The Quantum Physics of Solids, I
The Energies of Electrons in Crystals
By W. SHOCKLEY

It is proposed to make this paper the first of a series of three
dealing with the quantum physics of solids. This one will
be concerned with the quantum states of electrons in crystals.
The discussion will commence with an introductory section devoted
to the failure of classical physics to account for phenomena of an
atomic scale. Next, the quantum theory of electrons in atoms
will be discussed, together with the resultant explanation of the
structure of the periodic table; this is designed to illustrate the
meaning of various quantum mechanical ideas which are important
in understanding solids. Furthermore, much of the detailed in-
formation about atomic quantum states of particular atoms will
be needed in the later discussion of the properties of certain solids.
As an introduction to the modification of the quantum states oc-
curring when atoms are put together to form a crystal, a short
section will be devoted to structure of diatomic molecules. The
next section will be concerned with quantum states for electrons
in crystals. Whereas in an atom there are a series of isolated
energies possible for an electron (corresponding to the various
quantum states), in a crystal there are bands of allowed energies.
This concept of energy bands is essential to the theory of crystals
in much the same way that the concept of energy levels is essential
to that of atoms. In terms of energy bands, the energy holding
crystals together can be interpreted on a common basis for a wide
variety of crystal types. This will be followed by a brief descrip-
tion of various crystal types and by a discussion of thermal proper-
ties in which the smallness of the electronic specific heat will be
shown. The last section will be devoted to a discussion of para
and ferromagnetism on the basis of the energy band picture.

In the second paper, problems connected with electric currents
and the motion of electrons through crystals will be discussed.
This leads to the concept of the Brillouin zone which is complemen-
tary to that of the energy band, the two together forming the
basis for discussing the quantum states of electrons in crystals.

The third paper of the series will contain a comparison between
theory and experiment for the alkali metals, the principal emphasis
being placed upon the physical picture of the state of affairs in
these simple metals.

INTRODUCTION
1% l \HE parts of all homogeneal hard Bodies which fully touch one
another, stick together very strongly . . . I . . . infer from

their Cohesion, that their Particles attract one another by some Force,
which in immediate Contact is exceeding strong, at small distances
645



646 BELL SYSTEM TECHNICAL JOURNAL

performs the chymical Operations above mention’d, and reaches not
far from the Particles with any sensible Effect. . . . There are there-
fore Agents in Nature able to make the Particles of Bodies stick to-
gether by very strong Attractions. And it is the Business of experi-
mental Philosophy to find them out.,”” But it was not destined for
experimental philosophy to finish the business which Sir Isaac Newton
set for it in the above words ! until two centuries had elapsed. Only
since the advent of quantum mechanics have scientists had laws
capable of explaining the cohesive forces of solid bodies and predicting
their numerical magnitudes. The new laws were developed first in
order to explain the behaviors of independently acting atoms but, as
we shall see, they are laws capable of extension to systems containing
large numbers of atoms and thus to solid bodies. The fact that a
solid body remains a solid body, resists being pulled apart, and exerts
the cohesive forces of which Newton wrote, is explained by showing
from theory that atoms packed together in a solid are in a state of low
energy, and to change the state requires the expenditure of work. In
this paper we shall describe how the quantum mechanical concepts
developed for isolated atoms are applied to interacting atoms and lead
to methods of calculating the energies and forces binding atoms to-
gether in crystals.

A crystal is a regular array of atoms. The regularity of this atomic
array is frequently exhibited in the macroscopic appearance of the
crystal. A crystal of potassium chloride—sylvine—is a good ex-
ample (Fig. 1A). The natural growth faces of the crystal are parallel
to planes passing through the atoms, which are arranged in the micro-
scopic array pictured in Fig. 1B. It is evident that the microscopic
arrangement of the atoms in the crystal is one of its most basic features.
In sylvine the atoms are arranged on the corners of cubes in an alter-
nating fashion. The arrangement of the atoms in the crystal is called
a “lattice.”” Sodium chloride—rock salt—has the same arrangement
as sylvine and the type lattice pictured in Fig. 1B is known as a “‘sodium
chloride lattice.” The distance between atoms in a given lattice is
specified by giving the value of the “‘lattice constant,” which for a cubic
crystal is defined as the distance between like atoms along a line
parallel to a cube edge. Lattice constants are usually expressed in
angstroms; 1 angstrom = 1A = 107% cm. The lattice constant of
sylvine, designated by “a” in Fig. 1B, is 6.28A. Figure 1C suggests
how a large number of atoms, arranged as in Fig. 1B, produce the
shape of the crystal photographed for Fig. 1A. Studies of the direc-
tions of the natural growth faces and cleavage faces of crystals are

1 “Opticks" 3rd ed., 1721, p. 363.
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Fig. 1—Crystal structure.

A. Macroscopic appearance of a crystal; retouched photograph of a sylvine crystal.
B. Microscopic arrangement of atoms in crystal showing natural planes.
C. Large number of atoms arranged as in B to show formation of A.
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primarily of importance as an aid in classifying and identifying min-
erals; and although they do give some information about the arrange-
ment of the atoms in planes within the crystal, the information is
too meager to.permit a determination of the microscopic structure.
The latter can be deduced by the methods of x-ray diffraction. X-rays
are light waves of very short wave-length and they are diffracted from
crystals in much the same way as light is diffracted from a ruled grating.
From studies of x-ray diffraction patterns, the arrangements of atoms
in a large number of crystals have been determined. Exceedingly
strong forces act to hold the atoms in these arrangements and, by appli-
cation of the laws of quantum mgchanics, we shall try to find them out.

There is now no question that the elementary building blocks of
the material world are primarily electrical and of two sorts.? The
negative particles, electrons, are all alike and have the same charge
— e and the same mass m; the positive particles, atomic nuclei, are
not all alike and may differ in charge and mass from one another.
The positive charge is always some integral multiple, Z, of the funda-
mental charge e and we shall not be concerned with the mass except
to say that it varies upwards from about 2,000 times the electron mass.
An atom of a chemical element consists of one nucleus surrounded by
enough electrons to neutralize its charge; all atoms of a given chemical
element have the same nuclear charge, Z, which is appropriately
known as the “atomic number’; atoms having the same nuclear
charge but different masses are called ‘“‘isotopes’; their chemical be-
haviors are slightly different, so that it is possible by chemical processes
to separate one isotope of a chemical element from the others, but this
difference is so slight that we can neglect it here. An atom, then,
consists of a number of electrons circulating about and attracted by
the nucleus, which, by virtue of its relatively great mass, is effectively
an immobile center for their motions. A simple molecule consists of
an assemblage of a few such atomic systems and a crystal of an
immense number. The fundamental problem of atomic mechanics—
which is now solved quite satisfactorily but not yet perfectly—is to
find the laws governing the motion of these particles.

The necessity of finding such laws is made most apparent by con-
sidering the failure of the older laws of " classical mechanics,” Newton'’s
laws. These laws were satisfactory for dealing with large bodies—
but not perfect; for, as is well known, they are approximations to the
more adequate laws of relativity—and they were successfully applied

2 Since we are here concerned with problems of a chemical nature, we may disre-

gard those particles such as positrons, mesotrons, neutrons, etc., which are concerned
with cosmic rays and nuclear processes but not with ordinary atomic behavior.
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even to single atoms so long as no attempt was made to investigate
the internal structure of the atom. Considering the atom to be a
perfectly elastic miniature billiard ball having size, mass, and velocity
but no internal properties, classical mechanics was able to handle in a
statistical fashion the dynamics of large systems of atoms in a gaseous
form and to deduce a number of valid conclusions concerning the
specific heat, gas laws, viscosity, and diffusion constants of gases.
On the other hand, failure attended all endeavors to apply these laws
to the swarm of electrons surrounding a nucleus. A system of this
sort is unstable classically and can never come to thermal equilibrium.
Applying the classical laws of statistical mechanics, one finds that
some of the electrons will move very close to the nucleus, the energy
lost in this process being acquired by other electrons which move farther
out. According to classical mechanics this process will continue with-
out ever reaching equilibrium and during it the atom will be thoroughly
torn apart.

Another difficulty in the classical theory arises from the electro-
dynamics of an accelerated electron. An electron moving in the field
of a nucleus is accelerated, and classical electromagnetic theory pre-
dicts that under these circumstances electromagnetic energy will be
radiated—the atom being in effect a microscopic radio transmitting
station in which the charging currents in the antenna are represented
by the motions of the electrons. According to this theory an atomic
system would continually radiate energy, and it could be proved that
no equilibrium like that actually observed between matter and radia-
tion would ever be achieved.

Thus, classical mechanics and electromagnetics were incapable of
taking the electrons and nuclei as building blocks and constructing
solids or even atoms from them. To put it bluntly, the classical laws
were wrong; although adequate for large-scale phenomena, they were
inapplicable to phenomena of an atomic scale.

Nevertheless, modified applications of the classical theory had a great
number of successes in the atomic theory of solids. Dealing with the
atoms as elastic idealized billiard balls led to the correct value for the
specific heat of solids, at least at normal temperatures, and the electron
theory of conduction in metals was in many respects quite successful.
None of the successes of the conduction theory were completely
satisfying, however, because the assumptions needed to explain one
set of facts were incompatible with other sets of facts and the whole
field was greatly lacking in unity. According to this classical theory
a metal contained free electrons which could move under the influence
of an electric field and thus conduct a current. Their motion was
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impeded by collision with the atoms (ions, really, since they are atoms
which have given up free electrons) according to some theories, and with
the spaces between atoms according to other theories, and this im-
peding process gave rise to electrical resistance. The free electrons
were capable of conducting thermal as well as electrical currents.
Although the theory gave reasonable values for the electrical and
thermal conductivities of metals at room temperature, the predicted
dependence upon temperature was wrong: the resistance of a pure
metal is known from experiment to be very nearly proportional to
the absolute temperature; the classical theory, unless aided by very
unnatural assumptions, predicted proportionality to the square root
of the absolute temperature. Another difficulty, the greatest in fact
which beset the old theory of free electrons in metals, was concerned
with the specific heats of metals. According to the billiard ball
theory of gases, the specific heat arose from the kinetic energy of
motion of the gas atoms; thus the specific heat at constant volume of
one gram atom of a monatomic gas was (3/2)R, where R is the gas
constant. This was in good agreement with experiment. For solids
this specific heat was just doubled, giving (6/2)R because of the
addition of potential energy to the kinetic. For a metal the free
electrons were regarded as having kinetic energy. In order to explain
the observed electrical properties of a metal, the number of electrons
was taken as approximately equal to the number of atoms. Hence,
as for a monatomic gas, a specific heat of (3/2)R was expected for the
electron gas and, therefore, a specific heat of (9/2)R was predicted for
a metal. Measurement shows that most crystals, metals included, fit
quite well the value of (6/2)R and that (9/2)R is incorrect. Thus
classical theory was left with the dilemma that to explain electrical
properties one free electron per atom was needed while to explain
specific heat one free electron per atom was far too many. This di-
Jemma is very neatly resolved in the new theory; in this paper we
shall show why the free electrons are not free for specific heat and in
a later paper why they are free for conduction. We shall also show
that the new theory leads to quite proper values for the conductivity
and also explains facts concerning the resistance of alloys, which the
classical theory could not do.

According to the classical theory there was one quantity that should
be the same for all metals and this was the ratio of the thermal to the
electrical conductivities. This ratio, known as the Wiedemann-Franz
ratio, was predicted to be equal to the absolute temperature times a
universal constant L called the Lorentz number. This prediction
was in reasonable agreement with experiment. The new wave me-
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chanical theory predicts the same result, but with a slightly different
value for L. According to the old theory L = 2k%e* = 1.44 X 1078
volts?/degree? where %k is Boltzmann’s constant, while the new gives
L = 7%%[3¢* = 2.45 X 1078 volts?/degree?, and the experimental values
for several elements are Cu 2.23, Ag 2.31, Au 2.35, Mo 2.61, W 3.04,
Fe 2.47—all times 10~% volts?/degree’. We see that the constancy
of the Lorentz number predicted by both theories is in reasonable
agreement with experiment, but that in predicting the numerical
value of the constant the new theory is better than the old.

The fundamental problem of how the electrons and nuclei form
stable atoms and crystals was, as we have said above, inexplicable on
the older theory. The newer quantum mechanics of Bohr and later
that of Schroedinger, Heisenberg, and Dirac were needed. Bohr
postulated that out of the infinity of possible motions for the electrons

“of an atom, only a certain restricted set was permitted. Each per-

mitted motion corresponded to a definite energy for the atomic system
as a whole. This concept of energy levels for the atom gave a natural
interpretation to nature of atomic spectra and explained the meaning of
the combination principle. In order to restrict the atomic motions to
certain energy levels, Bohr supposed that the laws of atomic dynamics
were such that only those modes of motion were permitted for which
certain dynamical quantities, called phase integrals, had values equal
to multiples of Planck’s constant . For the case of the hydrogen atom
these laws led to the now well-known Bohr orbits for the electron and
to energy levels which were in good agreement with experiment. For
atoms with more electrons it was very difficult to apply Bohr's laws
except in a very approximate and unsatisfactory way. However, two
very valuable concepts came from his theory which are preserved in the
newer wave mechanical theory. These were that the individual elec-
trons could be thought of as restricted to certain orbits and that these
orbits were specified by giving them certain quantum numbers. It
was found that three quantum numbers were needed to specify the
orbit. All atoms were found to have the same general scheme of
orbits. The number of electrons moving in these orbits varies from
atom to atom and for any given atom is equal to the atomic number Z.
In order to explain the facts of spectroscopy and the periodic table
of the elements, it was necessary to introduce a rule known as Pauli's
principle. This principle states simply that no more than two elec-
trons may occupy the same orbit in an atom; that is, no more than
two electrons of an atom may have the same three quantum numbers.
As we shall discuss in the next section, a complete specification of the
state of an electron in an atom requires four quantum numbers; two
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electrons in the same orbit have different values for their fourth quan-
tum number. We shall use the term ‘‘quantum state’’ to signify the
permitted behavior corresponding to specified values for the four
quantum numbers. In this language, Pauli’s principle asserts simply
that no two electrons in a given atom can be simultaneously in the
same quantum state; that is, Pauli’s principle is a quantum mechanical
analogue of the classical principle that two bodies cannot occupy the
same place at the same time. The two ideas—first that the motions
of the electrons are quantized so that only certain quantum states are
allowed, and second that in an atom only one electron can occupy a
given quantum state—form the basis of all quantum mechanical
thinking. We shall make use of them continually in the following
discussion. We shall use them, however, not in connection with the
orbits of Bohr but instead with the wave functions of Schroedinger.

The Bohr theory can be applied only with difficulty to any atom .
but hydrogen. The difficulty lies in determining the motions of the
electrons in the complex interacting fields of the electrons and the
nucleus. This problem is even more difficult in the case of a solid
where there are many atoms, and it would seem hopeless to try to find
out why the electronic orbits in insulating crystals such as rock salt
or diamond do not permit electrons to move through the crystal and
carry a current, while the orbits in metals do. Indeed not only does
the Bohr theory have the foregoing disadvantage but it is probably
wrong. Fortunately there is a theory both sounder and easier to apply
embodied in the ‘“wave equation of Schroedinger.”

One feature, probably not sufficiently stressed, about Schroedinger’s
equation is its relative convenience. The word “relative’” must be
used here because it is usually very laborious to obtain solutions for the
equation and only in the simplest cases can we obtain exact solutions.
Compared to the classical equations and the equations of Bohr, how-
ever, it is convenient. Quite satisfactory approximate solutions can
be obtained for Schroedinger’s equation even for the complex case of
solids, where it would be prohibitively difficult to obtain as good
solutions for the classical and Bohr equations.

ELECTRONS IN ATOMS

According to the Schroedinger theory, a differential equation can
be written down for any system consisting of electrons and atomic
nuclei. This equation contains an unknown wave function and an
unknown energy and the instructions of the theory are to solve the
equation for the unknown quantities. Furthermore, the wave func-
tion must satisfy a certain mathematical requirement which embodies
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in a generalized form the restrictions imposed by Pauli’s principle.
As is too frequently the case in mathematical physics, it is much easier
to state the problem than to solve it; the solutions of Schroedinger’s
equation are, in fact, so difficult to obtain that exact solutions have
been found for atomic systems only of the simplest type, namely those
consisting each of a single nucleus and a single electron. For this
case, the quantum states and their energies are all exactly known.
For other cases approximations of varying degrees of exactness must
be used. The difficulty arises from the interactions between the elec-
trons. If it were not for these interactions, one could obtain exact
solutions for atoms having many electrons. The difficulty is that the
interactions—they are merely electrostatic repulsions—prevent each
electron from being independently in a definite quantum state. The
interaction of each electron with another is in general small compared
to its interaction with the nucleus. To a first approximation, then,
the electrons are treated as not interacting and then corrections are
applied to this over-simplified picture. (In this first approximation,
the generalized mathematical statement of Pauli’s principle reduces
to the one we gave in the last section—only one electron may occupy
a given quantum state.) As a result of this procedure of over-simplifi-
cation followed by corrections, our exposition will commence with a
discussion of the quantum states of an electron in an atom as if these
quantum states were private possessions of the electron and not influ-
enced or disturbed in any way by the other electrons. We shall then
correct this picture to some extent by considering how the energy of
a given electron depends upon the behavior of the other electrons.
One correction term which we shall introduce in this way is the impor-
tant “exchange energy’’ discussed below. Thus atomic theory repre-
sents a field of endeavor in which further progress is made largely by
improvements and refinements. It should be emphasized, however,
that the corrections and refinements are not additional assumptions,
which are added to the theory, but that they represent instead only
steps forward in improving the wave mechanical solutions.

