Electrical Wave Filters Employing Crystals
with Normal and Divided Electrodes

By W. P. MASON and R. A. SYKES

I. INTRODUCTION

N SEVERAL previous papers!:2% 4 the application of piezo-

electric crystals to electric wave filters has been discussed. The
underlying principles and some of the design procedures were given.
These filters have received wide application in carrier telephone
systems and radio systems both in the United States and abroad.®
It is the purpose of the present paper to discuss more completely all
the standard types of filters with crystals, and methods for deter-
mining their constants and attenuation characteristics. In addition
some of the newer results for simplifying such filters are given.

The use of a divided plate crystal for filters resulted in cutting
the number of crystals in half as was pointed out in three former
papers.?-3:4 The theory of the use of such crystals is discussed in
this paper and an equivalent circuit is given for a crystal with two
sets of plates. The application of this circuit to unbalanced filters
allows the results for balanced lattice filters to be realized for un-
balanced filters. For one connection of the two plates the resonance
of the crystal can be made to appear in one arm of the equivalent
lattice, while for the reverse connection the resonance appears in the
other arm of the lattice.

II. CrystaL FiLTER SeEcTioNs WHICH CAN BE REALIZED IN
LATTICE NETWORKS

As pointed out in a previous paper! the most general filter char-
acteristics for networks employing crystals can be realized in a lattice
network, since every known form of a network can be reduced to a

1 “Electrical Wave Filters Employing Quartz Crystals as Elements,” W. P.
Mason, B, S. T'. J., July 1934, pp. 405-452.

2 ““Resistance Compensated Band Pass Crystal Filters for Unbalanced Circuits,”
W. P. Mason, B. S. T. J., Oct. 1937, pp. 423-436,

314“The Evolution of the Crystal Wave Filter,” O. E. Buckley, Jour. of Applied
Physics, Oct. 1936,

44 Crystal Channel Filters for the Cable Carrier Systems,” C. E. Lane, B. S. T". J.,
Vol. XVII, Jan. 1938, p. 125.

8 “Channel Filters Employing Crystal Resonators,” H. Stanesby and E. R, Broad,
P. OLE. E. Jour., 31, pp. 254-264, Jan, 1939,

1 Loc. cit.
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lattice network with realizable constants, whereas the converse is not
necessarily true.

Let us consider first what types of filter characteristics can be
obtained by using a crystal in one arm of a lattice network, and
electrical or crystal elements in the other arm. As is well known the
equivalent electrical network of a crystal is as shown in Fig. 1. The
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Fig. 1—Equivalent electrical circuit and reactance frequency
characteristic of piezo-electric crystal.

element values, as calculated in a recent paper, for a plated crystal
vibrating longitudinally are 8
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where 1,, L., I, are respectively the length, width, and thickness of the
crystal expressed in centimeters, K = specific inductive capacity,
S,’ = inverse of Young's modulus along the direction of vibration,
dyo’ is the value of the piezo-electric constant along the direction
of vibration, and p is the density of the crystal. The resistance
depends on the clamping resistance, acoustic radiation from the ends
of the crystal, internal damping losses, etc. In general the ratio of
the reactance of the inductance L, to the resistance R at the resonant
frequency fr is from 20,000 to 300,000, depending on how the crystal
is mounted, whether it is evacuated, etc. In general this resistance is
so small that it can be neglected for design purposes, and only the ideal
reactance characteristic need be considered.

¢ A Dynamic Measurement of the Elastic, Electric and Piezoelectric Constants
of Rochelle Salt,” W. P. Mason, Phys. Rev., Vol. 55, April 15, 1939, p. 775.
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The reactance characteristic of the crystal, as shown in Fig. 1, is a
negative reactance at low frequencies up to a resonant frequency fz.
For frequencies greater than fr, the reactance becomer positive up to
the anti-resonant frequency fa, above which the reactance is again
negative. The ratio of the anti-resonant frequency to the resonant
frequency is determined directly by the ratio r of Cy to C; existing in
the crystal. As shown by Fig. 1,

fa _ 1
A=yt @)

This ratio is usually greater than 125 for a quartz crystal and hence
the anti-resonant frequency is less than .4 per cent higher than the
resonant frequency.

