Variable Frequency Electric Circuit Theory with Application
to the Theory of Frequency-Modulation

By JOHN R. CARSON AND THORNTON C. FRY

In this paper the fundamental formulas of variable frequency
electric circuit theory are first developed. These are then applied
to a study of the transmission, reception and detection of frequency
modulated waves. A comparison with amplitude modulation is
made and quantitative formulas are developed for comparing the
noise-to-signal power ratio in the two modes of modulation.

FREQUENCY modulation was a much talked of subject twenty
or more years ago. Most of the interest in it then centered
around the idea that it might afford a means of compressing a signal
into a narrower frequency band than is required for amplitude modu-
lation. When it was shown that not only could this hope not be
realized,* but that much wider bands might be required for frequency
modulation, interest in the subject naturally waned. It was revived
again when engineers began to explore the possibilities of radio trans-
mission at very short wave lengths where there is little restriction on
the width of the frequency band that may be utilized.

During the past eight years a number of papers have been published
on frequency modulation, as reference to the attached bibliography
will show. That by Professor E. H. Armstrong t deals with this
subject in comprehensive fashion. In his paper the problem of
discrimination against extraneous noise is discussed, and it is pointed
out that important advantages result from a combination of wide
frequency bands together with severe amplitude limitation of the
received signal waves. His treatment is, however, essentially non-
mathematical in character, and it is therefore believed that a mathe-
matical study of this phase of the problem will not be unwelcome.
This the present paper aims to supply by developing the basic mathe-
matics of frequency modulation and applying it to the question of
noise discrimination with or without amplitude limitation.

The outstanding conclusions reached in the present paper, as
regards discrimination against noise by frequency modulation, may
be briefly summarized as follows:

* See Bibliography, No. 1.
t See Bibliography, No. 12.
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(1) To secure any advantage by frequency modulation as distin-
guished from amplitude modulation, the frequency band width must
be much greater in the former than in the latter system.

(2) Frequency modulation in combination with severe amplitude
limitation for the received wave results in substantial reduction of the
noise-to-signal power ratio. Formulas are developed which make
possible a quantitative estimate of the noise-to-signal power ratio in
frequency modulation, with and without amplitude limitation, as
compared with amplitude modulation.

It is a pleasure to express our thanks to several colleagues who have
been helpful in various ways: to Dr. Ralph Bown who in a brief but
very incisive memorandum, which was not intended to be a mathe-
matical study, disclosed all the essential ideas of the quasi-stationary
method of attack; to Mr. J. G. Chaffee,* who has been conducting
experimental work on frequency modulation in these Laboratories for
some years past, by means of which quantitative checks on the
accuracy of some of the principal results have been possible; and to
various associates, especially Mr. W. R. Bennett and Mrs. S. P.
Mead, for detailed criticism of certain portions of the work.

I

In the well-known steady-state theory of alternating currents, the
e.m.f. and the currents in all the branches of a network in which
the e.m.f. is impressed involve the time ¢ only through the common
factor et where 1 = Y— 1 and w is the constant frequency. To this
fact is attributable the remarkable simplicity of alternating current
theory and calculation, and also the fact that the network is completely
specified by its complex admittance Y(sw). Thus, if the e.m.f. is
Eewt, the steady-state current is

I, = EY(iw)ewt. (1

In the present paper we shall deal with the case where the frequency
is variable, and write the impressed e.m.f. as

E exp (z jo‘ ‘Q(t)dt) . @)

Q(t) will be termed the instantaneous frequency. This agrees with
the usual definition of frequency when @ is a constant; it is the rate of
change of the phase angle at time ¢; and in addition the interval T
between adjacent zeros of sin J/'Q(£)dt or cos fQ(t)dt is approximately
#/Q(t) in cases of practical importance.

* See Bibliography, No. 11.
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Instead of dealing with an arbitrary instantaneous frequency Q(¢)

we shall suppose that
Q@) = o + ), (3

where v is a constant and u(f) is the variable part of the instantaneous
frequency. In practical applications u(f) will be written as As(¢) where
\ is a real parameter and the mean square value 52 of s(¢) is taken as
equal to 1/2. Other restrictions on u(¢) will be imposed in the course
of the theory to be developed in this paper. Fortunately these
restrictions do not interfere with the application of the theory to
important problems.

The steady-state current as given by (1) varies with time in precisely
the same way as the impressed e.m.f. When the frequency is variable
this is no longer true.. On the other hand, formula (1) suggests a
‘‘quasi-stationary’’ or ‘'quasi-steady-state current' component, [,
defined by the formula

T = EV(iQ) -exp <£ f lﬂdt), @)
0

which corresponds exactly to (1) with the distinction that the ad-
mittance is now an explicit function of time. We are thus led to
examine the significance of /., as defined above and the conditions
under which it is a valid approximate representation of the actual
response of the network to a variable frequency electromotive force,
as given by (2).

We start with the fundamental formula of electric circuit theory.!
Let an e.m.f. F(¢) be impressed at time { = 0, on a network of indicial
admittance A4 (); then the current I(f) in the network is given by

1) = f "t — )-A'()dr. (5)

Here A’(t) = dfdi-A(t) and it is supposed that A(0) = 0. (This
restriction does not limit our subsequent conclusions and is introduced
merely to simplify the formulas. Furthermore A4(0) is actually zero
in all physically realizable networks.)

