The Number of Impedances of an n Terminal Network
By JOHN RIORDAN

This paper gives the enumeration of impedances measurable at
the n terminals of a linear passive network. The enumeration
supplies background for the study of network representations and
the numerical results which are given up to ten terminals are
perhaps surprising in the rapidity of the rise of the number of
impedances with the number of terminals; almost 126,000,000
impedances, e.g., are measurable for ten terminals.

LINEAR passive network having »n accessible terminals may be

completely represented by an equivalent direct impedance net-
work,! consisting of branches, devoid of mutual impedance, connecting
the terminals in pairs. The number of elements (branches) in this
representation is equal to the number of combinations of % things
taken two at a time, i.e., 3n(n — 1). Each of the elements is defined
by an impedance measured by energizing between one of the terminals
it connects and the remaining terminals connected together and taking
the ratio of the driving voltage to the current into the other terminal
it connects. The network then is represented by a particular set,
of in(n — 1) members, of impedances measurable at its terminals;
as will appear later, the set is of short-circuit transfer impedances.

The direct impedance network is one among many network repre-
sentations; it is taken as illustrative of two aspects, (i) the necessity
of a certain number of elements 3n(n — 1) and (ii) the expression of
these elements in terms of measurable impedances. It is well known
that any linearly independent set, of 3n(n — 1) members, of the
measurable impedances of an #z-terminal network will serve as a
network representation; hence the enumeration of representations may
be taken in two steps, the first of which, the enumeration of measurable
impedances, is dealt with in the present paper.

The number of measurable impedances for two to ten terminal
linear passive networks is given in Table I, which lists the driving-point
impedances, D., transfer impedances (open or short circuit), 7',
certain additional transfer impedances to be described later, U,, and
the total N,. As mentioned below, this total counts once only

11tem (b) in the list of equivalent networks given by G. A. Campbell “ Cisoidal
Oscillations,”” Trans. A.I.E.E. 30, pp. 873-909 (1911), p. 889; or p. 81, ‘“Collected
Papers of George Ashley Campbell,”" Amer. Tel. & Tel. Co., New York, 1937.
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impedances which are equal by the reciprocity theorem; the doubling
of T, in forming the total is due to the equality in number of open-
circuit and short-circuit transfer impedances. The numbers increase
rapidly with #, reaching almost 126,000,000 for ten terminals. The
number of representations, which is the number of combinations of
the measurable impedances in(n — 1) at a time less the number of
non-independent sets, at a guess increases even more rapidly, indicating
a variety of equivalents, few of which seem to have been investigated.

TABLE I
MEASURABLE IMPEDANCES OF AN #-TERMINAL NETWORK
" Dy Tn Un Na=Dp4+2T»4U,
2 1 0 0 1
3 6 3 0 12
4 31 33 60 157
5 160 270 1,050 1,750
6 856 2,025 12,540 17,446
7 4,802 14,868 129,570 164,108
8 28,337 109,851 1,257,060 1,505,099
9 175,896 827,508 11,889,990 13,720,902
10 1,146,931 6,397,665 111,840,180 125,782 441

Because the field of -the work is somewhat unusual, considerable
space is given to details in the formulation of the problem before
proceeding to the enumeration proper. The enumerating expressions
obtained are found susceptible of some mathematical development
which, though subsidiary to the main object of the paper, seems of
sufficient interest to justify the relatively brief exposition given. The
arrangement is such that readers not interested in this mathematical
half may obtain the substance of the paper without it.

