Effect of Space Charge and Transit Time on the Shot Noise
in Diodes
By A. J. RACK

The theoretical analysis of the effect of space charge upon the
“‘shot noise' in a planar diode shows that for practically all
operating conditions, the tube noise is equivalent to the thermal
resistance noise of the plate resistance at 0.644 times the cathode
temperature. Noise in diodes of other than planar shapes is
discussed and it is concluded that the same relation holds. It is
shown that transit time produces the same high frequency modi-
fication for both the thermal and shot tube noise, and that the tube
noise is decreased by transit time.

N the study of noise in vacuum tubes, the effect of the space charge
upon the shot noise has been a subject of considerable interest and
practical importance. Several papers have been written in which it is
shown that the shot noise is decreased by the space charge, and that the
tube noise in a diode with space charge is equivalent to the thermal
resistance noise of the plate impedance at a temperature slightly
greater than half of that of the cathode.!:* * 4 The most compre-
hensive analysis was made by Schottky and Spenke. These authors,
employing a different method from the one here presented, have
obtained the same general conclusions given in this paper, although
they prefer to express the result in the form of a modified shot-noise
equation, whereas for reasons developed below, the writer prefers the
thermal form. The theoretical analysis and discussion presented here
was undertaken to show in more detail the extent of the range of the
operating condition for which the thermal resistance equivalent of tube
noise is valid and to study the effect of transit time upon both the shot
and thermal tube noise.

For convenience, the paper is divided into three parts. In the first
section is given an exact mathematical treatment of the tube noise at
low frequencies in a parallel plane diode for any degree of space charge.
A discussion of the final tube noise equation obtained through this
analysis, and the extension of these results for the planar diode to any
other shape diode is given in Part II, where the presentation is such
that the section may be read independently of the theoretical analysis
in Part I. Through several approximations, Part III treats the effect
of transit time upon tube noise in the planar diode.
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SHOT NOISE IN DIODES 593

PArT I—GENERAL Low FREQUENCY ANALYSIS

In the development of the general equations for the direct current
in vacuum tubes with space charge, account has been taken of the
fact that the electrons are emitted from the cathode with Maxwellian
velocity distribution. This fact has been verified experimentally by
Germer,® and the resulting equations for the relation between current
and voltage have been derived and investigated by Fry,® Langmuir,”
and others. In the extension of this analysis to tube noise, it is only
necessary to assume that the number of electrons emitted with any
velocity does not remain constant, but fluctuates with time according
to the well-known laws of probability. In the analysis on this basis,
the frequencies involved will be considered to be sufficiently low so
that any transit time effect is negligible.

Below is given a list of the definitions of various symbols to be used in
the tube noise study of a parallel plane diode. The practical system of
units is employed throughout.

n(u.)du, = instantaneous rate of emission per unit area of the cathode
of electrons with initial velocities between u. and
#e + du, in the x-direction, regardless of the velocity
components in the other directions,
nolte)due + 0(uc)due,
no(u.)du, = average rate of emission of electrons with x-directed
velocities between #. and u. + du,,
8(u.)du. = instantaneous deviation from average rate of emission,
I = instantaneous anode current per unit area,
V' = instantaneous potential with respect to cathode of a plane
at a distance x from the cathode,
V' = instantaneous potential with respect to cathode of the
potential minimum,
1 = instantaneous velocity at x-plane of electrons which had
an initial x-directed velocity of %, at the cathode,
x' = instantaneous position of potential minimum,
e = charge on electron = — 1.59 X 107'® coulombs,
m = mass of electron = 9.01 X 10728 grams,
h = ratio of dyne cms. to joules = 1077,
e = permittivity of a vacuum in practical units = 8.85 X 10~
farads/cm.,
k = Boltzmann's gas constant = 1.372 X 10~* watts/degree
Kelvin,
N = average total number of electrons emitted per second per
unit area from the cathode,
T = absolute temperature of the cathode.
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In the following analysis, it is assumed that the electrodes of the
planar diode are infinite in extent, and that the electron emission is
random, so that the equipotential surfaces are parallel planes perpen-
dicular to the x-axis.

The potential distribution in such a planar diode operating with
space charge is shown in Fig. 1. The origin of coordinates is taken at
the cathode, and the potential minimum formed by space charge occurs
at a distance x = x' from the cathode. The subscript « will be used to
denote the space between cathode and potential minimum while 8
applies similarly to the space between minimum and anode. Of all

CATHODE
O - REGION
B - REGION

ANODE

Fig. 1—Potential distribution in planar diode.

the electrons emitted from the cathode only those whose x-velocity
exceeds the value %, corresponding to the potential minimum can
penetrate the barrier and proceed to the anode. Electrons with lesser
values of initial velocity will come to rest at a point in the a-region
where the potential corresponds to their initial velocity and will then
return to the cathode. The anode current density is thus given by

I=e F n(ue)due, (1)

e’

while the relation between velocity # and potential " at a given value
of x is

2e
2 — g2 27
u Ut — V. (2)
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A third fundamental relation is Poisson’s equation which becomes in
the parallel plane case under consideration
a@v
GW = - p. (3)
In the a-region the total charge density is made up of three classes of
electrons, namely