The previous papers considered mainly band-pass filters and dis-
cussed briefly low and high-pass crystal filters. It is also possible to
obtain band elimination and all-pass crystal filters by combining
electrical elements with the crystals in the proper manner. We
consider, first, all the types of filters which can be obtained by using
a single crystal in one arm of a lattice filter and electrical elements in
the other arms. Figure 2 shows all the possible single-band character-
istics which can be obtained by using a crystal in one arm and an
electrical impedance, or crystal impedance, in the other lattice arm.
For example, the first filter of the table shows a filter with a crystal in
one arm and a capacitance in the other arm. Column B shows the
reactance characteristic of each arm. A lattice filter will have a pass
band when the reactances are of opposite sign and will attenuate when
the reactances are the same sign. When the two reactances are equal
the filter will have an infinite attenuation. This result follows from
the expressions for the propagation constant and characteristic
impedance of a balanced lattice network which are

tanh L = &2, 2, = NZiZs, @)

2 Zs

where Z, is the impedance of the series arm of the lattice and Z, that
of the shunt arm. The third column shows the attenuation character-
istic of this filter. It is a narrow band filter having a pass band
between  the resonant and anti-resonant frequencies of the filter.
There is a peak of attenuation either above or below the band de-
pending on the value of the capacitance C; in the lattice arm. The
last column shows the value of the characteristic impedance of the

filter as a function of the frequency. The dotted line indicates a
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Fig. 2—Single band lattice filters employing a crystal in one arm.
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reactance while a solid line indicates a resistance. In the pass band
the filter has a resistive characteristic indicating a transmission of
energy, while in the attenuating band the characteristic impedance is
reactive indicating a reflection of energy.

Filter No. 2 shows what characteristic will be obtained if an ideal
inductance is used in the lattice arm. As can be seen a band elimi-
nation filter will result with one attenuation peak. The width of the
suppression band will be the separation between the resonant and
anti-resonant frequencies.

The use of a series resonant circuit results in a high-pass filter as
can be seen from filter No. 3. It is possible to obtain two dispositions
of the resonant frequencies which will give a single pass band as shown
by the two sets of curves. The first set gives a high-pass filter with
two attenuation peaks and a simple characteristic impedance. The
other arrangement gives one attenuation peak and a more complicated
type of characteristic impedance. The theory of this balancing of
characteristics obtainable with a lattice filter is well known,” and is
useful, when it is necessary on account of reflection effects, to make
the characteristic impedance constant nearly to the cutoff.

The use of an anti-resonant circuit results in a low-pass filter as
shown by filter No. 4. Two characteristics are possible. Filters No. 5
and 6 show the characteristics obtainable by using series resonant
circuits shunted by a capacitance or an inductance. In one case a
band-pass filter with two peaks results, and in the other either a band
suppression filter with two attenuation peaks or an all pass filter.
It will be noted that the configurations used in the lattice arm of
filter 5 is the equivalent circuit of the crystal and hence a crystal can
be used in this arm. In fact the circuit is similar to one discussed in
the former paper.!

Since the crystal positive reactance region is very narrow (< .4%),
all of the band pass and band elimination filters obtained by using a
crystal in one arm will of necessity have very narrow band pass or
band suppression regions. For high and low-pass filters the attenua-
tion peaks will of necessity come close to the cutoff frequencies.
In the all-pass structure the phase shift will be very sharp in the
neighborhood of the crystal resonance. It was shown in the first
paper,! that wider pass bands and more general characteristics can be
obtained by employing inductance coils in series or parallel with the
crystal. Figures 3 and 4 show the possible types of filters obtained by

7 Cauer, Siebschattungen VDI, Verlag Berlin, 1931, H. W. Bode, “A General
Theory of Electric Wave Filters,” Jour. of Math. and Physics, Vol. X111, pp. 275-362,
Nov. 1934,

! Loc. cit.
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Fig. 3—Single band lattice filters employing a crystal and coil in series in one arm.



ELECTRICAL WAVE FILTERS EMPLOYING CRYSTALS 227

FILTER
NO

D

REACTANCE

s
r

ATTENUATION

g f,

IMPEDANCE

0 FREQUENCY @

+@

—/i ’L

-0

/z\JI
=L E—
’/

I
4

FHIERIT R

NOTE:— IN COLUMN D,DOTTED LINES INDICATE REACTIVE IMPEDANCE
INDICATE RESISTIVE IMPEDANCE

SOLID LINES

Fig. 4—Single band lattice filters employing a crystal and coil in parallel in one arm.



