Irregularities in Broad-Band Wire Transmission Circuits
By PIERRE MERTZ and K. W. PFLEGER

The effects of inhomogeneities along the length of a wire trans-
mission circuit are considered, affecting its use as a broad-band
transmission medium. These inhomogeneities give rise to reflec-
tions of the transmitted energy which in turn cause irregularities
in the measured sending or receiving end impedance of the circuit
in its overall attenuation, and in its envelope delay. The irregu-
larities comprise departures of the characteristic from the average,
in an ensemble of lines, or departures from a smooth curve of the
characteristic of a single line when this is plotted as a function
of frequency. These irregularities are investigated quantitatively.

WIRE transmission circuits in their elementary conception are
considered as perfectly uniform or homogeneous from end to
end. Actually, of course, they are manufactured in comparatively
short pieces and joined end to end, and there is a finite tolerance in the
deviation of the characteristics of one piece from those of the next and
also from one part of the same piece to another. A real transmission
circuit therefore has a large number of irregularities scattered along its
length which reflect wavelets back and forth when it is used for the
propagation of a signal wave. When a cable pair, coaxial conductor,
or similar medium is used for broad-band transmission it is important
to know how these irregularities influence the transmission character-
istics of the medium.

The transmission characteristics which will be studied are the im-
pedance, the attenuation, the sinuosity of the attenuation (to be
defined), and the delay distortion. The derivations for the first two
characteristics parallel substantially those published by Didlaukis and
Kaden (ENT, vol. 14, p. 13, Jan., 1937). They are set forth here for
completeness of presentation because the steps in them illustrate the
more complicated steps in the derivation of the last two characteristics.

When the characteristic impedance changes from point to point, its
variation from the average characteristic impedance for the whole
length of conductor forms the irregularities which produce reflections.
Assume that successive discrete elementary pieces of the circuit are
homogeneous throughout their length, that the lengths of these ele-
mentary pieces are equal throughout the length of the whole circuit,
and that there is no correlation between the deviations from average
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characteristic impedance of any two elementary pieces. This repre-
sents a first approximation to the problem. It is fairly accurate for
pairs in ordinary cable in which the outstanding irregularities are devia-
tions, from the average, between whole reel lengths; and in which the
lengths of the successive spliced pieces (reel lengths) are at least
roughly the same.

There are irregularities in some coaxial conductors in which the
impedance change is gradual rather than abrupt from one element to
the next, and in which the elements can vary in length along the line.
For these cases the approximation is a little over-simplified. However,
although this somewhat affects the echo wavelets as computed from
the impedance deviations along the line, Didlaukis and Kaden, as
referred to above, have shown that it does not affect the ratio between
the echo wavelets, suitably averaged, reaching the receiving end and
those, similarly averaged, returning to the sending end.

With the above assumptions there will be some correlation between
the reflections at the two ends of an elementary length. If, for
example, this length happens to be high in characteristic impedance the
reflection at one end will tend greatly to be the negative of that at the
other end. For this reason we are going to break up the reflection into
two parts, at a point between any two successive elementary lengths of
circuit—one part from one length of the circuit to an infinitesimal
length of cable of average characteristics inserted between the two
elementary lengths—and the other from this infinitesimal piece to the
next elementary length of circuit. There is then 100 per cent correla-
tion between the reflections at the two ends of a given elementary
length (one being exactly the negative of the other); but there is no
correlation between the reflections from any one elementary length to
its adjacent infinitesimal piece of average cable, and the reflections
from any other elementary length to its adjacent piece. This same
treatment is used in the calculation of certain types of ‘‘reflection”
crosstalk.

The departure in characteristic impedance in the usual transmitting
circuit in the higher frequency range, where the irregularities are most
important, results essentially from deviations in the two primary con-
stants of capacitance and inductance, each per unit length. Thereisa
certain correlation between these, inasmuch as the capacitance devia-
tion is contributed to both by differences in the dielectric constant of
the insulation and by differences in the geometrical size, shape; and
relative arrangement of the conductors; and the inductance deviation
is contributed to by the latter alone. If there were no deviation in
dielectric constant there would be no deviation in velocity of propaga-
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tion (phase or envelope), which (at the higher frequencies) is inversely
proportional to the square root of the product of the capacitance by the
inductance. Consequently the portion of the fractional deviation in
capacitance which, is due to geometrical deviations correlates with an
equal and opposite fractional deviation in inductance. Since in prac-
tice the contribution from the geometrical deviation is apt to be
dominating, that due to the variation in dielectric constant will be
neglected and the above correlation assumed as 100 per cent.

