagram.

to an equivalent star for each of the positive, negative and zero se-
quence networks, with legs to the points of generation and to the faults
at A and B. Figure 2 shows the reduced positive sequence network.
Similar diagrams can be made for the negative and zero sequence
systems except for the fact that in these cases there are no generated
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voltages, and the impedances and currents are the negative and zero
sequence quantities.

The reduction of a network to an equivalent star is usually a tedious
and sometimes a difficult process especially in large interconnected
systems. Methods of accomplishing the reduction, such as delta-star
transformations, simultaneous equations or direct measurements on
calculating boards can be found in the literature.® °

Having reduced the three sequence networks to equivalent stars,
the equations are developed as shown in the Appendix.

The following set of equations (1) is the general solution for fault
currents during simultaneous three-phase faults to ground at two
different locations in a power network. The set applies directly to
the calculation of ground fault currents on a system having finite

FAULT A FAULT B

' Fig. 2—Reduced positive sequence diagram,

neutral impedances or an isolated system in which the zero sequence
capacitance is taken into account. For other types of faults, such as
faults to ground in isolated systems in which zero sequence capacitance
has been neglected, or for phase to phase faults, set (1) is not directly
applicable since some of the constants become infinitely large. How-
ever, by certain transformations of set (1), more convenient sets (2)
and (3) are obtained, directly applicable for solution of these latter

cases.
Neutral Grounded System

T4a Tab Tae IBa :7) IBc

A | An Aus A Ais A 3E (Aa)

An A A A A A 3a’E (Ab)

Aag An Asa Aas Ass A 3aE (Ac) (1)
Aan A Aus A Aus A 3E (Ba)

Ap Ase Ass Asga Ags A 3a*E (Bb)

Ao Ag Ao Aes Ags Ags 3aE (Be)
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The six equations are written in matrix form with the currents and
voltages outside the system matrix. For example the first row in (1)
is interpreted as:

AllIAa + AlﬂIAb + AIHIAG + AuIBa + AIEIBb + AIGIBa = 3E

The values of the 4’s in (1) are given in Table I. It should be noted
that of the 36 constants only 13 are distinct. Six of these are in the
nature of self-impedances, two are transfer impedances between phases
at A and two between phases at B. The remaining three are transfer
impedances between the two faults at 4 and at B.

Considerable reductions in the constants are obtained when the
positive and negative sequence impedances are assumed equal. These
values are given in Table II.

Faults to ground on less than three phases at one or both locations
are accounted for by assuming the corresponding fault resistances in-
finitely large. The currents to ground in the sound phases are zero.
Striking out the columns containing these currents and the correspond-
ing rows, indicated by the index at right in equation (1), a reduced
set of equations is obtained from which the desired currents can be
found. A few examples are given in subsequent sections.

In power networks with isolated neutral the zero sequence impedance
Zgo reduces essentially to the capacitance of the system. In this
case equations (1) are still appropriate and will give a rigorous solution
for the six currents. However, in many cases it is sufficiently accurate
to neglect the capacitance of the system. This results in infinitely
large values of all of the A’s in Table I (Table II), since each depends
on Z¢o which is infinitely large. For this condition it is desirable to
transform the set of equations in (1) to a more convenient set with
finite constants.

The transformation required is obtained by observing that, with
Z ¢y infinitely large, the sum of the zero sequence currents I4o + Ipo
must be equal to zero. Making use of this relation the difference of
the zero sequence voltages at 4 and B (equation (50) of appendix)
reduces to:

Vio — Veo = (Zao + Zpo)Ino

The last equation shows that subtraction of equations associated
with phases at A from those at B removes the infinitely large element
Zgo. This can be done in nine ways (ignoring reversals of sign), but
three of these result in the single equation :

Taa+Tao+ Tac+ Ipa+ Ipy + Ip. =0

This equation with any five of the remaining six constitutes an inde-
pendent set; for convenience in dealing with special cases the redundant
set of seven equations is shown in the following array:
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Isolated System—Capacitance Neglected

T4a Iop Tae Ip, IR Ig,

Bu By B B B15 B 3(1—02)E (Aa-—Bb)
Ba By Bas Bas Bas Boys | 3(1—a)E EAG—BC)
By Baa Bas By Bas Bss | 3(a?—1)E | (Ab—Ba) (2
B | B | Bu | Bu | Bu | Bu |3@—aE|(4b-B) (2)
Bst B2 Bisa By Bgs Bss |3(a—1)E | (Ac—Ba)
Ba Ba B Bas Bgs Bis 3(a—a®)E | (Ac—Bb)

IAa+IAb+IAc+IBn+IBb+IEc=0 (2!’1)

The index to the right indicates which of the equations in (1) have
been used. The values of the B's are given in Table I and Table II.

