Stabilized Feedback Oscillators

By G. H. STEVENSON

The author presents a mathematical consideration of the con-
ditions which insure constant frequency of the vacuum tube
oscillator under changes of electrode potentials or of the cathode
temperature. It has already been shown that the grid and plate
resistances may enter into the determination of the frequency.
The problem is treated here in the manner suggested in the recent
studies of feedback amplifiers. The conditions necessary for sta-
bility are developed in terms which are independent of particular
circuit configurations and are applicable to certain dissipative
circuits as well as to purely reactive systems.

THE frequency deviations that accompany changes of the electrode
potentials or of the cathode temperature in many types of
vacuum tube oscillators have been recognized for some time as having
their origin in the variation of the internal resistances of the tube.
Llewellyn has shown ! that both the grid and plate resistances may
enter into the determination of the frequency and, by treating the prob-
lem as one of network design, has demonstrated the possibility of mak-
ing the frequency substantially independent of the tube resistances.
He also devised a large number of oscillator circuits stabilized in this
way and established the conditions necessary for stabilization in each
case,

The problem is treated here in a somewhat more general manner sug-
gested by recent studies of feedback amplifiers.? The conditions neces-
sary for stability are developed in terms which are independent of
particular circuit configurations and which permit their application to
certain types of dissipative circuits as well as to purely reactive systems.
While no new fundamental principles are presented, it is thought that
the restatement of the known principles in broader terms may be of
interest.

The mathematical theory will be developed for the case of the single-
tube oscillator circuit, since this is the form most generally used. The
extension of the theory to multiple stage circuits presents little or no
difficulty. The principal assumptions made are, first, that all of the

1“Constant Frequency Oscillators,”” F. B. Llewellyn, Bell Sys. Tech. Jour.,
January 1932,

2 “Regeneration Theory,” H. Nyquist, Bell Sys. Tech. Jour., January 1932;
“Stabilized Feedback Amplifier,” H.S. Black, Bell Sys. Tech. Jour., January 1934.
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circuit elements except the tube resistances are linear and of lumped
character and, second, that modulation effects arising from the non-
linearity of the tube resistances may be neglected. The validity of the
second assumption is discussed in the appendix to the article by
Llewellyn noted above. Its use permits the treatment of the system
as though the resistances were actually linear but variable in magni-
tude in response to variations of the oscillation amplitude.

THEORY

The essential features of the single-tube feedback oscillator are shown
in Fig. 1. The feedback network B is unrestricted in its configuration
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Fig. 1—Elements of a single tube feedback oscillator.

and complexity and may include the vacuum tube electrode capaci-
tances in addition to the external elements. The impedance system of
the tube is reduced to the plate and grid resistances R; and R with uni-
lateral coupling between them, the latter being indicated by the inclu-
sion of a generator in series with the plate resistance. The voltage E,
generated in the plate circuit is proportional to the voltage Es between
the grid and the cathode and, when the system is oscillating, the latter
voltage is produced entirely by E; as the result of the coupling through
the feedback network.

The condition for the existence of self-sustained oscillations is ex-
pressed very concisely by the familiar equation

B =1, (1

wherein u and 8 denote the voltage transfer ratios in the vacuum tube
and in the feedback path respectively. The factor u is the negative of
the amplification constant of the tube, the negative sign taking account
of the phase reversal inherent in a simple triode. The transfer ratio 8
represents the ratio of E; to E, for transmission through the feedback
network.
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Since the transfer ratios 4 and 8 are both complex quantities, equa-
tion (1) expresses the two-fold requirement that the magnitude or
modulus of B shall be unity and that its phase angle shall be zero.
Taking the factors separately, it follows that the modulus of 8 must be
the reciprocal of the modulus of x and that the phase angles of the two
must be equal and of opposite sign. For the single-tube oscillator, the
phase angle of 8 must be 180 degrees since the phase angle of p has
that value.