Omitting the superfluous amplitude constant E we have

exp(i flﬂdt)

/o

exp(iwt—l-'ift,udt), (6)
0

1 See J. R. Carson, *Electric Circuit Theory and Operational Calculus,” p. 16.

F()

I
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exp [1'(3’ - Tw + ifc_rpdrl]
0
= exp [i(t - 7w —|-'if‘p,d1'1 - 'if! pdn]

exp [i2(5)]-exp [—iwr - if’,u(t — T,)dn]. )

0

F(t— 1)

I

Substituting this expression in (5) for F(¢ — 7) and writing
exp ( - ifr,u(t —~ n)dn) = M(, 7), (8)
1]
we have for the current in the network ‘
- ‘ .
I = efou. [ M(t, e A" (r)dr. (9)
/0

We now split the integral into two parts, thus:

L=d-0

The second integral on the right represents an initial transient which
dies away for sufficiently large values of time, f, while the infinite
integral represents the total current, I, for sufficiently large values of 2.

We have therefore
I = gifnat, f“’ M, D= A'(Ddr + Ip (10)
0

= Y(iw, t)e'S %t 4 In,
where

Y(iw, £) = f M8, D)e=iorA! (7)dr. (11)
0
The transient current,? Iy, is then given by
I = e f M, v)er A’ (7)dr. (12)
t

The foregoing formulas correspond precisely with the formulas for
a constant frequency impressed e.m.f.; these are

I, = giet f ® eiord!(r)dr, (10a)
a

2 Hereafter the transient term Iy of (10) will be consistently neglected and the
symbol I will refer only to the quasi-stationary current.
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Y(iw) = f ® et A (r)dr, (11a)
0

Ir = e"""fw et (r)dr, (12q)
1]

to which the more general formulas reduce when p = 0 and conse-
quently M = 1,

We have now to evaluate ¥Y(iw, ) as given by (11). We shall
assume tentatively, at the outset, that p = As(¢) has the following
properties:

As(t) K w for all values of ¢,
—-—1=50=1,

¢
—lsfsdzsl.
0

With these restrictions the instantaneous frequency lies within the
limits w 4 A,
Let us now replace M(t, v) by the formal series expansion

M, ) = M(t, 0) —l—{—! [a% M(¢, .,)] .
+2?[ MG, r)] Lt ad)

which converges in the vicinity of all values of ¢ for which s has a
complete set of derivatives. Then, if we write

[aa

and substitute (13) in (11), we get

| .= irco (130)

Y(io, £) = f " et d!()dr + 3 (= i)"C. f ”;—’;e—-‘er'(f)df. (14)
0 1 0 "
From (11a) it follows at once that

@ on ier A _ ,in da .
fo DA (ndr = 2 2 i), (15)
so that
Y(iw, t) = Y(iw) + Z C (t) Y('I.m) (16)
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The coefficients C, are easily evaluated from (8) and (13a); they are ?
cl = #(t),
.d :
C: = #2 - 1’32]-‘- ) (17)

.d
Cn-l..]_ = (# - ‘La) C,;.
Now consider the quasi-stationary admittance Y(:2). Writing

Q = @ + u(f) and expanding as a power series, we have (assuming
that the series is convergent)

Y(4Q) = Y(iw) + Z i d - Y(m) (18)
From (16), (17) and (18) we have at once

Y(iw, £) = Y([EQ) + g%p,.(z) g; Y (1), (19)
where
-D2 = = 1% lu(t)i

., d d?
D, = — 13#-‘% —ah (20)

Dm+1 = Cm+1 - ﬂm+1-
Consequently, the total current, after initial transients have died
away, is given by
I = I+ AR)
_ . . i dud’Y
1 a2y
3!( 3“dt +dt2 )dw‘* + ] (21)

We have thus succeeded in expressing the response of the network in
terms of the quasi-stationary current

Tow = Y('i.ﬂ)-exp(i f th) (22)

3 From these recursion formulas C, can be derived in the compact form
o= (o) (o 8) = (=)
n = | # ’a b "dt (j.l a ]

- ( a— ;%)ﬁ,‘ symbolically.
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and a correction series A, which depends on the derivatives of the
steady-state admittance V(iw) with respect to frequency and the
derivatives of the variable frequency u(f) with respect to time.

If the parameter X is sufficiently large and the derivatives of s are
small enough so that C, may be replaced by the two leading terms,
we get

Co =" — 1%22#’#“‘2 Iy =9!-§~

Then by (16) and (18)

Y(iw, £) = V(i) — ‘gs;f 2 e ¥(ia)
= Y(9) — “‘ ‘3  ¥(i9)
_ . w a*
= vo) - %% vug)
— Y(i0) +% Y (ig). (16a)

The preceding formulas are so fundamental to variable frequency
theory and the theory of frequency modulation that an alternative
derivation seems worth while. We take the applied e.m.f. as

Eexp(iwct—[—iﬂ-l-if‘,udt), 23)
0

the phase angle # being included for the sake of generality.
Now in any finite epoch 0 = { = T, it is always possible to write

exp('i f ‘ ,udt) _ f_ ® Fliw)e®tdo, (24)

thus expressing the function on the left as a Fourier integral. For
present purposes it is quite unnecessary to evaluate the Fourier
function F(iw).

