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Electrostatic Electron-Optics
By FRANK GRAY

Certain types of electrostatic fields may be used as lenses to
focus electron beams. The theory of these lenses is developed
for electric fields that are symmetrical about a central axis. The
introduction of two velocity functions exactly reduces the partial
differential equations of electron motion to a series of ordinary
differential equations. The first equation describes the action of
a lens for electron paths near the axis; the remaining equations
determine the higher order aberration terms. Sections on the
following subjects are included: the general equations of electron-
optics, thin lenses, thick lenses, aberration, the reduction of aberra-
ration, apertured plates, and concentric tubes. A list of symbols
and lens equations is also included at the end of the article.

IN certain types of modern vacuum tubes, a beam of electrons is
brought to a focus by an electrostatic field whose action on the
beam is analogous to that of an optical lens on a beam of light. An
electrostatic field which acts in this manner is called an electron lens.
Such lenses are rapidly finding applications in amplifier tubes, tele-
vision and oscillograph tubes, electron microscopes, and various types
of experimental apparatus. As the extent of their application widens,
the theory of these lenses naturally assumes a corresponding
importance.

The first articles on the new science of electron-optics were published
by Bush ! in 1926-1927, and the next important step in its develop-
ment was taken by Davisson and Calbick? and by Briiche and
Johannson * working independently in 1931-1932. The following
years marked an increased interest in the subject, with comprehensive
articles by various authors, and its literature expanded rapidly. An

L H, Bush, Ann. d. Physik, 81, 974, 1926 and Arch. f. Eleckirotech., 18, 583, 1927.

1C, J. Davisson and C. J. Calbick, Phys. Rev., 38, 585, 1931 and Phys. Rev,,

42, 580, 1932,
3 E. Briiche and N. Johannson, Ann. d. Physik, 15, 145, 1932,
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excellent review of this literature and the history of electron-optics
are given in a symposium * of papers published in 1936, and the
various practical applications of electron lenses are well described in
the books on that subject.®
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Fig. 1—Lines of force in typical electron lenses.

4 Zeit. f. techn. Physik, 17, 584-645, 1936.

' E. Briiche and O. Scherzer, Geomelrische Electronenoptik (Springer, 1934).
J. T. MacGregor-Morris and J. A. Henley, ‘' Cathode Ray Oscillography" (Mono-
graphs on Electrical Engineering), 1936. Maloff and Epstein, ‘‘Electron Optics in
Television” (McGraw-Hill, 1938).
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The theory of electron-optics is thus well established and any
further attempts at the subject must lead to substantially the same
results. There is, however, a need for a precise development of the
theory in a simpler manner. With this need in mind, the present
article approaches the subject in a manner that appeals to the reader
who is more familiar with electrical theory than he is with the concepts
of geometrical optics, and this approach leads clearly to the various
approximations that are needed in the development of the theory.
With the aid of two velocity functions, the partial differential equations
of electron motion are briefly and exactly reduced to a series of ordinary
differential equations; the theory is then developed in terms of their
approximate solutions.

Attention is confined to systems in which the electric fields are
symmetrical about a central axis. In such systems any field having
a radial component of electric intensity changes the radial velocity of
an electron passing through it, and thus behaves—to some extent at
least—as an electron lens. A uniform field parallel to the axis and
field-free space are the only regions in which there is no lens action.
Typical electron lenses are shown in the figures on the second page.
As illustrated by these examples, a practical electron lens is character-
ized by a short region in which there is an abrupt change in the electric
intensity parallel to the axis. Lines of force are continuous, and the
field parallel to the axis can change only by lines of force coming
into it, or going out from it, in a radial direction. In the region of
the abrupt change, there are consequently strong radial fields which
can deflect an electron in a radial direction. The region changes the
focus of an electron beam passing through it, and its action is analogous
to that of an optical lens.

SECTION [—THE GENERAL EQUATIONS

In the present paper it is assumed that the initial electron source
has perfect symmetry of form about the central axis, and that the
electrons have no appreciable velocities of emission from the source.
An electron thus has no angular velocity about the axis, and its motion
may be described in terms of a coordinate ¢ taken along the axis and
a radial coordinate r measured from the axis.

If an electron's velocity vector is projected at any point along its
path, it intersects the axis at some point p, as illustrated in Fig. 2,
and the electron may be regarded as instantaneously moving either
away from, or else toward, this point of intersection. The distance &
along the axis from the electron to the point of intersection is called
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the instantaneous focal distance.® Defined in this manner, the focal
distance conforms with the optics of light; it is positive when an
electron is moving toward a focal point; and is negative when the
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Fig. 2—Focal distance.

electron is moving away from such a point. From the geometry of
the figure, it is seen that

7z
d——?, (1)

where # and 2 are the instantaneous components of electron velocity.

The focal distance of an electron varies continuously as the electron
moves along. The simplest variation occurs in field-free space, where
the electron travels in a straight line and the focal point remains
stationary; but even then the focal distance varies as the electron
moves; for the focal distance is measured from the moving electron
to the stationary focal point, as illustrated in Fig. 3. In an electron

Fig. 3—Focal distances, field-free space.

lens, the focal point of an electron also shifts continuously as the
electron moves through the lens and the focal distance varies in a
complicated manner.

