Series for the Wave Function of a Radiating Dipole at the
Earth’s Surface

By S. O. RICE

In this paper three series expansions are derived for the wave
function of a vertical dipole placed at the surface of a plane earth.
Two convergent series and one asymptotic series are obtained. A
remainder term for the latter series is given which enables one to set
an upper limit to the amount of error obtained by stopping at any
particular stage in the series.

INTRODUCTION
THE wave function above the earth of a vertical dipole placed at
the surface of a plane earth is!
To(gr)e-VE-Rigdg
B =kt RVE = B

(r, 2) = (ki + ko?) fm P (1)

where  and 2 are the horizontal and vertical distances from the dipole.
k1 and ks are constants depending upon the electrical properties of the
air and ground, respectively.? We shall be concerned with the value
of this function at the surface of the earth. Setting z = 0 gives us
an integral for II(r, 0) which is the function of 7 to be investigated
here.

Although the electric and magnetic intensities are the properties of
an electromagnetic field which have the greatest physical significance,
writers on this subject often deal with the wave function because of
its simpler form and because in many cases of practical interest it is
nearly proportional to the electric intensity. However, the electro-
magnetic field may be obtained from the wave function by differ-
entiation. If the real parts of He—i“* and Ee~i“* represent the electric
and magnetic intensities the field above the earth produced by the
dipole is

H,=H, =0, H,=—‘fm‘—a(:'-zl,
_1c? 0*ILy(r, 5) . % 1L, (r, z)
Er= e+ Be=0 E=—Timlr—a

L A. Sommerfeld, Ann. der Physik, vol. 28, pp. 665-736, No. 4 (1909).
? The symbols used here are defined in a list at the end of the paper.
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From these expressions it will be observed that if we obtain ex-
pressions for IIi(z, 0) we shall be able to compute the field at the
earth’s surface except for the radial component E., which is small
compared to E,.

STATEMENT OF RESULTS

The asymptotic expression for ILi(r, 0) is

1 iy o 1! Prlkefs)
e R

L, 0) = — = (Grse)m

+ Ry — Tsz:], 9)

where Rix and Ry satisfy the inequalities

(N + 1)!eitrVesc 6
[r(k1 — s) sin 0¥+

eik’f

|Riv| < , |Rn| <

rhy — 75

8 = /2 — arg (k1 — 5) being an angle slightly greater than =/2.
The convergent series for IIi(r, 0) are 3

0, 0) = (o A | @ (= 57" PUEg (k)

— reitr (L)' PutgrGifs) | (1)
and
I, 0) = __172)r [ gﬂ “’;‘?”Fu, —n251/2; k)

— é %F(l, — )25 1)2; k) ] (19)

The quantities 7 and s are defined by 7 = ki/ksand 1/s* = 1/k® + 1/ks?,
and the numbers on the right are the equation numbers in the text.
W. H. Wise ¢ has obtained series which are equivalent to those ap-
pearing in (9) and (14).
PROCEDURE

The results given here depend upon a transformation of the integral
obtained by setting z = 0 in equation (1). This integral can be
expressed in the following way as has been shown by B. van der Pol:?*

W, 0) = = [ St = 1 @)
Iy

— 12
T—=J,

3 The Legendre functions are discussed by E. W. Hobson, “Th. of Spherica] and
Ellipsoidal Harmonics.” Hypergeometric functions are discussed in Chap. XIV,
‘‘Modern Analysis,”” by Whittaker and Watson. .

4+W, H, Wise, Proc. I.R.E., vol, 19, pp. 1684-1689, September 1931,

s 2‘ Jahrbuch der drahilosen Telegraphie Zeitschr. f. Hochfrequenz Techn., 37 (1931), p.
152,
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which becomes, after integration by parts,

+ T — el'lrw kals . fk,,f! eilrwdw
= 1—72{[r~rw2-—1]h,,+” - wﬂ—l}' 3)

The path of integration is the straight line in the complex w plane
joining the points %i/s and ksfs. Arg (w — 1) and arg (w + 1) are
taken to be zero at the point this contour crosses the real axis. The
Argand diagram for a typical case is shown in Fig. 1. From the
definitions of ki, ks, and s it follows that |s| < |ki| < |k, and
0=arghk <args < arghky < /4
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Fig. 1—Paths of integration in the w plane.

AsyMPTOTIC EXPANSION

To obtain an asymptotic expansion for II;(r, 0) we deform the linear
path joining 4 and B into the path ACDB as is shown in Fig. 1.
The lines AC and BD are both inclined to the real axis at the angle
arg (is*) where s* is the conjugate of s. This is the direction in which
the exponential term e**"* decreases most rapidly since along it the
variable part of the exponent is real and negative.® The section CD
may be displaced to infinity where its contribution to the value of
the integral becomes zero because of this exponential decrease.