While the relationships stated above are of simple character, they
do not by themselves suffice for the calculation of the oscillation fre-
quency from the constants of the tube and the external circuit. The
reason for this is that the values of the tube resistances R, and R; enter
into the determination of the frequency in the general case, and, since
these are dependent upon the oscillation amplitude, they cannot be
known until the final steady amplitude of the oscillations is known.
What happens in an actual oscillator circuit is that, as the oscillation
amplitude grows, after initiation, there is a mutual adjustment of fre-
quency and of the resistance values until a condition is reached under
which both requirements are met simultaneously. In the case of a
stabilized oscillator, since the frequency is independent of the tube
resistances, the conditions are simplified and the oscillation frequency
can be determined directly by means of the relationships stated above.
The non-linearity of the resistances affects only the amplitude of the
oscillations.

The evaluation of uf in terms of the impedance parameters of the
circuit permits the determination of the specific circuit conditions in
any case for the generation of steady oscillations. The determination
is simplified by the consideration that the factor p has a constant
phase angle of 180 degrees so that the variation of the phase of ug is

. wholly that of the factor 8.

GENERAL FORMULAE FOR uf
The feedback path, or 8 circuit, is shown separately in Fig. 2, the

Fig. 2—Simplified schematic of an oscillator feedback circuit.

notations being the same as in Fig. 1. The network B may be of any
degree of complexity, but may be assumed to be made up of lumped
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impedances. In writing down the equations for the mesh currents, let
it be assumed that the circuit contains #» meshes including the terminal
meshes and that the meshes are so chosen that the resistances R; and
R do not appear as mutual impedances. Designating the meshes in
which R, and R; appear as the first and second respectively, the mesh
current equations take the form

Ill I2: IB "t Iﬂ
Ry + Zu, Z1a, Zig v Zin E
ZEI: Rﬂ + Z22s Zﬂ'o‘ tee Zﬁn 0
Zs1, Z3a, Zsz ++ Zan 0 (2)
an, Zni!; Znﬁ =t Zrm 0

The subscripts of the Z's denote self and mutual impedances in ac-
cordance with the usual conventions, the latter being subject to the
reciprocal relationships characteristic of linear systems.

The solution of the above equations for the current /s is

— EAy

I, = )
*TA + RiRsAq, 22 + RiAn + Ralss

(3)

where A is the determinant of the coefficients of equations (2) for zero
values of R; and R,, and the other determinants are the minors of A
obtained by crossing out the columns and rows indicated by the nu-
merical subscripts. Thus A, is obtained by crossing out the second
column and the first row of A and Ay, 20 is obtained by crossing out the
first two columns and the first two rows.

Since, by definition,

IR
B="F
equation (3) gives
B — - R2A21 . (4}
A 4 RiRzAn, 22 + RiAn + Radoae

The factor p is the negative of the amplification constant of the tube
and if the latter be denoted by «, the value of y8 becomes

aRsAq

B = A + RiRoAn, 22 + RiAnn + RaAss )

The determinants appearing in equations (4) and (5) can be ex-
panded by the ordinary processes to give expressions in terms of the
mesh impedances in any particular case. However, as they stand, they
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are significant parameters of the system and, for the present, need
no further expansion.

Another general formula for uS is obtained by making use of the
image parameters of the coupling network. If the image impedances
at terminals 1, 2, and terminals 3, 4, are denoted by K, and Ko,
respectively, and the image transfer constant by @, then

— aRWK K,

= (KK, ¥ RR) sinh 0 ¥ (RK: ¥ RKycoshs” O
The two sets of parameters are related by the equations
Age A
2 _ 222
= An An, e
_ Ay 4
Ke = Azz An, 2 @)
Aldi, 22
2
tanh? § = Audn

Equation (6) is useful in many cases because of the fact that the fre-
quency characteristics of the image parameters are well known for a
large number of circuit configurations, particularly those of wave
filters.