The values of d at the two sides 7 of an electron lens, for any elec-
tron path, are called conjugate focal distances of the lens, and are
usually designated as dy and ds. The theory of electron-optics is
largely concerned with the derivation of an equation relating these
conjugate focal distances.

8 The term is here used in a broad sense to include the distance to any intersection
point on the z-axis, even though the latter is not the point of convergence of an

electron beam. .
7 The value of d as an electron enters the non-uniform field of the lens, and the

value of d as it leaves the non-uniform field,
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Before passing on to such a derivation, it is well to introduce
another quantity, which is analogous to focal distance and very useful
in making approximations. Suppose that, from any point along its
path, an electron were to continue on with its instantaneous velocity
in a straight line. Its velocity along the axis would continue to have
the instantaneous value #, and the electron would travel over the
distance d and arrive at the focal point in a period of time T given by

T =djz (2)
or from equation 1
T = —rli (3)-

This period of time is analogous to focal distance, and we therefore
call it focal time. The values of T at the two sides of an electron
lens, for any electron path, are in a corresponding manner called
conjugate focal times of the lens.

To obtain an equation relating the conjugate focal distances of a
lens, we must consider the path of an electron through the lens.
The path is determined by the initial velocity and coordinates of the
electron as it enters the lens and by its acceleration in the electric
field of the lens. By defining electrical units in the proper manner
the ratio e/m is eliminated from the equations of acceleration and they
assume the simple form

p ad
,_ 00
z—az: (5}

where @ is the potential at points in space.®
The first solution of these equations gives the well known energy
relation

4 5= 28, (6)

where the electron source is taken as zero potential.

With the exception of special cases, the equations are not further
soluble in the usual sense, and one resorts to solution in series.

As they stand, the two equations for acceleration are inconvenient;
they involve partial derivatives of potential with respect to space and
ordinary derivatives of velocity with respect to time, and the latter
cannot be transformed to partial derivatives with respect to space,
for the simple reason that the velocity of an electron does not exist

8 The final equations of electron-optics involve the potentials only in the form of
ratios which are independent of the electrical units.
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at points off its path. The equations may, however, be reduced to a
more convenient form by the introduction of two velocity functions ®

defined as follows.
Let % and w be any two functions of 7 and z that satisfy the equations

du  ow
@ o ™
w4+ w? = 2. (8)

Consider now an imaginary point moving with velocity components

T =u, 2= w. 9)

. Ou.  du. Odu du
P ta " tu" (10)
and from equations 7 and 8
. du , ow__ 3D
U o (1)

the component 7 thus satisfies differential equation (4) for electron
motion. In a similar manner it may be shown that the velocity
component  satisfies equation (5). The motion of the imaginary point
is thus the same as the motion of an electron, and the velocity functions
u and w are therefore the velocity components of electron motion.

The velocity functions are solutions of equations 7 and 8, one of
which is a simple algebraic equation and the other a partial differential
equation with respect to space alone. The inconvenient time deriva-
tives have been eliminated in these new equations for electron velocity.

The existence of a velocity function is not confined to a single
electron path; it exists over the electric field in general. Any pair of
particular solutions for # and w thus corresponds to an infinite number
of possible electron paths. In the converse manner, there are an
infinite number of particular solutions for any electric field, and there
is a pair of particular solutions corresponding to any given electron
path through the field.

® These functions are the components of the generalized vector function described

in Appendix 4. ]
10 The existence of such solutions is proved by the existence of the series solutions,

which are derived in the following pages.
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Solutions for the velocity functions are obtained by expressing them
as power series in 7.

u=Ar+Br+ Cr® + -, : (12)
w=a+bt+ch+ -, (13)

where the coefficients are functions of z alone. The above powers of
r are the ones required in a system symmetrical about the z-axis.
In such a system # reverses in sign with » and the u-series is odd;
 does not reverse sign with r and the w-series is even. Aside from
such reasoning, the choice of the two series is justified provided they
lead to solutions of the differential equation in a form suitable for
the purposes of electron-optics.
The potential ® obeys the equation
62@ 199

2+12_ 0 (14)

4D = dz® arﬂ ror

and it may likewise be expressed as a power series in 7. This well

known series is
ffH'

(2 o (15)

® = r’ + =

where v is the potential on the axis of the system, and the primes
indicate differentiation with respect to z.

On substituting the three series in equations 7 and 8 and equating

the coefficients of the various powers of r in each equation we obtain

a series of ordinary differential equations for the coefficients of the

u-series.

\20A' + A? = —%, (16)
VEB 4 a4 =0 - EY, (17)
N20C' 4+ 6AC = — % — 3B — 3/4A4'B’, (18)

384

and the coefficients of the w-series are

‘\IZ—U'
A'/2, (19)
B'/4.

a
b
c
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The solution of the partial differential equations for electron velocity
is thus reduced to the solution of a series of ordinary differential
equations, which in themselves contain no approximations.
From equation 1, the inverse focal distance is now obtained by
dividing # by r and w, which gives
2 PR
R (20)
V2u + > "+ I

1
3 7
d — gyt .