8 To show this for the line AC we set w = kyfs + is*u. Aswgoesfrom 4 to Cu
is real and increases from zero. The exponent then becomes isrw = ik — |s|ru

since ss* = |s|2
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The integral II;(7, 0) is then composed of two components consisting
of the integrals along A C and DB, respectively, and we may write

(7, 0) = — sy, [{0k) — 1], @

a

where

coise
k) = f eimed(w? — 1)1, (5)
k/s
We integrate (5) by parts N times and find

(zsr) dw"
+ (-—)wafa— eilrw EN-}-_I (-wﬂ _ 1)—1.'2d-w
s (isr)¥ dwh+1 ’

The derivatives may be expressed in terms of Legendre polynomials
by means of the relation

d»
dwn

(=)L (w2 — 1)1 = pl(w? — 1)-n2-12P, (_'w__)

w? — 1
When the limits in the integrated portion are inserted and the definition
of s used we see that
ket X ko
(k) = ky by (fiklsr

n=1

)"ntp,,(kz/s) +R.N%, ()

where

ORIy PN U B
Ry = — W& P dw. (7
w FaGisr) _[1 L Do | = | = v (7)

An inequality for Ry may be obtained by using *
| Pvna(d] < |8+ N2 — 1]V

which holds for all values of ¢ in the ¢ plane cut from — 1 to + 1,
if arg V# — 1 = 0 when ¢ is real and greater than + 1. For then
the absolute value of the Legendre polynomial in the integrand is
seen to be less than |(w + 1)/(w — 1)|¥+2/2 when R(w) > 0, and Rix
may be compared with an integral having |e*"“| and powers of the
factors |w + 1| and |w — 1| in the integrand. On the path AC we

3 E. W. Hobson, loc. cit., p. 60.
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have |w — 1| = |(ki/s — 1) sin 6| where

. k] m ™
- * _ L2 =T _ - .
0 = argis arg(s 1) 5 — arg (ky — 5) >3
Similarly we have |w + 1| = |k/s + 1]|. These inequalities enable
us to deal with the integral of |ei*v| which may be integrated to
show that
(N + 1)!leitr+/csc 0

| Ruv| < [7(ky — s) sin g ¥+ '

(8)

By interchanging k; and k. in (6) and (7) we obtain expressions for
I(ks) and Rey. An inequality for |Rey| is obtained from (8) by
setting # = 7/2 and interchanging k and k.. By combining these
expressions in accordance with equation (4) we obtain an asymptotic
expansion for II;(r, 0).

In general, I(ks) is negligible in comparison with (ki) because k»
has a positive imaginary part which causes e'*" to decrease rapidly.
Since I(k:) = Ray, Rao being the remainder after zero terms, we may
obtain an inequality for I(ks) by setting N = 0, § = «/2, and inter-
changing k; and ks in (8). Then from (4) we have the result

~ 1 itr X 1Py (Rafs)
my(r, 0) = — m[ - ,El (‘LT.S'?’;"

+ Ry = #Ro |, ©)
where Riy satisfies the inequality (8) and |Rx| < |eikr/(rky — 75)].

SERIES FOR IIi(r, 0) IN ASCENDING POWERS OF 7

Put
. ks [the giarudyy
k) = ethr — g —— - 10
K () ol (10)

and define K(ks) as being obtained from (10) by interchanging k:
and k,. By referring to equation (3) we see that I may be written
in the form

mi(r, 0) = =— 2) [K(k) — 7*K(ks)]. (11)
We write

i 'k].ﬂ’ kil s girs(w—ky/e) doy
e
) ke )y Vur — 1

= et [ g — st $ (irs)" f’ﬁ" (w — kufs) ";‘dw_] . (12)
1

By ac1(n—1)! wE —

the infinite series being uniformly convergent. -
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From Hobson’s contour integral definition 3 of P,m(f) it can be
shown that if R(m) < 1/2

_ J2emimhn(p — ymiz (g — fmeir
Pryo(t) = \/ r(1/2 —m) 1w —1 o

where arg (w — 1) = ¢, arg (w — ) = — 7 + ¢, where ¢ is the angle
measured counter-clockwise from the positive direction of the real axis
to the line directed from w =1 to w = ¢ Setting m = +1/2 — n
where % is a positive integer we obtain

I‘% dw = (=)(n — 1)r\[ (12 — 1)mi2-114PY2=n(p).