In dealing with many practical oscillator circuits, the simplifying
assumption may be made that the coupling network contains only pure
reactances. The determinants in equation (5) then become either real
quantities or pure imaginaries, thus making it easy to separate the real
and the imaginary parts of u8. If the number of meshes in the 8 cir-
cuit, or the number of rows or columns in the determinant A, is even,
then A will be real and if the number is odd A will be imaginary. The
determinant Aj;, 22 will be of the same character as A, but will take
the opposite sign, and determinants Ay, Asg, and Ay will be imaginary
when A is real and real when A is imaginary. Accordingly, equation
(5) may be transformed to

IB — aRsz
B = ®RD1 + RiDz) + j(D — RiReD11, 2)

(8)

in which the D’s are determinants of the mesh reactances correspond-
ing respectively to the A’s of equation (5) having the same subscripts..
The phase angle of uB, denoted by ¢, is given by

D _ RIREDII. 22

RiD11 4+ ReDyy ©)

tan ¢ =
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and the value of uB, when tan ¢ is zero, by

aR2D2l

“8 = R.Dys + RDn -

The angle ¢ may be either zero or 180 degrees when tan ¢ is zero, but
which it is may be determined by the sign of u8o. If this is positive,
the phase angle is zero, the phase angle of 8 being then 180 degrees.

For the simplified case of the pure reactance coupling network the
expression for u8in terms of the image parameters takes different forms
depending upon whether the frequency lies in a transmission band or
in an attenuating band. At frequencies within a transmission band
the image impedances are resistive and the transfer constant 8 is a
pure imaginary quantity indicating a phase shift without attenuation.
Denoting this phase shift by ¢, equation (6) becomes

g = — aR: VK K, (11)
# (R.K: + R:K)) cos ¢ + j(K:iKs + RiRo) sin ¢’

from which
_ (K:K: + RiRy)
an ¢ = (RK, + Ry 2

At the cut-off frequencies, equations (11) and (12) become indetermi-
nate. At frequencies in the attenuation bands, the transfer constant
f takes the form

0=A+j5 (13)

where 4 denotes the attenuation and » is an integer the value of
which may be different for the different transmission bands of a com-
plex network. The image impedances are pure imaginaries, but their
product is real and may be either positive or negative. Simplified
forms of equation (6) may be written down for any particular case.

FREQUENCY STABILIZATION

From equation (9), which gives the value of the phase angle of ug,
it is at once evident that an essential condition for zero phase angle is
that

D - R1R2D11. 93 = 0 (14)

Since the quantities D and D, »2 are functions of frequency, equation
(14) determines the frequency or frequencies at which the phase shift
is zero and hence determines the oscillation frequency. The equation



464 BELL SYSTEM TECHNICAL JOURNAL

may be satisfied in two distinctly different ways. In accordance with
the first, both D and D;;, 22 may be finite and of like sign, in which case
the frequency depends upon the resistance product RyRs. Since these
resistances vary with the oscillation amplitude or with the vacuum
tube excitation voltages, a solution of this type is indicative of insta-
bility of the frequency.

The second way in which equation (14) may be satisfied depends on
the fact that D and D1, 22 may each have zero values at one or more
frequencies according to the degree of complexity of the coupling net-
work. If, then, the network can be so designed that D and D, 22
each have a zero at the same frequency and are of opposite sign else-
where, the condition expressed by the equation will be satisfied at that
frequency for any values of the tube resistances and will be satisfied
at that frequency only. Whether or not oscillations can be sustained
at the frequency so determined may be ascertained readily with the
help of equation (10). Oscillations occurring under the above condi-
tion are theoretically stable. As demonstrated experimentally by
Llewellyn, a very high degree of constancy of the frequency is obtained
in actual circuits.

The method of stabilization described above consists in establishing
a limited frequency interval within which the oscillation frequency
must necessarily lie and then reducing the width of the interval to
substantially zero. The establishment of the finite interval is a matter
of the choice of an appropriate circuit configuration and the determina-
tion of its limits is effected by suitable proportioning of the elements.