This is the general equation for focal distance as it is affected by
aberration.. In using this equation, we are at liberty to set the higher
coefficients equal to zero at the incident side of the lens. This de-
termines the initial value of A in terms of the first conjugate focal
distance. The second conjugate focal distance is then determined by
solving for the coefficients at the exit side of the lens. Due to the
presence of the terms in 7, this second focal distance varies slightly
with the radial distance at which an electron passes through the lens,
and the focus is therefore diffused along the axis. This diffusion of
the focus is called aberration. -

The coefficient A is of particular importance in the theory. of
electron-optics. For paraxial rays, that is, rays near the axis, the
higher terms in the two series are negligibly small compared to their
first terms, and for such rays

i__4. (21)

With the exception of aberration, the single coefficient 4 thus de-
termines the complete performance of a lens, and the principal con-
stants of a lens are determined by its differential equation alone.
In lenses where the rays are confined to a region near the axis with
proper diaphragms, the aberration terms are small and the coefficient
A describes the performance of a lens sufficiently well.

The next section is devoted to the derivation of the principal lens
equations from this coefficient. The aberration terms are considered
only in the last section of the paper.

SectioN II—RAvs NEAR THE AXIS

For rays near the axis the optical characteristics of an electric field
are determined by the differential equation for 4 alone,

"
Vo' + 42 = - 5. (16)
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For such rays the higher terms in # may be neglected in the general
equations and we obtain the following useful relations

A=7'~/r=-—?, ' 5:632)
2 = V2o, (23)
T=d/w/_2—=-%, (24)
dt = dz/z = dz/2v. (25)

A Uniform Eleciric Field

A uniform electric field parallel to the axis is not usually regarded
as an electron lens,* but it does shift the focal point of a beam of
electrons passing through it. In a uniform field, v" is zero and the
differential equation for 4 may be written in the form

dA4 dsz
= -2 26
Rl (26)

An integration of this equation from any point 2, to any other point zs,
in the uniform field, gives

1 1 2(22 — 21)
—_———_— = —— 27
A A, m2+ m1 ( )

where 4, and A4, are the valueg of A at 2z; and 2,. On substituting
— +29/d for A in this equation, it may be transformed to

(1-}—\/g—f)dl—(l—l—\ff—i)dz:2(22—21), (28)

which is the equation relating the conjugate focal distances at any
two planes—located at z; and z;—in the uniform field.

The shift in the focal point of an electron beam as it passes through
a uniform field is illustrated in Fig. 4.

~

~ ~
~ ""q.._
121 Jz2 NP S~ P2
s, |
da2

Fig. 4—Focal distances in a uniform field.

1 Electron rays parallel to the axis are not bent by the field, and it does not
magnify an electron image.
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Thin Lenses

Approximate solutions of the differential equation 16 for 4 are
obtained more clearly by first changing the space variables to time
variables. This is done by using relations 24 and 25, which transform

the equation to

1 (dT _

Tz(EJFl)‘ . (29)
or

1d o

The new equation tells how the focal time T varies with time as an
electron moves along.??

A thin lens is defined as a region of non-uniform field extending
over such a short distance along the axis that an electron traverses
it in a period of time small compared to the focal times involved:
the thickness of the lens is small compared to the conjugate focal
distances. By taking the origin of time ¢ at the middle of an electron’s
period of transit through a lens, ¢ in the lens is not greater than half
the period of transit, and ¢{ may therefore be neglected in comparison
to T in a thin lens. With this approximation in equation 31, it

reduces to
d /1 v’
#(r)-7 (31)

In integrating this equation throu.gh a lens we choose two points
2; and 2, at the approximate boundaries of the non-uniform field, that
is, the points where v substantially drops to zero as illustrated in
Fig. 5. Then, remembering that dt is dz/v2v, an integration from sz,

-
-

S Z

SO——

_cl:—d]—l - dp—s]

Fig. 5—Conjugate focal distances, thin lens.

to 2, gives
- = (32)

12 The period of time that a train requires to reach its terminal point also varies
with time as the train moves along.
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where the inverse focal term is
or on integration by parts

I EAR AN e

The substitution in equation 32 of the values for T; and T as given
by equation 24 now gives the lens equation

V2vs _ 20 1
ds d, F (35)

This equation is analogous to the equation for a thin optical lens
pr_p_ 1 (36)

bounded on its two sides by media with different refractive indices
w1 and ps, the v2v corresponding to refractive index.