In case of faults to ground on less than three phases, as in equations
(1), columns and rows associated with sound phase currents are to be
deleted; with respect to the rows, however, the index is double and
all rows having the index of the sound phase or phases are deleted.
If, for example, the sound phase is Aa, rows 1 and 2, each of which
contains Aa in its index, as well as column 1, are deleted. This leaves
only four equations, which together with (2a) give the necessary five
equations for the five currents. For this reason all six equations are
given in (2), since any phase might be involved in special cases.

Phase-to-phase faults are obtained from the general case (1) by
allowing the resistances R4r and Rpp to become infinite. In this case
phase-to-phase quantities at the same location remain finite and the
appropriate set of equations is obtained by subtracting equations
having the corresponding phase indexes; thus Aa — 4b, Aa — Ac and
Ab — Ac indicate subtractions at A. There are six possible ways of
doing this, ignoring reversals of sign. The resulting set is given in (3).
The four equations obtained by taking any two of the first three and
any two of the last three equations in this set together with the two
equations (3a) relating to the sum of the currents at each fault location,
which from physical considerations equal zero, constitute an inde-
pendent set. For convenience in dealing with special cases all eight
equations are given below:

Phase-to-Phase Faulls

I4a TAb Tac IBa Iy Ipe

Cn Cia Cus Cus Cis Cis |3(1—a)E |(Ada—Ab)

Ca Ca Cas Cayg Cas Cws | 3(1—a)E |(Aa—Ac)

Ca Chs Cas Cas Css Css | 3(a?—a)E | (Ab—Ac) (3)
Ca Ciz Cas Cu Cys Cw |3(1—a®)E |(Ba—Bb)

Cal Cs2 Css Cea Crs Css 3{(1—a)E |(Ba—Bc)

Ca Cer Cea Cea Ces Ces | 3(a?—a)E | (Bb—Bc)

Tga+Tas + Iac=10 (3a)
Ige + Ipp + Ipc =0
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The index to the right indicates which equations of (1) have been
used. The values of the C's are given in Table I and Table II.
The total ground fault currents at the two fault locations are:

Tap = Taa + Ty + L. (4)
Ipp = Ipa + Ipy + Ipe (5)

and the total residual current in the two faults is:
Ip = I.r + Ipr (6)

In an isolated system in which capacitance has been neglected this
current is zero and equation (6) will be identical with (2a).

The distribution of these currents in the network can be found as
follows. From equations (51) and (52) of the appendix the calculated
fault currents are transformed into sequence currents. By working
back into the original sequence networks the sequence currents in each
branch of the system®can be found and later combined from similar
expressions as shown in (43) and (44) to obtain the actual branch
currents. -

A combination of the equations in (1) and (3) can be used for cases
involving faults to ground at one location and faults between phases
(not involving ground) at the other location.

For faults to ground at A4 and between phases at B, the three first
equations in (1) and the three last in (3) together with the last in (3a)
constitute the most convenient set of equations for this type of fault.

It should be noted that if all three phases are involved at B any two
of the three last equations in (3) together with the last in (3a) can be
used, while for less than three phases involved, the rules for striking
out rows and columns automatically will result in the proper equations
to be used.

Vice versa the three first equations in (3) together with the first in
(3a) and the three last equations in (1) will give the solutions for
phase-to-phase faults at 4 and ground faults at B.

This will be illustrated with an example in a later section.