1. Those destined to pass the potential minimum and arrive at the
anode.

2. Those moving away from the cathode but which will not travel as
far as the minimum point.

3. Those returning to the cathode.

Corresponding to each class of electrons, there is an associated
current, pu, so that each of the three densities py, p2 or p;, may be
expressed by a relation of the form,

— Iﬂ
=

(4)

When it is remembered that the potential and velocity at a given
value of x are uniquely related through (2), then it is easy to see that
the total density for a given plane in the a-region is given by

© U
pa=€f @duc—{—hf %ﬁflduc, 5

Pn

6’

where the first term represents the contribution of electrons in class 1
above, while the second term represents the contribution of electrons in
classes 2 and 3. The contribution of class 3 is equal to that of class 2.
The lower integration limit » of the second term of (5) represents the
initial velocity of an electron which would just arrive at the value of x
under consideration before coming to rest and starting back toward the
cathode and the limit %, in both terms represents the initial velocity of
an electron which comes to rest just at the potential minimum.
Thus, from (2)

2e , (26 o,
v = %V and uc—1,%V. (6)

In the B-region there is only one class of electrons, so that the
density is more simply expressed. Thus,

ps = e f %”“)duc. )

‘f

The value of p in (5) and (7) may each be expressed in terms of
d*V/dx? by the use of (3), and the integration of these two Poisson’s
relations for the common boundary condition that the electric force is
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zero at the potential minimum has the following result:

(‘f;;")) = 2hmf (u — z«t’)wu)d:f»:tc-kyzwwE ] ’m("c)d”“ (8)
(d;/?g)ﬂ _ 2hm j — Wy (ue)due ©)

where %' is the electronic velocity at the potential minimum, i.e.,
(u")? = ul — (2efhm) V",

At this point the analysis departs for the first time from the classic
analyses of Fry ¢ and Langmuir,” through the introduction of the
concept that the instantaneous rate of emission may be expressed as the
sum of an average rate of emission plus an instantaneous deviation.
That is,

n(u.) = no(ue) + 6(u.), (10)
transforms (8) and (9) into the following equations:
(cﬁ;/;))- _ %@ f " (= el
+ @ Y ano(udu. + (), (1)
where
() = 2 f (1 = w)a(udu. + =7 dhm (™ s udu,
and ’
2 o0
(‘g;)) - ”‘Tm f (= wymudu. + B0) (12)
where

B(8) = -2'1—1”—1 (uw — u"Yo(u,)du..
Since the average rate of emission may be expressed by the Max-
wellian relation,
no(a.) = 2aNue e,
where
hm
'zk_j'w ’

the indicated integr'ations in (11) and (12) have as a result,

(RT)? (dna)? _ Nhm [x _,
(&) (dx) \/af

a =

X [fv — 1+ aP(\n) — 2\@] + a6 (13)
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and

(kT)? (dng)* _ Nhm
(e) dvi) \/

X [e” —1 — aP(N7) + z\m +80), (14)

where
e , , eV’

P(x) = % ‘f; s,

The fact that both «(8) and B(8) are very small greatly simplifies
the solution for the distance coordinate x in (13) and (14). The
process is to invert the two equations, respectively, extract the square
root, and then expand the right-hand side in powers of «(8) and B(8),
respectively. This results in expressions for dx/dq which can be
integrated term by term. However, the small values of a(8) and 8(3)
allow powers higher than the first to be disregarded, and hence,

e 4 _ F(n') _ 1 " a(8)dn
kT"‘[th F ] ;_,]mfo a1
— €
and
o =
AT ® =) [th }_,,,]”2
— €

L f".@(ﬁ)dn, (16)
. [th T_re_,i,]m PEC)
€ 24
where for convenience

-

. d
F(n") —f; [e"" P e‘fP{:I/n) B 2\@]1!2
dn

#r) = [ @ = 1+ aPI) 2\/”w
o) = [ =1 = ertm 2 1]




598 BELL SYSTEM TECHNICAL JOURNAL

Up to this point, the present analysis is very similar to that given
by Spenke.? For the reasons stated above, the two methods digress
hereafter.

Since the instantaneous position of the potential minimum depends
upon the operating conditions as indicated above, the elimination of
this variable by the addition of the two equations (15) and (16)
results in a simpler expression for the cathode-anode spacing, namely:

| 2z e | = o) + st
“amant [ o} a9

2 [N_kml\ﬁ E_"r] 1.fo 2

To separate the noise or fluctuation component of the potentials
from their average values, it is necessary to assume at any plane in
the diode that it is possible to express both the instantaneous voltage
and velocity as a steady state or average value plus a very small
superimposed fluctuation component. Since this assumption does not
result in any discontinuities, it is possible to express the instantaneous
values of the dimensionless variable as

=m0 +m
and (19)
7" =m0 + 1,
where both #; and %1’ are very small. From this assumption, it may
readily be shown that the d-c. solution and the first approximations
to the fluctuation component of the solution for (18) are respectively

i [M\/I *”"“']m = F(nd') + f(no) (20)
and
[Nkm ] vy _ o dg,(f?l) + md,;(;n)

[ B L8] o

In the last equation, the average or d-c. values of all quantities
except 71, 71’ and d(u.) are to be used.

To avoid the necessity of using long, awkward equations, it will be
of great convenience to define several new variables.