Electron rays parallel to the axis do not come to a focus at a distance
F from an electron lens; in other words, F is not a principal focal
distance. There are, in general, two principal focal points on opposite
sides of an electron lens. Their principal focal distances fi and f»
are found by setting first d;, and then d,, equal to infinity in equation
35. This gives

— \20,F,  fi= \2nF (37)

as the two principal focal distances. It may be shown from equation
33 that these principal focal distances really involve the voltages
only in the form of the ratio va/v;. By substituting them in the lens
equation 35, it may be written in the convenient form

Jo fr_
ds ta i (38)

which likewise involves the voltages only in the form of a ratio.
There are two types of electron lenses that deserve special con-
sideration. The first is a small aperture in a thin plate separating
two uniform fields of different intensities—as a special case one of the
fields may be zero. An example of such a lens is illustrated in Fig. 6.
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In this type of lens, the non-uniform field at the aperture covers a
distance along the axis about equal to its diameter.® If the diameter
is small compared to #/v’, there is little change in potential throughout

\%

Fig. 6—An apertured plate.

the lens and the v2v may be considered as a constant in the integration
33 for the inverse focal term. With this approximation,

!

when v is the potential of the plate and »," and v.’ are the electric
intensities of the two uniform fields. The lens equation 35 is then

\@E ‘\"ﬁ; 1 f)z’ - E}1’
ot | el | . 0
which may be written in the simpler form
1 1 v -9
A A T 41

In this type of lens, the electrical refractive index v2v is the same on
both sides of the lens and the two principal focal distances are equal,
just as they are for a thin optical lens when it is bounded by air on

both sides.*
13 “Two Problems in Potential Theory,” T, C. Fry, Bell Telephone System Mono-

graph B-071.
14 A complete electron-optical system usually involves a combination of lenses.

The calculations for a combination are illustrated by the example in Appendix 1.
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The apertured plate between two uniform fields is the only lens
that permits such a simple calculation of focal distances. In all
other lens structures the potential varies appreciably throughout the
lens and the integration for the focal term is complicated. The
actual numerical calculations have been carried out for only a few of
these cases.

The second type of lens deserving special consideration is a lens
bounded on both sides by field-free space. For such boundaries the
first term in the last member of equation 34 vanishes, and 1/F is
determined by the integral term alone. This integral in inherently
positive, and a lens bounded on both sides by field-free space is thus
always a convergent lens. The two concentric tubes of Fig. 7 give

Fig. 7—Concentric tubes—lines of force and electron paths.

a lens of this type, the electric field in each tube dropping to zero at
a short distance from its end. It is true that there is a divergent
field of the same intensity as the convergent field ; but an electron is
at a higher potential in the divergent field and traveling faster, so it
receives a smaller radial deflection in that field and the lens is con-
vergent. It is interesting to note that the lens is still positive even
when the potentials on the electrodes are reversed; in other words,
a lens of this type is positive irrespective of the direction of the electric
field.1s
An Approximation for Certain Thick Lenses

In certain electron lenses there is a short region of strong lens
action accompanied by more extended regions of weaker action; the
large values of the derivative v’ are confined to a short distance along
the axis, but the derivative does have appreciable values over a more
extended region. A lens of this type can be treated in the following
approximate manner, provided that there is but one maximum of
|#""| in-the lens.

For this purpose, the differential equation 31 is rewritten in the form

1 T Tt \2
d(m)=?(1 ""Tr) dt,  dt = dz/\% (42)

15 The principal focal distances of concentric tubes are calculated in Appendix 2.
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and the lens equation is derived by integrating it from a point z; to
a point z;, where the two points are taken at the substantial boundaries
of the non-uniform field. In carrying out this integration, the origin
of time is taken at the instant that the electron is at the maximum of
|#"|, as illustrated in Fig. 8, and for convenience the origin of z is

Ve

z
Z t=o0 Z3
Z=0

Fig. 8—Coordinates for a thick lens.

also taken at that point. With this choice of the origin, the term
t/T in the second member of the equation is small compared to unity
in the region where v"’ is large and not very important in the regions
where v’ is small. This term may therefore be neglected in lenses
when the time of transit is not too great a fraction of the focal times
involved. The integration of the equation then gives

1 1 1
— =— 43
To4+ts Thn+h F (43)
when the inverse focal term is again
1 l‘ IU”
—_ = —— dZ 44
F f W (44)
and
% dz % dz
= — L = . 45
by ﬁ \,‘2”’ 1 2 2o (45)

A transformation to space variables by means of equations 24 and 25
gives the lens equation in a form analogous to that for a thick optical

lens,
‘\‘21‘2 \i2v1 1
dz—az—d]"—'al_?, (46)
where

S 22 V2
ay = — '\JZ'IJgtz = "f -w—'dZ,
. (47)

— f U s,
0 v

@] = — ‘\QZ’].&
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A plane located at a distance «, from the point 2, is the approximate
first principal plane of the lens; and a plane located at a distance as
from the point 2. is the approximate second principal plane of the lens.
In the lens equation, d; — a1 and ds — as are the conjugate focal
distances measured from the principal planes. If the focal distances
measured in this manner are designated as D; and D, respectively,
the lens equation assumes the simpler form

V2u,  \2u _ 1
Dy, D, F #8)

An electron lens frequently has both a positive and a negative
maximum of v/, and the preceding approximation cannot be applied
to the lens as a whole. There is, however, necessarily a point between
the two maxima where v/ is zero and by taking this as a division
point, the lens can be separated into two components. The approxi-
mation can then be separately applied to each component, and the
whole lens treated as a combination of two lenses.

The General Theory of Thick Lenses
The equation for the coefficient 4,

L G
-5 _—— T =)
dz 2 2429

is a Racciti equation and, with the exception of special cases, it has
no exact solution in the usual sense. Particular solutions can be
obtained only by integration in series. It is, however, possible to
express the general solution of a Racciti equation in terms of any two
particular solutions, and this property enables us to develop the
general theory of a thick lens in terms of its principal focal distances.