The standard deviation of the capacitance of the successive ele-
mentary lengths, as a fraction of the average capacitance, will be
designated as .

The secondary constant of the line most affected by these irregulari-
ties is the sending end (or similarly receiving end) impedance. If we
consider a large ensemble of lines of infinite length of similar manufac-
ture (and equal average characteristics and &) but in which the indi-
vidual irregularities are uncorrelated, then the sending end impedances
of these lines, measured at a given frequency, also form an ensemble.

The standard deviation of the real parts in this latter is VAK,?, and

that of the imaginary parts VAK 2.

In general, the departure in the impedance of one individual line
from the average will vary with frequency; and perhaps over a moder-
ate frequency range a sizeable sample can be collected which is fairly
typical of the ensemble of the departures at a fixed frequency in the
interval. If this is the case, and if at the same time the average im-
pedance varies smoothly and slowly with frequency, and the standard
deviation of the ensemble of departures also varies smoothly and
slowly with frequency, then the standard deviation of the sample of
departures over the moderate frequency interval is substantially equal
to that of the ensemble of departures at a fixed frequency in this inter-
val. (It is clear that this disregards exceptional lines in the ensemble,
characterized by regularity in the array of their capacitance deviations,
for which these conditions do not hold.) Under the circumstances
where this observation is valid it makes it possible to correlate measure-
ments on a single line, provided it is not too exceptional, with theory
deduced for an ensemble.

The irregularities in the transmission line will also affect its attenua-
tion. If again we consider an ensemble of lines and measure the at-
tenuation of each at a given frequency these attenuations will also
form an ensemble.

It will be found in this case, as will be demonstrated further below,
that the average attenuation is a little higher than that of a single
completely smooth line having throughout its length a characteristic
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impedance equal to the average of that for the irregular line. This
rise varies slowly with frequency. The standard deviation of the at-
tenuation will also include not only the effect of the reflections which
we have been considering but in addition one caused by the fact that
the attenuations of the successive elementary pieces are not alike, and
hence their sum, aside from any reflections, will also show a distribu-
tion. This additional contribution will vary only very slowly with
frequency. The standard deviation will be \/m + AAs? where A
represents the losses in the total line, the subscript 1 indicates the con-
tribution due to the reflections, and the subscript 2 that due to the
distribution of the individual attenuations.

The same observation may be made about the attenuation that was
made about the terminal impedance, as regards measurements made
at one frequency on an ensemble of lines and measurements over a
range of frequencies on one line; except that the contribution to the
deviation caused by the distribution of individual attenuations varies
so slowly with frequency that on each individual line it will look like a
displacement from the average attenuation, over the whole frequency
range. For the purposes of the present paper only the contributions
from the reflections will be computed.

When this information on irregularities is being used by a designer of
equalizers he is interested in two characteristics: first, how far each
attenuation curve for a number of lines will be displaced as a whole
from the average; and second, how ‘“‘wiggly " each individual curve is
likely to be. While the observations above give the general amplitude
of the latter they do not tell how closely together in frequency the
individual ‘‘wiggles” are likely to come. To express this, the term
““sinuosity '’ has been defined as the standard deviation of the difference
in attenuation (for the ensemble of lines) at two frequencies separated
by a given interval Af. By the previous observations this can be
extended to the attenuation differences for successive frequencies
separated by the interval Af, for a range of frequencies in a single line.

When the transmission line is used for certain types of communica-
tion, notably for telephotography or television, it is important to
equalize it accurately for envelope delay as well as attenuation. The
envelope delay is defined as

T = dB/dw (1)

where § is the phase shift through the line and w is 27 times the fre-
quency. For an ensemble of lines, the envelope delay at a given
frequency will also form an ensemble, the standard deviation of which

will be VAT®, By the observations which have already been made
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the same standard deviation also holds for the envelope delay depar-
tures over a range of frequencies on one line.