The last paragraph mentions that an approximate treatment of
Schroedinger’s equation leads to a set of possible quantum states
for an electron in the atom. We shall discuss Schroedinger’s equa-
tion and the wave functions corresponding to the quantum states
in more detail later and at present be concerned only with a descrip-
tion of the results. In a neutral atom the electrons arrange them-
selves in the quantum states in such a way as to make the energy
of the atomic system a minimum. Consistent always with Pauli’s
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principle, only one electron can occupy a particular quantum state.
When the atom is in the arrangement of lowest energy, we can say
that each electron has a definite energy corresponding to whichever
quantum state it occupies. This energy is most conveniently de-
fined in terms of the amount of work required to take an electron
from its state in the atom and put it in a standard state defined
as zero energy. An electron in the zero energy state is to be thought
of as at rest and so far removed from the atom that there is no energy
of interaction between them. In this way we can define the energy
of every occupied quantum state in the atom. Each of these ener-
gies must be taken as negative—since potential energy is yielded up
when the electron returns to the atom—and by definition represents
how tightly the electron is bound to the atom. One of the electrons
will be the most loosely bound (it may be that there are several with
the same energy) and the energy required to remove it is called the
“jonization energy.” From our definition this is obviously the mini-
mum energy required to convert the atom to a positive ion. The
definition of the energy of a quantum state given above can be used
only when an electron is in the quantum state; we can, however,
define the energy of an unoccupied state conveniently in terms of the
energy the atom would have if the state were occupied by “exciting "'
one of the electrons to this state by giving it the proper amount of
energy.?
The Quantum States of the Alom

Using this definition of the energy of a quantum state, we find that
for all atoms the arrangement of quantum states in energy is as shown
in Fig. 2, where the ordinates represent energies and states of equal
energy appear as divisions of the horizontal lines. Figure 2 does not
indicate which states are normally occupied, nor could it unless we
knew how many electrons there were in the atom. The general scheme
of Fig. 2 is applicable, with certain changes discussed below in the
energy scales, to any neutral atom in its normal state, and the energy

2 This definition is subject to restrictions because the energy of an electron in
the state in question depends upon the arrangement of the other electrons in the
atom and this arrangement depends in turn upon which electron was excited to the
initially unoccupied state. In constructing the figures we have supposed that the
electron (or one of the electrons in case there are several) that is most easily removed
from the atom is caused to shift from its normal state to the unoccupied state in
question; this shift will change the state of the atom and since the atom was initially
supposed to be in the state of lowest energy, the change in energy cannot be negative
and will in general be positive but may in certain special cases be zero. The energy
of the unoccupied state is defined as the energy of the occupied state from which
the electron is taken plus the change of energy caused by shifting the electron. This
is equivalent to saying that the energy of the unoccupied state is the ionization
potential of the atom after an electron has been shifted from the highest state nor-
mally occupied to the normally unoccupied state in question.
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levels represented on Fig. 2 apply to unoccupied and occupied states
as well.

I have already mentioned that four quantum numbers are required
to specify each quantum state. These are indicated by the letters

1=3 =2 1=1 1=0 1=0 1l=I 1=2 1=3
0 af | af
| T M R ad I ad L
N - 4p I 4p [ -
ad as |l 45 ad
n=s app 1= ap -2-012=m

B L i

3s | 3s

[} | —l
|
|

2p ‘ 2p
- L
n=2 25 12 Jor=m
| S
E |
I
i
|
|
I
- SPIN,Mg=-% I; + SPIN, m5=+-'§
— = e H = S e

1
I
I
|
|
1
|
I

1s | 15

n=| — : [
1

Fig. 2—Quantum states for electrons in atoms.

n, I, m, and m,. Roughly speaking, the ‘principal quantum number
n' fixes the ‘‘energy level” of the state; however, there is some de-
pendence upon the “angular momentum quantum number . The
dependence of energy upon the third quantum number, ““the magnetic
quantum number m,"” is slight and will be neglected in this paper.
We shall consider the energy to be specified by giving #» and I. A
notation borrowed from spectroscopy is applied to this pair of quantum
numbers and one uses the apparently quite fortuitous choice of
letters s, p, d, f, g, h, etc,, to stand for I = 0, 1, 2, 3, 4, 5, etc,, and a
state with n = 3 and l = 2 is known as a ‘‘3d state’ and an electron
occupying such a state is called a *3d electron.” The quantum laws
ermit the following values for n, I, and m:

n takes on all positive integral values. (All states with n greater
than four have been omitted from the figure; they lie between
the highest states shown and zero energy.)
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For a given n, I takes on all positive integer values from 0 to n — 1
inclusive.

For a given n and I, m takes on all integer values including zero
from — [ to + ! inclusive.

The difference between right and left sides of the figure corresponds
to the fourth quantum number: an electron, in addition to its electric
charge, possesses angular momentum or ‘“‘spin’’ about its axis. The
rotating charge resulting from this angular momentum produces a
magnetic moment. The angular momentum is quantized and there
are two possible values + 1/2 and — 1/2 for the “spin quantum
number m,," corresponding to the right and left halves of Fig. 2.
Electrons occupying states on the right half of Fig. 2 have their spins
parallel to each other and directly opposite to electrons occupying
states on the left half. As already implied, the quantum numbers I
and m also correspond to angular momentum and magnetic moments
for the electron “orbits”’ (really wave functions) in the atom.?

For our purpose we need two results of the theory of the spinning
electron, first that its spin iniroduces a duplicity of quantum states
as indicated by the two halves of Fig. 2, and second that all the elec-
trons of one spin have their magnetic moments parallel and opposite io
those of the other spin. Later when we consider the question of mag-
netism, we shall be concerned with the direction in space of the spin
vector and the magnetic moment, but not now.

Several units of energy are employed in describing atomic processes.
The simplest of these is the electron volt; it is the energy acquired or
lost by an electron in traversing a potential difference of one volt.
For example, in a vacuum tube operating with one hundred volts
between cathode and plate, the electrons strike the plate with a kinetic
energy of one hundred electron volts, 100 ev. Another unit is the
ionization potential of hydrogen, and as hydrogen has only one elec-
tron, which normally occupies the 1s state, this is also the energy of
the 1s state. This energy is called the “‘atomic unit’’ of energy or the
“Rydberg.” Another unit of energy useful in chemical processes is
the kilogram calorie per gram atom; this is related to the others as
follows: if the energy of each atom in one gram atom is increased by
one electron volt then the energy of the whole system is increased by
23.05 kilogram calories. The conversion factors are: 1 Ry = 13.5 ev,
1 ev per atom = 23.05 Kg.-cal./gm. atom.

* 3 For a discussion of the quantum states of the electrons from the point of view of

angular momentum see “ Spinning Atoms and Spinning Electrons’ by K. K. Darrow,
Bell System Technical Journal, XVI, p. 319, or standard texts on spectroscopy.
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Variation of the Energy Levels with Atomic Number

All atoms have the same general scheme of quantum states indicated
in Fig. 2. Quantitatively the energy scale varies from atom to atom.
Thus the 1s state lies at — 13.5 ev for hydrogen and at — 24 ev for
helium. This decrease (i.e., becoming more negative or moving lower
down on Fig. 2) is due to the increase in nuclear charge, Z = 1 for
hydrogen and 2 for helium, which results in greater attraction and
tighter binding for electrons in helium. This steady downward motion
of the levels continues as one goes from element to element in the
periodic table. However, the ionization potential, the energy required
to remove the most easily removed electron, does not steadily increase.
In Fig. 3 we show the ionization potentials of the first twenty elements.
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Fig. 3—Ionization potential versus atomic number.

Since we are interested in the energies of electrons rather than in
ionization per se, the ionization potentials have been plotted as nega-
tive giving in this way the energies of the states in the atom. The
main features of this figure can be explained by using Fig. 2 and the
Pauli principle.

The Pauli principle, also known as the exclusion principle, permits
only one electron to occupy each of the states of Fig. 2. The electrons
in a many-electron atom will tend to go to the states of lowest energy.
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Thus in helium, since its two electrons can have oppositely directed
spins, each fills one of the 1s states; we say the ‘' electron configuration "
of helium is 1s? (read as ‘‘one ess squared ). For lithium, Z = 3, the
third electron, which cannot go to the completely filled 1s states,
goes to the next highest, 2s, giving 1s? 2s. In going from helium to
lithium, all the states move to lower energies but not so much lower
as to make 2s for lithium as low as 1s for helium. For this reason
lithium can be relatively easily ionized, as is seen in Fig. 3.

Before continuing the discussion of particular atoms, we must point
out that two changes accompany each advance from one element to the
next in the periodic table. In each step the nuclear charge increases
by one plus unit and at the same time an electron is added to the
atom and the combined effects produce the results of Fig. 2. Quite
different results are obtained if one electron alone is added to the
atom. Then instead of the general falling of the levels which accom-
panies the double change, there is a general rising of all the levels.
This is due to the unbalanced negative charge on the added elec-
tron, whose presence on the atom raises the potential energy of all
the electrons and therefore raises their energy levels. For some atoms,
the raising of the energy levels produced by an unbalanced electron
may be so great that the electron is not bound at all or at least only
very slightly, and for these atoms negative ions do not form. On the
other hand, when an electron is removed from an atom all the remain-
ing electrons become more tightly bound and the energy levels are
lowered.

Exchange Energy

In Fig. 4 we show the electron configurations for the elements from
lithium to neon. The decrease in ionization potential in going from
beryllium to boron is due to the completed filling of the 2s states and
the consequent start of filling of the 2p states. The decrease in going
from nitrogen to oxygen suggests that not only do the 25 and 2p states
lie at different levels but that the 2p states themselves lie at two
different levels. This is true but in a rather special sense: the difference
in energy between the two sets of 2p stales depends upon how they are
occupied. This difference is an “‘exchange energy.” We shall discuss
the origin of the exchange effect in the next paragraph but one; how-
ever, the aspect of it needed for this paper is illustrated in Fig. 4.
We there imagine that the quantum states are represented by little
trays upon which are placed weights to represent occupancy by elec-
trons. The exchange effect corresponds to hanging the trays on
springs; in this way we see that as the electrons fill up the 2p states
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with one spin (the same effect occurs for either spin; the figure shows
+ spin), these states are depressed in respect to the 2p states with
the other spin. The springs must, however, be considered to pull the
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Fig. 4—Electron configurations illustrating the exchange effect.

trays up against stops with a force such that a single weight upon a
tray will produce no lowering whereas two or three weights will. This
effect seems contradictory to the simple idea that adding electrons
raises the potential energy and the energy levels; however, it must be
remembered that we are here discussing neutral atoms and that with
each added electron there is also an added plus charge on the nucleus.
These two charges produce the dominant variation in the energy levels
and upon this variation the exchange effect is superimposed.

The reader may verify that so far as the distribution of electrons
in the 2p states is concerned, the exchange effect will lead to the con-
figurations shown in Fig. 4 for the states of lowest energy for the atoms.
Let us consider carbon for example; if the electrons have opposite
spins—that is, if there is one weight on each 2p¢ tray—there will be
no lowering due to the exchange effect; if the electrons have the same
spin, however, then each loses energy because of exchange and the
energy of the atom is less than for the case of parallel spins. The
fact that one electron is not enough and that two or more electrons
are required to produce the exchange effect is a natural consequence
of the origin of the exchange energy.

The exchange energy is due to the electrostatic repulsion between
the electrons and results directly from the application of Pauli’s prin-
ciple to Schroedinger’s equation. The exchange effect emerges in a
quite straightforward fashion from a consideration of wave functions,
but usually no attempt is made to explain it in non-mathematical
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terms. It seems to the writer, however, that the explanation given
below does contain the mathematical essence in physical language.®
Pauli’s principle, we have said, is the quantum mechanical analogue
for electrons of the classical law that two bodies may not occupy the
same place at the same time; it is, however, more general in the sense
that it does not apply alone to location but rather to a combination of
location and velocity and spin, and it requires that any two electrons
differ essentially in one or more of these. Now a difference in the
values for the spin quantum numbers of two electrons is a sufficiently
great difference to permit them to have the same velocity and the
same location (i.e., be very near together compared to atomic dimen-
sions). If the spin quantum numbers are the same, however, there
must be a difference in location or in velocity. Now two electrons
having the same values of # and /, as for example two 2p electrons,
move in similar orbits and have much the same velocities; hence, if
their spins are the same they must differ in location—that is, they will
satisfy Pauli’s principle by keeping away from each other. If, how-
ever, their spins are different, then they need not keep away from each
other, and in their motion about the nucleus they are, on the average,
closer together than for the case of the same spin. Since the energy
of repulsion between the two electrons decreases as they move farther
apart, the average energy of the electrons is less for the case of parallel
spins, for which Pauli’s principle requires most difference in location;
and this is just the effect shown in Fig. 4. Furthermore, if the elec-
trons differ in their values of # and I, then their velocities are quite
different and the restriction upon location is not so important and
their electrostatic energy of repulsion for parallel spins is nearly the
same as for opposite spins. There is, however, a small exchange effect
between electrons of different # and [ values as may be appreciated
in Fig. 4 for boron, for example, by noting that one 2s level i de-
pressed compared to the other owing to the presence of the 2p electron.
We see that helium and neon correspond to electron configurations
which fill all the levels below # = 2 and n = 3 respectively. One
sometimes refers to the states with # = 1 as the K shell, and to those
with # = 2, 3, 4, etc. as L, M, N, etc,, shells. The rare gases helium
and neon then correspond to electron configurations consisting of
“closed shells''—that is, to shells all of whose states are occupied.

m As the aspects of exchange energy needed for the exposition are those discussed
above in connection with Fig. 4, this explanation is not essential to the later argu-
ment of this article and is given in the hope that it may invest the concept of ex-
change energy with the appearance of a little more physical reality. If it fails in
this, the reader is requested to disregard it.
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The Periodic Table

The elements from lithium to neon constitute the first short period
of the periodic table, Fig. 5. The second short period, running from
sodium to argon, is built up in a similar way by filling the 3s and 3p
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Fig. 5—First part of the periodic table.

levels. Some of the chemical properties of the elements of these
periods are quite easily understood in terms of the electron con-
figurations of the atoms. An atom of lithium or of sodium has one
easily removed electron and thus can become a positively charged ion;
only one electron, however, can be so easily removed, and for this
reason sodium and lithium do not have doubly charged positive ions
in chemistry and are, therefore, monovalent positive elements. Simi-
larly beryllium and magnesium have two easily removable electrons,
and are divalent; however, their electrons are harder to remove than
those of the alkali metals; hence the alkaline earth metals, beryllium and
magnesium, are not so electropositive as the alkalis.* The halogens,
fluorine and chlorine, present a contrasting picture. Instead of having
one loosely bound electron, they have one low-lying empty state.
They can therefore hold tightly an extra electron, and thus be negative
ions. The rare or noble gas elements helium, neon and argon consist
only of closed shells. They can neither gain nor lose electrons in
chemical compounds and are, therefore, generally aloof to chemical
urges.

¢ For brevity we shall refer to the alkali metals and alkaline earth metals simply as
alkalis and alkaline earths,
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The Transition Elemenis

Actually argon does not correspond to a complete system of closed
shells, since for it none of the 3d states in the M shell is occupied. For
the elements below copper, Z = 29, these 3d levels lie above the 4s
and below the 4p. They are filled up progressively in the series of
elements scandium, titanium, vanadium, chromium, manganese, iron,
cobalt, and nickel, which are known as the transition elements of the
first long period of the periodic table. The first two elements after
argon are potassium (an alkali) and calcium (an alkaline earth); these
are similar to sodium and magnesium in having respectively one and
two s electrons. The first transition element, scandium, however, is
not like beryllium or aluminum, for with it the filling of the 3d states
begins. The electron configurations for several of the transition ele-
ments are shown in Fig. 6. An interesting case occurs at chromium;
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Fig. 6—Electron configurations for transition elements.

for it the exchange effect is so great that the 3d levels drop below the
4s and one 4s electron is transferred. Since there is an exchange
effect between all electrons of the same spin, the remaining occupied
4s state in chromium has the same spin as the occupied 3d states. A
similar transfer of a 4s electron occurs at copper, which is then left
with one 4s electron and tends therefore to be monovalent (in the
divalent copper ion the 4s electron and one 3d electron are removed).
These transition elements are of particular interest because three of
them, iron, nickel, and cobalt, are ferromagnetic in the solid. The
atoms themselves are magnetic, as may readily be seen for chromium,
for example; in it all the electrons have their spins parallel and hence
their magnetic moments add to give a free chromium atom a magnetic
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moment six times as large as the spin magnetic moment of the electron.5
The same exchange effect which causes the 3d quantum states to fill
unevenly in the isolated atom causes, in the case of the metal, an
uneven filling of the ‘‘energy bands” which arise from these 3d states.
We shall return to this topic in the section on ferromagnetism.

