A Ladder Network Theorem
By JOHN RIORDAN

The theorem of this paper gives four-terminal representation of
ladder networks satisfying a prescribed condition on the side
impedances, in terms of the three parameters specifying the net-
work connected as a transducer, the driving-point impedance
between short-circuited transducer terminal pairs, and an im-
pedance ratio involving the side impedances only. This mode of
representation has a special advantage in applications to electric
railway networks in that the transducer parameters which alone
involve the ladder shunt impedances (under the stated conditions)
may be calculated in a relatively simple fashion, and extensive
networks reduced to manageable form. The theorem is stated
and proved, and its applications are sketched in some detail.

HE theorem of this paper gives a four-terminal representation of
ladder networks satisfying a certain condition with respect to the
side impedances. Ladder networks appearing in transmission and
filter theory generally are connected as transducers, that is, such that
the entry and exit terminals on the ladder sides are associated in pairs;
the networks are two-terminal pairs. As is well known, passive
transducers may be completely specified by three parameters (as is the
case for three-terminal networks, with which transducers are similar in
some, though not all, respects), the choice of which has been the
occasion for much study and ingenuity.! The present theorem does
not assume transducer connection and is thus quite distinct from
earlier work; indeed it arose outside the:-communication field in the
problem of the calculation of short-circuit currents and network
current distribution of electric railway networks, where at present it
seems to have chief application.
This paper gives a statement of the theorem, an indication of its
applications, and finally its proof.

THE THEOREM

A ladder network, composed of any number of arbitrary shunt imped-
ances forming sections whose side impedances Z,\'?, Z;® and Z 2™, k = 1,

1Five types of equivalent networks by which a transducer may be replaced,
mcludmg T, =, trans (}ormer and artificial line networks, and their interrelations are
given on Table I of “Cisoidal Oscillations” by G. A. Campbell, Trans. 4. I. E. E.,
30, pp. 873-909 (1911). The most significant addition to the table would appear to be
the image impedance representation due to O. J. Zobel.
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2 -, are such that [Z,® — Z;®][Z,® — Z,® ] is a constant, may
be completely specified by its three transducer parameters (with transducer
terminal pairs each made up of adjacent terminals on opposite ladder
sides?), the driving-point impedance between short-circuited transducer

A. Netweork Diagram
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Notation

v == [Z00 — ZW[Z,0 4 Zyth — 2Z,(0]1
Siz1z = (Ziz12Zssse — Zhaad)/Zaaas

B ZRMZ e — (k)2
Z = ? Z.‘l*? +QZ!(I=} iz‘l';z”)(k) Siea = (ZimeZagss — Zhaa)/Ziznz

a = Arbitrary Constant Sizas = (Zi2Zsaise — Zh2:4)/ 2z

Fig. 1—A sample ladder network illustrating notation; and some network equivalents.

2 The theorem also holds when the terminals of each pair are non-adjacent, that is,
for terminal pairs 1, 4 and 3, 2 of Fig. 14 ; this result is of no importance in the railway

applications.
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terminal pairs, and the constant
[Z\® — Z,W][Z,® — Z,® 71,

The current in any branch of the network for any condition of energiza-
tion of the network terminals is a linear function of the currenis in the
same branch for energization at sending and receiving transducer terminals.

It should be observed that the result stated is independent of the
number or values of the shunt impedances (except as they are included
in the transducer parameters); hence in the diagram on Fig. 14
illustrating the ladder network in question, any of the shunt imped-
ances may be allowed to vanish or become infinite, and their number
# + 1 may be increased or decreased at pleasure provided that one
shunt remains (this excludes the trivial case in which, the sides being
completely insulated from each other, the network degenerates to a
pair of single impedances).

When the impedances of the sides are linearly extended impedances,
as is the case in electric railway applications, the section impedances
may be written:

Z)® = 512,
Zy®) = 5,2,

Zlﬂ(k) = 5212,

where z,, 22 and 2,2 are self and mutual impedances of the sides per unit
length. The condition, [Z,® — ZuW][Z,® — Z;,®7]! = const., is
replaced by the condition that the shunt impedances connect corre-
sponding points on the sides.

Since a four-terminal network requires six independent quantities for
its specification, the conditions (a) that the network be of ladder type
and (b) that the given section impedance ratio be constant may be
regarded, at least intuitively, as replacing two (or more) of the measur-
able impedances at the terminals.?