Let Fig. 1 represent a line of the type we have been discussing.
The successive 5's represent the reflection coefficients between succes-
sive elementary pieces of line. As mentioned before, to avoid correla-
tion, each 7 is broken up as shown into two k's, representing reflections
between the elementary pieces and infinitesimal lengths of average
line. :

The main signal transmission will low as shown by the arrow @ in
Fig. 1. In addition there will be single reflections as shown by the
arrow b. Following the assumptions we have set up, this really con-
sists of two reflections from infinitesimally separated points. Further
there will be double reflections, that is reflections of reflections, as
shown by ¢. Here again each reflection point, according to our assump-
tions, consists of two infinitesimally separated ones. There will be a
variety of double reflections according to the number of elementary
lengths between reflection points. Finally there will be triple, quad-
ruple and higher order reflections which are not shown. The wave
amplitude after reflection is cut down by the reflection coefficient.
Consequently, even though there are more of them, the total of any
given higher order reflections can always be made smaller than that of
lower order reflections by a small enough reflection coefficient. We
will here study only small reflection coefficients and therefore neglect
all reflections of higher order than needed to give a finite result. For
effects on the impedance this means neglect of all but first-order reflec-
tions. For the other effects studied it means neglect of all but first- and
second-order reflections. ‘

The reflection coefficient between two successive impedances (one
being K), is, approximately

I = AK[(2K). (2)

Following our earlier assumptions, namely that the principal cause of
impedance departures lies in geometrical irregularities, and that these
may be expressed in terms of capacitance departures,

=AC

AK _ AC AC
( 2C’

a2 Vit =
% C’ or h or h* = §/2. (3)

Consequently the reflection coefficients are real, namely, they intro-
duce no phase shifts other than 0 or = in the reflections.

The irregularities in sending-end impedance have been computed in
Appendix I from the single reflections of the type & in Fig. 1. The
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final simplified result is

VAK? _ VAK? _ |5

1 4
K K 2ve @

where ¢ is the phase shift in radians in two elementary lengths, € is
the attenuation in nepers of two elementary lengths, and § is, as men-
tioned before, the standard deviation in C-measured as a fraction of C.
It will be noted that as a consequence of the single reflections, the ir-
regularities in impedance vary as the first power of é.

The irregularities in attenuation have been computed in Appendix II
from the double reflections of the type ¢ in Fig. 1. It is found, as
mentioned before, that there is a net rise in average attenuation caused
by the reflections, equal, in nepers, to

where 7 is the number of elementary lengths in the total liI:.e. Con-
sidering the factor in parentheses in the expression above, although the
term e is not usually wholly negligible compared with the term ¢2/2,
nevertheless the latter is dominating and sets the order of magnitude
of the factor. If the e is disregarded, the expression can easily be put
in terms of the impedance irregularities, giving

(6)

[ VAK,?]” A
K Ll
where A as before represents the loss in the total line.

The standard deviation in the loss in nepers, when finally simplified,

is, for the reflections,

VERz = $8n, 7
1 e )
Expressed in terms of the impedance irregularities, this amounts to
- VAR 2]?
VAL = [ AK/ ] % (8)

It will be noted that these irregularities in the attenuation vary with
the square of 5, or the square of the impedance irregularities. Thisis g
consequence of the double reflections, and will continue to hold for the
sinuosity and irregularities in envelope delay. It will also be noted
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that in this form the equation is independent of ¢, ¢, and #. Itisin
this case that Didlaukis and Kaden found that the result is independent
of whether the reflection points are sharp and equally spaced or not.

' The sinuosity has been computed in Appendix III. When finally
simplified and measured in nepers, it amounts to

—_— ¢252\]£ d¢
—_ 2 — —
(AA; — AAy) syze df Af. (9)
Expressed in terms of the impedance irregularities this amounts to
= a—— A\,'A-—l'('-_z]z T
AA—-AA2=|:—__—-r —Af, 10
V(ap, 1) z | i f, (10)

where T is, as mentioned before, the envelope delay of the whole line,
in seconds.

In computing the above it is only the components of the echoes which
are in phase (or = radians out of phase) with the main transmission
which affect the results. If the echo components at right angles to
the main transmission are considered, they will give phase shifts in
the resultant signal wave. Further, an echo component whose ratio
to the main transmission is x will, when = radians out of phase with it,
give a loss of x nepers; and when at right angles to it, a phase shift of x
radians. Now the distribution of echo components in phase (or =
radians out of phase) with the main transmission is substantially the
same as that of components at right angles to it. Consequently the
sinuosity is also numerically equal to the standard deviation of the
difference in phase shifts at two frequencies separated by the given
interval Af. Therefore if the interval is called Aw/2m and the resulting
numerical value of the sinuosity is divided by Aw it will give the
standard deviation of the envelope delay. This is

