On the Theory of Space Charge Between Parallel
Plane Electrodes

By C. E. FAY, A. L. SAMUEL and W. SHOCKLEY

The problem of the potential distribution, current, and electron
transit time resulting from the perpendicular injection of electrons
into the space between parallel planes is considered. The elec-
trons are assumed to be injected uniformly with velocities cor-
responding to the potential of the plane through which they are
injected. Consideration of all possible solutions of the basic equa-
tion shows that four general types of potential distribution are
possible. Curves are given which enable the easy calculation of
transmitted current and transit time and show the complete po-
tential distribution for any concrete example. The case for cur-
rent injected through both planes is also considered.

The complete mathematical treatment is given in the appendix.

SPACE charge has been studied extensively since the publication of
the first papers on the subject by Child® in 1911 and Langmuir?

in 1913. These papers in common with many which followed 3 4.5 8.7
dealt for the most part with potential distributions which occur when
electrons are injected into a region with relatively small initial velocities.
The problem of space charge between parallel planes when the
electrons possess arbitrary initial velocities, although contained
implicitly in some of this early work, was first considered in detail by
Gill 8 in 1925. Gill appears to have clearly understood the phe-
nomenon but did not publish a complete analysis. Other workers,
beginning with Tonks ® in 1927, have considered various aspects of
the problem,® 1 and recently Plato, Kleen, and Rothe 2 8 published
an extensive analysis. They did not include transit time calculations
and their published curves are not easily adaptable for numerical
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calculations. In this country Salzberg and Haeff 1 have presented a
solution, apparently quite complete, which has not as yet been pub-
lished. The present independently derived solution differs from other
published work in the manner of presentation and in an attempt at
completeness. The results are presented in the form of curves which
give potential distributions, electron transit times, and current-voltage
relations, directly in terms of units which have a simple physical
significance.
STATEMENT OF THE PROBLEM

In common with some of the earlier treatments, the present dis-
cussion will be restricted to a consideration of the steady state potential
distributions which can exist in an evacuated region between two
parallel planes at known potentials when electrons having normal
velocities corresponding to these potentials are injected into the region
through one or both planes. For definiteness the case in which all
of the current is injected through one plane will be considered first.
It will then be shown that the results may be applied to the more
general problem. It is supposed that the electrostatic potential is a
function of one rectilinear coordinate only and that all the electrons
move parallel to this coordinate and have the same total energy.
The assumption of equal energy electrons leads to indeterminancy at
planes where the potential and its gradient are both zero. At these
planes the existence of non-uniform electron velocities will be recog-
nized in so far as it provides a selective mechanism to resolve the
mathematical indeterminancy.!®

UNITS

It has been found convenient to express voltages, currents, distances
and transit times in terms of some derived units which are related to
these quantities in certain ways by the simple Child's law equation
for space charge limited current and by the corresponding transit
time equation. The use of such derived units makes it possible to
present a limited number of curves which are then applicable to a
wide variety of conditions and may be used with a minimum amount
of computations. The physical significance of the units also simplifies
the interpretation of the results.

In order to understand how these units are obtained consider the
hypothetical situation shown in Fig. 1 in which an electron current
from a space charge limited cathode is injected into the region to the

1 B, Salzberg and A. V. Haeff, Proc. I.R.E., 25, 546 (May 1937).—Abstract only.
This paper appears in full in the January 1938 issue of the R.C.A. Review.

15 This procedure has been justified by Langmuir. See Reviews of Modern Physics,
vol. 3, pp. 237-244 (1931).
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right of a plane at a potential ¥,.!* From Child’s equation the current
in amperes per square centimeter is given by

VIBIE _ 02 V13,f2

I =233 x10"°" 52 S—oz(amps. per sq. cm.) (1)

or solving for Sy

3/4 3/4
So = 1.527 X 10~ V2" _aVy

T = —qia (centimeters). (2)

Accordingly, whenever the conditions at the first plane are represented
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Fig. 1—Hypothetical conditions to assist in visualizing the unit of distance .S;.

by I and V), distance from the first plane may be measured in units
of Sy. The distance in centimeters is then

S = O'So. (3)

Similarly a natural unit of potential is V1 and the potential of any
plane at a distance S is then given by

V=l (4)

POTENTIAL DISTRIBUTIONS

All possible potential distributions to the right of the first plane
can now be expressed in terms of ¢ as a function of . The mathe-
matical derivation is straightforward and is given in the appendix.