Y

| |
L
TZI z !22

fa |

Fig. 9—Paths corresponding to X and V. .

In considering a thick lens, two points 2, and 2, are again taken at
the substantial boundaries of the non-uniform field constituting the
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lens. The differential equation for A4 necessarily has a particular
solution equal to zero at z;. This solution is designated as ¥, and it
corresponds to an electron ray entering the lens parallel to the axis.
At 2, this solution is equal to — +2uvs/f2, where f is the second principal
focal distance measured from zs. The path of such a ray is illustrated
in Fig. 9. This particular solution obeys the same differential equation
as A. By subtracting the differential equation of A from that of ¥V
and making a slight transformation, we obtain

d

__4+7Y
and it should be noted that
d
AN2w = f = - log . (50)

An integration from z; to z; and a transformation to focal distances
then gives the relation

(fa = do)dy _ \/il_{}
Fds ks el (51)
where k3 is a constant of the lens, given by

% Vidz
1/ks = exp. —=.
Je v2v

By proceeding in the same manner with a particular solution X for a
ray leaving the lens parallel to the axis, we obtain a second relation

(52)

(1 —di)ds _ \/é £
[ =k o7 (53)
where
k ==_)_(£E- 54
1 = exp. . ‘\"‘2; ( )

The differential equations of X and ¥ may also be subtracted and
integrated, and this gives a third relation

filfa= =2 (55)

’02
A multiplicatibn of the first two relations 51 and 53 gives

(fa — d2)(fL — d1) = kiksfife. (56)
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which is one form of the equation relating the conjugate focal distances
of a lens. This equation may be converted into a more useful form
by the following considerations.

A combination of the three preceding relations gives

g—;uz — ) = 7 (dy — ), (57)

where
a; = fi(l = ki), as = fa(l — ka). (58)

To interpret this equation, we erect two imaginary planes as shown
in Fig. 10. The first plane is located at a distance a; from z;. If the

RN

I 2 >

Fig. 10—The principal planes.

path of the incident ray is projected it intersects this plane at some
radial distance R;. The second plane is erected at a distance as from
25. The path of the exit ray intersects it at a radial distance R,.
The equation says—from simple geometry—that the two radial
distances R; and R, are equal. The path of an electron through the
lens is therefore the same as if the electron proceeded in a straight line
to the first plane, passed parallel to the axis to the second plane, and
then proceeded again in a straight line to the second conjugate focal
point. These two planes are called the first and second principal
planes of the lens. The action of a thick lens is the same as if the
space between the principal planes were non-existent, leaving them
in coincidence, and a thin lens were located at the plane of coincidence.

The principal planes of a lens may lie either inside or outside of
the lens. In most convergent lenses, «; is positive and a; negative,
and the two planes both lie inside the lens.

The first conjugate focal distance measured from the first principal
plane is designated as D), and the second conjugate focal distance
measured from the second principal plane is designated as D;. When
they are measured in this manner, the two conjugate distances are

Dy =dy — ay, Dy =ds — ao. (59)
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The two principal focal distances measured from the principal planes
are, in a similar manner, designated as F; and F; then, from equation
58,
F, =f1 —a = kifl,
Fs = fa — as = kaofs,

FR = -2, (61)

Substitution of the new focal distances in the lens equation 56 now
gives

(60)

and, from equation 55,

(F2 — D3)(F1 — D:) = FiF, (62)
or
Fy | Fi
D, + D, - L (63)

This is the general equation relating the conjugate focal distances in
any lens. With the aid of equation 61, it may be written in the more
familiar form

V2u, 2y 1
D, D, F’ (64)
where
1 V2o, 2y
F Fy B i ) (65)

The Principal Poinis of a Lens

The points locating the two principal planes on the axis of a lens
and its two principal focal points are called the cardinal points of the
lens. The preceding theory of a thick lens shows that its performance
is completely determined by the locations of these four points.!®
The theory does not furnish a general method for calculating their
locations, but it does show that they can be determined from a knowl-
edge of two so-called principal rays. The first is a ray leaving the
lens parallel to the axis. If its entrance and exit paths are projected,
they intersect as shown in Fig. 11, and the intersection locates the
first principal plane. The projected incident ray also intersects the
axis, and this intersection locates the first principal focal point. The
second principal plane and the second principal focal point may be
located in a similar manner from the entrance and exit paths of a ray
entering the lens parallel to the axis.

16 We are here speaking only of rays near the axis.
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The required paths of the two rays must in general be determined
either by a series or step-by-step integration of the differential equation
for A, or else by actual measurements on the physical lens.!?

|FIRST,
|PLANE

FIRST
RAY |

! \ _»SECOND
PRINC | INT:
FIRS];_/R 1PAL | FOCAL Ipo S

SECOND SECOND
RAY PLANE

Fig. 11—The cardinal points of a lens.

Magnification

Electron object and electron image are defined as their optical
analogies. The electron object may be an actual source of electrons,
or the real image of such a source, or it may be a virtual image from
which the electrons are apparently coming as they enter a lens.