The voltages to ground at the two locations of faults can be obtained
directly from equations (53) and (54) of the Appendix, after the
currents have been evaluated. At any other point in the system the
voltages to ground are found by adding the voltage drops of the lines
in question to these voltages, treating each sequence network sepa-
rately, then adding the sequence voltages together according to
equations (46) or (47).
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3. SpeciaL CASEs

The application of the three sets of equations (1), (2) and (3), will
be illustrated with a few examples. For simple cases, such as a single
or double line-to-ground fault at one location, the equations reduce to
formulas frequently found in the literature on this subject.

From set (1) equations for faults to ground at one or two locations
can be obtained directly when the zero sequence impedance is finite.
Set (2), obtained from (1), is the most convenient set for solutions of
faults to ground in isolated systems in which capacitance has been
neglected. The phase-to-phase fault currents are best obtained from
set (3).

3.1 Single Line-to-Ground Fault at A

Consider a fault to ground on phase “b" at A. The solution can be
obtained from (1) by letting:

RAa = RAc = RBu = RBb = RE: = @ (7)

This results in:
IAa=IAc=IBﬂ=IBb=IB€=O (8)

Striking out all columns in (1) containing the currents in (8) and
the corresponding rows indexed by Aa, Ac, Ba, Bb and Bc only one

equation is left:
Aol = 3a’E (9)

The numerical value of 4., can be calculated directly from Table I,
or on substituting the symbolic value of A in equation (9) the

result will be:
3a*E

I = 27 72 + Zo + 3R> (10)
where
Zi=Zun+Za
Ly =7 Z
2 a2 + Ze2 (11)

ZO = ZAU + ZCD
RF = RAL‘I + RAF

Equation (10) is the well-known formula for a single line-to-ground
fault at one location in a three-phase system.

3.2 Double Line-to-Ground Fault at A

Consider a double line-to-ground fault on phases “a’ and *b”
at A. Then:
Rj. = Rpo = Rpp = Rp. = = (12)
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and
Tae = Ipa = Ipp = Ip. = 0 (13)

Striking out the columns of (1) containing the currents in (13) and
the corresponding rows (A¢, Ba, Bb and Bc) the following two equations
remain :

AllIAa + AIQIA&I = 3E

AaTse + Asalay = 3a’E (14)

from which on substituting the numerical values for the A’s from
Table I the two currents 4, and I4 can be found. The total fault
current to ground at A4 is:

Tap = Tha + Iap (15)

In the special case where R4, R4» and R4r are zero the expression
for I4r can be reduced to the following expression after a direct sub-
stitution for the A's in (14) is made:

_ 3&22E
Iar = 7 7 ¥ 722 + 222 (16)
where:
Zl = Z.{l + ch
Zy = Zag + Zes 7
Zn = ZAn + Zcu

3.3 Simultaneous Double Line-to-Ground Fault at A and Double
Line-to-Ground Fault at B

Consider a fault-to-ground on phases “a™ and ““b" at A and phases
“q" and “¢" at B. Then:

Ryc = Rp = = (18)
Hence:
Tje=Ip =0 (19)

Striking out the two columns containing 4. and Ig and the two
corresponding rows (4¢ and Bb), the four following equations remain :

AIIIAG + AIEIAb + AuIBa + AIEIBc = 3E
AoTag + Aoalsy + Asslpa + Aselpe = 30°E
Andaa + Asolay + Asslpa + Asslp. = 3E
Aolaa + Aoelas + Asslpa + Aselp. = 3aE

(20)

A symbolic solution in terms of the sequence impedances for these
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currents becomes quite involved and it is advisable to substitute
numerical values of the constants before solving for the four currents.
The total fault currents at 4 and B, respectively, are (from (4) and
(5) in connection with (19)):

Tap = Tia + Las (21)
Igp = Ipa + Ipe (22)

In a similar manner faults to ground for any other combination of
faulted phases can be found.