SHOT NOISE IN DIODES 599

Let
y = Vau'
g = fnd) +f(nn) +dl;'(nu’) +df(nu)
ST Ty, (22)
w [y n - &
\/J o
f"" [Vy? + '-'r — y]
,\/_

From the definition for 5, given in connection with (13) and (14),
it may be shown that

e
M = 7]1, - ﬁ Vll (23)
where 7 is the a-c. anode potential. With the definition given for

«(8) and B(8) in (11) and (12), and from the above relations, (21) may
be rewritten as

rn _ eVidf(ng
/B~ h J;(;) NE_%[[' (C + D)s(u)du.

“ Ny F g 5(ue)durdn]
\r f ®(n) » (24)
where
@ = |2y, ﬁ=\/£Vu.
hm hm

Before (24) can be used, the relation between 5’ and the a-c. anode
current, and also the expression for the a-c. plate impedance must be
obtained. From the general relation given in (1), the instantaneous
current per unit area is

o e

I= ef n(u)du. = ef no(u)du. + e o(uc)du,
= Nee " + ef 8(u.)du..

Since the instantaneous voltage of the potential minimum may be
expressed as a sum of a d-c. component plus a small a-c. fluctuation,
the d-c. and first order fluctuation plate current are respectively

Iy = NBE_"U‘, (25)
I, = — g/Neen' + e f 8(uc)du.. (26)
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Whence,
;€ o _ It
1 = I_U.L, §(u.)du, I, (27)

This is the desired relation between 5, and the a-c. anode current.
To find the other desired relation, it is first observed that by (20)
and (25), the d-c. voltage-current relation is

I T |12
Tr | | 0 = E) + 0. (28)

This is identical with that obtained by Fry and Langmuir. The
values of F(yo') and f(n,) have been tabulated by Langmuir.”

From this d-c. relation, it may readily be shown that the a-c. plate
impedance of the planar diode is

Fln) + f(no) | dF(5o) | df(no)
2

"= e_f_udﬂvir)m - i(ln_) )
kT dng dno
Since the noise generator voltage,
E=TIr,+ 1V,
the substitution of (27) and (29) reduces (24) to the following relations:
iy + vy L)

_ tEdf(no) _ ¢ ®

_ i_ fﬂnf g !y:a + ﬂa(uu)ducdn} . (30)

‘/‘ﬂ'- 0 - ‘I’(U) )
By the additional symbols,
; kT
H(uc‘r o ’?0) = W(-B - C - D)
", (31)
G( o 2 R A Ea[
B A/ ACOL 1O
o 2270,
d"’Ju

the noise generator voltage may be expressed in the condensed form,

E= f " Ho(u)du. + f " f “ Go(u)duddy. (32)
Uc o ]
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Unfortunately (32) cannot be integrated because the specific value
of the instantaneous deviation in the rate of electron emission is
unknown. Moreover, as shown by Fry !° there exists no frequency
spectrum for this deviation. The reason is because there is no way
of foretelling at a particular instant just when the next electron is
going to be emitted from a thermionic cathode. It does not follow,
however, that Fourier methods are powerless, as the following argu-
ment will show. Imagine that the emission in a thermionic system
has been going on for a long time, and place a recorder in the system
which makes an oscillograph record of the voltage produced across
the tube by the fluctuating current. Let the record be made over a
long period of time. Then, it is a perfectly possible thing to analyze
the record so obtained into a Fourier spectrum. The result will give
no information that the Fourier spectrum which would be obtained
on the oscillograph during an ensuing time period of equal length
would be the same as the one which has been secured during the past.
However, when the mean square value of the Fourier spectrum for
the recorded interval is computed, it is found that the mean square
value of any two records so obtained is the same when they are both
produced by random emission. Moreover, the mean square value
within a specified frequency interval is also the same in the two
records. These facts result from the random character of the events
producing the records, as may be seen even more clearly by examina-
tion of the mathematical steps in the following equations, particularly
as given in the progression from (37) to (38). It follows, then, that
one is justified in concluding that the mean square response of an
electrical system to a random excitation can be calculated by the
Fourier series method, and that the result so obtained applies equally
well either to systems which have been measured in the past, or to
those which will be measured in the future, provided only that they
both are similar in their configuration and external operating con-
ditions.

To obtain the Fourier expression for the emission deviation, it will
be assumed that this function repeats itself after a very long period
of time. To find this Fourier Series for the instantaneous deviation
from the average rate of emission of electrons with x-directed velocities
between #. and #, + du., the very long period of time, L, is divided
into P equal intervals of length, r, where 7 is assumed to be mathe-
matically small. The exact number of electrons emitted during any
of these intervals of time with velocities between %, and %, + du. per
unit area of the cathode is denoted by #.(u.)7. The average rate of
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emission of electrons in this velocity class may then be defined as
follows:

no(1c) 51—1 él (1), (33)

During each interval, the deviation from the average rate of emission is
Om(tte) = nm(tte) — no(u.). (34)

The mean square of the instantaneous deviation for all P intervals
is then

) = p 2 Dim(w) = ma(ua) P, (35)

m=

The value of the mean square emission deviation may be found
from the following considerations. In previous studies of pure shot
noise, it was assumed that the electrons are emitted from the cathode
independently of one another, that is, the probability of an electron
being emitted during a very small interval of time depends only upon
the average rate of emission and the length of the time interval.
The classical theoretical equation developed for the shot noise from
this assumption was found experimentally to be correct to well within
experimental errors. Hence, the same assumption may be made in
this analysis of tube noise as the presence of the space charge near the
cathode can have but a negligible effect upon the rate of emission of
electrons from the cathode. Thus, since the electrons in any velocity
class are also emitted independently of one another, the application of
probability theory shows that the mean square deviation in the total
number of electrons emitted with velocities between %, and u. + du,
in a time, 7, is equal to the average number of electrons of this velocity
class emitted in the same time, 7.