16 This analogy is useful in getting a physical picture of the units but it must

not be carried too far as will be evident when the problem of reflected currents is
considered.
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The results are shown in Figs. 2, 3 and 4. Figures 6 to 11 refer to
current voltage relationships discussed in a later section.

To find the potential distribution when a second plane at a distance
o away from the first plane is held at a potential ¢, one enters the
figures with the values of ¢ and ¢. Any member of the family of
curves drawn in heavy solid lines passing through this point represents
a possible potential distribution. The regions occupied by the heavy
curves are bounded by certain limiting curves identified by lower case
letters. These curves correspond to certain space charge conditions
between the planes and are indicated by the same letter whenever
met. The dashed curves refer to transit time and are explained below.
Situations corresponding to low potentials and large spacings occur,
for the most part, on Fig. 2, while those for high potentials and small
spacings occur on Fig. 3. An overlap region exists for which potential
distributions may be found on both families of curves. The interpre-

tation of this is found by inquiring more closely into the nature of the
curves of Figs. 2, 3 and 4.

There are in all four distinct types of potential distributions.
These are:

Type A—The second plane is at a negative potential. All the injected
current is reflected. Potential distributions are the same as
for the case of temperature limited emission with the current
21 from the zero potential plane. ’

Type B—Both planes positive with potential zero between them.
Injected current partially transmitted and partially reflected.
Potential distributions corresponding to space charge limited
emission on both sides of a virtual cathode at the zero of
potential.

Type C—Both planes positive with a potential minimum (at a positive
potential) between them. Complete transmission of injected
current.

Type D—Both planes positive with no minimum between them.
Complete transmission of injected current.

The curves on Fig. 2 are seen to fall into two groups, those which
extend to negative values of ¢ (marked with values of 8) and those
which contain the value ¢ = 0 but which remain positive. The first
group (Type A) obviously corresponds to conditions under which all
of the injected current returns to the first plane. The slopes of these
potential curves at the reflection planes are not zero but are related to
the parameter 8 (shown on the curves) by the equation

d +
de _ _ 4 pm ®)
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Fig. 2—Potential distributions of the A and B types. The solid lines are the potential curves;
the broken lines indicate the transit.times.
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For the second group of curves (Type B) a certain fraction of the
current denoted by Z (and so indicated on the curves) will be trans-
mitted while the fraction 1 — Z will be reflected toward the first
plane. These potential curves have zero slopes at the reflection planes
so that they correspond to solutions of Child's equation on both sides
of a so-called virtual cathode existing at the reflection plane. For
each value of Z from 0 to 1 a possible potential distribution is obtained.

It will be observed that the portions of the solid curves to the left
of the zero points are drawn lighter than the rest. These portions
correspond to potential distributions resulting from conditions with
reflected current and so while applying as extensions of the heavy
curves to the right they cannot be entered directly with values of ¢ and
o. Should values used to enter the figure fall in this region the ab-
sence of a potential zero is indicated and the correct distribution is
obtained by entering Fig. 3. Before leaving Fig. 2 the existence should
be noted of a small domain lying between the curves marked & and ¢
for which two different B solutions are possible for the same injected
current, spacing, and potential, one corresponding to larger values of Z
than the other. The significance of this region will be apparent when
the current voltage relationships are considered. All solutions of the
A and B types are represented on Fig. 2.

Solutions of the C and D types are to be found on Fig. 3 except for a
small overlap region which for clearness is shown on Fig. 4. Values of
¢ and ¢ which cannot be entered on Fig. 2 as well as values common to
both B and C types are to be found on these figures. The additional
overlap solutions of the C type are shown in Fig. 4. These are ex-
tensions of the potential distribution curves of Fig. 3 after they reach
the right-hand boundary curve where they turn inward as shown and
overlap the other solutions. i

For convenience each curve of the C type is labeled by the value of
its minimum potential. The parameters of the D curves do not have
this simple physical significance. However, for all cases the value of
the curve parameter is simply related to the electric field at the first

plane by the equations:

type C %_': = — %m (6)
d 4
d_‘; = 3 VI = aF, )
type D p )
ﬁ =3 N1+ g (8)
2
type A % = - %— Vi + g2 (9)
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It should be noted that while some of the curves in the D region
shown in Fig. 3 resemble the portions of the curves drawn in light
lines on Fig. 2, the curves in Fig. 3 have essentially different physical
content, representing solutions in which all of the injected current is
transmitted. Values of ¢ and ¢ may, therefore, be entered in all
regions on Fig. 3 while entering values on Fig. 2 are restricted to the
regions covered by the heavy lines.