3.4 Single Line-to-Ground Faulis at A and B in an Isolated System

Consider a fault-to-ground on phases “a" at 4 and “b" at B in
an isolated system in which capacity can be neglected. Then:

RAb = RAL' = RBG = RBG = @ (23)

and
Tap = Tao = Ipa = Ip. =0 (24)

Striking out the columns of (2) containing the currents in (24) and
the corresponding rows Aa — B¢, Ab — Ba, Ab — Bc, Ac — Ba and
Ac — Bb (all rows containing 4b, Ac, Ba and Bc), leaves only one
equation in (2), which together with (2a) gives:

Bulia + Bislp = 3(1 — a)E

25
IAa + IBb =0 ( )
Solving for these currents the result is:
3(1 — a)E
a 1 — = - 2
IA IBb Bll — -Blﬁ ( 6)
Inserting the values of the B’s from Table I this reduces to:
_ _ 3(1 — a®)E
L= —In=z 37+ Zut 3@+ Ry 2

Ziw=Zm+Zm+3Za

Zoi = Zaz+ Zps + 3Zc2

Zoi = Zao+ Znro (28)
Ry = Rua + Rar

Rp = Rp + Rsr

The subscript 4 (isolated) is used to distinguish these impedances for
the isolated system from those used in (11), (17) and (38).
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3.5 Phase-to-Phase Fault at A
Consider a fault between phases ¢’ and *'b"" at A. Then let:
IAc = IBa = IBb = IBc =0 . (29)

Striking out the columns in (3) containing the currents in (29) and
the corresponding rows (all rows containing A¢, Ba, Bb and Bc) only
one equation is left:

Culaa + Crualyy = 3(1 — a®)E (30)
It is further known from (3a) that:
Ty = — laa (31)

Substituting (31) and the constants Cy; and Cy; from Table I in

(30) the result is:
(1 —a®)E

Tjo= — Iap = 32
g = 7 F ZaF Raa T Ro (32)
Zyv=Za+Zar
33
Zy = Ly + Ze2 ( )
which is a well-known expression for a phase-to-phase fault.
3.6 Three-Phase Fault at A
For this case:
Ipo = Ipy = Ip. =0 (34)

Striking out the columns in (3) containing the currents in (34) and
the corresponding rows, three equations remain, any two of which
together with the equation from (3a) relating to the currents at 4 give:

Cilaa + Cralas + Cralae = 3(1 — a®)E
Coudse + Caolyp + Coalge = 3(1 - G)E (35)
I.Au + IAb + I.Ac =0
from which the currents can be found.

In the special case where the fault resistances are all zero, the three
currents are equal in magnitude and related as follows:

T4o = algy = a4, (36)

The rank of the system determinant in (35) is therefore 1. Using
any of the first two equations in (35) in connection with (36) and the

constants in Table I, the result is:
E

Z,
Zi=Zan+Zear (38)

(37)

Tao = algp = @* 14 =
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3.7 Phase-to-Phase Fault at A and Phase-to-Ground Fault at B

Consider a fault between phases “a’’ and “b" at 4 and a fault to
ground on phase “¢” at B. Then:

Ric = Rpa = Rpp = = (39)
and
IA5=IBQ=IBL=O (40)

As explained in a preceding section the three first equations in 3)
together with the first in (3a) and the three last equations in (1) may
be used for this case.

Striking out the columns I, I5, and I and the corresponding rows
Aa — Ac, and Ab — Ac in the three first equations in (3) leaves only
the first equation. Similarly by striking out the columns Isa, I, and
the corresponding rows Ba and Bb in the three last equations in (1)
leaves only the last equation. Hence:

Cidaa + Cralay + Crelp. = 3(1 — a*)E
AGIIAa + AezIAb + ABBIBc = 3£IE

and finally from (3a):

(41)

Tso +In=0 (42)

from which the three currents can be found. The 4’s and C’s are
given in Table I and Table II.

4. CONCLUSION

While the probability of all phases being faulted at both locations
simultaneously is very remote, the three sets of equations (1), (2) and
(3) have been given in such a form that they conveniently will provide
a solution for any combination of phases faulted from a single line-to-
ground fault at one location to the most involved fault condition.

In Section (3) of this paper, in which special cases have been treated,
only simple types of fault conditions have been shown in order to
illustrate the method to be used and to prove that the general equations
reduce to well-known formulas.

The constants given in Table I consist of the nine quantities S,,
So, So, Tay T, Tey U, Uy and U, arranged as shown for each set of
equations. Table II gives somewhat simpler values for the constants
in cases where the positive and negative sequence impedances are
assumed equal.

The voltages to ground at the two fault locations are given by (46)
and (47) in the Appendix.