That is,
1 P
= 25 2 =
szzl 28,2 (u.) io(it.),
or
Lt L
E 6m2(uc) = ?nﬂ(ut:)- (36)

m=]

Since the period of time, 7, is mathematically small, it. can be
assumed that the instantaneous deviation from the average rate of
emission is constant in each of the P intervals and equal to 8,(u.).
If it is assumed that the function representing the instantaneous
deviation repeats itself after a very long period of time, L, the Fourier
series for the P square-top pulses comprising the instantaneous
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deviation function may be shown to be:

Bu) = 3 3 Tom () ["”'“T - 1]e”w—w, (37)

e el — tlwT

where w = 27 /L, and {,, = mr.

The mean square deviation may be found by squaring the above
expression and averaging the result over the long period of time L.
The result is

w P P T 8~1'1wf — 1
Fd = 25 % T Lomw)selud) [ g |
—, L — tlwT
e+='fwr — 1
[ + tlwT
Since the time-average of the instantaneous emission deviation
must be zero over the period, L, the contribution to the mean square

from the double summation with respect to & and m is zero, unless
m = k.

]e—ilw{lk—!m).

Thus .
0 2
mY — ks cos lwr 38
Py = 457 [ Lt | £ o, (38)
From (36), this equation reduces to
5  4&[1— coslor
52(14,:) = Il.:]_ [ W] ﬂo(un). (39)

The contribution to the mean square of the instantaneous deviation
in the electron emission, from the frequencies between f and f 4 df
is given by

(40)

— 4= UHAD/e T cos lw
6/ () = 3 [WJ} o(2tc)

1=277lw
The limit of this expression as the length of the periodicity, L, is

made infinite, may readily be shown to be

8 (ue) = 2no(uc)df. (41)

It is now possible to proceed to find the mean square value of the
noise generator voltage given in (32) with the aid of (37) and (41).
From (37), the noise generator voltage may be expressed as

E = Z Z T [3—”""_ - I]eilw(t—fm)

o L — ilwt

{ f T 5 (u)due + f L Gﬁ,,.(un)du,dn}. (42)

a(n—1y')
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The mean square of this equation for the noise generator voltage
may be obtained by finding the average of the square of the expression
over a very long period of time; that is

. w P P _2 _
L D S [ Ly AT
L Pa’r?

X

{f [ H(x)H (y)6m(x)8:(y)dxdy

V=1uc

42 f f Gln, %) H(3) 8m(x) 83(y)dxdydn

Y y=g. Yr=vVam—ng)

+ f f f C f Gln, ©)G(z, 3)

e—n) ¥ r=Vam—ny)
X 6()84(y)dxdydadn } . (43)

In the above equation, the contribution to the mean square noise
generator voltage from the summation with respect to m, for a fixed
value of %, is zero unless m = k, since the long time average of the
emission deviation must be zero. Furthermore, since the electrons
are emitted independently of one another

P
2 dm(x)8m(y) = 0, unless x = y.
m=L
From these considerations, the contribution to the mean square
generator voltage from the second integral in (43) is zero since x and ¥
have no common value. The contribution from the last integral is a
bit more difficult to obtain. However, from (41), the contribution to
the mean square noise generator voltage from the frequencies between
fand f + df can be shown to be

- zdf{ f " () mo(u)dus

n f f f G(n, 4Gz, u)no(u.)du.dzdn

7=0*2=0" ue=Valn—ny)

)

In terms of the variable y = vau’, the average rate of emission may
readily be shown to be

G(n, )G (&, w)no(u)du.dzdn } . (44)

'V'cr(z—’n‘o")

no(u)du, = ZTIOye—"zdy.
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From this value of the average rate of emission, and from the
definition of H and G in (31), and since the plate impedance of the
planar diode is given by (28), the final expression for the mean square

noise generator voltage may be expressed as follows:

E/ = 4kr,(WT)df,

where
— _ 2,—y2

N = df(ﬂ){f y(B — C — Dytedy
d'r)o
V[ R g
m =0 Yz=0Yy=vV"2 tIJ(x)fID(z)
LY T )
w1 ) I e amem e

_ € s L ]
no—kT(V Vo),  md kTV

o~ F(no') 4+ flno) | dF (") | df(no) __ B
B - 2 + dﬂu’ + d‘na ] Tp - _G_L] df_('no)
kT dT,‘D

no_ o’ d
F(Tn‘ﬂ) = ﬁ [ 14 eIP(ff“) B 2\/ JIJ‘E
fowy = & —
ﬁ [e=—1-e=P(\/§)+2\E]

W N T E = 3],

T ex)

[Vy* + & — yldx

Dz@f —z—l—e’P(wE)-i-Z\E]m

B(x) = I:e’ — 14 eP(Vx) — 2\/7?{]”2’

P(x) = \F : e dx.