With the sending and receiving transducer terminal pairs short-
circuited, and with the side impedances satisfying the given condition,
no current flows in any of the shunt impedances and the driving-point
impedance required for the theorem is

nZ W70 7 S ZWFZ,0 — (T Z,,0)2
zZ= Ezl(k) T 2,0 — 272,03 Z,® £ 32,0 — 25 7,®’ (1)

k=1

3 It is interesting to observe that, if short circuits between terminals are permitted,
there are 64 measurable impedances for a four-terminal network. The network may
be specified by any six of these which are independent; hence the number of ways of
specifying the network is something less than the number of combinations of 64 things
taken 6 at a time, which equals 74,974,368. The number of non-independent sets
which make up this large total appears at the moment to be the smaller part, and
possibly a very small part indeed. These remarks are inspired by Mr. R. M., Foster.
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where the summations in the last expression extend over all the
sections; this impedance then is simply the parallel impedance of the
sides taken in their entirety.

The current in branch k of line 2, designated by I; on Fig. 14, for any
condition of energization is expressed in terms of the currents in the
same branch and in the same direction for unit current supplied
between terminals 1 and 2, and 3 and 4 [terminals 3, 4 (1, 2) open,
respectively ], designated by 4.1z and 4y.a4, respectively, by the following
equation:

Ik = V(IE + 14) — ’2:;::12[1’11 - (1 - V)Iz:l - 7:1::34["’13 - (]- - D)L;], (2)

where I, Is, I3 and I, are currents flowing out of the network from the
respective terminals, and v is the current in side 2 for unit current
between short-circuited transducer terminals, as given on Fig. 1B.
Thus I, is a linear function of currents 412 and %34, as stated in the
second half of the theorem.

Three types of networks completely equivalent to any ladder
network satisfying the condition of the theorem are shown on Fig. 1B.
The transducer impedances employed in the representation by these
networks are the driving-point impedances between transducer termi-
nals 1 and 2, and 3 and 4 [terminals 3, 4 (1, 2) open, respectively | and
the corresponding transfer impedance between the ends of the trans-
ducer. These impedances are designated Zis:ae, Zasa and Zisuas,
following a notation for Neumann integrals used by G. A. Campbell.*
For present purposes the notation has the advantage of putting into
evidence the terminals between which current is supplied and the
terminals between which voltage is measured; thus Z;:1; may be read
as the voltage drop from 1 to 2 for unit current from 1 to 2 (terminals
3, 4 open), Z,2:a: the voltage drop from 3 to 4 for unit current from 1 to 2
under the same conditions.®* By the reciprocity theorem Zi5:3s = Z34:12.

4“Mutual Impedance of Grounded Circuits,'" Bell System Technical Journal, 2,
1-30 (Oct. 1923).

5 Further, the subscripts may be handled algebraically to give results following
from the superposition theorem. For this purpose the numbers in each part of the

two-part subscript are taken as separated by a minus sign and the colon is taken as a
sign of multiplication; thus:

212:12 = Z(l-—2)(l—2) = le '+' ZZ'_’ - 22121

the last expression being formed by writing out the indicated product and separating
the terms. The equation expresses the fact that the impedance of a circuit may be
subdivided into the self-impedances of sides (real or fictional) associated with its
terminals minus twice their mutual impedance. Moreover, any additional sub-
scripts desired may be intercalated by adding and subtracting the same numeral;
the expansion of bracketed terms then gives a relation between circuit impedances;
thus:
Za-n-n = 210104+ @-11[(1-+(3-2)]
= Z+3)(13432)
= Zua + Zazar + 221550
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The first two equivalent networks are of the H type;® as seven
impedances are shown on each, whereas only six are required for
complete representation, an arbitrary constant « has been introduced
so that the mutual impedance of the uprights may be varied at
pleasure. Thus in the first H network, the condition « + » = 0 puts
all the mutual impedance between the uprights below the crossbar; the
condition 1 — » — &« = 0 puts it all above. The same type of shift
may be made in the second H network.

The third equivalent is the network of direct impedances (*‘ Cisoidal
Oscillations,” loc. cit. designation (b)); these are expressed in terms of
the transducer parameters with opposite pairs of terminals short-
circuited, which following Campbell are denoted by S’s. Thus Si2:12 is
the driving-point impedance between terminals 1 and 2 with terminals
3 and 4 short-circuited; Sis:34 is the ratio of current from 3 to 4 to
voltage from 1 to 2 with 1, 2 energized and 3, 4 short-circuited, or its
reciprocity theorem equivalent.