228 BELL SYSTEM TECHNICAL JOURNAL

using a crystal and coil in one arm of the lattice and electrical elements
in the other. Band-pass, band elimination, high and low-pass, and
all-pass filters result. Only the simplest combinations of resonant
frequencies giving the highest amount of attenuation are shown. As
in filters 4 and 6 of Fig. 2, some of the anti-resonances and resonances
of the two arms may be made to coincide giving filters with less
attenuation but more flexibility in the impedance characteristics.
Condensers can be incorporated in parallel or series with the crystals
without affecting the type of characteristic obtained. This procedure
is useful in controlling the widths of the pass or attenuation bands
and in controlling the position of the peak values. In a number of
the filters of Figs. 3 and 4, the equivalent circuit of the crystal occurs
in the electrical circuit in the lattice arms. In these filters, crystals
can also be used in the lattice arms. Filters 1 and 5 of Fig. 3 and
filters 2 and 6 of Fig. 4 are band-pass filters which have been discussed
in detail in former papers.!: 2

Crystals may also be used in more complicated electrical circuits,
for example with transformers as shown in Fig. 5. This figure shows
high, low, band-pass, band elimination and all-pass filters which can
be constructed by employing transformers and crystals in each arm.
More complicated structures still using single crystals can also be
constructed but they tend to be of less importance since the dissipation
introduced by the electrical elements neutralizes any benefit of using
crystals.

It is possible, however, to use more crystals than one in one arm of
a lattice and obtain filters having higher insertion losses outside the
band without introducing more loss due to the electrical elements in
the band. Figure 6 shows a number of such combinations with and
without coils. The result of adding an additional crystal in one arm
of a lattice is to add another elementary section of the type discussed
in Appendix I. An example ? of the characteristic obtainable with a
band-pass filter with two crystals in each arm is shown on Fig. 7.

All of the filters discussed above were assumed to be constructed
from dissipationless elements. When coils are used, however, a
certain amount of resistance is associated with them which may alter
the characteristics obtainable. As has been pointed out previously,!
if the dissipation associated with the coils can be brought out to the
ends of the arm either in series or parallel with the complete arm the
effect of these resistances will be to add a constant loss independent of

L2 Loc. cit. .
8 This filter was constructed and tested by Mr. H. J. McSkimin.
! Loc. cit.
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the frequency, and hence the discrimination obtainable will not be
affected. This follows from the network equivalences shown in Fig. 8
which were first proved in a previous paper.! Even if this resistance
compensation cannot be completely obtained it can often be obtained
over a limited range near the cutoff and the peak frequencies by adding
resistances to some of the crystal or electrical elements of such a
value that the resistive components of the two arms are nearly equal
over a limited frequency range. This results in cutting down the
distortion near the cutoff and increasing the loss in the attenuated
regions. :

The lattice filters of Figs. 2 to 6 can be realized in ladder or bridge
T forms in certain cases. If the two arms have two common series
elements, then by the first equivalence of Fig. 8 they can be taken
outside the lattice. Similarly, if two common shunt elements can be
found in the two arms, then, by the second theorem of Fig. 8, the
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Fig. 9—Method for reducing a lattice filter to a = network filter.
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elements can be placed in shunt on the ends of the filter. For example,
suppose that we consider filter No. 1 of Fig. 2 and shunt the crystal
by a capacitance C: which is equal to the capacitance of the lattice
arm as shown in Fig. 9A. Then the two capacitances can be taken
out in shunt leaving a crystal in the series arm of a = network as
shown in Fig. 9C. This has the same type of characteristic as the
lattice but considerably greater limitations.

A somewhat more general transformation can be made to a bridge
T network of the type shown in Fig. 10A. This network is equivalent
to the lattice network shown in Fig. 10B. As is evident, if we have
an impedance in parallel with one arm and in series with the other,
the resulting lattice can be transformed into a bridge T° network.
For example, in Fig. 3, filter No. 2, if we reverse the lattice and series
arms, which can be done without changing the characteristics except
for a 180° phase reversal, the filter can easily be reduced to a bridge
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T network as shown in Fig. 11. The shunt coil L, is usually con-
siderably smaller than the series coil L, so that L; can be divided into
two coils, Ly, and L, — Lo. The transformation then becomes as

2A A

Fig. 10—Equivalence between bridge T and lattice networks.

shown in Fig. 11 with the element values shown. /2 indicates‘that
the impedance of the crystal in the shunt arm is half that in the
lattice arm. This transformation is applicable particularly to low
and high-pass filters and band elimination filters.