The occurrence of overlap regions indicates that for certain boundary
conditions more than one type of potential distribution may exist.
In the practical case the choice between these various possible solu-
tions depends upon the manner in which the boundary conditions are
established.'”

CurreNT INJECTION FROM BOTH SIDES

The present analysis although derived on the assumption of current
injection from one side only is equally applicable to the situation
shown schematically in Fig. 5. The potential distribution curves
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Fig. 5—Schematic representation of the general conditions under which the potential
distribution analysis may be applied.

which occur when the currents I, and I, are injected from opposite
sides will be identical with those obtained for an assumed injection
from one side only of a current I equal to the numerical sum of I, and
Is. Values of Vy, ¢ and ¢ are chosen to correspond with an assumed
direction of injection and these values are entered on the figures.
For solutions of the B type, different distributions will result depending

17 This matter will be treated in more detail in the section on circuit charac-
teristics.



58 BELL SYSTEM TECHNICAL JOURNAL

upon the assumed direction of . In some instances all solutions may
correspond to physically realizable distributions for the double in-
jection case. The solutions will, in general, require that the potential
zero be located at different places and may require that the net flow
of current across the zero plane be in opposite directions. The
physical reality of each of these distributions must be checked by
noting the value of Z for the indicated solution and solving for the
derived current (2 — Z)I on the injected side of the zero potential
plane and the derived transmitted current ZI. If these are respec-
tively greater than the numerical values of I, and I; (paired consistent
with the assumed direction of injection) the indicated solution is
possible. In addition there may exist a solution in which the currents
I, and I are each totally reflected at two different zero potential
planes, separated by a region of zero potential. The possible existence
of this solution must be tested for separately.

ELeEcTRON TrANsIT TIME

So far no use has been made of the dashed curves shown in Figs. 2,
3 and 4. These give the electron transit time from the first plane
to any desired plane. The significance of the unit of time is to be
found by again referring to Fig. I. The time an electron takes to
travel from the cathode to the first plane is given by

1/ 1/4

by = c% = 7.72 X 1011 I;]l—,,; (seconds). (10)
This value of #is a natural unit of time to be used whenever the condi-
tions at the first plane are expressed by ¥ and I just as Sy is a natural
unit of distance. Accordingly, electron transit times from this plane
to any other plane are expressed in units of .. The time in seconds is
then

T = Tto. (11)

Transit times for reflected electrons are not given but may be com-
puted by taking the time to the reflection plane and adding to it the
returning time. This latter is obtained by taking the difference be-
tween the time to the reflection plane and the direct time to the plane
under consideration.

CircuiT CHARACTERISTICS

In many practical cases the first plane will coincide with a mesh or
grid electrode in a vacuum tube and the second plane will correspond
with a plate electrode. Under these conditions the current-voltage
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relations which exist at the second plane are of considerable interest.
Since the distance between the planes is now fixed, the parameter o is
not appropriate. However, the spacing d between planes and the
voltage V) serve to define a natural unit of current density %o, which
is indicated by the hypothetical situation of Fig. 6. The value of 7, is

V=0 Vi V)

|
|
I
I
I
|

. | 1

= | I

Lo | I

SPACE CHARGE | 1
LIMITED CURRENT 1
I
|

] I

| |
I

d i d >
|

CATHODE FIRST SECOND
PLANE. PLANE

Fig. 6—Hypothetical conditions to illustrate the significance of the unit of current 4.