These three equivalents correspond respectively to transformer, T’
and = transducer equivalent networks. For the first H type the
transducer condition that currents into terminals 1 and 2, and 3 and 4,
shall be equal and opposite entails zero current in the H crossbar, which
may be removed, leaving a transformer connection. For the second I
type the transducer condition allows grouping the impedances of
branches 1 and 2 and their mutual impedance, and of 3 and 4 and their
mutual impedance, into single branches, say, branches 1 and 3, which
gives the 7" equivalent network. The reduction of the direct imped-
ance network is not so immediate.

PERIODIC LADDER NETWORKS

When the network is periodic, the transducer impedances and
current distribution may be expressed completely in terms of the

The justification of the operation lies in the fact that, as regards the current half of the
subscript, a unit current from 1 to 2 is equivalent by the superposition theorem to
unit currents 1 to 3 and 3 to 2 and similarly the voltage 1 to 2 for unit current 1 to 2
is the same as the sum of voltages 1 to 3and 3 to 2. Thus the notation is a shorthand
for application of the superposition theorem. Its use is illustrated further in the
course of the proof of the theorem.

¢ This is a form of equivalent network falling under designation (c) of the list of
equivalents for an arbitrary number of terminals given by G. A. Campbell (** Cisoidal
Oscillations,” p. 889, loc. cit.), which is described as branches radiating from a common
concealed point, one to each of the terminals, with mutual impedances between pairs.
This is not a unique representation since the number of elements is redundant, and the
set of mutual impedances may be given values appropriate for particular purposes pro-
vided that the self-impedances are adjusted correspondingly. In the present applica-
tion the mutual impedances of branches to terminals 1 and 4, and 2 and 3, have been
set at zero and the mutual impedances of branches 1 and 2'and 3 and 4 in the first H
diagram, and of branches 1 and 3, 2 and 4 in the second, have been eliminated in
forming the cross bar of the H.
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section impedances, giving a certain concreteness to the application of
the theorem, which may be valuable. Partly on this account, and
partly because periodic iterative impedances are in themselves useful
in applications, a particular type of periodic network is considered in
this section.

The network considered is infinite in extent, with section series
impedances 21, 32 and 2,2 and shunt impedance z,, as shown on Fig. 24.

A. Network Diagram
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Fig. 2—Periodic ladder network of infinite extent; network diagram, impedances and
current distribution.

The infinite network is the simplest to formulate since there are no
points of reflection; it is of course symmetrical with respect to the

terminal pairs 1, 2 and 3, 4.
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The impedance across either of these terminal pairs is the parallel
impedance of the full-series and full-shunt iterative impedances (or
one-half the mid-shunt iterative impedance). The full-series and full-
shunt iterative impedances are given by the following formulas:

Full-series K, = Vz(z + 425) + 2] = K2 + 2,

—— T A K
Full-shunt Ky = [Vz(z + 4235) — z] = ﬁ' 3)
where, for brevity, z = 2, 4+ 22 — 221.
Then
KK Az, |12
212:12=Zaq:34:K=E_l|_——;(2=za[1+_?] . (4)

The voltage across lines is propagated as exp (— ka) where « is the
section propagation constant; hence

Ziyoy =T = Ke ™. (5)

The propagaticm‘ factor exp (— a) is defined in terms of the iterative
impedances by

e == (6)

The currents 412 and 4.3 are given by the following formulas:

K,

. _ ko
1z = Kfl I ng ) (7)
o K1 ik

Tk:izg = K, + ng . (8)

This completes the formulation, since the remaining quantities, »
and Z, are given immediately by

v = 21 — Z12
21 + 32 — 22p]

7 = i 2152 — Z19° _ 2122 — Z19° .
i—131 + 22 — 2212 21 + 22 — 2212

Figure 2B shows driving-point and transfer impedances for energiza-
tion between terminals, omitting certain impedances equal by symmetry.
Figure 2C shows the corresponding k-section currents in side 2.
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APPLICATIONS TO ELECTRIC RAILROAD NETWORKS

A.-c. electric railroad networks in one-line diagram are predominantly
of the ladder type. The series elements of sides 1 and 2 represent, for
two-wire networks, impedances of sections of transmission lines and
traction circuits, respectively; the shunt elements represent transformer
impedances. For three-wire networks, the series elements may repre-
sent trolley-feeder (or feeder-rail) and trolley-rail impedance elements,
the shunt elements autotransformer impedances.