%

— =

Fig. 11—A bridge T band elimination crystal filter.

Another transformation which can be employed is that for a three-
winding transformer, for, as shown in a previous paper,’ a three-
winding transformer connected to two impedance arms as shown in
Fig. 12 is equivalent to a transformer and a lattice filter with small

Fig. 12—Lattice equivalent of a three-winding transformer.
2 Loc. cit.
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coils on the ends. By making the coupling in the secondary high
these coils can be made very small and can usually be neglected.

Another method for reducing balanced lattice filters to unbalanced
circuits is to employ crystals with two sets of plates as described in
section IV.

III. MeETHOD FOR CALCULATING THE ELEMENT VALUES
OF THE FILTER

The curves in Figs. 2 to 6 give a qualitative picture of what type of
characteristics can be obtained by the use of crystals in filter networks.
In order to determine what band widths and dispositions of attenuation
peaks are realizable with crystals it is necessary to calculate the
element values, since a crystal cannot be made with a ratio of capaci-
tances under 125.

The actual process of calculation can be divided into two parts.
The first part consists in a determination of the critical frequencies of
the arms of the network in terms of the desired attenuation character-
istic. The second part consists in calculating the element values from
the critical frequencies by means of Foster's theorem.

The attenuation characteristics obtainable with filters are discussed
in Appendix I, and it is there shown that the attenuation characteristic
of a complicated filter structure can be regarded as the sum of the
attenuation characteristics of a number of elementary filters. The
critical resonant frequencies of the filter are evaluated in terms of the
cutoff frequencies and the position of the attenuation peaks with
respect to the cutoff frequencies. The ratios of the impedances of the
two arms at zero or infinite frequencies are evaluated in terms of the
network parameters. With the aid of these equations, and Foster's
theorem discussed below, the element values can be evaluated for any
desired attenuation characteristic. Whether the characteristic is
realizable or not depends on whether the element values of the equiva-
lent circuit of the crystal calculated have a low enough ratio of capaci-
tances to be realized in practice. The actual value of the series
capacitance C; of the equivalent circuit of the crystal shown in Fig. 1
may also be too large to be physically realizable.

Having obtained the critical frequencies by the calculations given
in the appendix, the element values can be calculated by using Foster’s
theorem. Foster's theorem ? deals with impedances in the form of a
number of series resonant circuits in parallel as shown on Fig. 13A or
a number of antiresonant circuits in series as shown on Fig. 13B.

See ‘A Reactance Theorem,” B. S. T. J., April 1924, page 259.
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In either case the impedance of the network can be written in the form

2 2 2
(1-2)(1=5)eo (1222
Z - ——jI'I w1 w2 [OF) wz Wan—71 , (4)
w(l— q)x---x(l— ,,)
wa* wWan—2"

where H=0and 0 = wp = w1 = -+ = wgpg = wen = w. For the
series resonant circuits of Fig. 13A, the element values are given by

= 1 _ lim ij . .
L‘._ngiz_(m—aw‘.)(w‘z_wz)' i=1,3, 2n — 1. (5)

Fig. 13—Impedances arranged in form for application of Foster's Theorem.

For the antiresonant circuits in series the values become

1/ lim jw L
- (o) (zefte)i im024 e ©

These values include the limiting values for the series case of Fig. 13B.

1 _ H(wtws® - - wans?)

Cu = ﬁ: Lﬂ = =, Czn = 0: L2n (w12¢032 . w?nflz)

(™)

Hence if the elements of one arm of the lattice are arranged in either
of the forms shown on Figs. 13A or B, the element values can be
calculated from equations (5) and (6).

If they are not in this form, they can be transformed into one of
these two forms by well known network transformations. For
example, all the filters of Figs. 2, 3 and 4 are of this form or can be
put in this form by employing the simple network transformation of
Fig. 1. For the two crystal sections shown on Fig. 6, the series



236 BELL SYSTEM TECHNICAL JOURNAL

inductance can be evaluated by equation (7) and subtracted from the
impedance Z. This leaves an impedance

Z' = Z — juL, (8)

from which can be evaluated the constants of the two crystals in
parallel by employing equation (6). In this way the constants of
any filter can be evaluated when the desired attenuation and im-
pedance characteristic are specified. Several of the band-pass filters
are discussed in detail in a former paper.?