Y
.

C—

ParT II—GENERAL DIsScussioN

(45)

(46)

(47)

The analysis in Part I shows that as soon as a potential minimum
exists, the tube noise in a planar diode is equivalent to the thermal
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noise of the plate resistance at an effective temperature which is a
function of that of the cathode.

In general, the effective value of the diode plate resistance tempera-
ture for any operating condition is very difficult to obtain because of
the complexity of the final noise equations (45) and (46). However,
the limiting value of the ratio of the effective plate resistance tempera-
ture to that of the cathode, denoted by ‘A" in (45), may be evaluated
very readily for certain limiting conditions.

One encounters the first of these conditions when the plate potential
and cathode emission are such that the potential minimum has moved
just up to the cathode, and is in fact on the point of disappearing.
This condition is secured by decreasing the space charge to values less
than are required for the formation of a potential minimum away from
the cathode. In the equations, it is represented by letting the quantity
7o’ approach zero, where 7o’ is the natural logarithm of the ratio of the
saturation current to the anode current. For this set of operating
conditions, all the electrons emitted from the cathode will go to the
anode, and hence the condition is appropriate to the study of pure shot
noise.

A second condition is obtained when the plate potential is equal in
value to the potential of the minimum. Physically, this condition
means that the minimum has moved just up to the anode, and requires
a negative value for the plate potential. - Mathematically, it is repre-
sented by a zero value for the quantity 7, where 5 is equal to the
difference between %, and (e/kT)V,. For negative plate voltages
greater in magnitude than that of the potential minimum, all electrons
having an initial kinetic energy greater than eV, will reach the anode
regardless of the presence of the space charge existing between the two
electrodes. For these conditions, the diode becomes a temperature
limited current device.

A third limiting condition occurs when the plate potential is large in
magnitude compared with that of the potential minimum referred to
the cathode. In this condition a potential minimum still exists. Itis
represented in the mathematics by letting the quantity 5o become
large. This condition represents the normal operating condition for
the diode.

As the space charge is decreased, making 7o’ very small, from (47),
the diode plate impedance becomes very large through the action of
dF(no')/dny' which becomes infinite as 7o’ approaches zero. As all
other quantities involved remain finite, the mean square noise current
for a very small space charge is
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- df(na)
- Ef‘l B 4def d’?u ‘-'fm L,
It = ot 75 = aT —dfmg D), Yy — 2elodf. (48)
B — B——
ely dno

Thus, as the potential minimum voltage is reduced to zero, the tube
noise as given by (45) reduces to the well known shot effect equation.

For some space charge at the cathode, the value of X in (45) has
definite limiting values for both very low and for very large plate
voltages. For a very small value of 7o, that is for negative plate
voltage, the value of B defined in (47) is very large because df(no) /dno
becomes infinite as 7o is decreased to zero. Thus as 70— 0

: (49)

[SeTE

1 ® ;
A= Bﬂf yeVidy =
B- 0

Hence, for any value of space charge, the effective plate resistance
temperature for negative plate voltages is one-half of the cathode
temperature, under the restriction that no potential minimum exists
between the cathode and anode.

Since the diode is usually operated with a positive plate voltage, the
value of the effective plate resistance temperature for a large value of
no is of more interest. For 7' not equal to zero, and a large value of
plate voltage, it can be readily shown that the values of f(no) and of D
are much larger than any other quantities involved in the equation for
\. After a bit of mathematical operation, it may be shown that the
limiting values for f(no) and D are

VT 4

D= [3'?03"4 + 3\!:-';%1“ + oo = dynett A+ - )]

7
1/4 4 —
f(no) = T [—ﬂum TN e V7 G ] .
V213

From these relations, the limiting value of A for a large plate voltage
is given by

A= 3f:y[\/§y —\E]ze—ﬂdy = 3(1 —E) = 0.644. (50)

Thus, for any value of space charge, as long as a potential minimum
exists, a sufficiently large value of plate voltage may always be found
for which the effective plate resistance temperature is 0.644 times the
cathode temperature.
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It is possible to obtain a good approximation for the effective diode
temperature for any operating condition by the following method.
The values of ““C" and “D"" in (47) may be found without too much
difficulty by graphical integration for several different values of v, 7o
and n. From the tabulated values for F(q,") and f(n,) given by
Langmuir, and from the values found for C and D, the integral,

S = f y[B — C — D vdy, (51)
1]

may be evaluated by mechanical means for several values of 5, and
no’. This gives the first integral in (46).

It was found practically impossible to calculate directly the contri-
bution to A from the last two integrals in (46). However, a rough
approximation to them may be found indirectly by the following
method: If the sum of the two integrals is denoted by Q, then (46) may
be written

S+0
df(no)’
B d"?n

)\:

or Q = BA\(df(n) /dny) — S = function of 5, only.

For a fixed value of o, the solution of the above equation for several
values of 7o should give a constant value for Q. Unfortunately, only
the limiting values of A are known. However, if the limiting value of
0.644 is substituted for N\ in this equation, the calculated value of Q,
for a fixed value of 7y, should approach a constant value as 7, is
increased since A does assume the 0.644 value for 7o sufficiently large.
The limiting value of Q calculated in this manner is the desired
contribution to A from the last two integrals in (46). This method of
evaluating Q cannot be very accurate since it involves the difference of
two quantities of the same magnitude. However, since Q is small
compared to the contribution from the first integral in (46), a large
error in Q will introduce a much smaller error in the value of A.