Solving Schroedinger's Equation

The possible quantum states of an atom are obtained by solving
Schroedinger’s equation for an electron moving in the potential field
of the nucleus and the other electrons. In Fig. 7a we have represented

_the potential energy of an electron in an atom. If this potential
energy (call it U) is known as a function of the position x, y, 2, of the
electron, then the Schroedinger equation is
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where m is the mass of the electron, % is Planck’s constant and E is
an unknown energy and ¥ an unknown wave function, for which a
physical interpretation will shortly be given. It is found that this
equation possesses proper solutions only for certain values of E; once
these values are known, the equation can be solved for the unknown
wave functions. The fact that only certain values of E are possible
will probably seem more natural after reading the discussion given
below of a mechanical system. The permitted energies and wave
functions give the system of quantum states of Fig. 2.

The wave equation of Schroedinger is similar in form to many of the
other wave equations of mathematical physics. In Fig. 7g to 77 we
represent a stretched membrane like a rectangular drumhead. If the
mass per unit area of the membrane is ¢ and the surface tension is T,
then the wave equation for it is

Fo o
dx® ' 0z?

+i e, 2)

where f is the unknown frequency of vibration and ¢ is the unknown
vertical displacement. Applied to the membrane, this equation has
solutions only for certain values of f; the standing wave patterns corre-
sponding to the four lowest frequencies are shown in Figs. 7g to 7j.

5 For transition elements other than chromium, the motions of the electrons in
their wave functions produce magnetic moments that must be considered as well as
the spin; for a discussion of this point the reader is again referred to *Spinning Atoms

and Spinning Electrons" by K. K. Darrow, Bell System Technical Journal, XVI, p.
319 and to texts on atomic physics.
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The type of vibration of the system in one of these patterns is called
“a normal mode.” The patterns are described by two *‘quantum
numbers'’ p and g which are equal to one plus the number of nodal
lines (indicated by arrows) running across the membrane from front
to back and from right to left respectively. In Figs. 7b and 7c we
show the wave patterns corresponding to the 1s and 2s states of the
atom: the quantum numbers of the ¥ waves are also correlated to
nodes. In the case of the membrane the frequencies and standing
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Fig. 7—The atom and some mechanical and electrical analogues.

(a) Potential energy of an electron in the atom.

(b) The 1s wave function,

(c) The 2s wave function.

(d) A mechanical analogue and

(e) its normal mode of vibration.

(f) An electrical analogue.

(g) to (j) The first four normal modes of vibration of a stretched
drum head. (From “Vibration and Sound” by P. M.
Morse, McGraw-Hill, New York, 1937. Courtesy of the
McGraw-Hill Book Co.) .
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wave patterns are determined not only by the values of mass per unit
area, o, and tension, T, of the membrane but also by the ‘““boundary
condition’’ that it be clamped on its rectangular edge; at this edge the
vertical displacement ¢ must vanish. The corresponding boundary
condition for the atom is that the wave function y vanish at all points
infinitely far from the nucleus.

Fig. 8—The electron charge densities for four wave functions. Cross-sections
are given for the 15 and 25 wave functions and perspective views for the 2p. 1s rep-
resents a ball of charge; 2s, a ball surrounded by a shell; 2p m = 0, a dumbbell-like
distribution; 2p m = =+ 1, a doughnut-like distribution seen edgewise.

The quantity |¢|% has a direct physical interpretation: its value
at any point in space gives the probability of finding the electron at
that point. If it were possible to take a photograph of the electron’s
motion with a time exposure so long that a true average of its positions
would be obtained, this photograph would represent |¢|2 In Fig. 8
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we show the predicted patterns as obtained by H. E. White,® who
photographed a model representing the wave functions. We see that
for the 2s wave function the electron is much farther from the nucleus
on the average than for the 1s; this accounts for higher energy of the
2s state. For a hydrogen atom the 2s and 2p actually have the same
energy. For other elements the 2s lies lower as shown in Fig. 2; this
is because an electron in the 2s state penetrates the K shell and feels
the full charge of the nucleus whereas an electron in the 2p state stays
outside of the K shell and is thus shielded from the nucleus by the two
electrons of the K shell.

For purposes of illustration we have considered the rectangular
drumhead as a mechanical analogue for the wave equation. Other
analogues are represented by sound waves in rooms and in organ pipes
and by standing electromagnetic waves in wave guides, tuned cavities,
and rhumbatron oscillators. We shall use two simple analogues in our
later discussion. One is the mechanical vibrator represented in Fig. 7d
which we consider to be restricted to vertical motion. It is a system
with a single frequency—like an imaginary atom with only one possible
state—and its one normal mode of vibration is a simple harmonic
motion up and down equally far above and below its equilibrium posi-
tion as indicated in Fig. 7e. The other is an electrical analogue, Fig. 7f,
consisting of a section of transmission line terminated at each end by a
high inductance. This system has a series of normal modes of vibra-
tion and a related series of allowed frequencies. The allowed fre-
quencies correspond to the energy levels of the atom.

ELECTRONS IN MOLECULES

We shall next consider what happens when two atoms are brought
so close together that their quantum states ‘‘interact.”” Two similar
atoms widely separated have each a distinct set of quantum states and
wave functions and the scheme of energy levels for the two atoms is
obtained by duplicating the energy level scheme of Fig. 2. However,
if the atoms move so near together that the wave functions for the
corresponding quantum states of the two atoms overlap, there is an
alteration in the energy levels. Figure 9 is intended to illustrate this
process. Figure 9a shows the potential energy of an electron for
points on a line passing through the centers of the two nuclei, and Figs.
9% and 9¢ show for points on the same line the values of the correct
wave functions in this field. These wave functions are obtained,
approximately, by using the 1s wave function for the two separate

8 Physical Review, 37, 1416 (1931). I am indebted to Professor White for the
photographs used for these illustrations.
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atoms; b represents the sum of the wave functions and ¢ the difference.
The process involved in getting these molecular wave functions is
mathematically similar to that of finding the normal modes for a sys-
tem of two similar coupled oscillators. In Fig. 94 we represent two
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Fig. 9—A diatomic molecule and some mechanical and electrical analogues.

(a) The potential energy of an electron for points on a line through
the two nuclei.

(b) and (c) Values of two wave functions for points on the same line.

(d) Two coupled oscillators.

(e) and (f) Their normal modes of vibration.

(g) Two coupled circuits.

weakly coupled oscillators. The normal modes of vibration for the
coupled system are as indicated in Figs. 9¢ and 9f. These two modes
have different frequencies. Similarly if two electrical circuits are
placed so that there is some inductive coupling between them, we find
that each frequency is split into a pair. This inductive coupling is
similar to the overlapping of the wave functions; thus the coupling
between the circuits is large when the electromagnetic field of one
reaches over to the other. We may summarize the situation by saying
that before coupling each frequency occurred twice, once for each sys-
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tem; after coupling two frequencies are present and the corresponding
modes of vibration belong not to the individual systems but instead
to the pair of systems. For the case of atoms each quantum state
occurs twice, once for each atom, before the atoms interact; after inter-
action there are still two quantum states but now they have different
energies and are shared by both atoms.

As the atoms are brought closer together the energies separate more
and more. The behavior is indicated qualitatively in Fig. 10. The
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Fig. 10—Energy levels of a diatomic molecule versus internuclear distance.

L levels (25 and 2p) split at larger distances than the K levels because
their wave functions extend farther from the nucleus (see Figs. 7 and 8)
and overlap at greater distances. The details of the splitting are
somewhat complicated and only the start is shown here. For the
mechanical analogues shown in Fig. 8, the coupling raises one fre-
quency and leaves the other unaltered. On the other hand, the
quantum mechanical interaction results, at large distances, in equal
displacement up and down for the energy levels.

We can use Fig. 10 to describe the formation of a molecule of
hydrogen, Ho. 'We start initially with the single electron of each atom
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in the 1s state. When the atoms have come together the 1s states
have split into two energies with two states for each energy—one
with each spin. In the H: molecule, the two electrons will both
go into the lower ls states, which both have the wave function of
Fig. 8b. Bringing the atoms closer together decreases the. energy
of the electrons and results in the binding together of the atoms.
This tendency of the electrons to reduce their energies by drawing
the atoms together is opposed by the electrostatic repulsion between
the nuclei. The repulsion between the nuclei is inoperative when
the atoms are sensibly separated because then each nucleus is shielded
from the nucleus of the other atom by the electron of that atom.
When the atoms are closer together, however, the electrons no longer
perform this shielding perfectly and the nuclear repulsions are impor-
tant. Hence with decreasing interatomic spacing the electronic energy
decreases and the energy of repulsion of the nuclei increases, and the
equilibrium internuclear distance is the one which makes the total
energy of the molecule a minimum.

The situation is quite different for two helium atoms. There being
two electrons in each, for them all four of the ‘“1s molecular orbitals,”
as the states of Fig. 9 are called, are occupied. When all the molecu-
lar orbitals are occupied, there is no decrease in energy when the two
atoms are brought together: in this case the decrease of energy for the
electrons in the two lowest states is compensated by the increase for the
electrons in the upper states—more than compensated, as a matter of
fact, because the upper states rise slightly more rapidly than the lower
ones fall. This effect results in a repulsion between two helium atoms.
This repulsion is a consequence of the closed shell nature of the helium
atom and always occurs between such closed shells even if the atoms
are different, as, for example, a neon and an argon atom. We shall
refer to this closed shell repulsion, which occurs when the wave func-
tions of the two closed shells encroach upon each other, as an “‘en-
croachment energy.” The encroachment energy, as we have said,
always corresponds to a repulsive force between the closed shells. We
shall find that it plays a very important role both in ionic crystals
and in metals.

The encroachment energy occurs not only between rare gas atoms
but also between ions of elements which as neutral atoms have partly
filled shells but in the ionic form have closed shells. Consider, for
example, an alkali halide molecule such as LiF. For this case the
2s valence electron of lithium is transferred to the vacant 2p level of
fluorine (see Fig. 4), thus leaving two ions with closed shell configura-
tions, the Li+ being He-like, the F~ being Ne-like. These two oppo-
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sitely charged ions attract each other and draw together until the
encroachment repulsion between their closed shells balances the attrac-
tion and holds them apart. Conversely if one of two atoms having
closed shells normally is converted to an ion, the closed shell arrange-
ment will be destroyed and an attraction will result. For example,
He.* ions, which may be thought of as formed from an atom and an
ion, have been observed in the mass spectrograph.” The attraction
is explained by noting that in this case there are three electrons and
the effect of two of them in the lower 1s molecular orbital overbalances
the one in the upper orbital and gives rise to a net attraction.

EvLEcTRONS 1IN CRYSTALS

We must now investigate the quantum states and their energy
levels for electrons in crystals. As in the case of the diatomic molecule
we shall study the dependence of the energies upon the distance be-
tween atoms, which in the case of a crystal is called the lattice constant.
We shall treat the lattice constant as a variable and shall refer to the
values for it found experimentally as “‘observed’ or ‘‘experimental
lattice constants'’ and indicate them on the figures by the symbol aq.
We shall consider the allowed states to be occupied in accordance with
Pauli’s principle and on this basis find how the energy of the crystal
as a whole depends upon the lattice constant. In this section we
shall deal with crystals at the absolute zero of temperature and leave
the complicating features of thermal effects to a later section. Accord-
ing to theory, the equilibrium state of a system at absolute zero is that
one which makes the energy least. Hence, a knowledge of the de-
pendence of energy upon lattice constant can be used to predict the
equilibrium lattice constant—that is, the one which should be found
experimentally—for according to the theory quoted above, the equi-
librium lattice constant is the one which makes the energy of the
crystal least.

In Fig. 11 we show the potential energy for an electron in a one-
dimensional crystal, the distance being measured along a line passing
through the atomic nuclei of the constituent atoms. In the interests
of simplicity we imagine that high potential walls through which the
electron cannot pass bound the crystal at both extremities. These
boundary conditions lead to a simpler set of wave functions than would
boundary conditions like those discussed for the free atom. The sim-
plification of problems by arbitrarily choosing certain boundary con-
ditions is a standard device in some branches of quantum mechanics;
it introduces an error, but if the crystal is large, the error is negligible;

7F. L. Arnot and Marjorie B. M'Ewen, Proc. Roy. Soc., 171, 106, 1939,



THE QUANTUM

PHYSICS OF SOLIDS

671

PR
=
23 (h)
WAVE FUNCTIONS NORMAL MODES
AT A= . O
- - N Sy 7 3
(b) ()
AN o o g
- ¥ [ = S =
() T (J) r
P N A A o, AT
N o ‘\ “
" N o_ T w
9 (d) (k) g
= =
g
| -~ T T~ <
4 > 7 \, / 7 ~
~ o - 7 :\ 7
NV oV N T
T (e T )
// \\\ ,"\i /,— \\ o /D\\\ r_1, \h I,/-D\\
N N4 = =1
(f) (m)
// \\ A A . ,/EL\\ I’D\\\ ”/D\\‘
v v NV ‘\U/ \\ﬂ’/ \ ‘I:I’l
(9) (n)
DISTANCE DISTANCE

g

E

ELS

E

(0)

Fig. 11—A one-dimensional crystal and some mechanical and electrical analogues.

(a) The potential energy of an electron for points on

a line through the nuclei.
(b) to (g) Wave functions for points on the same line.
(h) Coupled oscillators.
(i) to (n) Their normal modes of vibration.

(o) Coupled circuits.
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the situation is similar to that which arises through neglecting “edge
effects’’ in calculating the capacity of a parallel plate condenser.

In Fig. 11 we show also a series of coupled oscillators with boundary
conditions corresponding to those prescribed for the atoms. For
this case there are six coupled oscillators, which when uncoupled had
six independent normal modes of vibration all with the same fre-
quency, like that shown for the single oscillator of Fig. 7d. After
coupling there are six normal modes all having different frequencies;
the standing wave patterns corresponding to these are shown in Figs.
114 to 11n. A similar splitting of frequencies occurs when the members
of a set of electrical circuits are placed in close proximity as indicated
in Fig. 110. For them the situation is more complicated than for the
mechanical oscillators; each mechanical oscillator has but a single
frequency, whereas each circuit has a fundamental and a sequence of
overtones. Each possible frequency for the electrical circuits is
split by coupling into a set of six.

In Figs. 115 to 11g are shown the proper electron wave functons
which arise from the 1s atomic states. These wave functions have
different energies. When the atoms were separated there were six 1s
wave functions for the six atoms and each of these gave two states—
one for each spin. After coupling we find six crystal wave functions
and twelve crystal quantum states, the same number of states for each
spin as before. This illustrates a fundamental theorem concerning
wave functions in crystals which holds for two and three dimensions
as well as for one and is true no matter how large the number of atoms
in the crystal. This theorem, which we shall refer to as the “ conserva-
tion of states,” may be stated as follows: consider a set of N similar
isolated quantum mechanical systems; they may be single atoms or
molecules. Any particular quantum state is then repeated N times
over, once for each system. Now bring the systems together so that
the energy levels have split up. Then for each N-times-repeated
quantum state of the isolated systems, we find a set of V crystal quan-
tum states. In other words, putting the systems together may change
the energies and wave functions of the quantum states but no states
are gained or lost in the process.

In Fig. 12 we indicate how the energy levels of the states depend
upon the lattice constant. Each energy level in the figure corresponds
to two states, one for each spin. For simplicity only two atomic
levels are shown here. Higher energy levels split appreciably at
larger lattice constants because of the greater spatial extension of their
wave functions. For any particular lattice constant the energy levels
arising from a given atomic state lie in a certain band of energy. The



THE QUANTUM PHYSICS OF SOLIDS 673

number of states in the band is, of course, proportional to the number
of atoms; however, if the number of atoms is large, the width of the
band is independent of the number of atoms. This concept of allowed
bands of energies for the crystal states plays the same role in crystals
as the concept of energy levels in the atom. We shall refer to 3s bands

25

ENERGY (OR FREQUENCY)

LATTICE CONSTANT (OR STRENGTH OF COUPLING)

Fig. 12—Dependence of energy levels upon lattice constant or frequency
of vibration upon strength of coupling.

and 3d bands of energy levels in crystals in much the same way as we
refer to the 3s and 3d atomic energy levels from which these bands arise.

We must emphasize that like the molecular states, the crystal states
do not belong to the atoms individually but instead belong to entire
system of atoms.

Before proceeding with the application of these ideas to crystals
with large numbers of atoms, we shall digress by anticipating several
subjects to be taken up in the next paper. For the energy levels of
isolated atoms the quantum numbers %, I, m, and m, were satisfactory.
For a crystal, however, there will be many crystal quantum states
in an energy band all arising from atomic levels having the same values
of n, 1, m,and m,. A new quantum number is therefore needed to dis-
tinguish the various crystal states in an energy band one from another.
In Fig. 11 we see that the wave function of each crystal state is asso-
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ciated with a wave form, shown dashed. This wave form is in every
case of such a wave-length that it has an integral number of half wave-
lengths along the edge of the crystal.”» The number of half wave-
lengths is a suitable quantum number for the wave functions in the
crystal and a more general consideration of it in the next paper will
lead us into the theory of the “Brillouin zone’" and the zone structure
of energy bands. The second subject concerns the transmission prop-
erties of the crystal. The set of coupled circuits of Fig. 11 constitutes
a length of transmission line. A line of this type is a simple filter net-
work and as such it has bands of frequency in which power will be
transmitted and bands in which it will not. The allowed frequencies
lie in the transmitting bands. The system of coupled mechanical
vibrators likewise constitutes a mechanical filter. Just as the mechan-
ical and electrical systems can transmit power in their allowed bands,
a crystal can transmit an electron whose energy is in an allowed band.
The electrons in an allowed band, however, can produce a net current
only if the band is partially filled. Electrons in wholly filled energy
bands, although individually representing tiny currents.to and fro in
the crystal, can produce—we shall find—no net current as their indi-
vidual currents cancel out in pairs. On this basis the theorist ex-
plains the difference between metals and insulators as follows: in a
metal some of the energy bands are partly filled, but in an insulator
each energy band is either completely filled or completely empty.