The magnification by an electron lens may be treated in the following
manner. Let S, be the size of an electron object located at a distance
D, from the first principal plane of a lens. Two electron rays from
the edge of the object are considered—as shown in Fig. 12. The ray

PRINCIPAL
PLANES
FlFlS;I' SECOND

NN

| : -Fa—> Sla
MNP ) SRR

Dj—— D2
Fig. 12—Magnification.

entering the lens parallel to the axis may be regarded as passing on to
the second principal plane and then bending sharply to pass through
the second principal focal point; the ray through the first principal
focal point may be considered as passing on to the first principal
plane and then proceeding parallel to the axis. The intersection of
the two rays locates the electron image and determines its size Si.
The magnification M is defined as S:/Sy, and it follows from simple
geometry that
Dy—F, _ F

F, Di— Fi

17 Other step-by-step methods can be used when a map of the equipotential
surface is available.

M = (65)
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A more convenient expression for magnification is now obtained by
combining the two preceding expressions to give

F\D,

M = 66
F.D, ( )
and from equation 61
_ 224'1 Dz .

The magnification is not in general equal to the ratio of the image
distance to the object distance, as it is for an optical lens in air. It
is only equal to that ratio when the voltage is the same on both

sides of the lens.

SeEcTION III—ABERRATION IN A LENS
Returning to the first section, we see that the general expression
for focal distance is

1 A+BP+CA--
9= = A7 B *- (20)
‘\!ET_J+—2-f2+—4'f4

d

The exact focal distance of an electron thus depends on its radial
coordinate 7, and a ray passing through a lens at a distance from the
axis does not come to the same focus as a ray near the axis. A precise,
general theory for rays at a distance from the axis could—in theory
at least—be derived by solving the differential equations for as many
of the higher coefficients as desired and substituting them in the
above equation. Such a general solution would, however, be very
difficult indeed, and one is content—as he usually is in optic&—to
treat the performance of a lens in a much more restricted manner.
The equation for focal distance can be simplified to some extent by
noting that its denominator is the velocity component 2. With the
aid of the energy equation 6, this component can be written in the form

i = «!271[1 + (g)z]_m- (68)

In most lenses # is small compared to d, and the last factor in the
above equation may be approximately set equal to unity. This
approximation is accurate to one per cent even for a lens with an
angular aperture corresponding to F3.5—an F2 lens is a very fast
camera lens. With this approximation the inverse focal distance is

{1  A+Br4Crt -
i~ 2y

(69)
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The presence of the terms in # causes a diffusion of the focus in a
lens, and a clearer picture of this diffusion is obtained by expressing
it as lateral aberration. So we now proceed to derive an expression
for this aberration, and the meaning of the term becomes apparent
from the derivation. For this purpose we consider electrons entering
a lens as if they all came from a point source at a distance d, from the
first side of the lens. We are at liberty to set the higher coefficients
equal to zero at that side of the lens, and this gives

4= =¥, (10)
d,
B1=C1= e |
At the exit side of the lens, the focal distance is
?= — (A2 + B®+ Co* + - ++), (71)

where the coefficients are solutions of their differential equations
subject to the initial conditions 70. The focal distance dy for rays
near the axis is given by

I _

7 a. (72)

The difference between the focal distance d; of a ray leaving the lens
at a distance # from the axis and the focal distance dy of a ray near
the axis is

dg*
V20,

This difference is called the longitudinal aberration of the lens. It is
the distance that the focal point is diffused along the axis, when the
lens is limited by an exit diaphragm or radius r.

If a screen is placed at a distance do from the lens, rays near the
axis will come to a point focus on the screen; but rays leaving the
lens at a distance  from the axis will strike the screen along a circular
line. The radius s of this circle is called the lateral aberration of the
lens. It follows rather simply, from the value of the longitudinal
aberration, that the lateral aberration is

do
V2,

This is the radius of the diffuse image of a point source, when the lens
is limited by a diaphragm of radius 7.

dy — do = (Bar® + Cor* 4 -+ 1), (73)

5§ =

(Bo® + Card - -). (74)
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The differential equations 17, 18 - - - for the aberration coefficients
are linear and subject to solution in the usual manner when 4 and v
are known functions of 2. The solutions for the higher coefficients
would of course be quite involved. The higher terms are, however,
small compared to the second term, which causes most of the aberra-
tion, and the approximate distortion is given by the second term alone.
This term is called the second order aberration term.

The Reduction of Aberration
The coefficient of any aberration term vanishes when conditions
are arranged so that the last member of its differential equation is zero,
for the coefficient may be arbitrarily set equal to zero at the first side
of the lens, and the solution of its linear equation is then zero through-

out the lens.
The important second order aberration term can thus be made to

vanish by arranging conditions so that

V."Iff (A f)2 .

6 5= 0. (75)
In a lens that is not too thick compared to the focal distances involved,
we have seen that the term A2 may be neglected in the differential
equation for 4, and

"

v
= — e 76
2420 (76)
The substitution of this value for 4’ in the above equation gives
ny2
'U”” —_ (vﬂ) = 0 (77)

as the differential equation for electric fields that are approximately
free from second order aberration, when the focal distances are reason-
ably large compared to the length of the field along the axis.