T -7y - [J?K—IT]E% o

The quantity which has been used in considering the suitability of a
line from a delay standpoint for transmitting pictorial signals is its
envelope delay distortion, or maximum departure ir delay each way
from a fixed average in the frequency band studied. If we make the
usual assumption that the maximum departure ordinarily met (strictly
gpeaking, except in about 3 cases out of 1000) is three times the
standard deviation, then the delay distortion contributed by the ir-
regularities is = 3 times the expression given in equation (11).
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Expressed in more usual units, the results given in equations (6),
(8), (10), and (11) are repeated here.

NN EAL
Rise in average attenuation (db) = [ ;:_K' ] oL, (6"
Standard deviation in attenuation (db) = [ A;'z] \4.343aL, (8")
' - VAR 272
Sinuosity (db per kilocycle) = 0.0256 [ AK, ] ’”‘E, (10)
K Va
VAR 2?2
Delay distortion (microseconds) = =+ 4.42 [ A;"z] Tj_z; (11)
o

where L = length of the line in miles,
a = attenuation of the line in db per mile,
r = envelope delay of the line in microseconds per mile.
[

In order to convey a notion as to possible orders of magnitude of
these effects of irregularities, and how they vary with changes in the
parameters, a few calculations have been tabulated below for some
hypothetical lines.

— : : taat Sta ; ity, Delay
VaRp | Clreult | Attenuatlon, i |Deviadonin| lor mnigyval | Distortion,
K Miles Mile Loss, db Loss, db of 1 Kc. Seconds
5 0.05 0.005 0.2 X 1073 +0.01
100 10 0.10 0.007 0.15 * +0.01
1 per cent
5 0.5 0.015 07 +0.04
1000 10 1.0 0.02 05 “ +0.03
5 0.2 0.02 09 “ +0.05
100 10 0.4 0.03 06 +0.03
2 per cent
5 2.0 0.06 3. " +0.15
1000 10 4.0 0.08 2. ‘ +0.1

Note: r = 6 micro-seconds per mile.

AprPENDIX [

Impedance

In Fig. 1 the circuit is divided into » homogeneous elementary
lengths. For a current of unit value traveling down the circuit at the
junction of the kth and (k + 1)th elementary lengths, the reflected
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wave is
’ ]Ik man kk+1, (1)
where /; denotes the reflection coefficient (assumed to be a real number)
between the impedance of the kth elementary length and the average
impedance.

However, if the current starts with unit value at the sending end,
then the wave has to be multiplied by the factor e7*#/? in reaching the
point of reflection, where P is the propagation constant per two ele-
mentary lengths. In returning to the sending end the reflected wave
is again multiplied by a like amount so that its value on arrival there

becomes
(kk — kk+1)8_kp. (2)

The totality of echoes returning to the sending end is

Ey= =i+ T (b — hig)e ™ = T ha(e*? — e+r+P). (3)
k=1 k=1
Let .
eP = g—ctiv — Beis, (4)

When # is large, it is permissible to use the assumption that & has
for its upper limit in the above summation. The real part of E, is
accordingly

Ey = 3 hi[B* cos k¢ — B*' cos (k — 1)¢]. (5)
k=1

By the same method as described for the more complicated case in
Equation 15, Appendix II:

Ey® = h* 3° [B* cos? k¢ — 2B cos ke cos {(k — 1)¢}

+ B*2cos? {(k — 1)¢}]. (6)

This series may next be evaluated, giving:

— F(1—2Bcos¢+32 1 — B2 )

B = 5 T — B? T T ¥ 2B cos ¢ + B

2 (7

In a similar manner it follows for E;;, the imaginary part of E;, that

F(1—2Boos¢+3= 1 — B? )

2 0 —
Evi =5 1— B? 1 4+ 2B cos ¢ + B?