Distributions of Quantum Siates in Energy Bands

When there are a very large number of atoms in the crystal, it is
impractical to represent the energy levels by distinct lines as was done
for the case of six atoms in Fig. 12 and another scheme must be used.
For a crystal of macroscopic dimensions the number of levels in the
band is of the order of 10?, that is a million million million million.
When so many levels are placed so close together, a continuous band of
allowed energies is suggested. Actually, of course, only a discrete set
of allowed energies is possible, the total number in the band being
that required by the conservation of states. We shall now consider
the distribution in energy of these quantum states; that is, how many
lie in a given range of energy between E and E + dE. Let us call

7a For a three-dimensional crystal having the external shape of a cube, the three-
dimensional wave function has an integral number of half wave-lengths along lines
parallel to each edge of the crystal. This condition is illustrated in a simplified
form by the wave patterns for the two-dimensional drum head shown in Fig. 7;
for each normal mode, there is an integral number of half wave-lengths parallel to
each boundary of the membrane, and, in fact, the values of these numbers are given
by p and g.
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this number dV; it will depend upon E and be proportional to dE and
we may write

dN = N(E)dE, (3)

where the function N(E) represents the ‘‘number of quantum states
per unit energy’’ at E. This equation, like many in statistical mechan-
ics requires special interpretation, because if dE is small enough—Iless
than the spacing between levels in the band—it may include no levels.
If, however, we always use small but not infinitesimal values for dE,
so many levels will be included in it that equation (3) is quite satis-
factory. In Fig. 13z we represent qualitatively the distribution in
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4] N (E) = o] N (E) =—a
NUMBER OF QUANTUM STATES PER UNIT ENERGY

Fig. 13—Distribution of energy states in energy,

(a) For two separate energy bands.
(b) For overlapping energy bands.
(c) For free electrons.

energy for two energy bands. We plot N(E) horizontally so as to
retain the vertical scale for E. The area under the curve for the 2p
levels is three times that for the 2s. This is because the number of
states in the 2p and 2s bands are respectively six times and two times
the number of atoms in the crystal. The 1s band lies too low to be
shown on this figure; its levels will be concentrated over a very narrow
range in energy in keeping with the small splitting suggested in Fig. 12,

It is possible for the energy band arising from one atomic energy
level to overlap the energy bands arising from other atomic levels.
We shall be concerned below with several cases where this occurs for
various crystals. When it does occur the states in the bands become
mixed up and it is no longer possible to decide which atomic level was



676 BELL SYSTEM TECHNICAL JOURNAL

the parent of each state in the band. This confusion is of no conse-
quence, however, for it does not interfere with using the distribution
in energy curves when they are obtained. Furthermore, the conserva-
tion of states holds when the bands overlap so that the total number of
states per atom in the combined bands is the sum of the number of
states per atom in the separated bands. In Fig. 136 we represent a
distribution qualitatively similar to that occurring in various metals
where s and p bands overlap. The number of states per atom in the
combined bands is eight, four for each spin.

A very important distribution-in-energy curve is that of the case of
“free electrons.” This is the distribution one obtains by imagining
that the electrons in a crystal are perfectly free—that is, subjected to
no electrostatic forces whatever—but that they are required to remain
within a certain prescribed volume. The distribution of quantum
states in energy for this case is represented in Fig. 13¢. At low tem-
peratures the electrons tend to occupy the lowest states consistent with
Pauli's principle and the system is referred to as a ‘' degenerate electron
gas.”” With the aid of the distribution curve, the energy and pressure
of this gas can be calculated. We shall require its energy for a discus-
sion of the binding energy of sodium, but we shall give here only
the equation of the curve, leaving the calculation of the energy until
later.® According to the theory, then, for the case of free electrons
the number of states per unit energy is given by

47V

NE) =5

(2m)*PE'", (4)

where V is the volume of container, % is Planck’s constant, m the
mass and E the energy of the electron; for free electrons E is all
kinetic energy, there being no potential energy. For the case of
the alkali metals, calculations show that the wave functions for the
valence electrons are very similar to the wave functions for free elec-
trons. For these metals we can use Eq. (4) to calculate energies.

Before utilizing the concepts of energy bands in a discussion of the
binding energies of crystals, we must define two symbols to be used in
describing the energy of a state in the band. For this purpose we
arbitrarily separate the energy E of a crystal state into two parts:
one of these is denoted by E, and stands for the energy of the lowest
state in the band and the other is Ejr which stands for the energy which
the state possesses in excess of Eq—that is, its energy above the bottom

8 The reader will find a derivation of this curve given in K. K. Darrow’s article
“Statistical Theories of Matter, Radiation and Electricity," Bell System Technical

Journal, Vol. VIII, 672, 1929 or Physical Review Supplement, Vol. 1, 90 (1929), and
in various texts on quantum statistics and the theory of metals.
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of the band. We shall find in the next paper that the quantum states
in a band represent electrons traversing the crystal with various aver-
age speeds. The state E, has an average speed of zero. The sub-
script ‘‘ M " has been assigned with these ideas in mind and stands for
““motion,” implying that an electron with energy greater than E, has
an energy of motion Ey. In general both E, and Ejp are actually
composite energies containing both kinetic and potential energy; only
in the case of free electrons is Eu purely an energy of motion. We
shall not use in this paper the property of motion connected with the
values of Ej; however, we shall use the division of the energy into
two parts, E; and Ey, and we shall for convenience refer to the latter
as an ‘“‘energy of motion.”

We shall next apply the concept of the energy band to a determina-
tion of the binding energies of several types of crystals. It is one of
the principal merits of the theory of energy bands in crystals that we
can treat many different crystal types on the basis of the same set of
ideas. As we shall point out later, however, the band theory is most
appropriate for metals: for ionic and valence crystals other theories
are better suited.

Energy Bands and Binding Energies of Metals

For several metals the wave functions and distribution of states in
energy have been found by solving Schroedinger's equation for the
electrons in the metal. We shall discuss sodium since it constitutes
one of the simplest cases and is the first metal for which good calcula-
tions were carried out.

A sodium atom, Na, contains ten electrons in filled K and L shells
and one valence electron in the M shell; its electron configuration is
1s? 25 2% 3s. When the atoms are assembled together as in the
metal, the 3s atomic state gives a wide band which overlaps the 3p
band while the lower levels widen only very slightly.

The formation of the energy bands® is shown in Fig. 14. Since the
K and L bands are very narrow, it is possible to neglect the changes
in the wave functions of the electrons occupying them and to concen-
trate upon the valence electrons. The valence electrons then move
in a potential field produced by the Nat ions and the other electrons.

It can be shown by a lengthy argument that for the case of a mono-
valent metal, the energy of the metal as a whole is very nearly equal
to the sum of the energies of the valence electrons.® It is rather

® J. C. Slater, Phys. Rev., 45, 794 (1934).

1°Ap exact statement of the situation is too involved for this paper. The reader
can find a more complete discussion in Mott and Jones ‘The Properties of Metals
and Alloys,” Chapter IV.
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natural that the valence electrons should contribute so largely to
the binding since the complete shells of electrons making up the Nat
ion, that is the K and L electrons, are only slightly affected by bring-
ing the atoms together to form a metal. The result that the energy
of the metal is the sum of the energies of the valence electrons is
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Fig. 14—Energy bands for sodium versus lattice constant.

of great importance in applying the theory. We shall discuss below
how the energies of the various states in the band depend upon the
arrangement of the atoms; some of these states are occupied and
the energy of the crystal can be found by adding the energies of
the occupied states. In this way we can find how the energy of the
crystal depends upon the arrangement of the atoms and can find
what arrangement makes the energy least. According to theory the
arrangement of least energy is the stable one and the one which
should be found in nature. The remainder of this section will be
devoted to discussing the energies of the quantum states in metals and
the energies of the electrons which occupy them.

The first satisfactory solutions of Schroedinger's equation for elec-
trons moving in the field of a metal were obtained for sodium by
Wigner and Seitz.'* They assumed, in keeping with the findings of
experiment, that the sodium atoms were arranged on a body-centered

1 E, Wigner and F. Seitz, Phys. Rev., 43, 804 (1933) and 46, 509 (1934) and E.
Wigner, Phys. Rev., 46, 1002 (1934).
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cubic lattice. They did not, however, assume that the lattice con-
stant was that given by experiment but instead carried out calculations
for each of several assumed values for the lattice constant lying on
both sides of the experimental value. The results of their calculations
are shown in Fig. 15. The curve marked E, is the energy of the lowest
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Fig. 15—Energy for sodium versus lattice constant.

level in the valence band. Only two electrons, one with each spin,
can occupy this energy level and all others must occupy states of
higher energy—that is, only two electrons can have zero value for the
“energy of motion'" Ej and all others must have larger values. By a
method of calculation described below, it can be shown that the
average energy of motion of a valence electron is given by the curve
marked Ep in the figure. Hence the total energy per valence electron
in the metal, which for a monovalent metal is equal to the energy per
atom, is represented by the curve marked Ein the figure; E = Eq+ Ep.
Figure 15 exhibits the dependence of this energy upon the lattice
constant. The abscissa of the minimum in the E curve gives the
theoretically predicted value for the equilibrium lattice constant. The
binding energy or heat of sublimation is defined as the energy required
to separate the metal into isolated atoms; it is the difference in energy
between the minimum of the curve and the value of E for infinite
lattice constant—that is, for free atoms. Finally, the curvature of the
curve at its minimum is a measure of the energy required to compress
or expand the crystal and from it a value for the compressibility can
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be obtained. In Table I, we compare theoretical and experimental
values of lattice constant, binding energy, and compressibility calcu-
lated by the method described above. The theoretical values were
computed by Bardeen * who has added some refinements and correc-
tions to the original calculations.

TABLE 1
Li Na
Calc. obs. Calc. obs.
Lattice Constant (angstroms) ... 3.49 3.46 4.53 4.25
Heat of Sublimation (Kg. cal./-
gm.atom) ................. 34 39 2 26
Compressibility (cm®/dyne) . . ...| 8.4X1072 | 74X 102 | 12.0X 1072 | 12.3% 101

Although the theory can give quite satisfactory values for the
various physical quantities shown in Table I, it cannot as yet predict _
precisely what crystalline form a metal like sodium will take. In
carrying out' the calculations discussed above, it was assumed that the
atoms were arranged in a body-centered cubic lattice. Now the cor-
rect theoretical procedure would be to calculate the energy for all
conceivable arrangements of the atoms and then to select that arrange-
ment giving the least energy of all as the theoretically predicted
equilibrium arrangement. This program is, of course, too laborious
to be practical—furthermore experience shows that metals, with but
few exceptions, crystallize in one of three forms: body-centered cubic,
face-centered cubic, and hexagonal close-packed. For this reason it
might be regarded as sufficient to calculate the energies for the face-
centered cubic and hexagonal close-packed and to compare these with
that for the body-centered cubic. When such calculations are carried
out, however, it is found that the minimum energies calculated for
the three forms differ among themselves by amounts which are negli-
gible in view of approximations necessary in making the calculations.
Hence the theory cannot predict with any certainty which form really
has the lowest energy; it does predict, however, that all three forms
do have nearly the same energy and gives a value for this energy.
Actually the binding energy of sodium must be greatest for the body-
centered cubic lattice because this form is the one that occurs in nature
and so must be the form of lowest energy. However, it is probable
that the difference in energy between the various possible allotropic

12 J. Bardeen, Jour. Chem. Phys., 6, 367, 372 (1938).



THE QUANTUM PHYSICS OF SOLIDS 681

forms for sodium is really very small—so small that we should not
expect the present theory to evaluate it. Some indication that the
energy of caesium is very nearly the same in the body-centered form
and face-centered form (or possibly the hexagonal close-packed form)
is furnished by a transformation at high pressures observed by Bridg-
man. In the next paper we shall meet a case where the theory does
seem able to differentiate between the energy of face-centered and
body-centered structures. In general, however, the procedure is to
use the crystal structure found by x-rays and to calculate the energy
for a series of values of the lattice constant as was done for sodium.

We must now return to a discussion of the curves Ey and Ep of
Fig. 15. About the curve E, we shall only say that it is obtained by
solving Schroedinger’s equation for and finding the energy and wave
function of an electron in the lowest state in the energy band. The
wave function for this state, however, possesses the interesting feature
of being very nearly the same as the wave function for a free electron
having zero energy of motion. From this fact it is possible to draw
the conclusion that the distribution in energy of motion of the valence
electrons in sodium is the same as the distribution in energy of free
electrons in an electron gas. Accepting this conclusion, we can then
use the formulas given for the distribution of states for free electrons
in order to calculate the mean energy of motion of the valence electrons
in sodium. The results of this calculation, which we give in a foot-
note, lead to the energy curve Er. This energy curve is, from its

13 We shall first derive a general expression for Er without specifying the particular
form of N(E). Since in this footnote all energies are measured from E,, we shall
omit the subscript M from Ep and use simply the symbol E in the equations. The
total number, denoted by 7, of atoms in the crystal is equal to the total number of
valence electrons. Let the volume of the crystal be V. Because of the duplicity
due to the spin there are 2# states in the band, and half of them will accommodate

the n electrons so that the band will be filled only up to a certain energy Emax. We
must therefore have

n= [ o N (E)dE. o)

Once the distribution function N(E) is known, this equation serves to determine
Emnx. The average energy of motion of an electron in these occupied states is, from
the definition of an average, the total energy of motion divided by the total number
of electrons:

1 [Emas. ..
Er = [ EN(E)E. (ii)

Substituting the value of N(E) for free electrons into the first equation gives
8
n=3 V(2mEmpex. [h2)32 (iii)

The quantity V/n is the volume per electron which in the case of a monovalent metal
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definition, the average energy per electron of a degenerate electron
gas. In a degenerate electron gas the electrons have the least possible
energy consistent with Pauli’s principle and with the distribution of
quantum states in energy. For reasons associated with the origin
of the statistical mechanics of electrons—that is, with the Fermi-Dirac
statistics—the energy Ep is called the ‘‘Fermi energy” and given the
subscript F. The energy Ep is far greater than the average energy
per particle of an ordinary classical gas. We shall see below how this
fact accounts for the very small specific heat of the electron gas.
From the dependence of the energy upon volume, the pressure of the
electron gas can be calculated. It is usually very large, for sodium it
is about 50,000 atmospheres. The force that prevents this pressure
from blowing the metal apart is represented by the E; curve, which
gives decreasing energy with decreasing lattice constant and corre-
sponds to a force pulling the atoms together. A more detailed dis-
cussion of these forces will be taken up in the third paper of this series.

Other Metals

Calculations similar to those for sodium can be carried out for other
metals. The band structure as calculated for copper by Krutter 14 is
shown in Fig. 16. Ten electrons per atom can be accommodated in
the 3d band and two per atom in the 4s. For copper the 3d band is
filled—in keeping with the fact that the Cu* ion consists of filled
K, L, and M shells. From the discussion of molecules given above

is the same as the volume per atom. Denoting by @ the value of V/n, we find

3\ |2 .
Fmax, = (; ) o 072 = 36,10, ey (iv)

where Qo is the volume per atom in cubic Angstroms. For a body-centered cubic
lattice with lattice constant @ Angstroms, Qo = @%/2. Substituting the expression
for N(E) into the equation for Ep gives

Ep =

i

Emux, = 21,6252y, )

Expressing Er in atomic units and Qo in terms of the lattice constant, we find
Ep = 2.54a72 (vi)

This is the equation of the curve for Figure 15. The values of Emax. calculated from
the above equations for a series of metals are

Metal Li Na K Rb Cs Cu Ag Au

Emax.(ev) 4.74 3.16 2.06 1.79 1.53 7.10 5.52 5.56
14 H. M. Krutter, Phys. Rev., 48, 664 (1935).
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we should expect encroachment repulsions between these ions when
their wave functions begin to overlap. In the band picture this repul-
sion results from the spreading of the 3d band; since the band spreads
more to higher energies than to lower energies and since it is full, the
average energy of an electron in it increases as the lattice constant
decreases. Thus the same result, repulsion between closed shells, is
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Fig. 16—Energy bands for copper versus lattice constant.

found for the ions in a metal as for the rare gas atoms. For elements
whose atoms have partially filled 3d levels the situation is quite differ-
ent. For them only part of the levels of the 3d band will be filled
and there will be a decrease in the energy of the 3d electrons in the
metal as compared to the atom. This has been proposed by Seitz and
Johnson as an explanation of the fact that the highest binding energies
for the metals of a transition series occur for those that have approxi-
mately half-filled 3d bands and for which consequently nearly all of
the 3d electrons have lower energies than in the atomic state.! The
very high melting point metals—columbium, molybdenum, tantalum,
and tungsten—come approximately at the middle of their transition
series. In Table II we give the binding energies for a number of the
transition elements.