The theorem may be used for representing portions of a network or a
whole network of ladder form,” when the series impedances satisfy the
condition of the theorem. As the circuits are linearly extended this is
almost always the case except where the traction circuits change
character, from two to four tracks, for example. For approximate
purposes the H networks may be used even in these cases provided
that the parameter v is properly chosen. In many cases the transfer
impedance Zs:3 is negligible and a value of » may be associated with
each pair of terminals; the values for the sections immediately ad-
joining the terminal pairs 1-2 and 3-4 (sections 1 and # on Fig. 14)
are of dominant importance and serve for rough purposes. If the
transfer impedance is not negligible a mean of these values may be
sufficiently accurate.

In two-wire networks, generator circuits are connected directly to
the transmission line (side 1), and the short circuits of chief interest
(grounding points on the one-line diagram) are those on the traction
circuits (side 2). Thus, for a single generating point the network is
energized between points on sides 1 and 2, such as 1 and 4, for example;
if the impedance in the generator connection is Z, and the impedance of
the short circuit is zero, the short-circuit driving-point impedance and
the traction circuit currents are as follows:

Zu = Zg + Zu:u
Zo+ Z + v 2+ (1 — ) Zssas + 2v(1 — v)Z125e,  (9)

I = [V + vie2 + (1 - V)T:k::u]%- (10)

where E is the generator voltage. The impedance may be obtained
immediately from either of the H networks—as the sum of the self-

7 For multiple transmission-line two-wire networks the ladder form is obtained
when all transmission lines are bussed at all generating stations and substations or
when the generators, step-up transformers and substation transformers connected to
each line are of similar impedances and are similarly connected. When these condi-
tions are not met the network is of multiple-side ladder form, for the representation of
which an extension of the theorem would be required. Similar remarks apply to
three-wire networks.
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impedances of legs 1 and 4 and of the crossbar. The current expression
follows from equation (2) with I, = I3 = 0; — I, = I, = E[Z,.
For multiple generating points (or for multiple points of short

A. Short Circuil Belween Generator Points
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Fig. 3—Equivalent networks for electrified railways; two-wire system, two sources.

circuit) the theorem may be used to represent portions of the network.
Examples for the case of two generators are shown on Fig. 3; on Fig. 34
the short circuit is located between generator points, on Fig. 3B beyond
them. On Fig. 34 the network is supplied with duplicate pairs of
terminals at the short-circuit point, separated by an infinitesimal
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difference; the parts of the original network thus formed are represented
by Y-connected impedances which may be derived from the first H
network. On Fig. 3B the network is broken at the intermediate
generator point and similarly represented. A similar process may be
followed for any number of generator points but in some cases it may
be expedient to superpose additional generators; the network imped-
ances required for superposition may be formulated in the manner
followed in the proof of the theorem.

The solution of these reduced networks supplies the currents I, 73,
I1; I, I, I/, etc., from which the current in branch % of side 2 of any
of the ladder sections may be found from equation (2). Thus, for
example the current 7, in the kth section of the ladder network with
terminals 1, 2, 3 and 4 on Figs. 34 and 3B is formulated as follows:

I = [v + vieas — vigesa I3 + [v + vl + (1 — »)ieas]Ls, (11)
which follows from equation (2) with Iy = 0; — I, = I3 + I,. Similar
formulas apply to the other two ladder networks on Fig. 3.

In three-wire networks, generators are usually connected to the
traction network by three-winding transformers which may be repre-
sented on the network diagram by three impedances connected in star.
The traction network may be represented on a trolley-feeder, trolley-
rail or a feeder-rail, trolley-rail base and it is well known that the three-
winding transformer equivalent impedances for the two bases are
related. Using the notation shown on Figs. 44 and 44’, with primes
distinguishing the feeder-rail, trolley-rail base, the relations are as

follows:
Vlfza = VUZ::’ + Vter’|

V:_,rZa = Vfer’. (12)
ViiZ, = V22! — Vi Vi 2,
where V,, Vi; and V, are the trolley-rail, trolley-feeder and feeder-rail
circuit voltages, respectively.