FORMULATION OF THE PROBLEM

The enumerating problem is essentially one of combinations, as
indicated schematically in Fig. 1, which shows the # terminals of a
linear passive network together with the apparatus required for
impedance measurement, that is, a source, a voltmeter and an ammeter,
each supplied with two terminals (shown solid to distinguish them
from the network terminals). Each of these latter may be connected
across any pair of the » terminals except that the ammeter, which
constitutes a short circuit, may not be connected to terminals to which
either the source or voltmeter is connected; in the former case no
current will be supplied to the network and in the latter the voltmeter
will read zero. The ammeter may be connected in series with the
source to read the source current, of course.
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Although but one source, voltmeter, and ammeter are shown, as
many of each as will produce distinct impedances should of course be
included. Multiple sources are not required because if the source
voltages are in defined proportions, as is necessary to determine
impedances independent of source voltage, the corresponding measur-
able admittances are linear combinations of single-source admittances,
by the principle of superposition; a similar requirement on source
currents produces impedances which are linear combinations of single-
source impedances. A single voltmeter is sufficient because it has no
effect on network currents or voltages and it is immaterial whether
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Fig. 1.—Elements involved in impedance enumeration.

impedances are supposed measured by successive positions of a single
voltmeter or by many voltmeters. The connection of an ammeter is
equivalent to a short circuit (except of course when in series with a
source) across the terminals the ammeter connects; this alters network
voltages and currents and the impedances measured without the
ammeter differ from those with it. Hence a plurality of ammeters or
its equivalent is required; for convenience, all ammeters except that
one determining a specific impedance under consideration are supposed
replaced by the short-circuiting links on the right of Fig. 1, thus
focussing attention on the single items of the enumeration.
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The classification under which the enumeration is conducted is
illustrated by Fig. 2, which shows typical positions of source, voltmeter
and ammeter for measuring impedances of three classes. In the first
of these, the ammeter reads the source current, the voltmeter source
voltage (across some pair of the network terminals) and the class is
that of driving-point impedances, D,. In the second class, that of
transfer impedances T',, there are two types of connection: in the
first the ammeter reads the source current, the voltmeter a non-source
voltage, the voltage-current ratios being open-circuit transfer im-
pedances; in the second the voltmeter reads the source voltage and
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FiG. 2—Arrangement of apparatus for measuring impedances of three classes.

the ammeter a non-source current, the voltage-current ratios being
short-circuit transfer impedances. It will be noted that the two
connections differ only in that the ammeter and voltmeter are inter-
changed. The third class is that of generalized transfer impedances
U,, in which both voltmeter and ammeter are across non-source
terminals. '

The last class, of course, might be supposed to include the two
preceding ones but the separation proves convenient not only for
numerical work, as will appear, but also for keeping distinct both
well-recognized and formally different classes.
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The most important of these differences in classes is that arising
from the reciprocity theorem. Of the three classes, only the T
(open-circuit and short-circuit transfer impedances) includes members
which are equal by the reciprocity theorem; this follows because the
reciprocity theorem requires interchange of voltmeter (or ammeter)
and source with associated ammeter (or voltmeter) and the T class
alone permits this. It is a matter of taste whether such duplicates
should be counted separately or as one; in the interest of keeping large
figures as low as possible they are here counted as one, since the
classification is such that the other alternative may be taken merely
by doubling the 7.

Another reason for keeping the T class distinct is that total open-
circuit and short-circuit transfer impedances for a given number of
terminals are equal in number. This is proved immediately by
observing that the two connections shown in Fig. 2 for this class are
in one-one correspondence: each may be obtained from the other by
interchanging voltmeter and ammeter. Moreover, if 1%, , and T, ,
are the numbers of open-circuit and short-circuit transfer impedances
measurable when short circuits have been placed across the # terminals
in all possible ways so as to realize x terminals, each merged group of
terminals counting as a single terminal, the correspondence leads to

the relation
T°z+1. n = T'z. ny (1)

since the interchange of voltmeter and ammeter in the measuring
arrangement for open-circuit transfer impedances results in one less
available terminal, two terminals being merged by the ammeter short
circuit. Note that 7%, » = T*., » = 0, since with just two terminals,
no non-source voltages and with »# terminals no non-source currents
are measurable.

Equation (1) is important in determining enumerating expressions
in the section following.

ENUMERATING EXPRESSIONS

The laws of enumeration appear most simply exposed by examining
the simplest cases first.

For two terminals, there is but one measurable impedance, the
driving-point impedance between the terminals.