15 F., Seitz and R. P. Johnson, Jour. App. Phys., 8, 84, 186, 246 (1937).
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TABLE II

HEATS OF SUBLIMATION FOR SEVERAL METALS INCLUDING THE TRANSITION ELEMENTS
N KiLocALoRIES PER GRAM ATOM *

K Ca Se Ti A% Cr Mn | Fe Co Ni Cu Zn
19.8 | 48 70 100 85 88 | 74 94 85 85 | 81 | 274
Rb Sr Y Z Cb | Mo | Ma | Ru | Rh Pd Ag | Cd
189 | 47 90 110 | — 160 | — 120 | 115 | 110 | 68 | 26.8

Cs Ba La Hf T W Re Os Ir Pt Au Hg
18.8 49 90 —_ 185 | 210 — 125 120 127 92 14.6

* Taken from F. R. Bichowsky and F. D. Rossini " The Thermochemistry of the
Chemical Substances,” Reinhold (1936), except for T which was taken from D. B.
Langmuir and L. Malter, Phys. Rev. 55, 1138 (1939).

Energy Bands of Diamond

In Fig. 17 we show the band structure for diamond as calculated by
Kimball.’® The configuration of the carbon atom is 15?252 and
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Fig. 17—Energy bands for diamond versus lattice constant.

all four of the L shell electrons are involved in the binding. At large
lattice constants the lower band contains two states per atom and the
upper six. The lower band is completely filled, the upper only one-

16 G, E. Kimball, Jour. Chem. Phys., 3, 560 (1935). Some unimportant features
resulting from approximations in Kimball's work have been modified in this figure.
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third filled. To the left of the crossing of the bands, Kimball finds
that both bands contain four states per atom so that the lower is filled
and the upper is empty. The actual spacing in diamond occurs to
the left of the crossover and, as we shall see in the next paper, the
resultant filled band and empty band arrangement explains the ab-
sence of electrical conductivity for diamond. The diagram suggests
an explanation for the conductivity in graphite; one of the lattice
constants of graphite is known to be larger than the abscissa of the
crossover of Fig. 17; hence in graphite there are partially filled bands
and conduction.

The general downward trend of the bands in Fig. 17 indicates a
strong binding energy for diamond; but quantitative calculations of
the total energy have not been made.

The type of binding involved in diamond is quite like the binding
of metals save that, owing to the absence of partially filled bands,
there is no electrical conductivity. In both cases the energy arises
from the lowering of energy levels as the atoms come together. In
chemical terminology the binding of diamond is referred to as ‘‘ho-
mopolar " signifying that the atoms are all similarly charged, or rather
uncharged. In crystals containing ions rather than neutral atoms,
the cohesion is due largely to electrostatic forces and one refers to
binding as ““heteropolar” or “ionic.”

Energy Bands and Binding Energies of Ionic Crystals

The energy band theory can be applied to the calculation of the
binding energy of ionic crystals. Before discussing this application,
however, it will be instructive to examine a somewhat simpler ap-
proach to the problem.

A sodium chloride molecule consists of a sodium ion and a chlorine
ion. These ions have charges of +e and —e respectively and have a
mutual electrostatic energy of

e
a (s)
where 7 is their distance of separation. This electrostatic energy,
which we shall refer to as the “coulomb energy,” decreases with de-
creasing interatomic distance. If the ions are close together, as they
are in a molecule, the energy of encroachment due to the overlapping
of their closed shells must be considered; this energy increases with
decreasing interatomic distance. The equilibrium distance is the one
that makes the total energy, coulomb plus encroachment, a minimum.
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Closely similar calculations can be carried out for a crystal. One
finds the total coulomb energy of all the ions and the total encroach-
ment energy; and then one finds the lattice constant that makes the
total energy a minimum. The total encroachment energy is easily
found; only atoms which are nearest neighbors in the lattice have
appreciable overlapping with each other and it is therefore a straight-
forward and simple calculation to find the total number of encroach-
ments in the crystal. The coulomb energy is not quite so simply
found, however, because the electrostatic interaction of a given ion
with its nearest neighbors is no more important than its interaction
with its vastly larger number of more distant neighbors. The electro-
static problem is solved as follows: one considers a NaCl lattice which
is perfect except for the absence at one lattice point of a Na* ion; one
finds by known techniques of electrostatics the value at the vacant
lattice point of the electrostatic potential due to the remaining ions;
this potential is negative and has a value

Me  3.4%9

: (6)

TT T4 T a
where a is the lattice constant and M is a numerical constant known
as Madelung's constant, which has a particular value for any special
lattice; for the NaCl lattice, M = 13.94. If now a Na* ion is placed
in the vacant lattice point, its electrostatic energy will be —e¢. Sim-
ilarly the electrostatic potential at a vacant Cl~ lattice point is +¢ and
the electrostatic energy of a Cl~ placed there is —e¢. The total
electrostatic energy per NaCl molecule in the lattice, however, is not
—2e¢ but only —eg; the factor 2 does not occur since otherwise the
electrostatic interaction between each pair of ions would be included
twice.® The total energy per molecule for the crystal.can be found
by combining the coulomb and the encroachment energies, and the
equilibrium lattice constant and binding energy per molecule thence
can be derived.

Using wave functions for Na*+ and Cl- ions obtained by D. R. Har-
tree, who has found solutions of Schroedinger’s equation numerically, the
encroachment energies in NaCl have been evaluated by R. Landshoff."
For the lattice constant and binding energy for NaCl he obtains 5.8 8A
and 165 Kg.-cal./gm. atom while experiment gives 5.63A and 183
Kg.-cal./gm. atom.

Some very important theoretical work of a semi-empirical nature has

18 To see that this is true in a simple case, use the procedure described above to

calculate the electrostatic energy of an isolated NaCl molecule.
¥ Zeits. f. Phys., 102, 201 (1936).
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been carried out for the alkali halides. In it an analytical expression
suggested by theory and containing adjustable constants has been used
for the closed shell repulsions. The adjustable constants have been
determined from certain data and then used for predictions which can
be compared with other data. Using a relatively small number of
adjustable constants, Born and Mayer,?® Mayer and Helmholz,2 and
Huggins and Mayer * have calculated a much larger number of values
for lattice constant and binding energy for many alkali halides with
an agreement with experiment of the order of one per cent.

Let us now consider NaCl using the band picture. We shall reach
the rather surprising conclusion that there is no fundamental differ-
ence between the results obtained from it and those just deduced from
the ionic picture described above.

In Fig. 18 we show qualitatively the behavior of the bands for NaCl.2
In the ionic state, an electron is transferred from the Na 3s to the Cl 3p.
The general shifting of the bands is explained as follows. The wave
functions corresponding to the Cl~ 3p band, like all energy band wave
functions, are distributed over the whole crystal. They are not,
however, equally intense at Na* and at Cl~ ions; instead they are defi-
nitely concentrated about the CI~ ions. The electrostatic potential
at a CI~ ion, due to the remainder of the crystal, has the same value
(6) as was found in discussing the ionic method. Since the charge on
the electron is —e, the energy of each of the states in the Cl— 3p band
varies with a in the same manner as does —e¢. A similar argument
shows that the Na* energy bands vary as +e¢. At a certain lattice
constant, the Cl— 3p and 3s bands and the Na*+ 2p and 2s bands begin
to widen. Since these bands are full, this widening gives the cus-
tomary encroachment energy just as it was obtained in the ionic
picture. The shifting of the bands similarly gives the coulomb energy.
To see this we note that per NaCl molecule there are 18 electrons
in the Cl~ bands where energies vary as —18e¢ and that there is also
one chlorine nucleus with charge +17¢ whose energy varies as +17e¢.
This leaves a net effect of —eg¢ for the Cl-ions. Similarly a net effect
of —e¢ comes from the electrons and nuclei of the Na* ions. As in
the case of the ionic method the sum, —2eg, of these energies really
contains each ionic energy twice and the total electrostatic energy per
NaCl molecule is —e¢. So far as calculating energies is concerned,
the two methods give equivalent results; the advantage, if any, lies

0 Zeils. f. Phys., 75, 1 (1932).

U Zeits. f. Phys., 75, 19 (1932).

2 Jour. Chem. Phys., 1, 643 (1933).
% ], C. Slater and W. Shockley, Phys. Rev., 50, 705 (1936).
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with the ionic method rather than the band method because of the
more immediate physical interpretation of the former.

We may remark that in the discussion of metallic sodium, it was not
necessary to consider the potential energy of the nuclei and the closed
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Fig. 18—Energy bands for sodium chloride versus lattice constant.

o
n =
a

shell electrons as was done in NaCl. This is because sodium metal is
not ionic—although we think of it as consisting in part of Na* ions,
the electrostatic forces between them are suppressed by the shielding
effect of the electron gas. In an ionic crystal, like NaCl, there is no
electron gas and the coulomb energy must be considered in the manner
described above.
Energy Bands for Other Crystals

There are chemical compounds which lie between the homopolar
and ionic types. For example in the sequence of compounds NaF,
MgO, AIN, SiC the compounds are progressively less and less definitely
ionic—the least ionic, SiC or carborundum, being homopolar. Simi-
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larly there are compounds, in particular intermetallic compounds,
which are more like metals than like either ionic crystals or valence
crystals. Thus there is an intermediate field which connects all three
of the simple types of binding. Good computations are lacking for
these intermediate cases; we shall return to a discussion of some aspects
of them in connection with semiconductors in the next paper.

CoNCERNING A CLASSIFICATION OF CRYSTALS

In the last section we saw how the concept of the energy band can
explain the binding energies of a number of different types of crystals.
Although the band theory has the merit of being very general it has
the disadvantage of being at the same time rather abstract. Other
theories have been developed to explain the cohesion of particular types
of crystals; and, while lacking the generality of the band theory, they
have the advantage of a more immediate physical interpretation in
their own particular fields. In this section we shall digress from the
exposition of the band theory in order to describe briefly some of the
simpler viewpoints of the other theories.

We have discussed in the last section three types of binding. Sodium
exemplified the metallic type; diamond, the homopolar or valence type;
and sodium chloride, the ionic type. The distinction between the
valence bond and the metallic bond is not very clearly indicated in the
band theory; the only difference there had to do with the degree of
filling of the bands. There is another difference, however, which has
been long familiar to chemists. The homopolar compounds are usually
characterized by ‘‘directed valence.” Thus the ‘‘tetrahedral carbon
atom' is a familiar concept of organic chemistry. In crystals in
which homopolar binding is dominant the atoms are arranged so that
each atom has the proper valence bonds with its neighbors. In dia-
mond each carbon atom is tetrahedrally surrounded by four other
carbon atoms. In silicon carbide, carborundum, a similar situation
prevails: each carbon is tetrahedrally surrounded by four silicons and
vice versa. These crystals are said to have a “‘coordination number”
of four, or z=4, meaning that each atom has four nearest neighbors. In
crystals of the divalent elements—sulphur, selenium and tellurium—
each atom has two near neighbors and the valence condition is satis-
fied; these crystals have a coordination number of two. The mono-
valent halogens form crystals in which each atom has one near neigh-
bor, coordination number one. In the metals, however, the neighbors
of a given atom are as many as eight or twelve—do these large coordi-
nation numbers imply that the metals have eight or twelve electron
pair bonds with their neighbors?
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According to the quantum mechanical theory of valence, which in
itself forms a theory with as many ramifications as the band theory,
the electron configuration 1s5225224% of carbon is especially suited for
forming ‘““electron pair bonds” with other atoms. In forming these
bonds the wave functions from one atom and another become dis-
torted so as to overlap and form a high electron concentration along
the line between the atoms; the energy levels being incompletely filled
for the atoms, this overlapping does not produce a repulsion but in-
stead a binding together like that produced by the overlapping wave
function in Fig. 96 in the hydrogen molecule. The carbon atom is
capable of forming four such bonds and forming them most effectively
along four lines, making the tetrahedral angles with each other.

Recently Brill#* and his collaborators using x-ray analysis have
determined -the electron concentration in diamond, in which the car-
bon atoms are arranged in a tetrahedral manner. The results of their
investigations are shown in Fig. 19A.2® It is easily seen that the
electrons are concentrated in the bonding directions forming homopolar
bonds between the atoms.

The energy band theory, we have said, does not give the clearest
picture of the valence crystals; it is, however, especially suited to
treatments of the metallic bond. According to the band theory the
valence electrons constitute an electron gas—that is, instead of forming
electron pair bonds with localized overlapping of the wave functions,
they form instead a more or less uniform region of negative charge.
In this negative charge the positive ions float. Since the ions repel
each other they tend to arrange themselves so as to use their space to
best advantage and this requires that they take up one of the *close-
packed" arrangements. Let us see why this is true. The close-
packed arrangements are those obtained by trying to pack rigid
spheres as compactly together as possible. For these arrangements
then, the volume per sphere is less than for other arrangements; that
is, the close-packed arrangements are the ones which give a minimum
volume per sphere for a prescribed value for the distance between
sphere centers. Conversely, the close-packed arrangements must be
the ones which give a maximum value for the distance between neigh-
boring sphere centers for a given value of the volume per sphere.
Since the energy of motion, E, of the electron gas and, although we
have not shown why, the energy Eo, depend for a metal mainly upon
the volume, in metals we are interested in cases where the volume per

24 R, Brill, H. G. Grimm, C. Hermann and Cl. Peters, Ann. d. Physik, 34,393 (1939).

25 The writer is indebted to Professor Grimm for his permission to reproduce Fig.
19 from his article: Naturwissenschaften 27, 1 (1939).
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atom is closely prescribed. For a given volume per atom, as we have
seen above, the close-packed arrangements are the ones which give
the largest separation between neighboring positive ions; and since the
positive ions repel each other, the close-packed arrangements will
give the lowest energies. This accounts for the fact that the custom-

Fig. 19—Electron charge densities in crystals. The numerical values give the
number of electrons per atom in the space corresponding to each intensity of shading.

(A) In diamond.
(B) In magnesium.
(C) In sodium chloride.

ary metallic lattices are the body-centered cubic lattice, the face-
centered cubic, and the close-packed hexagonal. A further discussion
of this physical picture of the nature of the metallic state will be given
in the third paper of this series. In Fig. 19B we show qualitatively
the electron density of metallic Mg according to Grimm.?® It is seen
that the valence electrons give a uniform negative charge in which
the positive ions are embedded.

We have seen in the preceding section that the band theory of the
alkali halides is essentially equivalent to the ionic theory. A large
fund of evidence attests to the validity of the ionic theory, one item
being the electron concentrations determined for sodium chloride by
Brill 2 and his collaborators. These are represented in Fig. 19C; we

% Loc. cit.
4 Loc. cit.
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see that the electrons are closely held about the ions with very little
overlapping of the closed shells.

In addition to the metallic, homopolar, and ionic bonds, there is still
another interatomic force known as the Van der Waals force—a very
weak force compared to the other three. We shall not discuss its
origin here except to say that it arises from the spontaneous and
mutual polarization of two atoms or molecules when in the neighbor-
hood of each other. It is responsible for the “a" term in the Van der
Waals equation for gases. When a crystal is formed from organic
molecules, such as a crystal of benzene, the forces holding them to-
gether are the weak Van der Waals forces. This is the reason why
“molecular crystals” have low melting points and binding energies.
Although the Van der Waals forces are much smaller than the other
three, they are not entirely negligible in comparison and in some of the
calculations referred to in the last section, their effects are included.

It is interesting to note that in a single crystal of a given chemical
compound, several of the various forces may be operative at once in a
rather separable way. A classification of this sort for crystals has been
discussed by Grimm.?® For example the crystal mica, which cleaves so
naturally into sheets, consists of planes of atoms bound together chiefly
by valence forces, the binding between the planes being due to ions
lying between and in the planes. Thus mica is held together in two
directions by strong valence forces and in the other by weaker ionic
forces. In asbestos the atoms are arranged in parallel rows, being held
together in the rows by valence forces; the rows, on the other hand, are
held to each other by ionic forces. The ionic bonds are more easily
broken and asbestos crystals exhibit a typical fibrous structure. Mica
and asbestos are intermediate members of a sequence of which diamond
with all valence binding and sodium chloride with all ionic binding
constitute the extremes. We shall give one more example: cellulose
consists of long chains of carbon, oxygen and hydrogen, the chains
held to each other by Van der Waals forces; it is an example of valence
binding in one direction and Van der Waals binding in the other two.

This section has been a digression, as the main purpose of these
papers is to illustrate the band theory of solids. It would hardly be
fair to concentrate on this, however, without pointing out, as has
been done in this section, that, although the band theory has great
generality, it is best adapted for a certain class of solids and that other
viewpoints are more natural for solids outside of this class.

2 Naturwissenschaften, 27, 1 (1939).
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THERMAL PROPERTIES OF CRYSTALS

In this section, as in the last, we shall digress from a straightforward
exposition of the theory of energy bands and discuss the theories of
specific heat and thermal expansion. These theories are well worth
discussing on their own merits and furthermore their results and
methods can be applied later to other topics. Thus the thermal vibra-
tions that account for the specific heat will be shown in the second
paper of this series to account for the resistance of metals. The dis-
cussion of thermal expansion given here will in the next section on
magnetism be extended to an explanation of the unusual expansion
properties of magnetic materials, in particular to an explanation of
the very small expansion of invar. We shall, however, make use of
the band theory once in this section by showing why the free electrons
in a metal do not normally make an appreciable contribution to the
specific heat.