VDGﬂ
a2

13/2

= 2.33 X 10°¢ de (amperes per sq. cm.)  (12)

’io=ﬂ'42

The current in units of 7, is denoted by v so that the injected current I
in amperes per sq. cm. is given by

I = vio. (13)

Similarly, the transmitted current under conditions corresponding to
type B potential distributions will be

ZI = Zvi,. (14)

Specifying ¥ and ¢ is equivalent to specifying ¢ and ¢.!® For this
reason many of the limiting curves of the circuit characteristic plots
are simply related to those shown in the potential distribution plots
and are designated by the same letters. The regions for which the
different types of potential distributions may exist are shown in Fig. 7
now in terms of v and ¢. In Fig. 8 the regions are defined in terms of
¢ and the transmitted current Zy. The boundaries of the C and D

1:;1."I'his is a consequence of the relationship v = ¢?, which is derived in the ap-
pendix. .
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regions are of course the same in the two plots (i.e., Z = 1) while the
boundaries of the B region are changed, since only the portion Zvy of
the injected current is transmitted. The A region, which corresponds
to negative values of ¢ for all values of vy and gives Zy = 0, is not
indicated. It may be of interest to note that for any given value of ¢
it is impossible to transmit more than a certain maximum current,
shown by curve a, and that this maximum occurs for a C type distri-
bution. For injected currents greater than this amount only type B
distributions are possible.

An enlargment of the B region is shown in Fig. 9a and a portion of the
region to a still larger scale in Fig. 9b. Lines for constant injected
current v are plotted with the potential ¢ and the transmitted current
Zv as the coordinates. These plots correspond to plots frequently
used to describe vacuum tube characteristics and may be used ac-
cordingly. For values of v less than four and values of ¢ less than
unity, double values of Zy appear. In the region lying between the lines
b and ¢ on Fig. 9, the slopes of the constant v lines are negative corre-
sponding to conditions which are unstable unless sufficient resistance is
included in the external circuit. Conditions outside of this region are
always stable and need no further comment.

Solutions of the C type are shown in Fig. 10a. For these solutions
the injected and transmitted currents are equal. The depth of the
potential minimum between the two planes is, however, of interest
and is shown in the figure in terms of the lesser of the two boundary
potentials. For values of ¢ greater than unity the value of ¢ min.
(i.e., the minimum potential in units of V1) is indicated while for
values of ¢ less than unity the value of gmi. (i.e., the minimum po-
tential in units of V3) is shown. In the enlargement, Fig. 105, both
values are given. For values of ¢min, = 1, curve ¢, and ¢min, = 1,
curve d, the potential minimum is equal to the potential at one of the
planes and is located at this plane. For currents greater than the
value indicated by these limiting curves the potential minimum be-
comes deeper and moves away from the plane while for lesser currents
it disappears entirely. The minimum value to which the potential
may be forced by increasing the injected current before the distribu-
tion changes precipitously to one of the B type is indicated by the
values on curve a.

Again to avoid confusion the overlap type C region is shown sepa-
rately in Fig. 11. Conditions are somewhat different for this region
in that with any assumed value of ¢ a minimum potential of 0 (but
with complete transmission of injected current) occurs for a certain
value of v. With increasing injected current, the potential minimum
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rises, finally reaching the limiting values indicated on the upper curve
of Fig. 11; the limiting conditions there are precisely the same as for
curve a of Fig. 10. Further increase of injected current produces a
transition to type B solutions.

It seems questionable that this overlap type C condition can exist
in a practical case. An investigation of this question involving ex-
ternal circuit considerations is beyond the scope of this paper.

TrANSITION BETWEEN DisTRIBUTION TYPES

The physical choice between the different possible potential dis-
tributions which may exist with a given set of boundary conditions is
determined by the sequence in which the boundary conditions are
established. Extreme values of any parameter are seen from Figs. 7
and 8 to lie in regions for which only one solution is possible. If the
boundary conditions are varied slowly and continuously from these
values, the indicated type of distribution will persist until the limit of
this region is reached at which time a sudden transition must occur
to another indicated type of distribution. Inspection of Figs. 7 and 8
will show that at such transitions only one other type of distribution
is ever possible. The determination of the correct physical distribu-
tion can thus be made without ambiguity.

Certain peculiarities are, however, to be noted. A survey of all
possible transitions ‘in which vy and ¢ are treated as independent
variables will indicate that, starting from extreme conditions and
changing conditions continuously in the same direction, distributions
of the overlap C type shown in Figs. 4 and 11 never occur. A second
peculiarity has to do with the unstable region of type B solutions
shown on Fig. 9. When this region is entered with insufficient
resistance in the external circuit, instability results with a sudden
transition to a corresponding stable type of distribution.