IV. AprrLicaTiON OF DiviDED PLATE CRYSTALS TO BALANCED AND
UNBALANCED FILTERS

The use of a divided plate crystal to cut the number of crystals in
half in a balanced lattice filter has been mentioned previously.?: 3 4. 10
The theory of this use has not been previously discussed and since it
results in further applications it seems worth while to present it here.

In order to use the divided plate crystal in filters it is necessary to
find an equivalent circuit for such a crystal which will hold for measure-
ments between any pair of the four terminals. It was shown in a
previous paper ® that an electro-mechanical equivalent of a fully
plated crystal free to vibrate on both ends could be represented as
shown in Fig. 14A. In this figure the capacitance C, is the static
capacitance of the crystal, the condenser Cy represents the effective
compliance of the crystal at the resonant frequency, and the inductance
Ly represents the effective mass. A perfect transformer of im-
pedance ratio 1 to ¢?, where
o _ (diodw)? 9)

(s227)

represents the coupling from electrical to mechanical energy. ¢ in
effect is the ratio of the force exerted by the crystal when it is clamped,
to the applied voltage or it is the force factor of the system. If now
we use only half the plating on the crystal, for example the plates 1,
2 of Fig. 14B, the same representation will hold. The static capaci-
tance C, will be divided by 2, and the force applied by a given voltage
will also be divided by 2 or the transformer ratio will be ¢/2. The
same compliance and mass will be operative. Hence the equivalent
circuit of a crystal with plates covering half the crystal will be as
shown on Fig. 14C. For a crystal with two sets of plates, the repre-

2, 3.4 Loc. cit.
10 See patent 2,094,044, W. P. Mason, issued Sept. 28, 1937.
¢ Loc. cit.
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sentation shown on Fig. 14D can be used if we are interested only in
the transmission from one set of plates to the other. The numbering
on the terminals agrees with that shown on Fig. 14B and is necessary
in order that a given voltage E will produce the same displacement in
the crystal when the voltage is applied between 1 and 2 and 3 and 4.
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For purely electrical measurement, we can get rid of the two ideal
transformers by taking half the impedance of Cir and Ly, through each
transformer as shown in Fig. 14E. Since we have left two opposing
transformers of equal ratio they can be eliminated and the network of
Fig. 14F results. This is shown in balanced form. Figure 14G shows
the same network expressed in lattice form which is easily done by
using the equivalences of Fig. 8. This represents a crystal of twice
the impedance of the fully plated crystal in each series arm of the
lattice with the static capacitances Cy in the other arm. If we connect
terminal 1 to 3 and 4 to 2, or in other words we use a completely
plated crystal, the equivalent circuit reduces to that for a fully plated
crystal as shown in Fig. 14H.

The networks of Fig. 14, F and G, represent the two plate crystals
for transmission through the crystal, but do not give a four-terminal
equivalence. For example, if we measure the crystal between termi-
nals 1 and 3 we should not expect any impedance due to the vibration
of the crystal since there is no field applied perpendicular to the
thickness. The representation of Fig. 14, F or G, would not indicate
this. The same sort of problem arises when it is desirable to obtain
a four-terminal representation of a transformer and can be solved by
using a lattice network representation with positive and negative
inductance elements. The same procedure can be employed for a
crystal and the steps are shown in Fig. 15.

We start with the lattice representation of Fig. 14G but employ
the series form of the impedance of a crystal shown in Fig. 1. The
series capacitance is divided into two parts, Cp/2 and a negative
capacitance necessary to make the total series capacitance equal to
Coplus C;. This negative capacitance and the antiresonant circuit are
lumped as one impedance 2Z in Fig. 15B. Now by the network
equivalence of Fig. 8, we can take the series capacitances Co/2 outside
the network. We can also add an impedance Z/2 on the ends of the
network provided we add a negative Z in series with all arms of the
network as shown in Fig. 15C. The network of Fig. 15C is equivalent
to that of Fig. 15A as far as transmission through it is concerned, but
is different if we measure impedances between any of the four termi-
nals. For example, if we measure the impedance between the termi-
nals 1 and 4, the impedance of the network reduces to that shown in
Fig. 15D. The impedance of the parallel circuit reduces to a plus Z
shunted by a minus Z which introduces an infinite impedance. Simi-
larly between 1 and 4, 2 and 3, and 2 and 4 the impedance becomes
infinite as it should be if we neglect the small static capacitances
existing in the crystal. If we take account of these the complete
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four-terminal representation of a crystal becomes that shown in
Fig. 15E. Ordinarily the capacitances Ci3, Cis, Ca3, Cas are small
enough to be neglected. Figure 15E then is a complete equivalent
circuit for a two-plate piezo-electric crystal which is valid for any
kind of impedance or transmission measurements.