In the introduction to this paper we pointed out that the specific
heat per gram atom of a solid should be by classical theory 3R—
coming half from the kinetic energy and half from the potential energy
of the atoms. This prediction is in reasonable agreement with ex-
periment for many crystals at high temperatures. As the temperature
is lowered, however, the observed specific heat decreases in such a way
as to approach zero when the absolute zero of temperature is ap-
proached. This decrease in the specific heat at low temperatures, as
well as the value 3R at high temperatures, is readily explained by
quantum mechanics. In order to understand the explanation we must
inquire into the atomic vibrations of a crystal.

In considering atomic vibrations we are really concerned with the
motions of the nuclei. The electrons act as a cement to hold the nuclei
in their equilibrium positions and exert restoring forces on them when
they are displaced. (We shall see below why the electrons do not par-
take of the thermal energy.) The nuclei are effectively mass points in
this theory and for quantum mechanical reasons, which we shall not
discuss, they are incapable of acquiring thermal energy of rotation;
hence so far as the crystal vibrations are concerned, we need consider
only their translational or rectilinear motions, A crystal containing
N atoms has 3N degrees of freedom since each nucleus can move
in three dimensions. In order to find the specific heat of a crystal
we must find the normal modes of vibration. The system of coupled
oscillators in Fig. 11 represents reasonably well the normal modes
of vibration for a one dimensional crystal whose atoms have only
one degree of freedom. There is a similar set of normal modes for
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a three dimensional array of atoms and, once the forces between the
atoms are known, the frequency of vibration of each of the modes can
be found. This means that so far as thermal vibrations are concerned,
we can consider the crystal as equivalent to a set of 3NV oscillators
whose frequencies are those of the normal modes. We must next dis-
cuss the specific heat of a single oscillator.

According to classical statistical mechanics, a harmonic oscillator
in a temperature bath at absolute temperature " will have an average
thermal energy equal to kT, where k is Boltzmann’s constant. The
value k7T is only an average value, we emphasize, and the oscillator
will have other energies some of the time, the probability of each
energy being given by known equations. The probability is very
small, however, that the oscillator acquires more than two or three
times kT of thermal energy. In a very large system of oscillators,
the fluctuations of energy of the oscillators tend to cancel out and the
probability of any appreciable fractional deviation of the total energy
from its mean value is very small. If N is the number of mole-
cules in a gram molecule (N = 6.06 X 10%), then Nk = R, the gas
constant, = 1.99 cal. per gm. molecule per degree C. Hence the
energy of 3N oscillators is E = 3NkT = 3RT and the specific heat is
C = dE/dT = 3R; this classical result that the specific heat of one
gram atom of solid is 3R is known as the DuLong-Petit Law.

According to quantum mechanics, an oscillator of frequency » has a
set of quantum states whose energies are Y5k, (1 + 12)hv, (2 + Y5 )h,
etc. The oscillator can take on only these energies. If it isin a heat
bath of temperature T, however, it will sometimes have one allowed
energy and sometimes another and as for the classical case we shall
be concerned with its average energy. At absolute zero, the average
energy is, of course, %4hv. Now the probability of the oscillator gain-
ing much more than kT of thermal energy is very slight. Hence the
average energy of the oscillator remains at 2hv until thermal energy
becomes large enough to excite it to the next state which is h» higher,
and consequently so long as kT is much less than hv the quantum
oscillator acquires much less thermal energy than would a classical
oscillator. For kT much greater than kv, the oscillator will spend an
appreciable fraction of its time in many of the quantum states and,
as may be shown mathematically, the quantum restriction is no longer
of importance so far as the average energy is concerned and the value
kT is obtained just as in the classical case. In Fig. 20 the dependence
upon temperature of the average energy and the specific heat for a
quantum oscillator are shown.
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The specific heat of the crystal is just the sum of the specific heats
of its oscillators. Since the oscillators have different frequencies they
have different specific heats and in order to add up the specific heats of
all of them it is necessary to know how the various frequencies of the
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Fig. 20—Thermal behavior of an oscillator according to quantum mechanics.

(a) Energy versus temperature.

(b) Specific heat versus temperature.
oscillators are distributed. Once this distribution in frequencies is
known it is merely a matter of summation to find total specific heat.
The problem of finding the distribution in frequency of the oscillators
was first solved by Debye. The low-frequency vibrations are very
simply found for they are merely the acoustic vibrations of the crystal;
they are very similar to the normal modes shown for the square mem-
brane of Fig. 7g. For these low-frequency vibrations it can be shown
by a straightforward argument, which is too long to give here, that
the number dV of oscillators whose frequencies lie between »and » + dv

is
2

N = Vir (C_TS + 515) Vi, %
where Cr and C. are the velocities of transverse and longitudinal
waves in the solid and V is its volume.?® Debye assumed that this
distribution held for all the normal modes. There is of course a highest
frequency of vibration, vmax, and the total number of normal modes
must be 3V; hence Debye concluded that

- 2 1.
3N_fo V4W{E;§+C—f}‘v2dv

=V4,,{_2-+_1_}""&x (8)
Ci* " Ci2) 3 °
% For a derivation see P. Debye, Ann. d. Physik, 39, 789 (1912).



696 BELL SYSTEM TECHNICAL JOURNAL

From this equation v can be found if N/V and the velocities Cr
and Cp are known. Knowing vmax and the distribution in frequency,
Debye summed the specific heats of all the oscillators and obtained
the specific heat of the solid. According to this theory the specific
heat vanishes at T = 0 and is proportional to 7% near T = 0. At high
temperatures it approaches the classical value of 3R. A measure of
the temperature at which the classical value is closely approached is
given by the maximum frequency of atomic vibration vmax; when kT is
greater than hvmes, all the modes of vibration including the highest
malke substantial contributions to the specific heat. The temperature
at which this occurs is known as the Debye temperature and denoted
by the symbol 6p; obviously 6p = hvmex/k. The specific heat given
by Debye's equation is a function of T'/fp only and can thus be rep-
resented by the expression C(T/0p); so that by this theory all crystals
should have the same curve for specific heat versus temperature except
for changes in the temperature scale corresponding to the different
values of their Debye temperatures.

TABLE 111
DEBYE TEMPERATURES IN DEGREES KELVIN Usep IN FIGURE 21

Pb Tl H ] Cd Na KBr
88 96 9% 106 168 172 177
Ag Ca KCl1 Zn NaCl Cu Al
215 226 230 235 281 315 398
Fe CaF, FeS. C

453 474 645 1860

In Fig. 21 is shown a compilation of specific heat data.” For each
substance a value of dp (given in Table III) has been chosen so as to
obtain the best agreement with experiment and the values of the specific
heat have then been plotted-as a function of T'/6p. The Debye theory
* relates to specific heat at constant volume and in it no allowance is
made for the energy due to thermal expansion. The experimental
points are derived from measurements of specific heat at constant
pressure which have been transformed by using a thermodynamical
relationship so as to give specific heat at constant volume.

For these curves 8p was chosen so as to obtain the best fit. It is,
however, possible to calculate fp from theory by using the elastic
constants of the material to evaluate Cr and Cr and then substituting
in Eq. (8). For sodium the elastic constants have been calculated
entirely from theory by the methods described in the section on

27 Taken from E. Schroedinger, Handbuch der Physik, Vol. X, p. 307 (1926).
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“Electrons in Crystals’ and extensiors of them * to be discussed in the
third paper of the series. Using the theoretical values one obtains
a value of 143° K for 6p, whereas the value that fits experiment best
is 172° K.

Recently calculations have been made from a model of the crystal
as an assemblage of atoms rather than as a continuum as postulated
in deriving Eq. (7)—that is, a model like the coupled oscillators, rather
than like the stretched membrane, is used. These calculations, prin-
cipally by Blackman, have explained some discrepancies between the
Debye theory and experiment.

The Specific Heat of the Electrons

We must now see why the electrons contribute only slightly to the
specific heat. Let us consider a case like that of sodium where we have
a partially filled band. At the absolute zero of temperature, the elec-
trons will fill all the levels below a certain energy E; and all the higher
levels in the band will be empty (Fig. 22¢). Now at temperature T'
some of the electrons will be excited to higher states; since, however, an
electron cannot gain more than about kT of energy thermally, only
those electrons whose energies lie in a range kT below E; can be excited.
Electrons occupying states farther down in the band cannot acquire
ET of thermal energy for, if they did so, they would have to move to
states already occupied and such an act is forbidden by Pauli's prin-
ciple. In order to demonstrate what a small fraction of the electrons
can gain energy thermally, we point out that the width of the energy
band is usually 4 or 5 ev while the value of kT in electron volts is
T/11,600 and room temperature corresponds to a kT of about .03 ev.
The electrons which do gain thermal energy have a normal value for
the specific heat but constitute only about one per cent of all the
valence electrons.

It might be maintained that the above argument is specious and
that the electrons could all gain energy %T; this would not violate
Pauli’s principle because the electrons would move upward in the
band as a unit, each moving into a state vacated by another elec-
tron. This contention is found to be wrong; one finds by using the
statistical mechanics appropriate to electrons that the distribution of
the electrons among the energy levels is given by the Fermi-Dirac
distribution function.?® According to this, the distribution of the elec-
trons among the levels would be as indicated in Fig. 225. The proba-

* K. Fuchs, Proc. Roy. Soc. 157, 444 (1936).

2 For a discussion of the Fermi-Dirac statistics see K. K. Darrow, The Bell System
Teg}(z)nilcglz éfaumal, Vol. VIII, p. 672, 1929, or The Physical Review Supplement, Vol. I,
p. U, .
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bility that any particular energy state be occupied is given by the
Fermi-Dirac factor f

f=5=" (9)

e *r — 1

This factor is shown in Fig. 22¢ and the corresponding filling of energy
levels is shown schematically in 22b. A physical picture which is
helpful in understanding this result may be obtained by considering the
distribution of energy levels, Fig. 22a, to be the cross-section of a
trough or tank. If we pour water into this tank it will fill to a certain
level, E;. If we let each molecule of water in the tank represent an
electron in the crystal, then the distribution in energy of the electrons
is correctly represented by the distribution in height of the molecules.
Thermal agitation is represented by shaking the tank; this will produce
surface ripples as in Fig. 22d which represent crudely the Fermi-Dirac
distribution.
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Fig. 23—Specific heat of iron at low temperature.

Under certain conditions, however, the electronic specific heat is not
negligible. We have seen that the number of electrons participating in
specific heat is proportional to 2T and that these have a more or less
normal specific heat. Hence the electronic specific heat is proportional
to T. On the other hand, at low temperatures the Debye specific heat
is proportional to 7% Hence for sufficiently low temperatures the
electronic specific heat is the larger. In Fig. 23 we give the specific
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heat of iron near absolute zero.?? The theoretical curve ¢, which is
seen to represent the experimental data quite well, is the sum of two
terms represented by curves @ and b. @ is linear in the temperature
and represents the electronic specific heat while  is cubic and repre-
sents that due to lattice-vibrations. Numerical calculations from
theory of the slope of curve ¢ which could be compared with the
observed slope are not available. Curve b, we have said, is just the
Debye curve and is drawn as if the Debye temperature were 462°,
a value which is in good agreement with 453°, the value deduced from
the specific heat at higher temperatures in connection with Fig. 21.
At very high temperatures the electronic specific heat will again be
of importance. But at high temperatures it is necessary to apply
corrections to the Debye theory and the writer is not acquainted with
any unambiguous evidence for electronic specific heat in that case.

Thus we see that only a very small fraction of the electrons of a
partially filled band contribute to the specific heat. It is the Pauli
principle which restrains the remainder. We shall see in the next
paper why the Pauli principle does not interfere with the conduction
of electricity. For the case of an insulator—that is, a crystal each
of whose bands is either wholly filled or wholly empty—it is still harder
for electrons to arrive at empty states and the electronic specific heat
is quite negligible. Hence all of the specific heat for an inslulator is of
the atomic vibration type discussed in the Debye theory.

The Theory of Thermal Expansion

In order to understand the theory of thermal expansion we must
study the curve representing energy versus lattice constant for the
solid. This is shown qualitatively in Fig. 24. We note that the
energy curve is unsymmetrical about its minimum. We may describe
its behavior by saying that it is harder to compress than to expand the
solid. This statement is illustrated by a comparison of the expansion
and the compression which can be produced by a given energy E; it is
seen that the asymmetry of the curve causes the expansion produced
by this energy to be greater than the compression. Now the origin of
thermal expansion is as follows: owing to thermal agitation—that is,
atomic vibrations—regions of the crystal are alternately expanding and
contracting; since the expansions occur more readily than the con-
tractions, there is on the average a net expansion. The greater the
temperature the greater this net expansion; hence we find that the size
of the solid increases with increasing temperature. This explanation
of thermal expansion can be made clearer by considering, not a solid,

2 W. H. Keesom and B. Kurrelmyer, Physica 6, 633 (1939).
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but a diatomic molecule. Suppose Fig. 24 gives the dependence of
the energy of a molecule upon the internuclear distance. Suppose the
molecule is given vibrational energy corresponding to E on the figure.

INCREASE OF
LATTICE CONSTANT,

OF EXPANSION g EXPANSION

o
\

ENERGY

m m

COEFFICIENT

!
. 6p

LATTICE CONSTANT TEMPERATURE
Fig. 24—The theory of thermal expansion. The asymmetry of the curve for

the energy of a crystal versus the lattice constant is responsible for the thermal
expansion.

Then the nuclei will vibrate between positions b and ¢ on the figure.
Since ¢ lies more to the right of the equilibrium position than b does to
the left, the mean distance of separation, a, lies to the right of ao.
Increasing the vibrational energy to E’ increases the mean separation
toa’. This shows that the asymmetry of the potential curve results in
a continuous increase in mean internuclear separation with increasing
energy of vibration. A crystal is, in a sense, an assemblage of diatomic
molecules, each pair of nearest neighbors having a potential energy
curve like that of Fig. 24, and its expansion is explained in the same
way.

The theory outlined above can be made quantitative. From it we
obtain the interesting result that the thermal expansion coefficient is
proportional to the specific heat. This is a rather natural result:
we have seen that the total expansion is proportional to the thermal
energy; hence the rate of expansion with increasing temperature, i.e.
the thermal expansion coefficient, should be proportional to the rate of
increase in thermal energy with increasing temperature, i.e. to the
specific heat. The relationship embodying this statement is known
as Griineisen’s law and is expressed by the equation

a=r50, (10)

where a is the volume coefficient of thermal expansion (three times the
linear coefficient), K is the compressibility, V the volume of one gram
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atom, and Cy the specific heat per gram atom at constant volume. 1« is
a parameter which measures the asymmetry of the curve and is defined
as follows: if we think of the solid as being compressed by an external
pressure, the forces between the atoms will change and the Debye
temperature will increase. If the curve were a parabola—that is,
perfectly symmetrical—the Debye temperature would not change.
v is defined by the relationship
dln 313
VS T mv (1)

The v, K, and V are nearly constant for a given substance. Hence the
thermal expansion curve is practically the same as the specific heat
curve except for a constant factor. In Fig. 25 we give the thermal
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Fig. 25—Coefficient of thermal expansion versus temperature for copper.

expansion of copper.® The Debye temperature was chosen to give the
best fit. We see that the theory of thermal expansion gives as good
agreement with experiment as does the theory of specific heat. If
Griineisen's law were perfectly satisfied, the same Debye temperature
would be found for both the thermal expansion and the specific heat
curves. The relatively small difference between the two values, 325
for expansion and 315 for specific heat, is a measure of the validity of
Griineisen’s law.
0 E. Griineisen, Handbuch der Physik, X, p. 43 (1926).
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Griineisen’s law applies only to simple crystals; we shall see in the
next section that it is not applicable to the anomalous expansion asso-
ciated with ferromagnetic transformations nor is it applicable to the
abnormal expansions of the order-disorder transformations in alloys.

MacGNETIC EFFECTS

In this section we return to a discussion of the energy band theory
and this time introduce the magnetic moment associated with the spin
of the electron. It is the spin magnetic moment which when added
to the concept of energy bands leads to explanations of para and
ferromagnetism.

When a body is placed in a magnetic field it becomes magnetized;
in other words it acquires a magnetic moment. Ferromagnetic ma-
terials become very easily magnetized in the field with their magnetic
moments parallel to the field and they may remain magnetized after
the field is removed. Paramagnetic materials are also magnetized in
the direction of the field but only very weakly compared to ferro-
magnetic materials and only while they remain in the field. Diamag-
netic materials are magnetized in a direction opposite to the field and,
like paramagnetic substances, only weakly and while in the field.
These magnetic effects are produced by the electrons in two distinct
ways. In the first place, the motion of the electron as a whole pro-
duces a current and this current, like the ordinary macroscopic currents
in a wire, produces a magnetic field. Conversely, an externally ap-
plied magnetic field affects the motions of the electrons in a body and
can thereby magnetize it; this process accounts for the diamagnetism
of diamagnetic bodies but it may contribute to the paramagnetism as
well. It is not with this first way in which electrons can behave mag-
netically but rather with the second way, described below, that we
shall be concerned. The first way, which is mentioned for complete-
ness, involves a theory too complicated for treatment in this article.
In the second place, an electron can behave magnetically by virtue
of its spin: the rotation of the electron about its own axis produces
a magnetic moment which is anti-parallel—because the charge of
the electron is negative—to the angular momentum due to the spin.
A magnetic field tends to align the spin magnetic moments of the elec-
trons and to make them contribute to the paramagnetism. We shall
see below that this process accounts for the paramagnetism of non-
ferromagnetic metals. We shall see also that the magnetism of ferro-
magnetic bodies is due to the magnetic moment of the electron spin
but that the energy involved in the theory of ferromagnetism is not
an interaction between the magnetic dipoles of the electrons but is
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instead an electrostatic exchange energy like that discussed for atoms
in connection with Figs. 4 and 6.