The general solution of this equation is a series solution, but several
particular solutions have been obtained in terms of known functions.
The potentials corresponding to these particular solutions are given
by the following equations:

P = ge*v:Jy(wr), (78)
® = (a sin wz + b cos wz)Jy(iwr), (79)
® = (a sinh wz + & cosh wz)Jo(wr), (80)

1 1/7r\2, 3 /r\*
o= 3-3(z) *alz) ] e
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Any one of these electric fields can be produced by shaping and
positioning electrodes to correspond with two of its equipotential
surfaces. These fields are, however, in general not well adapted to
production with practical electrode structures. The one exception is
the field defined by equation 79, and electrodes for producing it in a
practical form are shown in Fig. 13. They are suitable for giving an

Figs. 13, 14—Lenses with reduced aberration.

electron stream its initial acceleration. The electric field constitutes
a divergent lens, as do practically all initial accelerating fields.

As expressed by equation 79, this field is followed by a symmetrically
reversed field, and for some purposes it may be desirable to include
the reversed field. This is done by locating a low potential electrode
along its corresponding equipotential surface as shown in Fig. 14.
A small aperture may be cut in this electrode for the passage of
electrons. The aperture then acts as a lens to bring the beam to a
focus, but this lens has its own aberration, and the whole system is
then only partially free from first order aberration.

AppPENDIX I—CALcuLATIONS FOR A COMPLETE SYSTEM

The electrode arrangement of Fig. 15 is chosen for giving a simple
example of the calculations for a complete optical system. The final
focal distance is found by calculating the focal distances at the points
m, m, o, p in succession. Electrons leave the cathode and travel
parallel to the axis in the uniform field between the first and second
plates, so their focal distance is — « when they arrive at the point m.
The electrons then pass through the aperture in the second plate,
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and their focal distance at » is calculated from the lens equation 41,
which gives

1 1 _ 1 Uy — Vg
Lt==m, [ ] )

% %
1\ f
Zh ' Z

/
) /

4 ¥

:é}A' T m/n

7 7
2 y
]
7 // %
7
% %
V=0 V|

Fig. 15—Example of a complete system.

and the focal distance at » is
4]
d, = ——.32 — 2’ (2)

where 8 is Vve/v;. The beam then passes through the uniform field
between the second and third plates, and the focal distance at 0 is
calculated from equation 28 for a uniform field, which becomes

(1+B)ds — (1 + 1/8)dy = 21 (3)
and gives
4428 -p
1+8)pB—2)

The beam then passes through the aperture in the third plate into
field-free space, and the lens equation for this aperture is

1 1___1_ _?_'2_—1?1 .
;15;_35_0_4%'2[0 ! ] )

dy = 20! “4)

Substitution for dy now gives .

1 _1+8 g —2 1—8

P e I (6)
which is the reciprocal of the final focal distance measured from the
last plate.
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In complete lens systems, where the symbolic calculations are
complicated, it is frequently simpler to introduce specific numerical
values and carry the successive steps of the calculation through in a
numerical manner. By'doing this for a few suitably chosen numerical
values one can obtain the particular information that is desired.

ArrENDIX II—ConcENTRIC TUBES

Two concentric tubes at different potentials form an electron lens
that is well adapted to practical tube construction. When the two
tubes are of the same diameter, the approximate constants of the
lens may be determined as follows.®

V"

|
1o
N

Fig. 16—Concentric tubes.

In this type of lens, the electric intensity is symmetrical with
respect to an imaginary plane drawn between the two tubes—as
illustrated in Fig. 16—and the plane is therefore an equipotential
surface. Its potential », is the mean potential of the two tubes.
This plane is regarded as a division plane separating the lens into two
component electric fields.

We first consider the component to the right of the plane. The
solution for the potential inside of the tube may be obtained in the
form of a Bessel Function series, and it follows from this series that
the potential on the axis is

v=vz—(vz—vo)zﬁlz(7)exp.(—%); (1)

where R is the radius of the tubes, and u takes on discrete values
equal to the successive roots of

Jo(w) = 0. (2)
We find that an approximation to the exponential series is given by

2 z
Zmexp.(—%)=l—tanhwz, 3)

M

18 We assume that the separation between their ends is negligibly small compared
to their diameter.
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where w is equal to 1,32/R. The closeness of this approximation is
shown in Fig. 17. Its introduction gives

v = 9 + (v2 — w) tanh wsz. (4)

A similar approximation is found for the potential on the axis to
the left of the division plane,

v = 7 — (71 — ) tanh wg, (5)

and it turns out that the potential on the axis of both tubes can be
expressed by the single equation

v = $[(v2 + v1) + (v2 — 71) tanh wz]. (6)

2 - R
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Fig. 17—A;1 approximation for the exponential series.

With the potential on the axis expressed in terms of a known
function of z, various series methods may be used for locating the
principal planes and calculating the principal focal distances. They
are, however, complicated and it may be preferable to use the approxi-
mate lens equation obtained by treating the structure as a thin lens.