The space model shown in Fig. 12 has been found to be of value
in visualizing problems involving transitions. The three coordinates
used in its construction are the second electrode potential ¢ (to the
right) the injected current v (to the left) and the transmitted current
Zv (vertical). Solutions corresponding to potential distributions of the
C and D type, for which Zy = v, appear as a celluloid plane inclined at
45 degrees, on which the values of the potential minima are indicated.
Solutions of the C overlap type have been omitted. Solutions of the B
type are represented by the concave surface of the model. Viewing the
model from a different angle as shown in Fig. 13 (where the celluloid
sheet is removed) the unstable B region appears as an over-hanging
cliff extending between v values of 0.5 and 4. Bounding curve ¢
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separating the unstable region from the stable region is drawn on the
model and lies along the vertical surface of the cliff. The small
region lying between v values of 0 and 0.5, for which direct transitions
between A solutions and D solutions occur, can be seen in both views
as a small vertical cliff.

Solutions corresponding to varying conditions will be given by the
position of a movable particle confined to the surface of the model.

Fig. 12—A three-dimensional model illustrating the current-voltage relationships.
Solutions of types'C and D appear on the celluloid surface and solutions of the B
type appear on the concave surface.

When this particle lies on the celluloid surface it may be moved around
at will and will not “fall off”” unless an attempt is made to go to
larger values of the injected current v than is permitted by the bound-
curve a (the curved edge of the celluloid). The particle may, however,
‘“fall off” at this edge and land on the concave surface from which it
can escape only by climbing up the surface to the bounding curve b
which is common to both surfaces. The overhanging cliff is, however,
particularly treacherous, for unless the particle is supported by the



70 BELL SYSTEM TECHNICAL JOURNAL

existence of sufficient resistance in the circuit connected to the second
electrode, it will go through the model coming to rest on the celluloid
surface above. With no resistance in the external circuit this curious
behavior will occur at the vertical part of the cliff indicated by the
bounding curve ¢. The presence of some resistance will cause this to
occur for larger values of Zy. The exact place can of course be
determined by noting the point of tangency between a resistance line
drawn on Fig. 9 and one of the characteristic curves—just as the
stable operating conditions for any negative resistance device is found.

Fig. 13—A different view of the concave surface of the model shown in Fig. 12.
(The celluloid surface has been removed.)

The entire surface is stable if the external resistance is 'greater than
approximately 0.25 in units of ¢/Z¥.

ILLUSTRATIVE EXAMPLES

1. Class B Operation of a ** Critical Distance’ Telrode

Since the purpose of “critical distance” operation is to prevent the
passage of secondary electrons from the plate (our second plane) to
the screen grid (our first plane), the existence of a potential minimum
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is desired; however, type B solutions with some reflected electrons
would be objectionable. The permissible operating range must
therefore lie in the C region on Fig. 7. If, for example, we operate
the tube with Vy = V, as the quiescent point and with a resistance
load, the operating curve is a straight line through the point y = 0,
¢ = 1. The upper excursion of this line is set by the upper limit,
curve a, of the C region. For characteristics which cross curve d and
enter the D region a loss of suppression would result. Maximum
efficiency occurs with the largest possible excursion of V,, that is for
a line tangent to the d curve at the quiescent point. The minimum
instantaneous value of V, for the conditions specified is seen to be
25 per cent.of its quiescent value as contrasted with a usual value of
about 10 per cent for a pentode when similarly operated. For the
instantaneous value of V; to fall to 10 per cent of its initial value
(without loss of suppression) the quiescent point must be at v = Q,
¢ = 1.3 with the operating line tangent to curve d at about ¢ = 0.5.
Operation in the D region above ¢ = 1 does not result in a secondary
current from plate to grid.

II. Triode Operation in the Positive Grid Region
Figure 1 may be taken as representing an idealized triode. The
second plane represents the plate so that V: = V, and the first plane
represents the grid plane with effective potential V. We let

Vi= Ve + Vp/#r

where u will be a variable if space charge is formed in the plate-grid
region and may differ considerably from its ““cut-off”’ value.

If the fraction of the electrons stopped by the grid is negligible and
if operation does not enter the B region, with disturbing effects
produced by reflected electrons, then Fig. 1 becomes an accurate
representation and in view of the choice of units ¢ is a geometrical
constant of the tube. Hence the operating characteristic is a constant
v line (y = ¢*) on Fig. 7.19 .