Considered in the light of the image parameters of the feedback net-
work, the method of stabilization consists in making the image phase
angle of the network take the value 180 degrees at a frequency within
a transmission band. Referring to equations (11) and (12), it will be
seen that when ¢, the image phase angle of the network, takes the
value 180 degrees, the quantity u8 becomes real and positive, indicating
the possibility of self-oscillation. Since the result is independent of
the values of the tube resistances, the oscillations are theoretically
stable.

In an attenuation band, the transfer constant 6 may include a phase
angle of 180 degrees which is constant with frequency, but, because of
the real component representing attenuation, neither cosh 6 nor sinh ¢
in equation (6) can become zero at any frequency. To obtain an over-
all phase shift of 180 degrees in the feedback path it is therefore neces-
sary that

K1K2 + Rle = 0, (15)
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which requires the product K;K; to be negative and, hence, that both
image impedances be reactances of the same sign. Since the condition
expressed by equation (15) is dependent upon the values of the tube
resistances, it follows that frequency stabilization cannot be obtained
at frequencies in an attenuation band.

The problem of devising stabilized reactance type oscillator circuits
therefore resolves itself into that of obtaining band-pass coupling net-
works which have phase constants of 180 degrees at frequencies within
the pass-bands. Evidently there is a multiplicity of known filter
structures that meet the requirements and also many other networks of
similar character including all-pass reactance networks. Since each
half-section of a filter gives a phase shift of 90 degrees in the pass-band,
it follows that the coupling network should be equivalent to at least
three half-sections. More complex networks may be used, but with
networks equivalent to more than six half-sections oscillations may
occur at more than one frequency.

ILLUSTRATIVE EXAMPLES

The principles discussed in the foregoing section will be illustrated
by a consideration of the circuit shown in Fig. 3, in which the coupling

X3 X

It X2 Xo

Fig. 3—Oscillator with plate circuit stabilizing impedance.

network is a simple ladder network having four reactive branches.
A screen-grid vacuum tube is assumed so that the grid-to-plate capaci-
tance is negligibly small and all feedback is confined to the coupling
network. For this circuit, the determinant D has the value

D = X3(X X, + X1 X» + XoXo). (16)
The several minors are
Dy, 00 = X1+ X + X3, (17)
Dy = X3(X: + X9, (18)
Dyy = Xo(X1 + X2 + X3) + X1(X2 4+ X;) (19)
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and
D21 = - X1X3. (20)

The condition that D and Dy, 22 be zero at the same frequency might
be met by making the reactance X; a simple series resonant combina-
tion and proportioning X; and X, to be resonant at the same frequency
as X3 The two determinants would then both have zeros at this
frequency, but oscillations could not occur since Dj; would also become
zero and the feedback would be destroyed. The necessary condition
for stabilization is, therefore, that (X; + X:+ X3) and (XX,
+ XX + X2X,) become zero at the same frequency. It is readily
shown that this can be achieved by making the impedance X such that

XoX5 = X1 X (21)

at the frequency for which (X; + X, 4+ X,) is zero. The addition of
the plate circuit reactance X, provides a circuit configuration which
makes stabilization possible. The character of the several branch
reactances may be such that equation (21) holds at all frequencies but
it need hold only at zero of Dj1, 2. This minimum restriction permits
considerable diversification of the form of the coupling network.

The modified Colpitts oscillator shown in Fig. 4 is a simple case of
the general circuit of Fig. 3. For this circuit the reactance determi-
nants have the values

D=—i°c‘22(w2—L—:C—I—E:E), (22)
D“=_m—fc27‘a(“’2._f:c_l)’ (24)
e (g ) (- ) 9
Do= = oo (26)

Both D and Dy, 22 have frequency variations corresponding to those
of simple resonant circuits but, in the case of the former, with the
sign reversed. The two quantities have the same sign only in the
interval between the two resonance frequencies or zeros and, since
these resonance frequencies are independently adjustable, the interval
may be made as small as may be desired. The interval is reduced to
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zero and the oscillation frequency stabilized when the elements are so
proportioned that