Substitution of (24) in (23) gives for the current

I = E-exp (iwd + i0)- f ® Pliv) Y(io, 4 iw)edo.  (25)

We suppose as before that, in the interval 0 = ¢ = T, u(#) and its de-
rivatives are continuous. We can then expand the admittance func-
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tion ¥ in the form
Vi, + iw) = Vliod + 52 ¥0Gw) + &2 yoiin) +

I

Y(iwe) + ng’l- Y™ (tw,)

Y(iw:) + Z Y(wc) (26)
Substitution of (26) in (25) gives
I = E-exp (iwd + i6) z Y(mc) ® onFliw)eitde. (27)

-—00

But by the identity (24) and repeated differentiations with respect
to ¢, we have

L] t
f wF(iw)etdw = u exp (tf ,udﬁ) ,
—w 0
f‘n W' Fiw)e'idw = (,u. — i )exp (if‘,udt) ,
. dt 0

fm whF(iw)ewtdw = Cy exp(ift,udt>.
—00 0

Substitution of (28) in (27) gives

- (28)

I=Eexp(éflﬂdt—f-ie)-{lf(wc)—]—Z c,,d Y(m.,)} (29)

which agrees with (16).

Formula (25), as it stands, includes the initial transients at time
¢t = 0 as well as any which occur at discontinuities in p(#). Differ-
entiation with respect to ¢ under the integral sign, however, in effect
eliminates these transients and (29) leaves only the quasi-stationary
current (plus the correction series given in (19)).

The series appearing in formula (29) may not be convergent; in any
case its computation is laborious. Furthermore, in its application to
the theory of frequency modulation, terms beyond the first two
represent distortion. For these reasons it is often preferable to
proceed as follows:

Returning to formula (25), we write

w® d®
n!ldw,®

Y(iw=+1:w)=(1+1, ot )Y(z'wc)+R..(me.w), (30)
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thus defining the remainder R,. Then (29) becomes

_ . [t . C, d . Cn dn .
I-Eexp(mjo‘ﬂdt—l—tﬂ) [1+1_!d_¢m;+” +n!aw_.J‘] Y(iw,)

+ Eexp (iwd + i6) [ ® Ru(wy ) Flio)edo. (31)

In practice it is usually desirable to take n = 1.
Now the infinite integral

D) = f ® Ru(we, w) Fliw)e™tde (32)

must be kept small if the finite series in (31) is to be an accurate repre-
sentation of the current 7. While it is not in general computable, we
see that, in order to keep it small, R.(w., ») must be small over the
essential range of frequencies of F(iw). In cases of practical im-
portance we shall find (see Appendix 1) this range is from w = — A
tow = 4+ A.

If the transducer introduces a large phase shift, the linear part of
which is predominant in the neighborhood of w = «,, it is preferable
to express the received current 7 in terms of a “retarded” time. To
do this, return to (25) and write

Y(iwe + iw) = | Y(iw, + )|, (33)
¢ = wer + w7 + B(w) + b,

8(0) = B'(0) = 0,
so that

I = E exp (iwt' + 26) fm | Y(iw, + iw) |6~ F(iw)ei“¥dw, (34)

where {/ = ¢ — 7 is the ‘““retarded’ time and # = 6 — .. Formula
-(34) is identical with (25) but is expressed in the ‘‘retarded’ time.
Now we can expand the function

| Y(iw, + iw) | e~
in powers of w; thus

(1 + ot ) | Viiws) | + é Fa(wo)w",

duw,
where
ralwd) = & { O | Vi, + iw) |8
€ n! | dw.™ €

w=0
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and by substitution in (34) we get
I=2E ; IVﬂ-rd‘rnl—'fl’
exp(f,f; (7) ! )
x[ (142022 ) 1¥a)l + £50 |, 69)

which corresponds precisely with (29) except that it is expressed in
terms of the retarded time #. If the transducer introduces a large
phase delay, (35) may be much more rapidly convergent than (29)
and should be employed in preference thereto.

Corresponding to (30) we may write

Y(tw, + tw)e 8 = (1 + w— ) | Y(iwe)| + R,
which defines the remainder. Then

I=Eexp<z‘fo"ndf+w')-[ | Y(iws) | +M(t’)a—%ll’(iwc)l]

+ E exp (twdt’ + 26")D(¢), (36)
where

D) = f ® Rwe, ) Flio)e=ie¥do. 37)

Formulas (36) and (37) correspond precisely with (31) and (32) and
the same remarks apply.

II

The foregoing will now be applied to the Theory of Frequency
Modulation. A pure frequency modulated wave may be defined as a
high frequency wave of constant amplitude, the '‘instantaneous’
frequency of which is varied in accordance with a low frequency signal
wave. Thus

W= expi(mct PN f ’s(;)d:) (38)

is a pure frequency modulated wave. Here w. is the constant carrier
frequency and s(¢) is the low frequency signal which it is desired to
transmit. A is a real parameter which will be termed the modulation
index. The “instantaneous” frequency is then defined as

+ As(h).

It is convenient to suppose that s(f) varies between =+ 1; in this case



VARIABLE FREQUENCY ELECTRIC CIRCUIT THEORY 523
the instantaneous frequency varies between the limits
we == A,

In all cases it will be postulated that A K w..

With the method of producing the frequency modulated wave (38)
we are not here concerned beyond stating that it may be gotten by
varying the capacity or inductance of a high frequency oscillating
circuit by and in accordance with the signal s(%).