(8)
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Then, replacing e and neglecting higher-order terms in ¢ and e,
which are small, and putting #* = §2/4, equations (7) and (8) become

- q5232
2 - 2 =TI _.
Ebr Ebl 166 (9)

The echo E, affects the measured impedance. If unit voltage is
impressed in series with the line, and a network having impedance K,
the current flowing, not counting the echoes, is 1 J2K. The echo cur-
rent is then (Eu/1)(1/2K), and the total current

1+ E,
= 10
Ve (10)

The measured impedance is

2K

T+ E (11)
and the part due to the line is
K. = K K = K(1 — 2E,;) approximately, (12)
1+ E
K, — K = — 2EK, (13)
(K1 — K;) = — 2EwK, (14)
(Kii — Ki) = — 2E0K. (15)

For K, the real part only is to be used as it is assumed that the
imaginary part is negligible in comparison with it. Where departures
from K are considered, however, this imaginary part may not be negli-
gible in comparison with the departures.

i _ 250 72
AK? = 4EAKy = 5%, (16)
250 772
AKF = 4EA(K) = £ (17)
VAK,: VYaK? _ el (18)
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ArpENDIX II

Attenuation

The following is a derivation of the standard deviation of the real
part of the echo currents (which are received in phase with the direct
transmission) over a circuit such as has been assumed in Appendix I.
Accordingly, the reflected wave at the junction of the kth and (k 4+ 1)th
homogeneous elementary lengths, for a current of unit value traveling
down the circuit at this point, is:

he — Biga. (1)

This wave returns toward the sending end and in turn suffers partial
reflections. Consider this secondary reflection at the point between
the jth and (7 + 1)th lengths where j < k. The wave arriving at the

point in question is
(e — Iryr)e= P12, (2)

The fraction of this wave which is reflected back again is
- (h:‘ - h:‘+1). (3)

so that the wave which starts back from this point in the same direction
as the original wave is:

— (b = hjpa) (b — hpyr)e PE=DI, (4)

In traveling to the junction of the kth and (k + 1)th lengths it is
again multiplied by ¢~P%-2/2 go that the echo which is joined to the
unit wave is therefore given by

- (h,- - hj+1)(hk — kk+1)e_PU‘_”. (5)
If m = k — j, this echo is
— (h; — hig1) (Bigm — Biympr)e™F when m > 0. (6)

The sum of all the echoes for a given value of m > 0 is:

— e 3 (b — hip)(hiym — hipmpr) = — e "PHp. (7)
7=0
When m = 0, a slightly different treatment is necessary. Let the
circuit be represented as in Fig. 1.
A unit current traveling down the circuit will suffer a reflection loss
at each junction so that the current passing through the junction is
(1 — g;) times the current entering. The ratio of the current received
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to the current that would be obtained without reflection loss is

I£n= (A = n)(t — m)(L = m)(d = 1) =-+ (1 — ),

553

(8)

where the double reflected echoes of the previous type (m > 0) are
omitted. The echo which is joined to the unit wave when m = 0 is

AI_I-1
I, I,
Log, I_ Log, Ltal Al ,  when AT is small.
I I Iy
Since
AI n n
7, = Log. I (1 — 7;) = 2. Log. (1 — 1)
0 =0 =0
and
Loge(1 —=n) = —9—7*/2 = 9*[3 -,

therefore the echo is given as follows in nepers:

- i(ﬂi+ﬂi2/2+ )

i=0

=—[—l+h —h+h—h+hy- = o+ ha]

1 n
=5 L (b = ki)™

=0

The first term is zero. The sum of all the echoes is

- {IZ" (h; — 71;'+1)2} - i e Hn

2 i=0 m=1

= — [5Gy — byt | =1 HuBrens,

=0 m=1

The in-phase component of these echoes is

Eo=— {5 Z 0= hin)* | = E HB" cosms,

=0 m=1

9)

(10)

(11)

(12)

(13)

(14)

(15)

assuming %’s may be taken as real and as having a symmetrical distri-
bution curve about zero, the square of whose standard deviation may be

denoted by 2.

We will consider the distribution curve of H,, which also is real.
The average value of a function H(k) in a given distribution is equal to
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the integral of the product of the function by the frequency of occur-
rence for each value of it, divided by the integrated frequency of oc-
currence alone. The frequency of occurrence of individual values of
the function is the same as that of the corresponding values of its
argument, and hence can be written as F(k)dh where F(k) is the distri-
bution function of the variable k. The average value of H,, is therefore

ﬁm=ff---meF1F2--- Fudladhs - - - dhy

= [ [ [ 0= b biin = hssme

=0

X FiFy -+ Fodhdhs - - -dha, (16)

where F; is the distribution curve of &, and

| pam = 1, (17)
f o Faddly, = 0. (18)
Assuming the &'s all have equal distribution curves:
f W Fidhy = b2, (19)
except that since %, = 0 and .41 = 0, then
f ho?Fodho = 0, (20)
and . -
f ;52n+1Fn.g.1dhn+1 = 0. (21)
Likewise )
f hitFadhy, = I, (22)
except that -
f he*Fodho = 0, (23)
f h4n+1dF“+1 dhn_,_]_ = O. (24)