For three terminals, with the terminals distinct, there are three
driving-point and three open-circuit transfer impedances, for there are
three ways of selecting driving pairs of the three terminals and for
each selection two ways of selecting pairs for open-circuit voltage
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measurement, the total of six transfer impedances being halved to
eliminate reciprocity theorem duplicates. With two of the terminals
connected by an ammeter, there are again three driving-point and
three transfer impedances, the latter being short-circuit transfer
impedances, for there are three ways of connecting pairs of terminals
and one driving-point and two transfer impedances for each, the
total of transfer impedances again being halved to eliminate duplicates.

There are no generalized transfer impedances because with an
ammeter connected, there is only one measurable voltage, the driving-
circuit voltage. \

With terminals designated by #i, #» and {;, the conditions arising
from connection of terminals may be exhibited as follows:

Terminals distinct ti|te|ts
Pairs connecled Lila| tats|ts f1|tats

the lines of separation dividing the terminals into groups such that
the terminals in any group are merged into a single terminal. Paying
attention only to the number of terminals in each group, the groups
illustrated may be designated by the partition notation (111) or (1%)
and (21), the numbers in the designation being partitions’ of the
number 3.

The enumeration for three terminals may then be exhibited as

follows:
MEASURABLE IMPEDANCES

Group Driving Point Open-Circuit Transfer | Short-Circuit Transfer Total
(1) 3 3 0 6
(21) 3 0 3 6

6 3 3 12

It will be noted that the open-circuit and short-circuit transfer
impedances satisfy equation (1), that is, 7°3, 3 = T3, a.

This table and its correspondents for larger values of n show that
the impedances may be expressed as sums with respect to x, where x
is the number of terminals defined as in equation (1), from 2 to »;
thus e.g., D, = > D., . where D,, , is the number of driving-point
impedances measurable for all conditions of merging of n terminals
such that the resulting number of terminals is x. Moreover, con-

2 A partition of a number # is any collection of positive integers whose sum is
equal to #. It may be noted that the number of parts of a partition is the number
x of equation (1); the partition (13) has three parts corresponding to the three distinct
terminals; (21) has two parts corresponding to two terminals, each merged pair of
terminals counting singly.
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sidering for the moment only the driving-point and open-circuit
transfer impedances, the numbers D, , and 7%, , are the products of
two factors: (i) the number of such impedances measurable for x
terminals, which is independent of # and (ii) the number of ways the
n terminals may be merged so as to result in x terminals, which is
independent of the impedance classes. By equation (1) this result
applies also to T, . and, as U,, . is related to T ., by a factor
independent of #, as will be shown, it applies generally.
This leads to the following equation:

JD; o [ de
Tot =314t S n (2)
L Un =2 l.“-"

The small letters are the several factors of the first kind and S;, , is
‘the common second factor.

The small letters are determined as follows: A driving point im-
pedance may be measured between every pair of terminals; hence d,
is the number of combinations of x things taken two at a time, that is:

d, = (;) = Ix(x — 1) = 2(®)y, (3)

where (x); is the factorial symbol x(x — 1) --- (x — 7 4+ 1).
For a given pair of driving terminals, there are (;) -1

measurable open-circuit transfer impedances since a voltmeter can be
connected to every pair of the x terminals except the driving pair;
hence, multiplying by the number of driving terminals and by the
factor one-half to eliminate reciprocity theorem duplicates:

()]

= 3[4(x)s + (x)4].

. The second, factorial, form is given for convenience of later develop-
ment.

By equation (1) this serves for enumeration of both open-circuit
and short-circuit transfer impedances; the direct enumeration of the
latter appears more difficult.

Considering, for the generalized transfer impedances, a fixed source
and an ammeter in a fixed (non-source) position, the voltmeter may

be connected across (2> pairs of terminals when x terminals are
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available; one of these pairs is the source pair measuring a short-
circuit transfer impedance which must be excluded; hence, remember-
ing that reciprocity theorem duplicates are eliminated in the latter:

2[(’2‘) —~ 1]’1"'“
z[(;‘) - 1] Torpr, n = 2[(’;)— 1]tz+18,+1. N

Degrading x by unity to obtain the form of equations (2), the third of
the lower case factors is reached as follows:

(LG IC2 )1 ®

1020(x)4 + 10(x)s + (x)s].