LoC; = LaCs, (27)

under which condition the oscillation frequency is determined by the

equation
1 /1 1
2= [ =+
“ T I, ( Cy Ca) ’ (28)

At the oscillation frequency the value of pf (equation 10) becomes

#Bo = —"CfR—chs (29)
R, s + Ra T,
and is equal to unity when
Ri_Cif,_ G
E—Cl(a cl)' (30)

Equation (30) can be used to determine the amplitude of the
stabilized oscillations if the variation of the resistance ratio with ampli-
tude is known or can be found experimentally. At the moment of
inception of the oscillations the amplitude will be infinitesimally small
and the tube resistances will generally be such that the initial value of
uP is considerably greater than unity. As the amplitude grows, the
plate resistance R, tends to increase and the grid resistance to diminish
until at a certain amplitude the resistance ratio takes the value given
by equation (25). The oscillations then remain steady at this
amplitude.

It may be noted that the amplitude relationship (29) holds so long
as the capacitances are maintained in the fixed ratio

i _ Lo
6.~ L (3D

and is independent of their absolute values. If, therefore, the capaci-
tances are varied simultaneously while their ratio is maintained con-
stant, the oscillation frequency will be varied, but frequency stability
will be maintained for all adjustments and the oscillation amplitude
will remain constant. A similar result may be obtained by varying
the inductances simultaneously.

It is instructive to examine the action of the added plate circuit
inductance in Fig. 4 in the light of the image parameters of the coupling
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network. When the values of the inductances and capacitances are
unrestricted the coupling network will, in general, have three pass-
bands, each pass-band being characterized by a purely imaginary value

L L
DN

Fig. 4—Colpitts oscillator with plate circuit stabilization.

of the image transfer constant @ corresponding to a phase shift without
attenuation. The phase shift is zero at zero frequency, increases by 90
degrees in each pass-band, and remains constant at 90, 180, 270 degrees
in the successive attenuation bands. From the expression for tanh
in equation (7) it follows that the image phase shift of the reactive
network will be zero or an even multiple of 90 degrees at the zeros of D
and Dy, 22 and will be an odd multiple of 90 degrees at the zeros of D1y
and Dgz. The general phase shift characteristic of the feedback net-
work in Fig. 4 is shown in Fig. 5. The critical frequencies f3 and f4
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Fig. 5—Phase constant characteristic of the feedback network in an incompletely
stabilized Colpitts oscillator.

marking the edges of the second attenuation band correspond to the
zeros of D and Dy;, 2s. Frequencies f2 and f; are the zeros of D2s and f;
is the single zero of Dy;. The pass-bands are indicated by the heavy
lines on the frequency scale. An examination of the image impedances
of the network will show that in the second attenuation band they are
reactances of like sign and are of opposite sign in the first attenuation
band.
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The necessary condition for self-oscillation stated in equation (15)
is satisfied in the attenuation band between f; and fi. The overall
phase shift in the feedback path will follow the image phase shift
characteristic approximately and will be equal to 180 degrees at some
frequency in this range depending upon the values of the terminal
resistances provided by the tube space paths. Oscillations may result
but their frequency will be unstable. By reducing the width of the
attenuation band stability is increased and becomes theoretically
complete when the band is reduced to zero. Proportioning the circuit
in accordance with equation (27) to give stability makes the two upper
pass-bands of the network confluent. If the whole network be propor-
tioned as a one-and-a-half-section constant-% filter all three pass-bands
become confluent. '

Since the stabilization requirement

X(]X;] - X1X2

need_hold only at the oscillation frequency, various possible modifica-
tions of the circuit of Fig. 4 become readily apparent. For example,
the inductance L; may be replaced by a series resonant combination
which has the same reactance at the oscillation frequency w,. This

. T . TT 3

20

Fig. 6—Modification of the feedback network of the stabilized Colpitts oscillator by
the introduction of an extra element.