Corresponding to (38), the pure amplitude modulated wave (carrier

suppressed) is of the form
NORAS (39)

If the maximum essential frequency in the signal s(¢) is w,, the wave
(39) occupies the frequency band lying between w, — w, and w, + w,,
so that the band width is 2w,. In the pure frequency modulated wave
the ‘‘instantaneous’” frequency band width is 2A. In practical
applications A 3> w,. We shall now examine in more detail the concept
of “instantaneous’’ frequency and the conditions under which it has
physical significance.

The instantaneous frequency is, as stated, w, + As(f); a steady-state
analysis is of interest and importance. To this end we suppose
s(f) = cos wt so that w is the frequency of the signal. Then the wave
(38) may be written

giwet { cos (bsin wt) + ¢ sin (}Siﬂ wt) } )
w w

and, from known expansions,

W= 2 JaMw)eiwetnat, (40)

n=—w

where J, is the Bessel function of the first kind. Thus the frequency
modulated wave is made up of sinusoidal components of frequencies

we £ nw, n=2012 -+, o,

If AJw>> 1 (the case in which we shall be interested in practice) the
terms in the series (40) beyond n = A/w are negligible; this follows
from known properties of the Bessel functions. In this case the
frequencies lie in the range

we = Nw = w, = N,
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which agrees with the result arrived at from the idea of instantaneous
frequency. On the other hand, suppose we make A so small that
Ao << 1. Then (40) becomes to a first order

eiwcl +% (%) gi(wd-w)l —_ %(b) el’(u:—m)t'

w

so that the frequencies w., w. + v, w, — w are present in the pure
frequency modulated wave.
It is possible to generalize the foregoing and build up a formal

steady-state theory by supposing that

M
s(t) = X Amcos (wnt + Om). (41)
m=1
On this assumption, it can be shown that the frequency modulated
wave (38) is expressible as

W = exp (fw.t) I }E Ta(um) exp [in(wnt + 0,) ], (42)

m n=—0w
Um = AMp/wn.

The corresponding current is then

-]
exp (fwd) I Y Ja(um) Y(iw, + nwn) exp [in(ont + 0,)].  (43)
m n=—0o0

Formulas (42) and (43) are purely formal and far too complicated
for profitable interpretation. Consequently this line of analysis will
not be carried farther.

If we compare the pure frequency modulated wave, as given by (38),
with the pure amplitude modulated wave, as given by (39), it will be
observed that, in the latter, the low frequency signal s(f), which is
ultimately wanted in the receiver, is explicit and methods for its
detection and recovery are direct and simple. In the pure frequency
modulated wave, on the other hand, the low frequency signal is
implicit; indeed it may be thought of as concealed in minute phase or
frequency variations in the high frequency carrier wave.

If we differentiate (38) with respect to time ¢, we get

dW/dt = [we + Ns()] exp (m,z +ix f tsdz) : (44)
4 See Appendix 1. °
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The first term,
t
we €xp ( iwd + ix f sdt) , (45)
0

is still a pure frequency modulated wave. The second term,

Rs(t)-exp(iw.;t + i f 'sdz>, (46)

is a “hybrid”” modulated wave, since it is modulated with respect to
both amplitude and frequency. The important point to observe is
that, by differentiation, we have “‘rendered explicit’ the wanted low
frequency signal. We infer from this that the detection of a pure
frequency modulated wave involves in effect its differentiation. The
process of rendering explicit the low frequency signal has been termed
“frequency detection.” Actually it converts the pure frequency
modulated wave into a hybrid modulated wave.

Every frequency distorting transducer inherently introduces fre-
quency detection or “‘hybridization" of the pure frequency-modulated
wave, as may be seen from formula (16). The transmitted current is
conveniently written in the form

. . (M 1 11
I= I’(wwc)exp<¢l£ th)'{l_{_;ﬁ“""ﬂﬁcg

1 13C3+ }, (47)

T 310p

where
1 an»

m m Y(iwc). (48)

1 —

o=

(Note that w, has the dimensions of frequency. It may be and usually
is complex.)

Every term in (47) except the first, is a hybrid modulated wave.

In passing it is interesting to compare the distortion, as given by
(47), undergone by the pure frequency-modulated wave, with that suf-
fered by the pure amplitude-modulated wave (39), in passing through
the same transducer. The transmitted current corresponding to the
amplitude-modulated wave (39) is

\ . 1 ds 1 dis
I = Yoo {0 + 7,5+ riiany a
1 d3s

e Rt )
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This equation corresponds to (47) for the pure frequency-modulated
wave.
IT1

In this section we consider the recovery of the wanted low frequency
signal s(#) from the frequency-modulated wave. This involves two
distinct processes: (1) rendering explicit the low frequency signal
“implicit’ in the high frequency wave; that is, “frequency detection”
or “hybridization” of the high frequency wave; and (2) detection
proper.

It is convenient and involves no loss of essential generality to
suppose that the transducer proper is equalized in the neighborhood of
the carrier frequency w.; that is,

o Ve, s Ve, - (50)

dw?

are negligible.
Frequency detection is then effected by a terminal network. We
therefore take as the over-all transfer admittance

Y (iw) « ¥(dw). (51)

y(iw) represents the terminal receiving network; it is under control and
can be designed for the most efficient performance of its function. As
weshall see, it should approximate as closely as possible a pure reactance.