Fig. 15—Four-terminal equivalent network for divided plate crystal.

There are four possible connections for a crystal with two sets of
plates used in a balanced filter. These connections and their equivalent
circuits for transmission through as used in the filter are shown in
Fig. 16. In order to prove these equivalences let us consider the
equivalence shown on Fig. 16A. The four-terminal network repre-
sentation for this case is shown in Fig. 17, which is obtained from
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Fig. 15E. The capacitances Ci3 and C:4 will be equal due to the
symmetry in the crystal, while Cis will equal Cy; for the same reason.
These capacitances are directly connected to the outside terminals

] —
4 —_—
(A)
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q —e
2
©
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2
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Fig. 16—Balanced divided plate crystal connections and their
equivalent lattice electrical circuits.
and hence in obtaining the equivalent lattice they can be connected in
directly. The remainder of the circuit can be reduced to its equivalent
lattice by employing the equivalence shown in Fig. 8. Taking in the
parallel impedance Z and the series impedances Z/2 + (— 7lwCy), the
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network of Fig. 17B results. On account of the paralleling of the
— Z and 4+ Z the lattice arm vanishes and the network reduces to
that shown in Fig. 16A. In a similar manner the other equivalences
result.

The use of divided plating crystals to obtain wide band filters by
using series coils to widen the band is obvious. If we connect two
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Fig. 17—Maethod for proving equivalence of Fig. 16A.

crystals as shown in Fig. 18A, one crystal being connected as shown
in Fig. 16A and the other in Fig. 16B, a lattice filter equivalent to
that is shown in Fig. 18B. In the series arms we have a crystal of
twice the impedance of the fully plated crystal Q. shunted by the

c CgtC
L) ”E Lo Lo ( B 132) Lo
2
— (00—
l )
Ca
Q
o)
-y |_—
Cp

Fig. 18—Band pass crystal filter employing connections of Figs. 16A and B.

capacitance Cp and the capacitance Ci; of the second crystal Q..
In the lattice arms we have a crystal of twice the impedance of the
fully plated crystal Q. in parallel with the capacitance Cs of the
crystal Q1. On the ends of the lattice we have capacitances Cy + Cig,
+ Cu,. It is obvious, then, that by using divided plate crystals we
can replace two identical crystals in the two arms with crystals having
twice the impedance of the fully plated crystals. This result can be
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utilized in any type of filter where two crystals occur in series or
lattice arms of a balanced lattice filter.

The connections C and D of Fig. 16 can also be used to give wide
band filters but on account of the extra capacitance shunting each
crystal, as wide bands cannot be obtained. This is shown in Fig. 19
which shows two crystals connected as shown in Figs. 16C and D
used in a filter. Since each crystal is shunted by half the static
capacitance of the other, the ratio of capacitances will be about twice
that in the connection shown in Fig. 18 and the band width possible
will be about 70 per cent of that shown in Fig. 18. Hence the con-
nections of Fig. 18 are usually desirable.

The connections of 16C and D can be duplicated in unbalanced
form as shown in Fig. 20. These equivalents are easily worked out
from the network of Fig. 15E by employing Bartlett's theorem. An

© Cm Co
Lo h o o (2 14+Cy3,+C1a5+Cp)
2 2 2
— 000 000 —
Q
Ca= ——Ca
Q>
—000— — 00—
Lo M Lo
2 L 2
Cp

Fig. 19—Band pass crystal filter employing connections of Figs. 16C and D.

unbalanced filter of the type shown in Fig. 19 can be obtained by
combining the two connections shown in Fig. 20 as shown in Fig. 21.
It will be noted that across the series arm we have a capacitance
Cp + 2Cis, + 2Ci3, + Co,/2 while the lattice arm has only the
capacitance Cy, /2. To get attenuation peaks which are separated from
the pass band by a large frequency range it is necessary to keep the
capacitances Cis, and Cis, small. This can be accomplished by using
shielding strips on the plating as shown in Fig. 22 for the two types
of connection. In the B connection, the grounding strip is effectively
obtained by making the grounded plates 2 and 3 slightly larger than
1and 4. These grounding strips then act like a guard ring and reduce
the stray capacitances.