For normal operation the characteristic must not extend into the B
region. If the grid is to be driven far positive it is desirable to stay
in the C region for all values of ¢ < 1 to prevent secondary electrons
from leaving the plate. The minimum value of ¢ as a function of ¥
may be read from the intersections of the constant v lines with limiting
curve a¢ if v > 2 and limiting curve d if v < 2. Now since

VeV
£ V,,+Yf

19 Proof of the relationship ¥ = ¢? is contained in the appendix.



72 BELL SYSTEM TECHNICAL JOURNAL

and
V,/Vp=1_—¢/'u=———»
@

if u and ¢ are known, the maximum value of V,/Vr may be calculated.
Fig. 7 shows that a value of v just greater than 2 will give the lowest
minimum value for ¢ (¢ = 0.07) by intersection with curve a. In
this region ¢/p < 1 so that

Va _ 1
(_f/;) max. = i 14.

For values of v only slightly less than 2 the minimum value of ¢ rises
abruptly, being given by the intersection with curve d, while for values
greater than 2 the rise in ¢ is not so abrupt.

It should be noted that for the usual cylindrical triode the departure
from the parallel plane case is not very marked in the grid-plate
region while it can'be taken into account by the usual cylindrical
formulz for the cathode grid region. It therefore becomes possible
to extend this analysis in an approximate sort of way to cover the
cylindrical case.

APPENDIX

DEFINITION OF SYMBOLS

V1 = Potential of the first plane in volts,
V = Potential of a second plane in volts,
¢ = Ratio of the potential at the second plane to the potential of the
first plane,
I = Injected current in amperes per sq. cm.,
x = Distance in centimeters,
d = Spacing between the two planes in centimeters (used when this
distance is regarded as a fixed quantity),
S = Distance between the two planes in centimeters (used when this
distance is regarded as a variable),
Distance between the planes expressed in units S,

q
I

3/4
1.527 X 103 ‘I;iT (centimeters),

a = 1.527 X 102 = [10%3(2e/me)12/9mwc? 12,20

a®* = 2.33 X 10,

Z = Fraction of the injected current I which reaches the second
plane,

t = Time in seconds,

T = Electron transit time between the planes in seconds,

&
I
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7 = Electron transit time expressed in units of #,,

1/4
to=1.72 X 10—11%

¢ = T7.72 X 101! = 3a(mc/2e)'/210—42
v = Injected current expressed in units of 7,
V1312 a2 V13I2

2.33 X 10-® p i T (amperes per sq. cm.),

Ratio of the potential at a potential minimum when one exists
to the potential of the first plane, otherwise merely a con-
venient constant of integration. (In the text the symbol
@min. is used in the cases where the physical significance can
be attached.) §

B = An integration constant similar to « but associated with an

opposite sign.

(seconds),

%0

I

[

RELATIONSHIP BETWEEN 7y AND ¢

By definition
aVit 8§
S(] = IIL = ; (1)
and
. atVpir T
_ ="y @
Solving (1) for ¢
S
L 3)
Solving (3) for v
d*I
= EE @
But since S = d for the conditions under which v is used
v =d (5)

DERIVATIONS

The space charge equation based upon Poisson’s equation and the
energy equation for an electron is

&V 4
=gV (6)

20 In this work e is the charge on the electron in e.s.u., m its mass in grams, ¢ is
the ratio of electrostatic and electromagnetic units, 1 volt = (10%/c) e.s.u., 1 ampere
= (¢/10) e.s.u.

21 See, for example, Dow, ‘Fundamentals of Engineering Electronics,” John
Wiley, 1937, pg. 100.
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This implies that all of the electrons at any plane have the same speed,
a condition which must be borne in mind when the present analysis is
applied.

Integration of equation (6) yields

2
( %) =162 (e + const.) %
The choice of zero for this constant leads to type B distributions. A
negative constant gives type C distributions, and some of the type D
distributions while a positive value gives type A and type D distribu-
tions. These will be considered in detail in the sections which follow.

Transit time solutions are obtained by writing the energy equation
for an electron in a conservative field which in practical units is’

de _ [2eVI0S\'® _3a ..
dt_( mc>_cV' &)

Solving for ¢ and introducing numerical values

~—

= f £ Vi dy = 1.68 X 1079 f V-t 9)
-1
1.68 X 10—8f(-g—v) y-1ndy,
. X

Specialization of this equation for the various types is carried out
below.