Taking the over-all transfer admittance as (51), we have from (47),

I = yliw,) Y(iwc)-exp('i f 'szd;)

0

1 1 1
x{l+;As+_2!wﬁzcz+~3!w3aca+---}. (52)
where now
Lour =—2 8" 53
@n —mm? ). (53)

Inspection of (52) shows that the terms beyond the second simply
represent distortion. The terminal network or frequency detector
should be so designed as to make the series

Y A\ A3
R
w1 Wa w3
rapidly convergent from the start.’ In fact the ideal frequency de-
tector is a network whose admittance y(iw) can be represented with

& See note at end of this section (p. 528) for specific example.
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sufficient accuracy in the neighborhood of w = w. by the expression

y(iw) = y(iw.) ( 1 +%) : (53a)

This approximation should be valid over the frequency range from
w=ws— Atow = we + \.

Supposing that this condition is satisfied, the wave, after passing
over the transducer and through the terminal frequency detector, is
(omitting the constant y-¥)

I=(1+wlls(t))-exp(if‘9dt)- (54)

If y is a pure reactance, w; is a pure real; due to unavoidable dissi-
pation it will actually be complex. To take this into account we
replace w; in (54) by wie~* where now w; is real; (54) then becomes

I= { 1 +wllcosa-s(t) + imllsina-s(z) }exp (if'ndz) . (55)

0

The amplitude A4 of this wave is then

A= {(1 +:}\Icos a-s(t) )2-1- (wllsina-s(t) )2}1,2- (56)

Now let Mfw; be less than unity and let the wave (55) be impressed on
a'straight-line rectifier. Then the rectified or detected output is

(14 o) (14 (32200 o

or, to a first order,
1+ cos a-s(t) + 22X sin? a-52(). (58)
w1 2 w12

The second term is the recovered signal and the third term is the first
order non-linear distortion.

Inspection of the foregoing formulas shows at once that, for detection
by straight rectification, the following conditions should be satisfied:

(1) A w; must be less than unity.
(2) The terminal network should be as nearly as possible a pure
reactance to make the phase angle a as nearly zero as possible.
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(3) To minimize both linear and non-linear distortion it is necessary
that the sequence
R 3
(3).

2.3 LAY
w1 ’ Wz 1
be rapidly convergent from the start.

The first term of (58) is simply direct current and has no significance
as regards the recovered signal. When we come to consider the
problem of noise in the next section, we shall find that its elimination is
important. This can be effected by a scheme which may be termed
balanced rectification. Briefly described the scheme consists in termi-
nating the transducer in two frequency detectors y; and y; in parallel;
these are so adjusted that y,(tw.) = — ya(iw;) and dy,/dw. = dys/dw..
w is therefore of opposite sign in the two frequency detectors. The
rectified outputs of the two parallel circuits are then differentially
combined in a common low frequency circuit. Corresponding to (58),
the resultant detected output is

21&:05 a-s(t). (59)
w1

This arrangement therefore eliminates first order non-linear distortion,
as well as the constant term.

Rectification is the simplest and most direct mode of detection of
frequency-modulated waves. However, in connection with the problem
of noise reduction other methods of detection will be considered.

Note
As a specific example of the foregoing let the terminal frequency
detector, specified by the admittance y(iw), be an oscillation circuit
consisting simply of an inductance L in series with a capacitance C.

Then
... |C wfer
y(tw) =1 Il—_m!

where wg? = 1/LC.
Then, if w./wr is nearly equal to unity, that is, if
wp = (1 + 8w,
|8] «1,
we have approximately,
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Formula (42) thus becomes

As Cz

WR — W, + (wp — wo)?

+-L+ }

(wr — wc)s

T = y(iw)- Y(iwc)-exp(if’ﬂdt) : { 1+

0

In order that the distortion shall be small it is necessary that
MK |wr — wel.
If the two networks y, and y, are oscillation circuits so adjusted that
C1/Ly = Ca/Ls,

le = (1 + B)wc = 1/\,‘L1C1.
wp, = (1 = 8w, = 1/VL2Cy,

then the combined rectified output of the two parallel circuits is
proportional to
AS

8w,

Cs Cs
ARG LR s

Thus the constant term and the first order distortion are eliminated
in the low frequency circuit.

v

The most important advantage known at present of frequency-
modulation, as compared with amplitude-modulation, lies in the possi-
bility of substantial reduction in the low frequency noise-to-signal
power ratio in the receiver. Such reduction requires a correspondingly
large increase in the width of the high frequency transmission band.
For this reason frequency-modulation appears to be inherently
restricted to short wave transmission.

In the discussion of the theory of noise which follows, it is expressly
assumed that the high frequency noise is small compared with the high
frequency signal wave. Also ideal terminal networks, filters and
detectors are postulated.