The values of the effective diode plate resistance temperature
calculated in this manner for several different operating conditions are
shown in Fig. 2. These curves indicate that the effective diode
temperature is 0.644 times the cathode temperature for all practical
operating conditions. The values of 5y and 7o, may be determined
from the following relations:

‘ﬂn’ = loggT, (52)
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where T, is the saturation current and I, is the anode current, and

1.16
Mo =m0 — E%" Vo = nd +T X 10475, (53)

where V, is the anode potential, and T is the absolute cathode temper-

ature.
For T = 900° K,

no = ‘T,‘o’ + 129Vp (54)
+e n.=0.2
/T TN
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Fig. 2—Effective noise generator voltage of planar diode.

—_ I, ,
B = 4k ONT)df, o' = log 5", mo=md — 1= V.
7, T
For T = 900° K., 50 = 70’ + 12.9V,.

Even for the small space charge condition for which the plate current
is eight-tenths of the saturation current (no’ = 0.2), the value of 7 need
be greater than about 25 only before \ assumes its limiting value. For
a temperature of 900° K., as for oxide coated cathodes, this would
require a plate voltage of only two volts. If the plate current were less
than eight-tenths of the saturation current for very high plate voltages,
then as the plate voltage is reduced, no’ would increase. For this
operating condition A maintains its limiting value of 0.644 for all
except negative values of plate voltages.

The transition between the various effective planar diode plate
resistance temperatures is more clearly shown in Fig. 3. In this
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figure, the natural logarithm of the ratio of saturation current to the
plate current is plotted as a function of the plate voltage for several
constant values of the coefficient A. These curves show for a fixed
positive value of plate voltage that as the space charge is decreased
toward zero, by a reduction in the ratio of the saturation current to the
plate current, the value of A for moderately large values of space charge
increases but little from 0.644, and then for a very low space charge,
increases very rapidly to its limiting value 'given by the shot noise

\[

3.0 ==

‘A=0.644

Is
Ip

LOGa

‘--.'._\;

e—— —]

e 20 22 24 26 28

Fig. 3—Modification of effective plate resistance temperature produced by
space charge. _
Egpt = dkr,(WT)df.

which is represented by the axis of abscissee. Thus, the value of A
digresses markedly from 0.644 only for the narrow region of operating
conditions for which the saturation current is less than 1.25 times the
plate current and the plate voltage is less than 28e/kT volts. For an
oxide coated cathode for which T is 900° K., the effective plate re-
sistance temperature is 0.644T for any operating condition for which
plate current is less than eight-tenths of the saturation current and the
plate voltage is greater than two volts.

For a cylindrical diode, the general method of analysis used in the
parallel plane case results in equations which are practically impossible
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to solve. The difficulty in these equations arises from the fact that
tangential as well as radial initial velocities must be considered in
obtaining the total anode current. Since it was shown for the planar
diode that the effective temperature of the plate resistance is 0.644
times the cathode temperature for practically all operating conditions,
all that is really desired in the cylindrical diode solution is the limiting
value of the effective tube temperature. This may be found rather
easily from a comparison of the cylindrical diode with the planar tube
in the following manner.

For a very large space charge, and a high plate potential the radius of
an equipotential surface near the potential minimum will be very
nearly equal to that of the cathode. Hence, for these operating
conditions, the planar diode equations may be applied to this region
of the cylindrical diode. In the planar tube, it was shown that for
ne’ > 3, no had to be of the order of unity to obtain the limiting value
of 0.644 for A. If the space charge and plate potential are sufficiently
large in the cylindrical diode, the radius of the equipotential surface
for which 5, is greater than unity will practically be equal to that of
the cathode. The cylindrical diode may then be divided into two
parts, a planar diode between the cathode and the equipotential
surface for which 5o > 1, and a cylindrical diode formed from the
remainder of the tube. In any diode, the only source of noise energy is
the cathode from which the noise power is transferred to the anode and
external circuit through the mechanism of the initial electronic
velocities. Furthermore, the same total noise power must be trans-
ferred across any equipotential surface between the cathode and anode.
In the planar portion of the cylindrical diode as described above, the
total noise power crossing any equipotential surface was shown to be
2.576kTdf. This same noise power must be transferred across any
other equipotential surface in the cylindrical diode. Hence, the
effective plate resistance temperature for the cylindrical electrode tube
must also be 0.644 times its cathode temperature. From this line of
reasoning, it may be shown that the limiting value of the effective
temperature for any shape diode is the same as that for the planar tube
with the same cathode temperature.

From the experimental data given in his paper, Pearson definitely
recognized that the limiting value of the diode plate resistance temper-
ature should be between 0.59 and 0.65 of that of the cathode.? The
writer understands that North and Thompson of the R.C.A. in an
unpublished paper have obtained the same general result for the effect
of space charge upon shot noise in diodes.
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In a diode, the tube noise may be expressed equally well and with
equal correctness either as a modified shot noise or as a thermal
resistance noise. In this paper, the thermal resistance viewpoint was
taken for two reasons. First, the coefficient ‘‘A,”” used in the thermal

resistance noise equation

E2 = 4kr,(\T)df,

is practically always a constant equal to 0.644, whereas, the factor,
“F, used by Schottky and Spenke in their modified shot noise

equation

I = 2eFIdf
is always a function of the operating condition. That is, for the

operating conditions for which X\ is a constant, F has the following

value:
1.39

I, e "
e, =577

The second reason for the selection of the thermal resistance noise
relation is that power from the motion of the atoms in the cathode is
actually transferred to the plate electrode and external circuit through
the mechanism of the initial electron velocities. Hence, the tube
noise in a diode with space charge is very similar to a thermal resistance

noise.