When treated in this manner, the expression 33 for the inverse focal
term can be exactly integrated, and the lens equation is

\2v, m_ wy2 — Af7)2 =
i el T (Vo — Vo),  w=132/R. ()

Division by either V2v: or V2s—as desired—reduces this equation
to one that involves the voltages only in the form of a ratio. The
error in a focal distance d calculated from this equation is of the
order of R, when the focal distance is measured from the division
plane of the tubes.
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The principal focal distances for various voltage ratios are given in
terms of the tube diameter by the curves of Fig. 18. For rough
calculations, these plotted values may be used in the lens equation

foo fi_
dz+d1 1, (8)

where focal distances are again measured from the division plane of
the tubes. ‘

The electric field of the concentric tubes has two maxima of |v
located symmetrically with respect to the division plane, as illustrated
in Fig. 16. Each maximum is located at a distance .5R from the
plane. The electron lens may therefore be treated in a somewhat
more exact manner by considering it as two thin lenses located at
these points. The inverse focal term of the equivalent lens to the
left of the plane is

Hl

L= i — iy - 0, ©

and the inverse focal term of the equivalent lens to the right of the
plane is

%‘= w:n/“ [wo(@ ooy — - EJDEIE:I. (10)

The final focal distance in any particular case is found by carrying
out the calculations for the two lenses in succession, with their separa-
tion taken equal to R.

ArpeEnDIx III

A Plane Electrode at the End of a Tube.—In addition to their above
application, the last two equations may be used for other purposes.
In electron devices, one frequently puts a plane electrode at the end
of another, tubular electrode.” The approximate lens action of the
electric field between the plate and tube is then described by one or
the other of these equations. Equation 9 applies when the plane
follows the tube in the direction of electron motion ; and equation 10
applies when the plane precedes the tube.

In structures of this type, the plate is usually pierced with an
aperture for the passage of electrons. When the aperture is small
compared to the tube diameter, the lens system can be treated in the
following manner.

19 We assume the separation between the plate and the end of a tube to be negli-
gible compared to the tube diameter.
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We first consider the case of the plane preceding the tube. The
electric intensity at the plate is found by differentiating equation 4
with respect to z and then setting z equal to zero. A substitution of
this intensity in equation 41 of the text gives the lens equation of
the aperture. In addition to this lens there is an equivalent thin
lens located inside the tube at a distance .5R from the plate, and
having the inverse focal distance of equation 10. The system is
considered as a combination of the two lenses and the calculations
are carried through in the usual manner. When the plane follows
the tube, the constants of the two lenses are determined from equations
5 and 9, and the combination is treated in a similar manner.

AppeENDIX IV—THE VELociTY FuNCTION

The auxiliary functions # and w are a special case of the components
of a generalized vector function that is useful in developing series
solutions for electron motion. The equations of this function are
equivalent to the Hamilton-Jacobi equation ; they are briefly outlined
in the present system of units as follows.

In a field that may comprise both an electric intensity E and a
magnetic intensity H, let v be any vector function of x, y, z that
satisfies the equations

curl v = HJe, (1)

12t =e+W, @)

where W is a constant equal to the energy of electron emission from
the source. Then v is a possible vector velocity for electron motion
in the field.

If the magnetic intensity is zero, the vector function v has a po-
tential ¢, which may be any solution of the equation

1/2|grad ¢|* = ¢ + W (3)

and grad ¢ is then a possible vector velocity for electron motion in
the field.

The validity of these equations is established by transforming
them to the usual equations for electron acceleration.

A List oF THE MORE IMPORTANT SYMBOLS AND EQUATIONS

In the present theory of electron-optics, all distances along the axis
are measured in the direction of motion, as they are in the optics
of light.

r, 2 —cylindrical coordinates
t —time
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$® —potential at point in space, the electron source taken as zero
potential

v  —potential on the axis

v —derivative of v with respect to 2

—is also used for the voltage of electrodes

—focal distance in general

—focal time in general

—the important coefficient for rays near the axis, a function of
z alone

%, w —velocity functions corresponding to 7 and 2

d1, dy—conjugate focal distances measured from the two sides of a lens

J1, fo —principal focal distances measured from the two sides of a lens

e

As an approximation in thin lenses, the focal distances are measured
either from the mid-point of the lens, or from the point where |v"|
is a maximum, provided that there is but one maximum in the lens.

aj, @z —location of the principal planes with respect to the sides of
a lens

D, Dy—conjugate focal distances measured from the principal planes

F,, Fy—oprincipal focal distances measured from the principal planes

F —the focal term of a lens, not a focal distance

Equations for Rays Near the Axis
i = 1y,
A=-—Vo_ _1_;,

d T
%A’ + 42 = =T,
1 d I}”

The important equations for a thin lens are:

‘\12711 L'l 21?1 _ 1

d» d, F’
h_ _ [
f]_ 27:'1
fo S
&g b
1 5 g
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The following equations hold for any lens:

V2, _ N2 _ 1
dz—'az dl—al_F'
V20, 20 _ 1
D, D, F’
Fr |20
F]_ 2!)1
Fy | Fy
E+E_1,
ED:_ _ [BiD
M=%5," "\2,D,"

where M is magnification.