It is hoped that this development will provide a more unified presen-
tation of fault current calculations in power networks.
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APPENDIX

The standard notation for phase and sequence quantities is usually
indicated by a subscript. Thus I, I}, etc., means the current at the
point of fault of phase ““a' and ''b,” respectively. I, a*I, and al;
are the positive sequence currents in phase “a,” “b" and “‘¢,” re-
spectively. In this treatment, however, complication arises from the
fact that two points of faults are involved and it will be necessary to
distinguish between the quantities at these two locations. This is
most conveniently done by a double subscript, the first referring to the
point of fault and the second to the phase or sequence in question.
Thus I4a, Iga, etc., are the currents in the fault at 4 and B of phase
“a’" and I41, Ip the positive sequence current at the two points of
fault, respectively. Making use of this notation the fundamental
equations for the sequence currents at fault 4 are:

Tao + Tar + Ta2 = Iaa
Tag 4 a* Ty + alss = Iy (43)
IAQ + GIA]. + aﬁIAﬂ = IAc
And at fault B:
Ipo + Ipy + Ips = Ipa
Ipy+ a®Ip, + alps = I (44)
Ipo + alp 4 a*Ips = I,

where the coefficient ““a" is the sequence operator, having the value:

1, .43
=-3 +j - .
e 1.3 At
2777
The voltages to ground at the two fault locations are given by :
Vaa = Vao+ Var + Vae
= (Raa + Rar)lsa + Rarlay + Rarlac
Vae = Vao+ a®Var + aVaa (46)

= Rarlaa + (Ras + Rar)Iap + Rarla.
Vae = Vao+ aVar + a*Vas
= Rarlaa + Rarlap + (Ruc + Rar) 4.
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Vea= Vao+ Vi1 + Va2
= (Rps + Rsr)Ips + Rorlm + Rprls.

Vey = Veo+ a*Vp1 + aVea 47
= Rprlp. + (Rps + Rer)Im + Rprlp.

Vee = Vao+ aVp1 + a*Vie
= Rprlps + Rprls + (Re. + Rpr)Iz.

Consider the positive sequence diagram in Fig. 2. Evidently:

Vii=E — Zun+ Ze) s — Zeldm

48
Vm, =FE — Zc;[Lu - (ZBI + ZC’I)IHI. ( )

where V41 and Vi, are the positive sequence voltages to ground at the
two fault locations. Similar expressions can be obtained for Vs,
Vs, Vaoand Vo, except for the fact the E is zero in these cases and
the impedances and currents are the negative and zero sequence
quantities. They are:

Vas = — (Zazs + Zes)Laz — Zoalm (49)
Vae = — Zcalaz — (Zpy + Zoa) I
Vao= — (2 Zeo)lao — Zaol

A0 (Zso + Zco) Lo col Bo (50)

Veo = — Zcolao — (Zpo + Zco)I o
Solving (43) and (44) for the sequence currents the result is:

IAO = %(IAG + I.Ab + IAG)
I = 3(Ia + alay + a'lao) (1)
T4 = 3(Jaa + @®Ias + aly)

Igo = 3Ipa + Ipp + Is)
Ipy = i(Ipa + alm + a*Ig) (52)
Ips = 3(Ipa + a*Im + alg)

Substituting the expressions for the sequence currents in (48), (49)
and (50) the result is:

Var=E — 3Za1 + Zc1)(Taa + alay + a®La)
- %Zm(fau + alp + a®Ip.)

Vas = — 3(Zaa + Zoo) {aa + @21y + alae) . (53)
— 3Zos(Ipa + a*Ipp + alpo)

Vao = — 3(Zao + Zco)(Taa + Tav + Lac)
— 3Zco(Ipa + Iy + Inc)
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Ve =E — 3Zc1(Taa + alan + a*l4)
- %(ZHI + ZCI)(IBn + GIsb + GEIB.-:)
— 1Zca(Taa + a?Lap + alae)
— N Zpa + Ze2)(Tpa + a*Ims + alg)
Veo = — 3Zco(Laa + Tas + I4c)
— Y Zgo+ Zco)(Ipa + Iy + Inc)

Substituting (53) and (54) in (46) and (47) the six original equations
in (1) are obtained.

Vs

(54)
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