Paramagnetism and Diamagnetism

Let us consider first the so-called ‘“weak spin paramagnetism.”
This occurs in metals, since they have partially filled bands. In the
presence of a magnetic field the spin of the electron is quantized so that
the component of its angular momentum in the field direction is either
+14h or — Y4 where i = h/27 (b = Planck’s constant) is the quan-
tum mechanical unit of angular momentum. The corresponding com-
ponents of magnetic moment along the field are —uz and +ug where
ug is the quantum mechanical unit of magnetic moment known as the
Bohr magneton. Letting —e be the charge and m the mass of the
electron and ¢ be the speed of light, we have from the quantum theory

ug = eh/2me. (12)

The ratio of mechanical moment (i.e. angular momentum) to magnetic
moment, taken without regard to sign, is called the ‘‘gyro-magnetic
ratio.” For the spin of the electron its value is mc/e, but for the motion
of the electron as a whole, its value is 2mc/e. Because of the difference
between these two values, experimental measurements of the gyro-
magnetic effect play a decisive role in the experimental verification of
the electron spin theory of ferromagnetism in a way which we shall
describe below. ' ,

Half the quantum states in an energy band of a crystal have angular
momentum components along the magnetic field of 14#% and the other
half of —14%. In Fig. 26a, we have divided the states in the band into
two groups, corresponding to the two spins. We shall refer to one of
these as ‘“the band with plus spin’’ and to the other as ‘' the band with
minus spin.”” When a magnetic field is applied, the energies of the
electrons are changed. Thus if an electron in the lowest state of the
band with minus spin has an energy E, before the field is applied, it
has an energy of E, — ugH afterwards; the second term represents,
of course, the energy of the magnetic dipole us when parallel, as dis-
tinguished from anti-parallel, to the field—the situation for minus
spin. All the states in the band with minus spin will be thus altered in
energy. Similarly all the states in the band with plus spin are dis-
placed upwards in energy by ugH. This is the situation represented in
Fig. 26b. After the displacement we find that some of the electrons
in the band with plus spin have higher energies than empty states in
the band with minus spin; such an arrangement is not stable and the
electrons will change their quantum states so as to produce the lowest
energy possible consistent with the distribution of energy levels shown
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in Fig. 260 and with Pauli’s principle. The arrangement of lowest
energy is shown in Fig. 26¢; electrons have shifted from the band of
plus spin to states of lower total energy in the band of minus spin until
the two bands are filled to the same energy level, indicated by the
solid horizontal line. As the figure shows, the number of electrons
shifted will be the number lying in the energy range 6E = pgH.*

(a) (b) (c)

=5SPIN + SPIN = SPIN + SPIN - SPIN + SPIN

Line)
\ e [ W o

E

ENERGY

EG+|..L|.3H

EO_P-[AH
i

“"%N(E) 00 El.N(E)-—-
NUMBER OF QUANTUM STATES AND ELECTRONS PER UNIT ENERGY
Fig. 26—The paramagnetism of free electrons.

(a) Distribution of electrons in energy.
(b) Displacement of levels by a magnetic field.
(c) Distribution of electrons in energy in a magnetic field.

The number of states, 8N, lying in this energy range in the band of
plus spin, which contains of course half the states in the band, is ac-

cording to equation (3)

8N = WYN(E,)SE = YoN(E)upH. (13)
The magnetic moment of these states is

SMy = — pgdN = — YN(E))us"H. (14)

The minus sign occurs because the angular momentum and the mag-
netic moment of an electron are in opposite directions; the states of
plus spin have minus moments in Fig. 26.

The electrons that occupied these states before the field was applied
now occupy states with minus spin and produce a magnetic moment of

SM_ = VN(Ey)ugH. (15)

Hence the minus band gains a plus moment and the plus band loses a

3 We have here assumed that the fractional change in N(E) in the interval ugH
is negligible; this assumption is reasonable. For a field of 10,000 gauss, usH is only
5.77 X 10~ ev while E; — Ey is of the order of several ev.
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minus moment and, since the net moment of Fig. 26a is obviously
zero, the net moment produced by the magnetic field is

oM = dM_ — §M,. = N(E,)us*H. (16)

The susceptibility of a material, denoted by ¥, is defined as the mag-
netic moment produced per unit volume per unit field:

ﬂ_/f_ N(E,)
e 7 A A

2, (17)

The subscript ‘‘s" is a reminder that this susceptibility was produced
by the spin magnetic moment of the electron.

Since the moment produced is in the direction of the field, x, is
positive; the susceptibility is of the paramagnetic type. As for its
magnitude: in the monovalent metals, as we have said before, the
distribution of levels in the bands is well approximated by the free
electron formula (4). Using this, we find

Xe = 28 QMY Erpae) s (18)

where Epux (= E; — E,) is the maximum kinetic energy in the band.
Before comparing susceptibilities calculated from this expression
with experimental values, we must discuss diamagnetism. The elec-
trons in the partially filled band of Fig. 26 give formula (18) because of
their spin magnetic moments. They give a susceptibility also because
of their motion through the crystal. For the case of free electrons,
this susceptibility is negative—that is, it is a diamagnetic susceptibility,
and, according to a theory we cannot discuss here, in magnitude it is
one third of x.. Denoting it by x. (‘““m" for motion of the electron

as a whole), we have
xm = — (1/3)xs (19)

The electrons in the filled bands, corresponding to electrons in closed
shells in the ionic cores of the metal, also give rise to diamagnetism.
They can give no spin paramagnetism because there is no possibility of
transferring electrons from a filled band of one spin to a filled band of
the other spin—this would require putting more electrons in the band
of one spin than it has quantum states, a violation of Pauli's principle.
Denoting by x: the susceptibility of the ionic cores of the metal, we
have for the net susceptibility x the equation

X = Xs + xXn + x:- (20)

Specializing this for the case of free electrons in the valence electron
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band gives
8w [ 2m \¥?
x= @+ x =5 (B B £ x 0D
In Table IV we give theoretical and experimental values for the sus-
ceptibilities of the simple metals. The values of x; are obtained from
theory for lithium and by experiment for the other metals.

TABLE IV
MAGNETIC SUSCEPTIBILITIES *
Li | Na ’ K ' Rb | Cs
o oooenmae s 1.5 0.68 0.60 0.32 0.24
i «e v nnaaaa s —0.1 —0.26 —0.34 —0.33 —0.29
x=%xtx. ... ... 0.9 0.2 0.06 —0.12 —0.15
xobservedt........... 0.5 0.51 0.40 0.07 —0.10

* This Table is taken from N. F. Mott and H. Jones, ‘“The Theory of the Proper-

ties of Metals and Alloys," Oxford 1936, p. 188.
+ K. Honda, Ann. d. Physik 32, 1027 (1910) and M. Owen, Ann. d. Physik 37, 657

(1912).

Although equation (17) for the spin susceptibility x, in terms of
N(E,) is generally true, the relationship that xm = — x./3 is true
only for the case when N(E) is the free electron distribution.®® For
some metals N(E) differs greatly from that for free electrons and then
larger values of x» may occur. The high diamagnetism of bismuth is
explained in this way. In the next paper, we shall discuss the mean-
ing of the freeness of electrons; however, a discussion of electron
diamagnetism lies beyond the scope of this paper.*

Ferromagnetism

The shift of electrons from one band to another for the paramagnetic
behavior shown in Fig. 26 persists only so long as the magnetic field
is applied. When the magnetic field is removed, the stable arrange-
ment is as shown in Fig. 26a, equal numbers of electrons having each
spin. The situation is quite different in ferromagnetic materials and,
for reasons discussed below, in the stable arrangement there are many
more electrons of one spin than of the other.

Two things are important for the occurrence of ferromagnetism:
the exchange effect as illustrated in Figs. 4 and 6 and the structure of
the bands arising from the 3d levels. The 3d levels, as is shown in

2 Ap even more stringent condition is actually required.

88 For the diamagnetism of electrons in closed shells the reader is referred to K. K.
Darrow’s article, “ The Theory of Magnetism,” Bell System Techwical Journal, Vol.
XV, 1936, and in particular to Page 247.
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Fig. 6, are only partially filled for free atoms of the ferromagnetic
elements iron, cobalt, and nickel. We shall show first how the par-
tially filled 3d bands together with exchange forces can produce ferro-
magnetism and later discuss the theory of why only the last three of
the eight transition elements are ferromagnetic.

The splitting of the atomic energy levels into bands is shown in
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Fig. 27—Distribution of states in energy for copper. The distribution is prob-
ably quite similar for iron, cobalt, and nickel and in the absence of calculations for
these other metals, this figure will be used for them. The total number of quantum
states per atom in the 4s and 3d bands having energies less than the ordinates of the
dashed lines are given by the corresponding integers.
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Fig. 16. The 3d levels give a band capable of containing ten electrons
per atom, five with each spin; and the 4s band can hold two electrons
per atom, one with each spin. Curves representing N(E) for these
bands, calculated for the case of copper by Slater and Krutter, are
shown in Fig. 27. We see that the 4s band is much wider in energy
than the 3d and that it contains only one-fifth as many electronic states.
The band structure will be similar for all the transition elements; the
energy scales, however, will be different. As is shown in Fig. 6 the 3d
electrons are more tightly bound for copper than for nickel or chro-
mium. Corresponding to this tighter binding, the 3d wave functions
of copper extend less in space than those of nickel and chromium and
consequently they overlap less between atoms and the 3d band is
narrower for copper. Progressing towards decreasing atomic number
in the sequence of elements from copper to scandium, the 3d band will
continually widen; and this widening, as we shall see later, can help
account for the absence of ferromagnetism for the elements before

iron in the periodic table.
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Fig. 28—The ferromagnetism of nickel.

In Fig. 28, we give a simplified representation of the 4s and 3d bands
split into two sets according to the spin. (We may, if we wish, sup-
pose that a magnetic field is applied along which the spin is quantized,
but that the field is so weak that the displacement of the energy bands
produced by it is negligible; this supposition is not necessary, however,
for regarding the spin we shall need only the fact that all the electrons
in the + spin band have parallel spins which are anti-parallel to those
in the — spin band.) For the element nickel there are 28 electrons, 10
of which are in the 3d and 4s bands. They can fill the bands as indi-
cated in Fig. 28a. Let us compare this distribution with the electron




THE QUANTUM PHYSICS OF SOLIDS 711

configuration of the atom, Fig. 6; we see there that there are unequal
numbers of electrons of the two spins. This inequality is produced by
the exchange effect which lowers the more occupied set of 3d levels in
respect to the less occupied set and produces a stable arrangement with
the 3d levels of one set completely filled. This exchange effect oper-
ates in the same way in metallic nickel. In Fig. 280 we show the
distribution which results when electrons are shifted from the 3d band
of plus spin to that of minus spin until the latter is filled. The ex-
change effect produces the displacements of the bands as shown. The
arrangement in Fig. 28b is stable; in order for electrons to be trans-
ferred from the filled minus 3d band to the plus band, they would
have to increase their energy, a fact which is expressed by drawing
the diagram so that the lowest vacant quantum states are appreciably
above the highest energy state of the filled 3d band. Thus for nickel
an unbalanced distribution of spins prevails both for the free atom
and the metal.

The Energy of Magnetization

The argument presented above for the stability of the magnetized
state shown in Fig. 280 is not really rigorous. We saw that if one
electron was transferred from the filled 34 band to one of the vacant
states, its energy and, therefore, the energy of the crystal would be
raised. In other words, the magnetized state has less energy than a
state which is slightly less magnetized. This fact in itself does not
prove that the magnetized state is stable; it proves only that it is
metastable—i.e., that its energy is less than the energy of other states
which differ from it slightly; in order to establish the stability of the
magnetized state, it is necessary to prove that its energy is less than
the energy of any other state including that of the unmagnetized state
shown in Fig. 28a. We may illustrate this necessity by considering
the following hypothetical behavior: as the magnetization is reduced
from that of Fig. 28b to zero (the value for Fig. 28a), the energy might
at first increase and then decrease—decreasing so much finally that
the energy would be lower for the unmagnetized than for the fully
magnetized state, We shall, therefore, discuss the difference in energy
between the fully magnetized and unmagnetized states; theory shows
that this quantity is the fundamental one whose value determines
whether or not ferromagnetism occurs.

Let us consider the change in energy in going from the unmagnetized
state to the magnetized state in Fig. 28. This change in energy can be
separated into two contributions, one positive and one negative. The
positive contribution comes from an increase in ‘“Fermi energy’ or
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“energy of motion,” which was discussed in connection with the bind-
ing energy of metals. This energy is positive because after the shift
to the magnetized state, electrons have moved from states in the band
of plus spin to states which lie higher—in respect to the bottom of the
bands in both cases—in the band of the minus spin; that is, the elec-
trons which have moved from one band to the other have all gained
“energy of motion.” The negative contribution to the energy comes
from the exchange effect. This causes the lowering of the filled band
and the raising of the unfilled band; since there are more electrons in
the lowered band than in the raised band, there is a net decrease in
energy due to this exchange effect. Thus we have a positive change in
Fermi energy and a negative change in exchange energy in going from
the unmagnetized to the magnetized state. If the exchange energy
has a greater change than the Fermi energy, the energy of the mag-
netized state is lower and the metal is ferromagnetic.

No satisfactory calculations have as yet been made for these energy
differences. In order to calculate them, accurate values for the dis-
tribution of states in the 3d band are needed, and the mathematical
methods available for computing this distribution are not as yet very
satisfactory. Next the exchange effect energy must be found; this is
also difficult to calculate accurately. Finally, the description given
here is over-simplified; in particular another energy term, known as the
correlation energy, must be included; this energy acts somewhat like
an exchange energy but between the bands of different spins and it
tends to cancel out the exchange energy. Although these difficulties
greatly mar the usefulness of the theory of ferromagnetism repre-
sented in Fig. 28, this theory is able to correlate a large amount of
experimental material in a very natural way; and since it is the theory
based on the concepts of energy bands, it is the one that we shall dis-
cuss in this paper. In passing, however, we must state that there are
other theories of ferromagnetism which in some ways are more suc-
cessful and in other ways less successful than the band theory. Some
of these are atomic rather than band theories. An example of this type
of difference in method of attack was given in the discussion of the
binding energy of sodium chloride; two treatments were given: for one
the basis being the ions and for the other the energy bands. In the
case of sodium chloride, however, the theoretical equivalence of the
two methods is easily demonstrated. In the case of ferromagnetism,
the two theories are not equivalent and are both simplifications of a
more complex and as yet unsatisfactorily explored intermediate case.

Although no satisfactory calculations of the energy difference be-
tween the magnetized and unmagnetized states of metals exist, the
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theory must be regarded as representing great progress over non-wave-
mechanical theories. The reason is this: in older theories of ferro-
magnetism the energy was supposed to come from the magnetic inter-
action between the magnetic dipoles, and it turned out that the ener-
gies calculated in this way were at least a thousandfold too small.
The energies calculated in the new theory are adequate in magnitude
but have nothing to do with the magnetic moment of the electron;
they arise from the exchange energy, which is, as we have said before,
an electrostatic energy resulting from the wave-mechanical treatment
of Pauli’s principle. It is the laws governing the spin quantum num-
ber of the electron, not the magnetic moment, which are responsible
for the energy of magnetization; the externally observed magnetic
field of a ferromagnetic material is merely a superficial indication of
more fundamental electrostatic forces.

Intrinsic Magnetization

According to our theory, the low energy state and therefore the
stable state of metallic nickel is a magnetized one. If one picks up a
piece of nickel at random, however, it may not appear to be magnetized.
This apparent absence of magnetism is due to the presence of ‘‘do-
mains.””  According to the domain theory—which is a very well estab-
lished branch of magnetic theory—a block of nickel will consist of a
number of microscopic domains, each highly magnetized, but having
their magnetic moments pointing at random in a number of directions
so that on the average there is no magnetism. The application of a
magnetic field aligns the magnetic moments of these domains and,
since they are then all parallel, one can measure the total magnetization
of the sample. A field strong enough to line up all the domains is said
to produce ‘‘saturation’ because a further increase in field will give no
further increase in magnetization. It is customary and convenient to
divide the total or saturation magnetic moment of the material by
the total number of atoms, thus finding the average magnetic moment
per atom, and to express this value in Bohr magnetons. The resultant
value is called the intrinsic magnetization per atom and is denoted by
8.3 For example, if a crystal had one electron per atom and all the
electrons had their spins parallel, then all their magnetic moments
would be parallel, too, and the intrinsic magnetization would be
unity, 8 = 1.