The common factor S;, » remains for determination,

Returning to the connection conditionsillustrated for three terminals,
this number is the number of ways separators may be placed between
letters of the collection f, f;---t, symbolizing the terminals so as to
produce x compartments, symbolizing merged terminals. The ter-
minal symbols ¢« - £, may be thought of as the prime distinct factors
(excluding unity) of some number and the number S, , is then
identically the number of ways a number having » distinct prime
factors may be expressed as a product of x factors. The enumeration
for this latter problem is given by Netto,® who gives the recurrence
relation

UI. n

I

Uz

S::, a4+l = xS.r, n + S;;-—l, n
with

Sn,n=1; S:,n=0,x>n, Su,n=0,n+0.

This is the recurrence relation for the Stirling numbers of the second
kind,* the notation for which has been adopted in anticipation of the
result. These numbers are perhaps better known as the ‘‘divided
differences of nothing,” that is, as defined by the equation:

Sr, n= “mlIAzzn = l‘A:tOn'
X.

=0 X

where A* denotes x iterations of the difference operator with unit

3 ehrbuch der Combinatorik,'” Leipzig, 1901, pp. 169-170; Whitworth, ‘ Choice
and Chance,” Cambridge, 1901, Prop. XXIII, p. 88, gives a generating function for
the solution of this problem which, it is not difficult to show, leads to the same answer.

4 Ch, Jordan, “Statistique Mathematique,” Paris, 1927, p. 14,
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interval, that is, of the operator defined by
Af(z) = f(z + 1) — f(2).

For convenience of reference, a short table of the numbers follows:

\x

7N 0 1 2 3 4 5
0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 6 1

5 0 1 15 25 10 1

The table may be verified and extended readily by the recurrence
relation.

With this table (extended to # = 10) and corresponding tables of
d., t, and %, running to x = 10, the values given in Table I may be
calculated by equations (2) and in this sense this paper is completed
at this point. The sections below contain an algebraic and arith-
metical examination of the numbers.

GENERATING IDENTITIES

The generating identity for the function

5 a®Sz, n

x=0

is B
=] t" n
exp [a(et — 1)] =2 i > a*S;, n.
n=0 """ ' z=0

This leads, by differentiating s times with respect to ¢ and setting a
equal to unity, to the generating identity:

(¢ = 1y exp (¢ = 1) = = 5 T (@)uSer

n=0

This relation may be rendered more summarily by introducing the
notation of the symbolic or umbral calculus ® of Blissard ; the expression
on the right is written exp t6 where § is an umbral symbol standing
for the sequence (o, 81, * 84+ +) in this case infinite, through the
relation 6" = §, and:

8 E. T. Bell, “ Exponential Polynomials,” Annals of Math. 35, 2 (April, 1934) p.
265: or J. Riordan, ‘* Moment Recurrence Relations . . . ," Annals of Math. Statistics
8, 2, pp. 103-111 (June, 1937), eq. 3.4.

¢ Cf., Bell, l.c. p. 260 where further references are given.
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bn = 5 ()uSs. v
z=0

All algebraic operations on umbral symbols are carried out as in ordi-
nary algebra except that the degrading of subscripts must not be
performed until operations are completed. It must be noted that
8 = 8y, hence is unity only when &, = 1, as in the present case and
not always as in ordinary algebra.

The umbrae for the impedance numbers are written D, T" and U,
and by use of the generating identity above have the following gener-
ating identities:
exp tD = §(et — 1) exp (et — 1),
exp T = §[4(et — 1)* + (¢* — 1)*Jexp (e — 1), (6)
exp tU = 3[20(et — 1)* 4+ 10(e* — 1)% + (et — 1)%]exp (¢! — 1).

These follow immediately from the base generating identity and
the factorial expressions for d., . and #%..