F =

Part III—ErreEcT oF TrRANSIT TIME

The analysis, in Part I, while giving the correct results for all
operating conditions in the ordinary frequency range, is extremely
long and cumbersome. It shows, however, that only the limiting
values of the effective temperature of the plate resistance are required
for most practical cases, and therefore it points the way to make
simplifying assumptions which result in a much shorter analysis, and
moreover, which allow the analysis to be extended to frequencies so
high that electron transit time phenomena become of importance.

Thus the final noise equation in Part I shows that for moderately
high anode potentials and for the usual excess of cathode emission,
a very good approximation may be had by a consideration of the
current-voltage relations existing in the B-region between potential
minimum and anode without the necessity of encumbering the analysis
by including the a-region between potential minimum and cathode.
Moreover, for a large anode potential, the terminal velocities of the
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electrons at the plate are very large in comparison with their initial
velocities for practically all of the electrons. This means that the
transit time for the various electrons is practically the same for all
of them which leave the cathode within a particular very short time
interval, even though the initial velocities of the various electrons are
statistically distributed among them. It results that the various
individual velocities of the electrons in the 8-region may be replaced
by an average value, which at the potential minimum may be defined

as follows:
f w'n(u)du,
g=2%*_ . (55)

[ n(u.)du,

(3

Physically, the meaning of this expression is the average velocity
of these electrons which cross a plane in the g-region close to the po-
tential minimum in a unit of time. Inasmuch as the unit of time may
be taken to be very small, it follows that (55) expresses the effective
instantaneous value of the initial velocity which may, and does,
fluctuate as time goes on.

On the basis of an equation of the form

2

I = pu— € £—;; (56)
the planar diode has been extensively investigated by a number of
workers and it has been shown ® that the relation between current
and voltage is completely specified as soon as two boundary conditions
are given. These may be the initial velocity and acceleration, or
they may equally well be the initial velocity and conduction current
pu. However, the analysis based on (56) applies strictly to the case
where all of the charge moves with the same velocity and hence
contains a certain approximation when electrons are considered whose
velocities have a certain dispersion around some mean value. The
error will be small until frequencies are considered which are so high
that a large proportion of the electrons which left the cathode in a
time interval which is very short compared with the period of the
high frequency arrive at the anode in a time interval which is not
small compared with the high frequency period. Normally this means
that the error is small even for frequencies so high that the majority
of the electrons require several cycles to make their transit from
potential minimum to anode.
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It is convenient to write the resulting equations in terms of d-c.
and first order a-c. values where the initial values of d-c. velocity
and acceleration are given, but initial values of a-c. velocity and
conduction current are employed. The first order a-c. relation derived
by Llewellyn may be written in the form

e
- E’L Vl k I]A + an + ﬂa (57)
where g, and p, are the initial values of fluctuation conduction current
and velocity, respectively, while 4, B and C are defined by :

el,

A:wl[——i*x-i- (2-2eﬁ“’—i6—iﬂeu"")]

B = — L [a(i0et + e = 1) + wio(e® — DIf,  (58)

eI" — [0 + e — 1]

in which ‘q is the transit angle, wr, the transit time being r, and I, is
the d-c. current.

In the application of these relations to noise analysis, the initial
values of ve]oc1ty, acceleration, and conduction current must be taken
at a point in the 8-region beyond the potential minimum, but just as
close to it as possible without encountering conditions where electrons
may be moving toward the cathode, for the equations apply only to
cases where the electrons are moving in one direction only. The
initial point is, however, located so near to the potential minimum
that the d-c. acceleration in (58) may be taken as zero. When this
is the case, it may be shown that the initial conduction current is
equal to the total current. In other words, the initial value of dis-
placement current is zero. Under such conditions (57) and (58)
reduce to the following expression for the a-c. anode potential in
terms of the a-c. component of current and initial velocity:

V= Il I:BI[) (?()E—l—zﬂ—l— 2e"'”—|-'£6‘e“"9— 2)

hme

¥ a0 + e — 1) ] + Do figeio 1 it 17, (59)

The term multiplying the a-c. current I; in the above equation is
the internal high-frequency impedance z of the planar diode. The
last term may therefore be identified with an internal emf. When
the initial velocity g, is expressed in terms of the fluctuation of electron
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velocity, the term gives the equivalent noise generator, E. Thus

E = *;‘: " (i0e=i0 + ¢=if — 1) (60)

and the mean-square value of the noise emf. (at a frequency w) is
given by:

7 bl I" |36-0 4 ¢=i0 — 12, (61)

The problem is now reduced to finding the mean square value of
initial velocity fluctuation, u.? which corresponds to electrons cross-
ing the potential minimum. This may be done by going to (55)
which gives the effective value of the instantaneous initial velocity
and separating all quantities, including the lower integration limits
into d-c. and a-c. components. Thus

n(uc) = no(uc) + (u.)