Integration Constant Zero—Tvpe B
If the constant in equation (7) is set equal to zero, the next integra-
tion gives Child’s equation, applicable to the type B distribution when
the correct values of current are used, corresponding to conditions
before and after the potential zero. Before the potential zero the
total current, i.e., the arithmetic sum of injected and reflected currents,
is (2 — Z)I so that
aﬂ V&Iﬁ
x2

2-2)I= ’ . (10)
where V is the potential x centimeters before the zero. Hence meas-
uring distance from the first plane in units of Sy and expressing po-

tential in units of V7,
1 (PaM

mTe-zm T 2-2o™ (n




SPACE CHARGE BETWEEN PARALLEL PLANE ELECTRODES 75

Similar analysis for the region beyond the potential zero where

(12)

yields

1 “93,’4

ﬂ’+=(2—_"m+ﬁg' (13)

Introducing the identity v = ¢? in equation (13) gives the relationship

Zy = [(%)m+ 503“]2- (14)

Some of the limiting curves associated with the B solutions are
closely related, as is implied by the use of a common letter. Curve ¢
in Fig. 2 corresponds to maximum values of ¢ for fixed values of ¢
and hence of v = ¢%. By inspection this is seen to be the same condi-
ion as is implied by curve ¢ in Fig. 9. To find these curves we make
@ a maximum in (13) with respect to Z holding ¢ constant and obtain:
@ (72 200100 4 o (15)

¢ = (14 giumin, (16)

From these the various other forms of curve ¢ are readily found by the
relationships ¥ = ¢* and Zvy = Zo®. The curve b of Fig. 2 corre-
sponds to Z = 1 and gives in equation (13)

(b) o =14 LA (17)

The minimum transmitted current for fixed ¢, curve fin Figs. 8 and 9,
is seen to correspond to vy — o ; for this the virtual cathode recedes to
the first plane and

() Zy = ¢" (18)

Introducing dV/dx obtained from equation (7) with the correct
current and a zero constant into equation (9) and integrating gives

oy
T = '{T:-Z)Ti’lm + Const., (19)

which in units of ¢ measured from the first plane with potentials in
units of ¥, gives
1 — 401“

Ta-2m 20

T
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Similar analysis to points beyond the potential zero yields

SR SR 1)
+ (2 — Z)”'*' VAL

Integration Constant Negative—Types C and D
Introducing for the constant in equation (7) a negative value, say
— (aVy)'2, will give a positive value of V (equal to aV,) for dV/dx = 0
with d2V/dx* > 0 and must therefore lead to solutions of the C type.
Integrating once more and introducing the unit S, gives

x = & So(¢? + 2a2) V! — ' + const. (22)

Expressing distance from the first plane in units of S, we find two
possibilities:

op = + (2 + 2a112)pl? — ol — (1 + 22141 — o (23)

and

o_ = — (o2 + 2a?)Vp'? — at? + 1+ Za‘f"‘)m. (24)

The first of these solutions gives a potential distribution rising con-
tinuously as ¢ increases from zero, hence of type D as was anticipated
by the subscript. The second solution decreases to a minimum at

omin, = (1 + 2a'%) V1 — all? (25)
and then increases, the equation to the right of the minimum being

oy = (o2 + 201 Vo — aiff 4 (1 + 2a1)V1 — o' (26)

Curves given by equations 23, 24 and 26 are drawn in Fig. 3. If
values of ¢ and ¢ corresponding to conditions on the boundary planes
are entered in the figure, a C solution is indicated only if the point
falls upon a curve of the o; type. This curve then gives the potential
distribution to the right of the minimum; to the left of the minimum
the distribution is given by the o¢_ curve with the same value of «,
which has the interpretation & = ¢min. for this case. Points entered
on the o_ or op curves will clearly give D type solutions.

Three equations for limits of the C region can easily be written
down on the basis of the above equations:

(b) c=1+4 ¢ (27)
(d) o= (1+ 2")N1 — o' (28)
(e) o= (o + )V — 1: (29)
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The curve a is obtained by making ¢, a maximum with respect to «

while holding ¢ constant. This gives

(a) a = gmin. = ¢(1 + )72, ' (30)
p (1 4+ pH2)3e, . (31)

Here ¢ and ¢ are coordinates of a point on the @ curve and & = @nin.
is the parameter value for the potential distribution curve tangent to
curve a at that point. The o curves give type C solutions for values
before the tangent point and give C overlap solutions beyond this
point.