Expanding these expressions in powers of e’ gives alternate ex-
pressions as follows:

exp tD = }(e** — 2e! + 1) exp (et — 1),
exp T = (et — 6e* + 8e! — 3) exp (e* — 1), (6.1)
exp tU = (e + 4e® — 15¢* + 35¢* — 36e! + 11) exp (¢! — 1).

To recapitulate, these expressions mean that D,, T'» and U, are
the coefficients of {"/n! in the expansions of the right-hand sides;
taking D,, for example, the first equation of (6) is equivalent to the
equation:

. dr
Dy = lim =2 [3(e* — 1)* exp (¢! — 1],
which may be shown to be equivalent to the first of equations (2).
The generating identities lead immediately to recurrence relations,
as will now appear.

RECURRENCE RELATIONS

Recurrence relations to be derived are all obtained by differentiation
with respect to £.  Under this operation umbrae behave like ordinary
variables; thus

d exp (D

il D exp tD

I

£ I
D1+D2f+D3?+ '°-D"+1m+ v,

as may be verified readily.
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In the first type of recurrence only successive values of the numbers
themselves appear. The derivation is illustrated for the D, the
simplest case. Differentiating the first of equations (6) leads to the
relation:

D exp tD = 1(e8* — et) exp (e! — 1),
or
(et — 1)D exp tD = et{et + 1)i(et — 1)* exp (¢! — 1)
= (e* + ef) exp tD.

Equating coefficients of ¢*/n! in this relation gives the umbral re-

currence:
DD+ 1) —Dppy=(D+2)"4+ D+ 1),

which in ordinary form is:

o= E[() e (3]

‘The process is common to the three classes of numbers and pro-
duces similar results which may be put in general form as follows:

d n n ’
£ (=3,

where A ,, @, b; and c¢; are defined for the three cases by the following
table:

A, (7

An dn bl' (
D, n—2 2i41 1
T, 4n—12 3i46-2i45 2i42

Un_s | 480 [(Z) _ (’;)] 7i410-6145-5i—60-41| 6i44-51—15.4i
+35-3i434.26—25 | 4+35-2i—36

Somewhat more convenient recurrences may be obtained by allowing
the presence of numbers other than those for which the recurrence is
sought. For this purpose it is expedient to introduce the exponential
numbers e, of E. T. Bell.

These are defined by the generating identity:

exp te = exp (et — 1)

or by the equivalent formula:

z=1

€n = limﬁexp (et — 1) =2 Sz
10 d'tn
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which shows their close relation with the impedance numbers. They
have the recurrence relation:

€Entl = (6 + 1-)"l
and
@ =¢ =1

Now, returning to the first of equations (6) and again differentiating:
Dexp tD = 3[2(et — 1)e* + (et — 1)%'] exp (¢! — 1),
= (et — 1)et exp (¢! — 1) + et exp iD,

= 2exptD + (et — 1) exp (et — 1) +exp (D + 1),
2 exp ID + exp f(e + 1) — exp te + exp (D + 1),

from which, passing to the coefficient relation, comes the umbral
recurrence:

Doy = 2D, + (D + 1)" + €nt1 — €n.

Similar recurrences for the T and U numbers are derived in the
same way; writing Ae, = €x41 — €, the results may be summarized
as follows:

Dn+1 = 2Dn+(D+ 1)R+A€ﬂ!
Topn = 4T, + (T + 1)" + 3D, (8)
Unpr = 6Un + (U 4+ 1) + 46T, — 4T nia

+ 30D, — 6D 1 + 6Aen.

The expressions in parentheses, it will be remembered, are short-
hand binomial expansions; thus:

(D + 1) = i(”.)p.,

i\ 7
RELATIONS WITH THE EXPONENTIAL INTEGERS

The generating identities in equations 6.1 furnish immediate rela-
tions with the exponential integers, e,. Writing exp (e — 1) asexp e,
as above, and passing from generating relations to coefficient relations,
these results are as follows:

Dn = IE[:(f + 2)" - 2(5 + 1)" + En]r
Ta = 3[(e + 4)» — 6(e + 2)" + 8(e + 1) — 3e.], 9)
U = 10 + 6)" + 4(e + 5)" — 15(e + 4"

4 35(e 4+ 2)" — 36(e + 1) + 11ea].