In view of the assumption of a low noise power level, the calculation
of the low frequency noise power in the receiver proper can be made to
depend on the calculation of the noise due to the typical high fre-
quency noise element

A, exp (twd + twat + 16,). (60)
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Corresponding to the noise element (60), the output of the ideal
frequency detector is

. AS Wn . .
exp(@f Mt)-{l+—+(1+—>A,.exp<w,.t+tﬂ,.
° Wi w1

3
- sz sdt)}. (61)
Since the expression °

t
exp (iwnt + 00, — ix f sdt)
' 0

occurs so frequently in the analysis which is to follow, it is convenient
to adopt the notation
Qo = w, — As(f),

L £
f Qudt = wit — A j‘ sdt. (61a)
0 0

With this notation and on the assumption that 4, < 1 and w, real,
the amplitude of the wave (61) is

¢
1+E+(1+E>Ancos(f nndz). (62)
wi w1 0
In this formula the argument of the cosine function should be

strictly
3
f Qudt + 0.
o

The phase angle 8, is random however and does not affect the final
formulas; it may therefore be omitted at the outset. Consequently,
if the wave (61) is passed through a straight line rectifier, the rectified
or low frequency current is proportional to

As(2) + (w1 + wn)Ancos (ftﬂndt) . (63)

The first term is the recovered signal and the second term the low
frequency noise or interference corresponding to the high frequency
element (60).

Now the wave (63), before reaching the receiver proper, is transmitted
through a low-pass filter, which cuts off all frequencies above wa; wg is
the highest essential frequency in the signal s(f). Consequently, in
order to find the noise actually reaching the receiver proper, it is
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necessary in one way or another to make a frequency analysis of the
wave (63). This is done in Appendix 2, attached hereto, where
however, instead of dealing with the special formula (63), a more
general expression

As() + (01 4 wa + p5)4a cos f ‘0.dt, (64)
0

is used for the low frequency current. This will be found to include,
as special cases, several other important types of rectification, as well
as amplitude limitation, which we shall wish to discuss later.* Then,
subject to the limitation that the noise energy is uniformly distributed
over the spectrum, it is shown in Appendix 2 that

P = N, (65)
Py = (30o® + o + (1 + ¥) N7 wa N7, (66)
v = lulxl (67)

N? = mean high frequency power level.

These formulas are quite important because they make the calcula-
tion of low frequency noise-to-signal power ratio very simple for all the
modes of frequency detection and demodulation which we shall discuss.

Applying them to formula (63) we find for straight line rectification

Py = (3w + @i + Ns?)walN?, (68)
Pg = N5,

It is known that in practice ws? 3> As? and A%s? 3> w2 Consequently
in the factor (w.? + w?® + A%s?) the largest term is w®. Therefore
it is important, if possible, to eliminate this term. This can be
effected by the scheme briefly discussed at the close of section III;
parallel rectification and differential recombination. For this scheme
the low frequency current is found to be proportional to

As + wqd 5 cos (I‘Qndt> . (69)
0

Consequently, for parallel rectification and differential recombination,

Py = (ws + NsHw. N2 (70)

¢ The formula is also general enough to include detection by a product modulator,
which however is not discussed in the text as no advantage over linear rectification
was found.
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Here, in the factor (3w, + A%s%), the term A2%s? is predominant. The
elimination of the term w,* has resulted in a substantial reduction in
the noise power.

Returning to the general formula (66) for Py, it is clear, that, if in
addition to eliminating the term w,?, the parameter » = u/\ can be
made equal to — 1, the nois¢ power will be reduced to its lowest
limits:

Py = 3wN2.

This highly desirable result can be effected by amplitude limitation,
the theory of which will now be discussed.

\Y%

When amplitude limitation is employed in frequency-modulation,
the incoming high frequency signal is drastically reduced in amplitude.
If no interference is present this merely results in an equal reduction
in the low frequency recovered signal which is per se undesirable.
When, however, noise or interference is present, amplitude limitation
prevents the interference from affecting the amplitude of the resultant
high frequency wave; its effect then can appear only as variations in
the phase or instantaneous frequency of the high frequency wave. To
this fact is to be ascribed the potential superiority of frequency-
modulation as regards the reduction of noise power. This superiority
is only possible with wide band high frequency transmission; that is,
the index of frequency-modulation A must be large compared with the
low frequency band width «,. Insofar as the present paper is con-
cerned, the potential superiority of frequency-modulation with ampli-
tude limitation is demonstrated only for the case where the high fre-
quency noise is small compared with the high frequency signal wave.

t
If, to the frequency-modulated wave exp (i f Qdt ), there is
0

added the typical noise element A, exp (iw, + w.t + 68,), the re-
sultant wave may be written as

exp(if'ndt)-(1+Aﬁexp (if‘sz,,dz)). (71)

Postulating that 4, << 1 and therefore neglecting terms in 4,2,
the real part of (71) is

(1 +Aﬂcos(flﬂndt))-cos(fiﬂdt+Aﬁsin (ftﬂﬂdt)). (72)
0 0 (]
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If this wave is subjected to amplitude limitation, the amplitude
variation is suppressed, leaving a pure frequency-modulated wave,
proportional to the real part of

exp[f(fu'gdwziﬂsin(fnﬂdz))] (73)

(but drastically reduced in amplitude).
After frequency detection the wave (73) is, within a constant,

exp [.(ifeﬂdt +Aﬂsin('f‘ﬂﬂdz))}
><[1+;Jl-l%(xf’sdr+4nsin(f'nnd:)>]. (74)

Consequently, since

f'n,,d; = o+ 6, — xf’sdi, (75)
1]

0

the amplitude of the wave (74) is
1+wi{xs+ (wn —xs)A,.cos(j"Qndz) } (76)
1 0

This is the amplitude of the low frequency wave after rectification; it is
obviously proportional to .

s 4 (0n — A)A cos( f 'n,,da) , )

0

which is a special case of (64) and may be used in calculating the
relative signal and noise power with amplitude limitation. Hence we
have, by aid of (65) and (66),

Pg = N,
Py = 3w N2 (78)

(These are, of course, relative values and take no account of the
absolute reduction in power due to amplitude limitation.)