u = u. + ou.’
1:’ =u + ou' : (62)
U = Ug + Ma

The result may be expanded in series form and products of the &’s
may be disregarded inasmuch as the a-c. components are small in
comparison with the d-c. The indicated operations have as a result

kT
Uy = o /% (63)

fa = Iiu [m (n' — u,)6(u.)du.. (64)

and

The Fourier analysis may be applied to this in the way outlined in
connection with (37) and (41) in Part I and gives the mean-square
value of velocity fluctuation corresponding to a frequency interval df
as follows:

— 2 "0 T
Wz=21_;dfjo (' — wa)u,(2.)du, = ie]]:zdf(l—-a). (65)

This may be substituted in (62) giving for the effective noise emf. in
the frequency range df

57 = unr| ) [ =3] [

X [6* 4+ 2 — 2(cos 6 + 0sin 0)]. (66)
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The initial average velocity is small so that the low-frequency
plate impedance may be written

_ BIo‘J"l
"r T 12hme” (67)

Thus for any transit angle, the mean square noise generator voltage

is given'by

E? =12 (1 -E)kadf{%[Z + 6% — 2(cos 6 + 6 sin B)]}
45k (0.644T ) rpdf

where (68)
S=;—1|:2+|92-—2(C059+ # sin B)]
For low transit angles, this expression reduces to
Ef =12 (1 — —) kr, Tdf, (69)

which is premsely the limiting value obtained by the much Ionger,
but more rigorous analysis.

It must be understood that (68) is an approximation since the
transit time effect in the region between cathode and potential minimum
was entirely neglected, and because the validity of the average velocity
concept does fail at the very high frequencies.

Some knowledge of the extent of the operating conditions for Wthh
the above equations are good approximations may be obtained from
the d-c. current-voltage relation. For the boundary conditions
assumed, the low frequency current equation derived from the general
solution given by Llewellyn reduces to

= 2.33(V — V)3 \/ kT
=S s [1 + 2.6 \ - V)]. (70)

This equation was shown by Langmuir to be a very good approxi-
mation for the plate current for most operating conditions and fails
only for very low values of plate voltages. Thus, it may be concluded
that (68) is a good approximation for all operating conditions except
for very low plate voltages and a small space charge.

The plot of (68) given in Fig. 4 shows that the magnitude of the
mean square noise generator voltage decreases by five per cent only
for transit angles as large as one radian.
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The effect of transit time on the pure shot noise for a low space
charge density and a high plate voltage may be obtained quite readily
from (57) and (58). Since for a very small space charge, I, and #, are
small, and a, large, the equations then reduce to the following ex-
pression :

S R el e Rl P

we 2 1we — &

1.0

0.9 \

o.e

0.7

0.6

\

0.4

0.3 - \

0.2 A

0.1 \'\

o 1 2 3 4 5 6 7 8 9 10 "
TRANSIT ANGLE IN RADIANS

Fig. 4—Effect of transit time on both thermal and shot tube noise.

Ef = 4Sk(0.644T)rpdf,
172 = 2¢STodf.

For these operating conditions, the transit time in terms of the d-c.
acceleration and the electrode spacing is given by

.= AT’
2

In terms of the external circuit impedance Z;

Vi = L, (72)
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so that (71) and (72) combine to give

2 .
L= —— 9 [ 2 (ige—o + 10 — 1) ] : (73)
1 +Z;iwe 16

The mean square shot noise current is thus given by

2 . . . 2
2| 2 (110 + =10 — 1)‘ . (74)

The value of the mean square a-c. conduction current at the cathode
to be substituted in the above equation may be derived as follows:
The total current emitted from the filament was defined as

I = ef n(u)du, = ef no(u)du. + ef,’ 8(uc)diue. (75)
0 0 0’
Hence

Ga = efm 6(u.)du,. (76)
0

From (37) and (41), the contribution to the mean square of this
conduction current from the frequencies between f and f + df is

E = Zeﬂdfj ﬂo(uc)duc = ZEIUdf (77)
0

With this result, the effect of transit time on the shot noise current is
given by

2el odf

11+Zﬂ;we ,,{Hi,‘_,[z+aﬂ—2(coso+esin a)j}, (78)

17 =

X

where Z, is the impedance of the external circuit at the frequency f and
x/iwe is the capacitive reactance of the diode at the same frequency.
Thus the shot noise current is modified by transit time in precisely the
same manner as the noise generator voltage for the thermal tube
noise.

The effect of transit time upon the shot noise, as indicated in (78),
is identical with that obtained by Spenke for the same operating
condition of low space charge and high anode potential.* Spenke
derives this result through a clever application of a Fourier Series in
which account was taken of the effect of transit time upon the wave
shape of the current induced in the anode by the electron moving from
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cathode to the plate. The advantage of the method of average veloci-
ties used in this paper is that the effect of transit time in both the
thermal tube noise and the shot noise may be found.

It is noteworthy that Ballantine in 1928 derived an expression for
the effect of transit time upon the pure shot noise which is identical
to that obtained in this paper.?

In conclusion, the writer wishes to express his appreciation to F. B.
Llewellyn whose supervision and numerous suggestions made possible
this paper. -
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