Considering the four products ki jim, il jrmi1, Bivihjom and Bipihjyms,
it will be seen that they all integrate to zero by virtue of symmetry
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unless m = 1 orm = 0. We have

I, = ff on (b2 — 2Dl + H2yp0)

X F1Fy -+ Fudludhy - -+ dha = 2nk?, (25)

E=J'f--- El(k,-—-k,-+1)(k,'+1—h,-+z)

- S X RFa-e Fudindhy -+ b

-[f[ ¥ (= Wep) FaFa -+« Fdladhs -+« dho = — i, (26)
i=0

H,=0 if m > 1. (27

The average value of E, is equal to the sum of the average values of

its terms. Applying the results for Hy, H,, and H,, we obtain

E,= —3H, — HBcos¢ = — [1 — B cos ¢ Jnk?, (28)
(Ee)? = [1 — 2B cos ¢ + B2 cos? ¢ Inh®. (29)

For the mean square of E.. we have:

Eﬂg:ff...f(—%ﬂo——zH,,,B’"cosmq&)z
m=1

X F1Fy +++ Fudhidhs - -+ dhy

ff fl E‘o go (hp — k’a"-l-l)z(kq — hgp1)?

X F1Fy -+ Fudhidhs -+ - dhn

-l-ff--~f):,B"'(ccmmd;)Zri “g(k = hpy1)?

m=l p=0 ¢=0

X (hg — hor1) (Bgym — Pgpmir) F1Fa « + + Fodhadho - - - dhy

+ ff ces f Zﬂ: ZH:B’“" (cos r¢)(cos s¢)

r=1 s=l1

n—r n—a

X XX (hp — hpr1) (hpr — hpir1) (he = hopa)

p=0 g=0
X (hq+, —_ }lq+.+1)F1F2 woo Fodhidhe -+ - dhg. (30)
Multiplying the factors containing the %’s as indicated in (30) gives
terms containing hehshoia where the subscripts denote some integer
such as the value for p, p+ 1, p+1r, ¢ g+ 1, g+ 5, etc. When
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there is equality among subscripts so that the terms become #,%:,% or
h,t the integration gives (4% or i#, respectively. However, if such
equality does not exist, or if one of the subscripts is zero or n + 1, the
integration gives zero. By integrating term by term in the manner
above indicated, adding the results, and finally thereafter putting
r = m and s = m, the following result is obtained:

E}? = (1—Bcos:ﬁ)”nﬁ—l—[uz—l—2(n”+n—2)Bcos¢

+ 2(n — 1)B%cos 2¢ + (n®> + 4n — 6)B2?cos 2 ¢

+ { Z”: (6n — 6m)B* cos? me }

m=2

-8 { EI (n —m — §) B cos [(m + 1)} coé mqb}

m=1

+ 2 { E (n —m — 1)B™*cos {(m + 2)¢} cosmqb} :l . (31)

m=1

If the distribution of the %'s is assumed to be a normal distribution,

then: . N
Rt = 3(h?)> (32)

Making this substitution and subtracting (E..)? gives:

Epl — (Ey)? = [Sn —1—8(n — 3)Bcos¢ + 2(n — 1)B? cos 2¢

+ nB?cos? ¢ + { > (6n — 6m)B*> cos® me }

m=1

[ e e (2212 001 om0}

+ 2{ S n—m— 1)32m+2(°°5 |+ 2)8) +"°“22¢‘) Hﬁ? (33)

m=1

When # is large, it is permissible to use the assumption that m has o
for its upper limit in the above summations. It is likewise permissible
to neglect terms in the result which do not contain the factor #.