For nickel the intrinsic magnetization is 0.6 Bohr magnetons per
atom. The following argument shows how easily such a fractional
number can be accounted for by our theory. Nickel has 10 elec-

3 The “intrinsic magnetization” is customarily defined as the magnetic moment
per unit volume when the moments of the domains are parallel.
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trons per atom in the 3d and 4s bands. The 3¢ band with minus
spin is supposed full, containing five electrons per atom. The 4s
band (both spins) can contain two electrons per atom, and from
Fig. 27 we see that it is about one-fourth full; suppose it contains
0.6 electrons per atom; the remaining electrons go to'the 3d band
with plus spin which is not quite full but has a “hole” in it of 0.6
electrons per atom. There are equal numbers of electrons of each
spin in the 4s band and their magnetic moments cancel.* The net
magnetic moment arises from the unbalance of 0.6 electrons per
atom between the two parts of the 3d band. This unbalance will
correspond to a magnetization of 0.6 Bohr magnetons. The theory is
not capable of predicting the number 0.6 exactly; however, this number
is entirely consistent with what can be said about the distribution of
levels in the band. In the “atomic’ theories of magnetism, it is sup-
posed that each atom has a certain magnetic moment. From the
results of the gyromagnetic experiments,® one concludes that the
magnetization is due to electron spin. Since an atom whose magnetism
is due to electron spin must have a magnetic moment equal to an
integral multiple of the Bohr magneton,® the “‘atomic” theory is
forced to assume that 40 per cent of the nickel atoms are unmagnetized
and that 60 per cent have one Bohr magneton, or else that 70 per cent
are unmagnetized and 30 per cent have two Bohr magnetons or at any
rate that there are at least two kinds of atoms. These rather awkward
assumptions are not required in the band theory, the reason being, as is
suggested in Fig. 28, that the electrons are not thought of as belonging
to the atoms individually but to the crystal as a whole.

The intrinsic magnetization of ferromagnetic material decreases with
increasing temperature. In the band theory this is explained as fol-
lows: at a temperature T some of the electrons are excited from the
filled band to the partially filled band; as the temperature is increased
more are shifted. Furthermore, if we compare the effects of two equal
increments of temperature, one occurring at a higher temperature than
the other, the one at the higher temperature will have the greater
effect. This is because at the higher temperature more electrons have
been shifted ; hence the exchange effect displacement of the band of one
spin in respect to the band of the other spin is less and electrons need

% Actually there will be a slight exchange effect in the 4s band; however, it will be
so slight that the magnetic moment produced can be neglected

3 If a piece of iron is suspended so that it can rotate and then is magnetized, it
will acquire an angular momentum. The ratio of angular momentum to magnetic
moment should be mc/e if the magnetization arises from electron spin and chﬁ if it
arises from motion of the electron as a whole. Experiment gives the following
fractions of the former value: for iron 1.03, for cobalt 1.23, for nickel 1.05.

7 For a discussion of this theorem see K. K. Darrow’s article, *’Spinning Atoms
and Spinning Electrons,” Bell Sys. Tech. Jour., XVI, 319 (1937).
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not gain so much energy to shift from the more full to the less full
band. Hence at the higher temperature there is more decrease in
magnetization per degree rise in temperature than at the lower tem-
perature. A logical consequence of this reasoning is that the magnet-
ization decreases more and more rapidly as the temperature increases
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Fig. 29—Intrinsic magnetization versus temperature. The horizontal scale rep-
resents the temperature divided by the Curie temperature and the vertical scale,
the intrinsic magnetization divided by the intrinsic magnetization at absolute zero.
The theoretical curve is derived from quantum mechanics.

and becomes zero at a certain critical temperature, which is known as
the Curie temperature and denoted by .. A more complete discussion
of the theory of the temperature dependence of magnetism would
belong in a paper devoted solely to the theory of magnetism.*® In

3 See, for example, K. K. Darrow, Bell Sys. Tech. Jour. XV, 224 (1936), R. M.
Bozorth, ““The Present Status of Ferromagnetic Theory,” Bell Sys. Tech. Jour., XV,
63 (1936) and texts such as J. H. Van Vleck, “The Theory of Electric and Magnetic
Susceptibilities,” Oxford, 1932, E. C. Stoner * Magnetism and Matter,”” Methuen and

Company, Ltd., London, 1934, and F. Bitter '‘Introduction to Ferromagnetism,”
McGraw-Hill Book Co., New York, 1937.
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this paper we shall use the fact that the magnetism changes with the
temperature to explain the anomalous expansion of ferromagnetic
materials. In Fig. 29 we show the variation in intrinsic magnetization
with temperature as observed for iron, cobalt and nickel.

Variation of Inirinsic Magnetization with Composition

Let us consider how the intrinsic magnetization should vary from
element to element in the transition series, supposing always that the
temperature is so low that thermal effects can be neglected. The ele-
ment next to nickel is cobalt; cobalt has one less electron than nickel
so that the 3d band and partially filled 4s band for it will have one
less electron in them. Because of the relatively small number of
quantum of states in the 4s as compared to the 3d band, this deficit
will be made up mainly by the 3d band which will therefore contain
not 4.4 as for nickel but instead 3.4 electrons leading to an unbalance
of 1.6 Bohr magnetons per atom. The observed g for cobalt is 1.7 in
good agreement with this.

One can obtain electron atom ratios intermediate between cobalt
and nickel by forming alloys. We shall speak of the electron concen-
tration, C, of these and other alloys, meaning by this term the total
number of electrons available for the 3d and 4s bands divided by the
total number of atoms. So long as the minus spin half of the 3d band
remains full and so long as the number of electrons in the 4s band does
not vary much, the value of g will be a linear function of the electron
concentration varying from ~ 1.6 to ~ 0.6 as the concentration varies
from 9 for cobalt to 10 for nickel. In Fig. 30 are given the intrinsic
magnetizations plotted against electron concentration for a series of
alloys. It is seen that from cobalt to about halfway between nickel
and copper, an increase in C produces, very nearly, a numerically equal
decrease in 8. This means that the increase in C goes toward filling
up the holes in the 3d band and reducing the unbalance and hence g.
Some alloys are included in Fig. 30 for which the two elements are not
adjacent in the periodic table; their values of 8 also conform to the
values predicted from their electron concentrations.

The very natural way in which the band theory accounts for the
results shown on Fig. 30 is its principal success in the theory of fer-
romagnetism.

The bend in the curve between iron and cobalt is not very satis-
factorily explained at present. One theory is that for iron neither 3d
band is entirely full; but this explanation is said to be inconsistent with
the observed dependence of magnetization upon temperature at low
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temperatures. Another theory is that there are only 0.2 electrons in
the 4s band, thus leaving the remaining 7.8 electrons of iron distributed
5 to one 3d band and 2.8 to the other, leaving an unbalance of 2.2; this
theory is unsatisfactory because it would require an inexplicable dis-
placement upwards of the 4s band compared to the 3d in going from
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Fig. 30—Intrinsic magnetization versus electron concentration.

The data for this figure were obtained from the following sources:
Fe-V and Fe-Cr M. Fallot Ann. de Physique 6, 305-387 (1936).
Fe-Co R. Forrer C]‘ de Physique et le Radium, 1, 325-339 (1930).
Fe-Ni M. Peschard Comptes Rendus 180, 1836 (1925).
Ni-Co P. Weiss, R. Forrer, and F. Birch Comptes Rendus 189, 789-791 (1929).
Ni-Cu and Ni-Zn V. Marian Ann. de Physique 7, 459-527 (1937).

cobalt toiron. Another theory has been proposed by Pauling ¥; he has
stated it in the “atomic” language but it can be translated into the
band language as follows: the 3d band is broken into two parts, an
upper part containing 4.88 levels per atom, 2.44 for each spin, and a
lower part separated from the upper by an energy gap and containing
5.12 levels per atom, 2.56 for each spin. A number of electrons per
atom varying from 0.6 for nickel to 0.7 for cobalt are in the 4s band;
for simplicity we shall suppose that this number has a constant value
of 0.65 electrons per atom. According to this simplification, one of the
upper parts of the 3d band has 0.65 holes for nickel. This band will
become empty if the electron concentration is decreased by 1.79
(= 2.44 — 0.65)—that is, for a concentration of 10 — 1.79 = 8.21.

3 L. Pauling, Phys. Rev., 54, 899 (1938).
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If the concentration is decreased below 8.21, electrons will be removed
from the upper part with the other spin; this will result in a decrease in
the unbalance and hence in 8, which has for C = 8.21, a value of 2.44—
corresponding to one filled and one empty upper part; and this decrease
will be numerically equal to the decrease in C. Accordingly, the value
of B for iron, C = 8, is 2.44 — 0.21 = 2.23. The numbers 2.44 and
2.56 were, of course, chosen so as to obtain this agreement for iron.
This theory of Pauling expresses reasonably well the variations in § for
all the alloys of Fig. 30.

Criterion for Ferromagnetism

We must now see how the theory explains the absence of ferro-
magnetism for the remaining transition elements. We have seen that
the exchange energy lowers and the Fermi energy raises the energy of
the magnetized state compared to the unmagnetized state. These two
effects very nearly cancel even for the magnetic elements iron, cobalt,
and nickel. For the other elements in the transition series, which are
not ferromagnetic, the Fermi term apparently exceeds the exchange
term. We shall give a theoretical reason for expecting this result.

In the first place we must indicate how nearly the effects cancel.
Let us take cobalt, which has nine electrons in the 3d and 4s bands, as
an example. From Fig. 27 we see that for cobalt in the unmagnetized
state both 3d bands are filled to about — 0.46 atomic units. In the
magnetized state one band is filled by electrons which have come from
levels with less energy of motion in the other band. Since the top
of the 3d band comes at about — 0.42 units on Fig, 27, the average
gain in energy for each transferred electron is about 0.04 units. Since
the number of electrons transferred is 1.7 per atom, the increase in
Fermi energy is 0.068 atomic units or 0.9 ev per atom. From an
analysis of thermal measurements the value for the actual energy of
magnetization is found to be about 0.2 ev per atom; a value which is
only about one fourth of the predicted increase in the Fermi energy.
Hence the exchange energy exceeds the Fermi energy by only 25 per
cent and the two energies nearly cancel.

The variation in the structure of the 3d band from element to ele-
ment was discussed in connection with Fig. 27; we concluded then that
the bands become wider as we recede in the periodic table from nickel
towards scandium. Greater band width means greater Fermi energy
in the magnetized state and this effect opposes the occurrence of ferro-
magnetism. The exchange energy can also change. Calculations by
Slater,® which unfortunately are too over-simplified to bear much

© J, C. Slater, Phys. Rev., 49, 537, 931 (1936).
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weight, show that for manganese the Fermi energy outweighs the ex-
change energy so that manganese is not ferromagneticatall. InFig. 31
we represent the state of affairs predicted for chromium; the exchange

—5SPIN + SPIN — SPIN + SPIN

ENERGY

UNMAGNETIZED STABLE STATE MAGNETIZED UNSTABLE STATE
NUMBER OF QUANTUM STATES ‘AND ELECTRONS PER UNIT ENERGY

Fig. 31—The absence of ferromagnetism for chromium.

energy is over-balanced by the Fermi energy and for this metal the
unmagnetized arrangement has the least energy and is the stable state,

A very instructive curve can be drawn to illustrate the criterion for
the occurrence of ferromagnetism. It is shown in Fig. 32. The
vertical scale is the energy of the unmagnetized state, Ey, minus the
energy of the magnetized state, E,. When Ey — E,, is positive, the
magnetized state has the lower energy and will be the stable state,

COBALT
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NICKEL

EU_EM —

MANGANESE

ENERGY OF MAGNETIZATION

Ta _ ATOMIC SEPARATION
Td RADIUS OF 3d ORBIT

Fig. 32—Criterion for the occurrence of ferromagnetism.
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and when Ey — E,, is negative, the reverse is true. Hence a positive
value for Ey — E,, is a necessary and sufficient condition for ferro-
magnetism. The variable on the horizontal scale is 7, (the distance be-
tween nearest neighboring atoms in the crystal) divided by 74 (the aver-
age radius for the 3d wave function). Small values of r,/rs mean
crowding together of the atoms, large values of the Fermi energy, and
no ferromagnetism. Certain values of #,/r4, such as are found for iron,
cobalt, and nickel, favor ferromagnetism. Very large values of 7./rq
mean widely separated atoms and low Fermi energy and, conse-
quently, ferromagnetism; however, for very widely separated atoms,
the energy of interaction between them is small and so is the energy of
magnetization. The curve shown in Fig. 32 is only qualitative. The
theory that the curve should have this form was first worked out by
Bethe using the ‘“‘atomic” rather than the band theory of magnetism;
for the reasons discussed above, however, no quantitative theoretical
curve is available. Ratios of 7,/rs have been calculated by Slater *
and occur as indicated for several elements. This curve can be con-
sidered from either of two viewpoints. We may imagine that 7, re-
mains constant, as it does approximately for the transition elements,
and that 74 varies from element to element; we then get the result
shown in Fig. 32. On the other hand weé may consider a definite
chemical element thus fixing 74; then Fig. 32 tells us how the energy
of magnetization depends on the lattice constant or volume of the
sample. We shall use this in the following paragraphs to explain the
effects of magnetism upon thermal expansion.

Magnetism and Thermal Expansion

In Fig. 332 we show a solid curve which represents for iron in the
magnetized state the dependence of the energy E, upon the lattice
constant @. In Fig. 33b is shown, on a relatively enlarged energy
scale, the value of Ey — Ey as taken from Fig. 32 with 74 thought of
as fixed, and @ the lattice constant in place of r.. The position of
curve (b) has been adjusted so that the point marked O, corresponding
to iron in Fig. 32, comes at the equilibrium distance or minimum of
the Ex curve. Adding the solid curves of (a¢) and (b) (adjusting the
energy scales, of course) gives the dashed curve representing the energy
Ey of the unmagnetized state shown in Fig. 33a. We are now in a
position to make predictions about the thermal expansion of iron.

Let us imagine that the iron is somehow made to stay in the mag-
netized state. Then its expansion curve, lattice constant versus
temperature, will be shown as in Fig. 33¢ by the solid heavy line. Next

* J. C. Slater, Phys. Rev., 36, 57 (1930).
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imagine it maintained in the unmagnetized state; in this state the
equilibrium lattice constant is smaller than for the magnetized case
and the expansion curve is shown dashed. The curves for fixed

Ep AND Ey
EXPANSION

ENERGY

Ey-Epm
o
COEFFICIENT
OF EXPANSION

(d)

I
I

/ | (b)
|

Qg ec
LATTICE CONSTANT TEMPERATURE

Fig. 33—Theory of the thermal expansion of iron.

(a) Energy in magnetized (M) and unmagnetized (I7)
states versus lattice constant.

(b) Difference in energies versus lattice constant.

(c) Lattice constant versus temperature.

(d) Thermal expansion coefficient versus temperature,

intermediate degrees of magnetization are shown as light lines. Now
as the iron is heated the magnetization does not stay constant but
decreases with temperature and becomes zero at the Curie temperature
6. In Fig. 33¢ this corresponds to a continuous shifting from the
line of higher magnetization to the lines of lesser magnetization with
increasing temperature as indicated by the curve with circles. We see
that the rate of expansion—that is, the thermal expansion coefficient,
which is defined as the derivative of the curve divided by a—should
have an irregular form as shown in Fig. 33d.

In Fig. 34 we show observed thermal expansion curves for a series of
iron nickel alloys,* showing that the expansion for iron rich alloys agrees
with that predicted from Fig. 33. The reader may verify that had
the curve of Fig. 33b been adjusted to correspond to nickel, the anom-
alous expansion would have been in the opposite direction, as is found
experimentally for the nickel rich alloys.

The more rapid the transition from the magnetized to the unmag-

4 Figures 34 and 35 are taken in a modified form from J. S. Marsh, ‘* Alloys of
Iron and Nickel,"” Vol. I, Special-Purpose Alloys, 1938, McGraw-Hill Book Co.
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netized curve, the greater will be the anomaly in expansion. For the
alloy invar the Curie point occurs at about 200° C. and the transition is
so rapid that the magnetic effect nearly cancels the normal expansion.
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Fig. 34—Coefficients of expansion for iron-nickel alloys versus temperature.

Figure 35 shows a curve for the thermal expansion of an iron-nickel
alloy containing 36.5 per cent Ni, ‘corresponding to Fig. 33¢c. The
flat region implies an expansion coefficient of nearly zero.

Griineisen’s law is definitely violated by metals having expansion
effects of the sort associated with ferromagnetic changes. Griineisen’s
law, it will be recalled, states that the thermal expansion coefficient is
proportional to the specific heat. For all ferromagnetic transforma-
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tions, the specific heat has a peak at the Curie temperature. Forinvar,
however, the thermal expansion suffers a dip at the Curie temperature.
Hence the proportionality between specific heat and thermal expansion
coefficient does not hold. Even for cases where the expansion coeffi-
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Fig. 35—Expansion of invar versus temperature.

cient has a peak, as in nickel for example, the proportionality does not
hold. The reason for the failure of Griineisen’s law is easily found
and reflects in no way upon validity of the law for the cases to which
it is intended to apply. Griineisen's law is derived by assuming that
the crystal has a single definite energy versus volume curve. For
ferromagnetic materials this is not true as is evinced by the two
curves of Fig. 33a.

In this paper we have been concerned with the important but inactive
attributes of electrons associated with their energies. We have seen
how the variations of the electronic energy levels can be used to explain
a number of the important properties of solids. In the next paper, we
shall discuss the more dynamic subjects of electron velocities and
accelerations. '
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