From Figs. 4B and 4B’ showing the reduced networks for trolley-rail
short-circuits on the two bases for a single source feed, it is apparent
that the impedances involved in the equivalent networks must be
similarly related. The relations are found to be as follows:

V:I2Zu:12 = V_frzz'm:l‘!,
Vil Zsuaa = VIrZZ’.H:(!‘h
Vuzzuz:u = er‘zz’lz:srh
Vil —») = V(1 = '), (13)
zZ =2,
Tk = ka2,
’ik:ai = 1:",,:34.
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TROLLEY-FEEDER, TROLLEY-RAIL BASE

A. Actual Network Connections
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C. Equivalent Network for Trolley-Feeder Short Circuits

V(Z12:12-212:34)

Zj3:23

Z)3:23=2-v(0-V)(Z12:12-Z12:34) tV2(Z34:347 2 2:34)

Fig. 4—Equivalent networks for electrified railways; three-wire system, single source,
trolley-feeder, trolley-rail and feeder-rail, trolley-rail bases.

Thus the complete set of short-circuit currents (trolley-rail, trolley-
feeder and feeder-rail short circuits) may be made from a single
determination of the transducer impedances and current distributions
on either of the two bases, whenever the theorem is applicable.

For multiple generator three-wire systems, and for three-wire
systems with auxiliary transmission lines, the theorem may be used to
represent portions of the network, possibly broken as in the two-wire
cases illustrated above, four-terminal representation being necessary in
general. The application follows the lines indicated above.

Proor oF THEOREM

For energization between terminals 1 and 2, the sum of the currents
in sides 1 and 2 at any point on the ladder is zero; the current ¢:12 may
be taken as flowing in a mesh made up of the k-section sides and its
terminating shunt impedances. For unit current supplied, the
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FEEDER-RAIL, TROLLEY-RAIL BASE

A’. Actual Network Connections
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C'. Equivalent Network for Feeder-Rail Short Circuils
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Fig. 4—Continued from page 346.

driving-point impedance between terminals 1, 2 and the transfer
impedance to terminals 3, 4 for the'network shown on Fig. 14 may be
formulated immediately as: .

AT (1 + 7:1:12)201

Zigss = — lp1pZ™. (14)

The positive sense for currents ;32 and 4.2 is taken as indicated on
Fig. 14, namely, in the direction from terminal 2 to terminal 4 on
side 2.

From the voltage equation around the loop formed from sides 1 and 2
in their entirety and the terminal shunt impedances, the difference of

these impedances may be expressed by:

212:12 - Zw:aq = - Z (Zl(kJ + Zz”‘) - 2212”‘))1":::12- (15)

k=1
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The transfer impedances with respect to the side terminals 1, 3 and 2, 4
are formulated as:

n
212113 = - Z (Zl.(k) - Zlﬂ(k))'ik'.lih
k=1

(16)
Lz = Z (sz - Zu“‘))’ik.m-
k=1

From the condition [Z,® — Z;s®][Z,® — Z,,®7]~! = const., a con-
stant » may be defined such that:

v = = [Z1® — ZpW][Z2,\® + Z,® — 2Z,,® ],
1= v =[2Z® — ZuW][Z\® + Z,® — 2Z,®]7,

and equations (16) may be combined with (15) to give:

Zn:m = vZi212 — vz,

17
Ziggy = — (1 - V)Zu:m + (1 - V)Zuuul ( )
The remaining transfer impedances follow by superposition; thus
Zipu = Zi2:s + Zinas = vZygz + (1 - V)le:an (18)
Zigos = Ziz1s — Zime = — (1 — v) 21902 — vZiaaau
It may be observed that
Ziga = Zizs + Ziza — Zizaa. (19)
Similarly
Zags = — vZaeu + vZina,
Ly = (1 - V)Z34:34 + vZig:a, (20)
Zsgas = — vZsug — (1 — v)Z12:34,

Zaga = (1 - V)Zu::u - (1 - V)Zm:u-

These impedances, together with Zs.3y and Zsgys, form a set of 12
impedances of which only five are independent. There are three
independent impedances determined by energization at each pair of
terminals, including Zj2:34 and Z34:12, which are equal by the reciprocity
theorem; one independent set, for example, is Zizi12, Zi21s Ziz:a,
Zsest, Zass. Consequently the network may be completely specified
by the addition of a single impedance; for the set illustrated, the
impedance required is Z;3:13.