Expanding internal parentheses by the binomial theorem, the general
result is as follows:
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An= i (t) Qi€n_i,

=1

where the coefficients «; for the three cases are as follows:

A, | o
D, 2i-1 — 1
Th (21 — 1)(272 — 1)

Un | i[6F+ 4.5 — 15-4¢ 4 35.2¢ — 36]

Note that in the first case (D,)a; = 0, in the second (T,)a; = a2 = 0,
in the third (Un)ey = @2 = a3 = 0. Thus a given table of values of
€, up to n = k determines D, up to k. + 2, T up to & + 3, and U,
up to k& + 4.

Somewhat simpler relations may be derived as follows. Repeated
differentiation of the generating identity of the e, with respect to {,
and passage from the generating relations to coefficient relations leads

to the following:
€ny1 = (E + 1)"|
€ny2 = (E + 1)7: + (E + 2)?!'
ents = (e + 1)" + 3(e + 2)" + (e + 3)",

or, in general:
m
€npm = E (E + x)"Sz. me
z=1

This formula may be inverted by the reciprocal relations for the
Stirling numbers of the first and second kinds 7 which run as follows:
If

m
ay = Z sz:, m
z=1

then

m
bm = Z AzSz, m
=1

where §:, » is the Stirling number of the first kind defined by the
recurrence relation

Sz, m+1 = Sz—1,m — MSz, m

and the boundary conditions S, m =1, sz, m =0 x > m, So,m = 0,
m > 0.
7 Nielsen: “Handbuch der Gamma Funktion," Leipzig, 1906, p. 69.
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The inverted formula?® is:

m

(f + m)n = z €ntzSz, me

z=1

A short table of the Stirling numbers of the first kind follows:

x Sz, m
m~ 0 i 3 3 I 3 6
0 1
1 0 1
2 0 -1 1
3 0 2 -3 1
4 0 -6 11 -6 1
5 0 24 —50 35 —10 1
6 0 —120 274  —225 85 —15 1

The three equations resulting from applying this transformation to
equations (9) are as follows:

Dn = %[En+2 - 3En+1 + 611]:
Ty = L enss — Oenps + Senta + 8ent1 — 3ea ], (10)
Un = %[E,H_s - llfn-}-ﬁ + 30&,1.;_4 + 55n+3
— S6€pre — Senpn + 116,

For computing purposes, values of €, and Ae, up to # = 10 are

given in Table II.
TABLE II
EXPONENTIAL NUMBERS

n €n Aen
0 1 0
1 1 1
2 2 3
3 5 10
4 15 37
5 52 151
6 203 674
7 877 3,263
8 4,140 17,007
9 21,147 94,828

10 115,975 562,595

e
8 Noting that Z a®s;, m = (a)m, where (a), is the factorial symbol used through-
=1

out, the inverse relation may also be written:
! (e + m)" = € (€)m.

In this notation, the inverses to equations (2) for the impedance numbers have the
following simple forms which are worth noting:

(D)ﬂ d“
(T)n = tn
(U)n = ta
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CONGRUENCES

For numerical checks, it is convenient to note the simplest con-
gruences ® for the three numbers. These follow from the Touchard
congruence for the e numbers ©® which runs as follows:

€Ep+n = €ntl + e, mod P,

where p is a rational prime greater than 2.
Since by equations (10) each of the impedance numbers is a linear
function of the e numbers, each has a similar congruence as follows:

Dp+n ED”+1+DTI lTlOd lbt
Toin =Top + 7T mod p, (11)
Up+n = Un+1 + Uﬂ, mOd p.

Special values for the first few congruences are as follows:

Remainder, mod p

n DIH'" Tp+n Up+n
0 0 0 0
1 1 0 0
2 7 3 0
3 37 36 60

These are sufficient for checking every value in Table I at least
once and the values for n = 5, 6, 7, 8 are checked twice.
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