Comparing (78) with (68) it is seen that, for detection by straight line
rectification, the ratio of the noise power with to that without amplitude
limitation is .

— ; 79
1+ 3w/wd + 3N w,? (79)
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or taking s? = 1/2,
1

1+ 3wl/wd + 3820 (80)

Since in practice w; 3» ws and A > w,, amplitude limitation results in a
very substantial reduction in low frequency noise power in the receiver
proper. Reference to formula (70) shows that, as compared with
parallel rectification and recombination, amplitude limitation reduces
the noise power by the factor
1
1+ 3222w}

It should be observed that without amplitude limitation little reduc-
tion in the noise-to-signal power ratio results from increasing the
modulation index A (and consequently the high frequency transmission
band width). On the other hand, with amplitude limitation, the ratio
p of noise-to-signal power is

(81)

2 [ wy \2
p=PN/Ps=*(‘—) wa N2 {82)
3\ A

The ratio p is then (within limits) inversely proportional to the
square of the modulation index A, so that a large value of X is indicated.
It should be noted that, within limits (A << w,), the power transmitted
from the sending station is independent of the modulation index A.

It might be inferred from formula (82) that the noise power ratio p
can be reduced indefinitely by indefinitely increasing the modulation
index A. Actually there are practical limits to the sizeof A. First, if A
is made sufficiently large, the variable frequency oscillator generating
the frequency-modulated wave may become unstable or function
imperfectly. Secondly, the frequency spread of the frequency modu-
lated wave is 2\ (from w, — A to w, + A) and, if this is made too large,
interference with other stations will result. Finally, the stationary
distortion of the recovered low frequency signal s(#) increases rapidly
with the size of A.

To summarize the results of the foregoing analysis the potential
advantages of frequency-modulation depend on two facts. (1) By
increasing the modulation index A it is possible to increase the recovered
low frequency signal power at the receiving station without increasing
the high frequency power transmitted from the sending station.
(2) Itis possible to employ amplitude limitation (inherently impossible
with amplitude-modulation) whereby the effect of interference or noise
is reduced to a phase or ‘“‘instantaneous frequency’’ wvariation of the
high frequency wave.
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APPENDIX 1

Formula (40) et sequa establish the fact that the actual frequency of
the wave (29) varies between the limits

we £+ A

provided s(¢) is a pure sinusoid A sin wf and A>»>w. This agrees with the
concept of instantaneous frequency.

When s(¢) is a complex function—say a Fourier series—the frequency
range of W can be determined qualitatively under certain restrictions, as
follows:

We write

W = exp (iwct + i)\f‘sdt) (1a)
0
= givet f * Fliw)ei'de. (2a)

The Fourier formulation is supposed to be valid in theepoch 0 = ¢t =T
and T can be made as great as desired. Then

Fliw) = = j; " exp (ix j; “sdt — w) dt. (a)

We now suppose that, in the epoch 0 =¢ =T,

thsdt‘ (4a)

becomes very large compared with 27. On this assumption, it follows
from the Principle of Stationary Phase, that, for a fixed value of w, the
important contributions to the integral (3a) occur for those values of
the integration variable ¢ for which

d t
a(xfﬂ sdt—wt) -0,

w = As(t).

or

Consequently the important part of the spectrum F(iw) corresponds
to those values of w in the range

)\Smin = w = k-".n:mx-

Therefore the frequency spread of W lies in the range from w, + ASmin
to w, + ASmax OF W, = A if Smax = — Smin = 1.
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APPENDIX 2

We take the frequency modulated wave as

cos (wct + )\f‘sdt), (1d)
(1]

where w. is the carrier frequency and s = s(¢) is the low frequency
signal. A isareal parameter, which fixes the amplitude of the frequency

spread.
Correspondingly, we take the typical noise element as

Ancos ((we + wa)t + 6,). (2b)

For reasons stated in the text, we take the more general formula for
the low frequency current as proportional to

)\s—{—(wo+mn+ps)Ancos<wﬂt+Bn—?\f‘sdt), (3b)
0

where wo, \, u are real parameters. The term \s is the recovered signal
and the second term is the low frequency noise corresponding to the
high frequency noise element (25).

We suppose that the noise is uniformly distributed over the frequency
spectrum, at least in the neighborhood of w = w., so that, corresponding

to the noise element _
A cos (wat + 82), (4b)

the noise is representable as the Fourier integral
g f cos (wnt + O2)deon (5b)

and the corresponding noise power for the frequency interval w; < w, < ws
is, by the Fourier integral energy theorem,

2 @,
M = ?lr (03 — wi) N (65)

K
wy

The Fourier integral energy theorem states that, if in the epoch
0 = ¢ = T, the function f(f) is representable as the Fourier integral

) = -71; f ® F(w)-cos (ot + 6(e))dw, (75)



VARIABLE FREQUENCY ELECTRIC CIRCUIT THEORY 537

f “pdr = f " Pda (85)
(1] 0

Replacing (4d) by (5b) to take care of the distributed noise, the
noise term of (3b) becomes

cos()\flsdt) gf (wo + wn + us)-cos (wnf + On)dw,
0

then

+ sin (J\f‘sdt) gf (wo + wn + us)-sin (wat + 0,)dw,.  (95)
]

Now this noise in the low frequency circuit is passed through a low
pass filter, which cuts off all frequencies above w,. @, is the maximum
essential frequency in the signal s(z).