04

gives the circuit shown in Fig. 6, in which L is replaced by the com-
bination Lo/, Cs' such that

L = Lot —0

—
Wuz C

(32)

A further possible modification is shown in Fig. 7 in which L, is re-
placed by a three-element combination comprising a series resonant

00—
1 ! z, € 3
Lo . |
Cy T |CI' C3a
20 T 04

Fig. 7—Further modification of the feedback network of the stabilized Colpitts
oscillator.
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circuit shunted by the capacitances. At the frequency for which
(X1 4+ X: + X3) is zero the three-element combination has, as induc-
tive reactance, jXgo, which can be computed. The inductance L,
should then be such that
XEU C3

L[I - Tﬂ - a . (33)
Evidently the three-element combination in the Z; branch is such that
it might be replaced by a piezoelectric crystal. To keep the inductance
Lo small, the capacitances C; and Cj; should be fairly large so that the
resonance of (X; + X2 4+ X3) lies close to the crystal resonance.

The foregoing examples are based on the constant-%2 low-pass filter
as a prototype. Evidently high-pass or band-pass filters of the various
known kinds might also be used as prototypes and diversified in similar
manner. Additional forms may also be found by increasing the number
of meshes in the network, but in such cases, the simplest circuits
providing frequency stability appear to be the homogeneous single
pass-band filter networks. The stable oscillation frequency is the
frequency within the pass-band for which the phase constant is equal
to 180 degrees. If the network is equivalent to six ladder-type half-
sections or more, there will be two or more frequencies for which the
phase constant is 180 degrees. Such networks are generally not well-
suited for oscillator circuits.

Certain simple configurations which do not admit of complete stabili-
zation in the above manner may be partially stabilized and in actual
use may exhibit a very high degree of constancy. The common quartz
crystal controlled oscillator with the crystal connected between the
grid and cathode of the tube is an example of a partially stabilized
circuit. The impedance characteristic of the crystal itself is primarily
responsible for the stabilization. Usually the circuit is such as to re-
quire the crystal to exhibit an inductive reactance at the oscillation
frequency and the impedance characteristic is such that this occurs only
in an extremely small frequency interval. The main determinant D for
this circuit has a single zero at the resonance of the crystal and com-
plete stabilization would require that the minor Dj,, s have its zero
at this frequency also. However, oscillation under this condition
would be impossible since the crystal resonance would short-circuit
the feedback path and reduce the magnitude of uB to zero. Actually
the zero of Dy, »2 lies somewhere in the inductive interval of the crystal
at a point fairly close to the resonance frequency. The range in which
oscillation is possible is therefore only a fraction of the inductive inter-
val of the crystal and a high degree of stability results.
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DissiPATIVE FEEDBACK NETWORKS

The foregoing sections deal with non-dissipative feedback networks,
but the general ideas set forth are applicable to certain types, at least,
of dissipative networks. For such networks the transfer constant fisa
complex quantity and may be represented by

=4+ (34)

where A denotes the attenuation and y the phase constant. When the
phase constant is equal to 180 degrees the hyperbolic functions of the
transfer constant take the values

sinh § = — sinh A4,

cosh § = — cosh 4, (35)
and

tanh 6 = tanh 4.

The image impedances will generally be complex, but, if they can be
made to become purely resistive at the frequency for which the phase
constant is 180 degrees, the value of uf at that frequency then becomes

g = aRy\pip2
a (p1p2 + Ri\Rs) sinh A + (Rips + Repy) cosh 4’

(36)

in which p; and p; denote the resistive values of K; and K,. Since this
is necessarily a positive real quantity the phase angle of ug is zero and
remains zero independently of variations of R; and Rs. Oscillations
occurring under this condition are therefore theoretically stable.