This impedance may be formulated as:
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Zigs = 221(") - 2(21(") - Zl2(k))1:k:13

21
= Y Z,\® — 3 (Z,0 L Z,0 — 2758113, (21)

where the summations extend as above from 1 to =.
Writing the equation around the loop used in deriving equation (15)
it is found that:

2(Z\® 4 Zy® — 221305
= 2(Z\W — Z1s®) — Zigye + Ziaaa _ (22)
= Z(Zlm - le(")) - V(Z12:12 + Zsps — 2212:34).

the last step being made by use of the reciprocity theorem and the
formulas already developed. Thus, finally:

le:ls =2 + 1'2(212:12 + Z34:34 - 2212:34); (23)
where
& ZyWZy W — (Z,0)2
2= L7091 25— 2Zu®

As already mentioned, Z is the impedance between short-circuited
terminals 1, 2 and 3, 4; this may be verified in a number of ways.

The remaining impedances follow by superposition, which can be
carried out formally through the impedance notation in the manner
suggested. There are 21 driving-point and transfer impedances
between terminals which can be displayed in a triangular array similar
to that shown on Fig. 2B. The additional measurable impedances at
the terminals arise as follows: 36 from short-circuiting two terminals, 4
from short-circuiting three terminals and 3 from short-circuiting
terminals in pairs.

Equation (22) may also be written in terms of currents 72 and
tk:34, SinCe L1312 and Zy3:3¢ may be expressed in terms of the latter; this
suggests the following relation:

Tk = ¥ =+ vl — V. (24)

The relation is verified by substituting into the mesh equations for
currents 713; the typical equation is as follows:

— Z0 N4 ys + [Z10 + Zo®) — 22, 4 ZED 4 Z® Ty
— ZWigpyas = Z;® — Z,®,

The remaining current relations then follow by superposition, as
follows:
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They = i'k-.ls"!‘ r3s = ¥ + Vg + (1 - V)f:k:mh
Thes = 1z — Tri2 v — (1 - V)ik:m — Vi34, (25)
Theaa = tpis — Tz = ¥ — (1 — »)ogre + (1 — v)ipas.

I

It will be observed that only three of the six currents g1, %213, Zk14,
23, Tk:24 and 7y:34 are independent; one independent set is %12, #x:34 and
3. Hence any arbitrary set of currents Iy, Is, I3 and I, flowing out
of the network at the terminals may be resolved into three flows, such
as those illustrated in the independent set above, which leads to
equation (2).

The first H network may be obtained in the following manner. The
value of Z)213, namely, vZi2:2 — vZ12:3, in conjunction with the
condition Z, 4+ Z; = Zig:12, Z1 and Z: being the impedances of
branches to terminals 1 and 2, respectively, suggests the following
values of branch self and mutual impedances:

Zy = vZigs,
Zy = (1 - 1’)212:12'
le el VZ12;34-

The value of Z;3 is verified by inspection of Zs:4 if
Zy = vZaga.

Similarly, by inspection of Zi:14 and Zsss, the values of Zy and Z;
may be tentatively set at

Zz-i = (1 - V)le:a-h
Zy = (1 - V)Z.'M:Sd.-

The impedance of the crossbar, say ZU, may be found from any of the
impedances Z13.13, Z1s14, Z2s:23, Loa2e; €.8.,

Zo = Zla-.ls - (Zl + Za - 2213)
=Z — P(l - V)(Zm:m + Zs4:34 - 2212:34)-

But the presence of seven elements, as already mentioned, suggests an
arbitrariness which may be put into evidence by adding aZ,z.34 to Z;,
which entails a similar addition to Z3 and Z;3, and a similar subtraction
from Zz, 24 and Z24.

Similar considerations apply to the derivation of the second H
network.

The direct impedances may be found, in a well-known manner, by
energizing the network between one terminal and the other three
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short-circuited terminals or by applying a formula due:-to G. A.

Campbell.®
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8 “‘ Direct Capacity Measurement,” Bell System Technical Journal, 1, 1, pp. 18-38
(July, 1922). The formula, given on page 34, requires modification only to the extent

of substituting impedances for capacities; for four terminals the direct impedance,
D;;, between terminals 7 and j is given by:

A

Dii=-2d—‘-,-'

where A;; is the co-factor of the element in row 7, column j of the determinant:

A= 0 Z]z Zm Zu 1
Zin 0 Zuyy Za 1
Zig Zann 0 Za 1
Ziy Zu Zu 0 1
1 1 1 1 0

The elements of the determinant are the driving-point impedances between terminals
indicated by the subscripts (all other terminals open), namely, Zia2, Ziss, etc.,
written for brevity Zy,, Z;, etc.