The same process can be applied to any of the filters of Figs. 2 to 6
to obtain in unbalanced form the characteristics obtained in lattice
form. In general the characteristics are somewhat more limited since
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Fig. 20—Unbalanced divided plate crystal connections and
their equivalent electrical circuits.
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Fig. 22—Method for reducing stray capacitances in unbalanced filter connections.
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in effect we have to use crystals with twice the ratio of capacitances
than can be used in the balanced case.

APPENDIX

A DETERMINATION OF THE RESONANT FREQUENCIES
oF LATTICE FILTERS

In order to obtain the element values of the filters shown in this
paper it is necessary to determine the resonant frequencies of the
elements in terms of the desired characteristics of the filter. It is the
purpose of this appendix to show how these resonant frequencies may
be derived.

The simplest type of band-pass filter section—referred to as the
elementary section—is one in which there is one resonance in each
arm of a lattice filter as shown in Fig. 23A. The impedance of the

Fig. 23—Lattice filter configuration for elementary band pass sections.

series and lattice arms takes the form

._.j w? _j w?

wCi wa? Wy

where w is 27 times the frequency f, fa the resonant frequency of the
series arm which also is the lower cutoff of the filter, and f5 the resonant
frequency of the lattice arm which is also the upper cutoff.

The characteristic impedance and propagation constant are from

equation (3)

1 w? w?
Z":VZIZE:\’_}_Q&CZ[I_N_,{E](I_@)'
_ P |Zy_ Cof1 — w*lwa®\ 1 — w?fwi®
tanhz——dz a(——_l—wglwgz)—m"—l—w‘lfwg"' (11)

It is desirable to correlate the value of m with the frequency of infinite
attenuation in the filter. Since the filter will have an infinite attenua-
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tion when tanh P/2 = 1, we have

’1 — Wyl wp?

M= g/, 2
1 — we?fwa? (12)
where w, is 2wf., where f, is the frequency of infinite attenuation.
For a single section since m = VCa/Cy, m must be real and lie between
0 and infinity. The possible attenuation characteristics obtainable

with the simple section can be calculated from equation (11). It will
be noted that when w = 0

m = tanh ‘%ﬂ (13)

Similar equations for low-pass, high-pass and all-pass filters can be
derived from these equations by letting f4 go to zero or fz to «, or
both. These equations are:

For Low-Pass Filters

— .. 2/ 2 — 7 3
tanhé—3=limmﬂ—>0( 1 we'fwp & w/wA)

1 — welfwa® — w?/wp?

T 2 2 2 2
o NT = wgfagt y|—2L08" _ [ e
1 — wp/we gy M7= Py (14)
" For High-Pass Filters
( 1 — we?lwg® [1 — wglwﬁ)

tanh~2Jrf = lim wp —

1 — wefwa® N1 — ?fwp?
L NT=as = mT— et (15)
1 — we?/wa®
For All-Pass Filters

P limws—0 ( 1 — wlfwp® |1 — w2/m,12)

tanh 7 1 — we?/wa® VN1 — w?/wp?

2 limwg—
Y I N - (16)
—

For this case, since there is no peak in the real frequency range, we
must let w, be imaginary or iw,. Then

tanh g o I N ) 0
The band elimination filter cannot be obtained from the band-pass
filter by a limiting process. For the simplest band elimination filter
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with a single peak as shown on Fig. 2, filter 2, the equations are

Zn Ll ( 1 - w°/wA )

1 - wszB ‘
— LG — ofug?) _ 1 [ Pl — wfws?)
\/ (1 — o?/was?) T e 1 = Pws®) ' (18)

o = . \/— wel(1 — we?/wp?) )
“ ‘VL1Cz (1- “’w2/“’A2)
Hence when the position of the peak of infinite attenuation and the
characteristic impedance Z, at zero frequency are specified L; and Cy
can be determined.

We next consider the case of a filter with a total of three resonances
rather than two. For a band-pass filter this will be represented by
the impedance arms shown on Fig. 23B. The impedance of the
series and lattice arms will be

(1 = o*lws®)(1 — */ws?) —J 2)
1—2).
Z wC1 [ 1 - w‘/wz ’ Zz Cz w:gzr (19)
Combining these to form the propagation constant and characteristic
impedance we find

Zo = \/c% (1 — o*/ws)(1 — «?/wp?),
o - [ S
_p. 0= wfowa?) (1 — w?/wg’)
(1 — o*fws?)?