Accordingly, 2
E} — (Eo) = [ — 34 Breost g 2L B89N

(1 4+ B cos ¢) —2
+41+Bz+2}3c05¢]n2' (34)
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The echo current which is joined to the unit received wave affects
the final resultant and therefore the effective loss of the line. From
equation (28), neglecting higher-order terms, the attenuation of the
whole line is increased (in nepers) by

(+%)% (35)

The standard deviation of the attenuation (4, in nepers), from equa-
tion (34) and neglecting higher order terms, is

Ja—a-=¢ f}r (36)

AprEnDIX III
Sinuosity
The following is a derivation of the sinuosity of the attenuation,
defined as the standard deviation of the difference A(f + Af) — A(f).
Here A(f) is the loss in the circuit at the frequency, f.
For practical purposes, the difference of the expression E., — E.,
at two discrete frequencies is

_ d(-Ecr _ Ecr)
e TV Y

whose standard deviation will be derived below. From values of E,
and E,, given in Appendix II we obtain

Ey —Eo = [ > (h; — kj+1)2] — [ 3> H,B™cos mqb]

=0 m=1

+ [1 — Bcos ¢ Jnk?, (2)

_ d(B cos ¢) d(B™ cos mg)
no o | RS 2 SRR g

—[nlz{BdC();¢ (Cosq&)%}

{ ‘“0_93f’“f’+(osm¢) HAf

I

+ 3 H,

m=1]

= [nl?(BQ sin ¢ — D cos ¢) + > mH,

m=1

X (B™Q sin m¢p — B™'D cos me) :I Af, (3)
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where Q = d¢/df and D = dB/df.

A = f f f NF FoFye«+ Fodhidhdhy - - - dhy,

= f f f wH(BQsin ¢ — D cos $)(Af)?
X FyFy -« Fodhudhs -« - dhn

+ff---f2n7ﬁ(BQsin¢~Dcos¢)

X [ > mH,(B™Q sin m¢ — B™ 1D cos mqb)]

m=1

X (Af)2F Fs ««+ Fodhidhy -« - dha

+ff.--fznzn:rs(B’Qsinrqs—B"IDcosrqb)

r=1 a=l
X (B*Q sin s¢ — B* 1D cos s¢) [ > 2 (hp — hpa)
p=0 gq=0

X (h'wr - hp+r+1)(kq - kq-f-l)(h‘q +s T kq+s+1)] (Af)2
X F1Fa -+« Fodlydho -+ dhn.  (4)

By methods similar to those employed in Appendix II it follows
that .

A= [(BQsind) — D cos ¢)%h* + [ — 2(BQsin ¢ — D cos ¢)*

(B2Q* + D?)(3 — 8B cos ¢ + {6B? — 2B*} cos® ¢ + BY)
+ T — By

_ (Q’—P-EXI— 1+ 6B — 3B
B {0 F 2B cos ¢ & By
__ 6B(1 + B?) cos ¢ + 6B%(1 + B?) cos? ¢ + 4B cos? ¢
(14 2Bcos¢ + B%)? )

l{6(1 + B?) cos ¢ + 4B cos® ¢ + 8B} sin ¢
(1 4+ 2B cos ¢ + B?)3

— 2BQD
X (Eﬂ‘)ﬂ] n(af2. (5)

When the distribution of the h’s is normal, this expression can be
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simplified by noting that _ _
1= 3h (6)

The sinuosity may be obtained from N as follows:
AN — AR = A(f + Af) — A(H) — {A(f + Af) — A(D) (7)
= A(f + Af) = AF + Af) — A + A 8)
= Eulf 4 Af) = Ea(f + Af) — Eo(f) + E=(f). (9)

Consequently,

V@A - 38y = VR (10)

Therefore the sinuosity, expressed in nepers, is

\ (@A — BAe = S, ¢t

where, in accordance with equations (5) and (6):

S =%[(BQsin¢—Dcos¢)2
(B*Q? 4+ D*)(3 — 8B cos ¢ + {6B? — 2B*} cos® ¢ + B)
+ @ — B
_ (Qﬂ_g) [ _ 14 6B — 3B
B2 (1 4+ 2B cos ¢ + B?)?
__ 6B(1 4 B?) cos ¢ + 6B%(1 + B?) cos? ¢ + 4B3 cos%b)
(1 + 2B cos¢ + B?)?
6(1 + B?) cos ¢ + 4B cos? ¢ + 8B} sin ¢ |}
(T + 2B cos ¢ + BY ] (af) (12)

— 280D |

and _
82 = 4h2. (13)

By expanding S in powers of ¢ and ¢, and neglecting those higher
than needed to give a finite result, it is found that

_ N+ D
8e2e

In general, D is negligible compared to Q and the sinuosity is

o = axy 080V
Vias — 28y = £ 4f). (15)

S (Af). (14)