Thus Equation (12) becomes
gitir [1 + nzl (5:;1) f?rkl Pl.'”2 (ky/s) ]
. by & k

where in passing from the first to the second line we have set n = 0
in 3

Il

K (k1)
(13)

1 t— 1\ 1t
PO = s (1) (12 12+ 12 1),

and have summed the resulting series to show that PY},(ki/s)
2/wr. The function K(k;) may be obtained from (13) by inter-
changing k1 and k.
Combining (13) and (11), and using 7 = ki/ks gives the convergent
series for IIi(r, 0) given in the statement of results as equation (14).

ANOTHER POWER SERIES FOR [

Here we obtain an expression for I somewhat similar to the one
obtained in the previous section. The first step is to deform the
contour joining the points A and B (w = k/s and w = ky/s). The
deformation is carried out in two steps shown in Figs. 2¢ and 25,
respectively.

In Fig. 2(a) the contour joining A to B has been pulled around the
point 4 1 and looped over itself. The point H is destined to move

3 E. W. Hobson, loc. cit., p. 188.
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over to B and G is to move over to A. This deformation of the
contour does not alter the value of the integral as long as we pay
attention to the arguments of w — 1 and w + 1. In Fig. 2(b) the
deformation is almost completed; all that remams is for G to coincide
with 4 and H to coincide with B.

(a) _ (b)

Fig. 2—Deformation of contour in w plane.

Using this deformation of the contour we may write equation (2)
as follows:

T G H B pisrwgyday
H:(r.0)=+T_—73[f '+‘f +L m]
(1+) ka8 1+) e:ermwdw

e [ [,

with the understanding that argw — 1 and arg w 4+ 1 have their
principal values at the beginning of each integration. Upon referring
to (2) we see that the middle integral is — II;(r, 0) and hence
. :
i(r, 0) = P [L(k) — L(ks)], (15)

where

1+4) pisrw, n (l4) n+1
Lk = f e dw _ Z (zs7) j wtdw (16)
k k;

s (W — 1) n! o @ = 1)
and L(k.) is obtained from L(k,) by interchanging k; and k..
Letw* — 1 = 72(1 — {), or sw = knrths"/Tf, then
fc1+> wldw (b)nfuﬂ[(l — (s%[ke?) 02 i

@R T2 =

(17)

=2 (B) R, — w12 ),

where it is understood that at the initial point of the contour
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arg (1 — ) =0, arg (1 — (s*/k”)t) = 0. This may be verified by
expanding the numerator of the integrand and using

1
f( T — tydt = (1 — eei) Nﬁ;ffi;”.

0

where m is a positive integer or zero, with » = — 3/2.
Expression (16) now becomes

Lik) =22 GBI B, — mi2; 1/2; k) (18)
1n=0 %

and the series converges for all finite values of 7 since the series inte-
grated termwise in Equation (16) is uniformly convergent.

We obtain the series for II;(r, 0) given in statement of results as
equation (19) by putting (18) and the corresponding expression for
L(k,) in equation (15).

NOTATION
The following symbols are used. C.G.S. electromagnetic units are
used throughout the paper.
¢ = velocity of light, 3 X 10 cm./sec.
F(a, b; c; x) = The hypergeometric function

ab ala + )b + 1)
1+_1Tcx+ 2lc(c + 1) #t e

Jo(£7) = Bessel function of the first kind, zero order.
k1 = m/c.
ks = Vew? + t4wow. The real and imaginary parts are

positive.
P,(f), PM35"(t) = Legendre’s polynomial, and associated Legendre’s
function of the first kind.

Ruix, Ry = Remainder terms in asymptotic series.
r = horizontal distance of representative point from

dipole.
s = kiko/ VR + ki or 1/s* = 1/k?® + 1/ks>. The real
and imaginary parts of s are positive.

s* = The complex conjugate of s.

t = time in the introduction, otherwise a complex
variable.

w = complex variable.
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z = height of representative point above ground.

¢ = dielectric constant of the ground in e.m.u. The
dielectric constant of air in e.m.u. is 1/c% If
the dielectric constant in e.s.u. is €, then
e = ¢'/c2. The dielectric constant of air in
es.u. is 1.

IIy(r, 2) = Wave function for 2 = 0 for a vertical unit dipole
centered at the interface between air and
ground. The wave function for a unit dipole
wholly in air is obtained by multiplying the
wave function given here by 2/(1 4+ 7%). By
a unit dipole is meant the system obtained by
letting the length ! of a conductor approach
zero while the current in the conductor ap-
proaches infinity in such a way that Il = unity,
where the current equals the real part of Ie—"
and does not vary with position along the
conductor.

II,(r, 0) = Value of wave function at earth’s surface.

o = conductivity of the ground in e.m.u. If the con-
ductivity is ¢’ mhos per meter cube then
o = 1071,

T= k;/kz.

w = angular velocity, radians/sec.