It is therefore necessary to express (95) as a frequency function
before calculating the noise power. To this end we write the Fourier
integrals

cos ( A f 'sdt) - % f ® F. cos (wt + 0.)de, (108)
0

0
sin(af'sd:) - lf"’ F. sin (wf -+ 6,)dw. (116)
0 m 0

We note also that

t _,ud . t
us cos()\ju' Sdt)_Xd_tSIn ?\jﬂI sdit
1
™

- ‘f m’%"’ F, cos (wt + 6,)dw, (120)
0
. ] d t
,us-sm()\f sdt)= —E—cos(hf sdt)
A dt |
1 [/ uw .
= f £ F,sin (at + 0.)do. (13b)
0

Substituting (10b), (11b), (12b) and (130) in (9b) and carrying
through straightforward operations, we find that the noise is given by

N -] w+twa I
Ff dewf (wg + w, +,~w) cos ((w — wa)t + 0p)dw,
7 Jo o A

Wa

N o —(w—wa) L
+ -Qr—z-f Fmdwf (wg + w, — —w) cos ((w + wn)t + 0)dws,
™Jo —(wtwg) A
(140)

7See '‘Transient Oscillations in Electric Wave Filters,”” Carson and Zobel,
B. 8. T. J., July, 1923.
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where
Fp2 = F!+ F2+ 2F,F,cos (6, — 6,), (15b)

F.!=F2+ F? — 2F.F,cos (6, — 0,). (165)

The limits of integration of w, are determined by the fact that,
w — w, in the first integral of (145) and « + w, in the second, must
lie between = w,; all other frequencies are eliminated by the low
pass filter.

From formula (148) and the Fourier integral energy -theorem, the
noise power Py is given by

N2 ] wtwa 2
PN:W‘[; Fpﬂdwfh:_m (wu-l-wn-l-%w) dwy,

N2 ] —(w—wa) 2
+Wfo F,,.def_ (wo + w, —;—tm) dwn.  (170)

(wtwg)
Integrating with respect to w,, we have
_ N,

Py = gf [ dolllen+ (14 o) + JolIFy

+ [(wo — (1 + »)w)? + Fwl]Fa?}, (18D)
where v = u/\.
Replacing F,? and F,? in (18b) by their values as given by (15)
and (160), we get

2 0
Py =20 f (wit + (1 + % + $ad) (F + FAdo
0
2 o
+ 4% (1 + v)wowF.F, cos (8, — B5)dw. (190)
0

To evaluate (194) we make use of the formulas, derived below

L f " (F2 + FAdw = 1, (200)
w1 o .
1 ® 2 2 2 — 22 — »
WTJ; W(F2 + Ff)de = N5E = Pg, (218}
R [m wF . F,cos (8, — 8,)dw —0as T — . (22b)
=T, b

Substitution of (208), (215), (22b) in (19b) gives for large values of T
Py = (Aws + o + (1 + »)2A5)w.N2 (23b)

Here, for convenience, we have replaced N2/r? of (195) by N?, so that
N2 of (230) may be defined and regarded as the high frequency noise
power level.
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It remains to establish formulas (206), (216) and (226). From the
defining formulas (10b) and (115) and the Fourier integral energy
theorem, we have

1 o0 1 T t
—Tf Fldw = Tf cosﬁ<7\f sdt) dt,
w 0 0 0
i 00 ) _ l T . 2( t
‘H'T.fn Fldw = Tju sin )tju‘ sdt) di.

Adding we get (20b).
Now differentiate (100) and (115) with respect to ¢ and apply the
Fourier integral energy theorem; we get

e J W F 2w = = f AZs2 sm2( f sdt)dt,
Tf 2F2dw=~f A2 cosﬂ( fsd.c)

and, by addition, we get (215).
To prove (22b) we note that

(1 + us) cos(?\f'sdt)
0
= cos()\j; sdt) —}-X%sm()\jﬂ“sdt)

%Iw [F., cos (wt + 6.) +%mF_, cos (wt + 9,)]dw

1]

Sl L () e

1
-+ 2§chF, cos (8, — 8,) ]1 ’ cos (wt + ®)dw. (26b)

(24)

(25b)

1

Consequently, by the Fourier integral energy theorem,

1 T ¢
= (1 4 us)? cos® ( A sdt) dt
r), .,

=-1— “| Fe+ E)2w2F2+2EmFFcos(e —6) |de (270)
T [ h 8 h [4 8 [ 8

an

o)

_ L im\ [ _
‘wr(x) fo WF.F, cos (6. — 0,)dw. (28)
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By simple transformations (285) becomes

1 0
——Tf wF,F, cos (0, — 8,)dw
LIERW A . r R ‘
=ﬁfu ?\sd£+—4T‘fo d—ﬁ‘“(z"fu sdt)d!
et Lain(on [Tsa
3 M + gpsin L 5
—0as T — o, (2950)

since by hypothesis § = 0.
We note for reference that

1 o0 . 1 T ) ¢ .
— r—T,f; F.F,sin (6, — 6,)do = ﬁjol sin ( 2)\10‘ sdt) dt. (300)
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