Two TuBe OSCILLATORS

The stabilization of the single-tube oscillator depends on the circum-
stances that the tube itself produces a constant phase shift of 180
degrees and that feedback networks can be devised to produce a phase
shift of this value which is independent of the terminal resistances.
Phase shifts of 90 degrees which are independent of the termination
can also be provided by means of reactive networks and this property
may likewise be made use of in the design of stabilized oscillators. For
this purpose it is necessary to have an amplifier which will give a uni-
form phase shift of 90 degrees over a fairly wide range of frequencies in
the neighborhood of the oscillation frequency. A suitable amplifier
may consist of two vacuum tubes coupled in tandem by a simple shunt
inductance or a simple shunt capacitance. The second tube should be
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suitably biased to avoid drawing grid current during operation and the
coupling reactance should be small in comparison with the plate re-
sistance of the first tube. Preferably the first tube should be of the
screen-grid type having a mutual conductance which is independent of
the connected output impedance. The two tubes by themselves have a
total phase shift of 360 degrees or zero, but the shunt coupling reactance
in combination with the internal resistance of the first tube provides a
further phase shift of 90 degrees which represents the total effective
phase shift of the amplifier.

With a phase shift of 90 degrees in the amplifier, the oscillation fre-
quency will be that for which the feedback path has a phase shift of 90
degrees in the reverse direction. The conditions for frequency stabili-
zation follow readily from the principles already developed.

For a purely reactive feedback network, the expression for u8 may
be obtained from equation (8) by substituting % je for the amplifica-
tion factor. This gives

_ + jC!Rng]
8 = (RiDny ¥ RaDay) + (D = RiRaDir. 3) (87)

from which is obtained

RIDII + R2D22

e D RiRD, (%
and
aeRsz
=t =51 - 39
W = £ b = RiRaDis, m (39)

From equation (39) giving the phase angle of 8, it is evident that
the phase angle can be zero independently of the magnitudes of the
tube resistances only if Dy and Dss have zero values at a common
frequency. This then is the criterion for stability of the oscillation
frequency.

In terms of the image parameters of the coupling networks, the value
of uB becomes

g = + jaRNK.K;
MP = 1K .K;s + RiRs) sinh 6 + (R,Ks + R2K,) cosh 6

(40)

If it be assumed that the network is dissipative, the transfer constant
has an attenuation component and may be represented by

0=A+jy
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as in equation (34). When the phase constant ¢ has the value = 90
degrees, equation (40) becomes

B _ b G!Rg VKle
HP = K\K: + RiRy) sinh 4 + (RiKs + R:K1) cosh 4

(41)

When the feedback network is purely reactive, stabilization of the
frequency requires that the phase shift component of the image trans-
fer constant have a value = 90 degrees within a transmission band.
Under this condition the attenuation component of the transfer con-
stant is zero and equation (41) is simplified by the reduction of sinh 4 to
zero and cosh A to unity.

A simple example of an oscillator stabilized in the above manner is
shown in Fig. 8. The two vacuum tubes are coupled by a simple shunt

|
[

el 1.
1T T L

Fig. 8—Stabilized two-stage oscillator.

inductance of relatively low magnitude and low dissipation. With the
high resistance of the screen-grid tube in the first stage this shunt re-
actance coupling provides a substantially constant phase shift of 90
degrees. A low-impedance transformer might also be used for coupling
the stages or, if desired, a four-terminal dissipative network designed
to provide the required phase shift in a moderately wide frequency
range.

The feedback network is required to produce a phase shift of only 90
degrees and may therefore have a relatively simple configuration. The
direction of the phase shift should, of course, be opposite to that of the
amplifier. In the example illustrated the feedback network corre-
sponds to that of a simple Colpitts oscillator. The condition for
stabilization is that the two shunt capacitances be equal and the
oscillation frequency is that of the resonance of the inductance with
one of the two equal condensers.
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It will be evident from the foregoing that a very large number of
circuit configurations of the feedback network will provide theoretical
stabilization of the oscillation frequency either with single stage or with
multiple amplifiers. Naturally, not all of these will be of the same
practical interest, since an undue complexity of the network may give
rise to difficulties in its adjustment and may increase the problem of
temperature compensation.