All the curves described in this section are readily transformed to
current voltage plots by the relationships v = Zy = ¢%

The transit times for the various curves are found from equations
(7) and (9) using the value — (aVy)'? for the constant. Integrating
and measuring time from the first plane, they are

™D = + ("01{2 —_ CEI"2)1'r2 — (1 — al.’ﬂ)l,fz. ' (32)
Tow = — (‘puz —_ all!)l,’z _|_ (1 — auz)uz_ (33)
rer = F (¢ = @I (1 — (34)

Integration Constant is Positive—Type D

Type D solutions include those given by equations (23) and (24).

Other solutions are obtained by giving the integration constant of
equation (7) a positive value, say + (8V1)2. Integrating the equa-
tion and measuring distances from the first plane in units of Sy we
obtain the two possibilities:

o=+ (¢ = 28"V + B — (1 — 28)V1 + B2, (35)
which applies for ¢ > 1, and
o= — (¢ — BV L BT + (1 — 28V + B, (36)

which applies for ¢ < 1. Corresponding transit times are:

+ (wlﬂ + ﬁl.’!)liﬂ —_ (1 + 61{2)112. (37)
T = = (o + B 4 (1 4 iy, (38)

T

Integration Constant is Positive—Type A

The potential distribution curves of the A type are identical in
form with those of the D type, where ¢ < 1, which result from the
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positive value of the constant in equation (7). They differ in nu-
merical values in that the current I must be replaced by the value 21
to allow for the reflected current. The correct equation is then

¢ = [(1 = 28")(1 + B — (g2 — 2817)(p1 + BUHET2-1R. (39)
The corresponding transit times are given by

= [(1 + B2 — (o' 4 pryr]2-1, . (40)

To the right of ¢ = 0 the space is free of charge so that the potential

gradient is constant and equal to the value at ¢ = 0 obtained by taking
the derivative of equation (39). This value is

d 4 2 1/4
e ‘[;5 : (41)

CoNCERNING COMPLETENESS

We may now review our work and see that no possible space charge
distributions can have been omitted. Starting from the fundamental
equation (6) we obtain equation (7) with an undetermined integration
constant. Setting this constant equal to zero we could integrate once
more, obtaining a solution formally identical with Child's equation.
If we supposed that the cathode plane defined by the Child's solution
lay to the right of the initial plane, then the only freedom left in the
solution was represented by Z, the fraction of current passing through
the plane. All physically sensible values of Z, i.e., 0 to 1, are included
in the solutions. If the cathode is assumed to lie to the left of the
plane, then Z must equal 1 and the solution which arises is given by
a = 0 in equations (23) or (26), or 8 = 0 in equation (35)—that is,
a D solution. For a negative value of the constant, a further inte-
gration gave only two possibilities. Each of these was investigated
for all possible values of the constant. A similar statement is true
for positive values of the constant.

As was stated in the text, space charge distributions corresponding
to injection from both bounding planes can be handled in formally
the same way as injection from one plane; therefore we may conclude
that all solutions to the problem given by specifying the boundary
conditions on two planes, subject to the assumptions represented by
equation (6), have been determined.



SPACE CHARGE BETWEEN PARALLEL PLANE ELECTRODES 79

EquaTtioNs For BouNDARY CURVES

For convenience we append a table of equations for the limiting
curves occurring in the figures.

Symbol %ﬁumagg: o ¥ Z Zy
a 3L |(1 + ety (1 + )3 1 (1 + 123
b 17,27 |1 4 gt (1 + gt 1 (1 +
p 15,16 |(1 + g | (14 g2 (—;ﬁ‘;—"{},;-) S(L + @)
d 28 (1 4 2o VT — | (1 + 20131 — @if1) 1 (1 + 213(1 — @17)
e 29 (@ + DV — 1 | (o + )22 ~ 1) 1 (¢ +2)2ptt — 1)
f 18 ® o 0 o2

The further relationship
a = gnin. = (1 + ¢'*)7?

holds for the a curve.

(30)