We wish to show now that this type of section has an attenuation
characteristic equal to that obtained by two sections of the kind shown
in Fig. 23A. To show this we write

P, + Py t'mh -l— ta nh = o

tanh =
1 + tanh = P tanh = P”

2

Substituting the value of tanh P/2 given by equation (14) in (21)
and letting the two cutoffs ws and wp coincide for the two sections,
we have

tanh P4+ Ps_ mi+ ma \[(1 — w0 wa?)(1 — w/wp?) (22)

2 - 1 + mimsg (1 - w2/w22)2 !
where

mﬁwﬁ(l + mlmz) (23)

2 —
we
wa® + wpmims
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Comparing (22) with (20) we see that

my + Mo

P=P1+Pg and B=m

= tanh( (24)

Py, + Py,
2 )
We see then that a section with three resonant frequencies can be
made to have the same attenuation characteristic as the sum of two
simple sections. It is, however, more general since in equations (23)
and (24) real values of ws? and B can be obtained by taking

my = m, -+ imli; me = My, — 'iml‘-; (25)

that is, the parameter m, can be made complex if the second parameter
me is made its conjugate. Such complex sections can be made to
have attenuation peaks which are finite even in the absence of
dissipation.”

By letting ws — 0 or wp — 0, the equivalent relations for low-pass,
high-pass and all-pass filters can be obtained. These are

Low-Pass Filter

— @a)( — g
(1 — w?/we?)? !

tanh %‘3 = (m1 + ??h) \/

ot - (26)
2 = —-B— N — —_— @1 .
wz 1 + minis ! " Jl sz
High-Pass Filter
) 2 _m -+ ma (1 - wz/wf) . 5 _ wﬁwne[l + mlm-g]
tanh 2 - 1 + M yMe (1 —_ w2/w22)2 » W= DJA2 + w52m1m2 ’ (27)

All-Pass Filter

anh £ = ¢ [ —e . e 1
tanh 7= (my + ms) 0= o)’ we' = (28)

Band Elimination Filter
For a two-peak band elimination filter such as shown in Fig. 3,
filter 2, the equations are:
Lo (L= o) (L — oasd) |

Ca (1 — w?/wy?)? !
P_1 \/ — o .
tanh 2 wa V(1 — 0w (1 — wi/wg?) (29)

1 — Wai®

Wa = V‘Llcz - (1 - wm12/WA2)(1 - Wmlszﬂz) ’
Wen1We2 = WAWR.

Zy =
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In a similar manner more sections can be added and the resonant
frequencies determined in terms of the cutoff frequencies and the
position of the attenuation peaks. The most general section con-
sidered in this paper has a maximum of five equivalent sections. For
this case by applying the process described above the propagation
constant and critical frequencies are given by the equations

P_A+C+E [(0 = o)l — ofu)(l = /o)
2 14 B+ DN — o*/w?)(1 — */w®)(l — o*fuws®)’

tanh
where

b
A =Ym =m + ms+ ms + my + ms;
1

5 5
B =3 3 n #E m;

m=1 n=1

b b b
C=3% Y > ttmmama; n # m; n # 0; m # 0;

m=1 n=1 o=l

5 5 5 5

D=Y ¥ ¥ ¥ mamgmeny,; m=n; mFo;

m=1 n=1 o=1 p=1
m #= P, n # p; n # o, o F p;
E = Mo g ait ;. (31)

The resonant frequencies are given by the equations

£ = _Yifpl + B+ D) (32)
f4%(2 + B — VB® — 4D) + fs*(B + 2D + VB* — 4D) '
o= /el + B+ D) ., ®
fa2(2+ B+ \/132 —4D) + fs*(B + 2D — VB* — 4D)’
© T 120QA + C — NC? — 24E) + fs¥(C + 2E + VC? — 44E)’

fd = 2f ¥4 + C+ E) . (35)
© T 12024 + C + NC? — 44E) + f#(C + 2E — NC? — 44E)

For any smaller number of sections the values can be obtained by
letting some of the m's go to zero. For example, for a three section
filter my = ms = 0. For low, high, and all-pass networks the values
can be obtained by letting fa? — 0, fz* — @ or f4* = 0; fp? — .



