Oscillations in Systems with Non-Linear Reactance
By R. V. L. HARTLEY

A theoretical study is presented of the properties of a condenser, one
plate of which is free to vibrate, when it is included in a circuit containing a
generator, the frequency of which is higher than the resonant frequency of
the plate and unrelated thereto. It is shown that the plate may be main-
tained in oscillation at a frequency at or near its mechanical resonance, at
the expense of the energy supplied by the generator, provided certain
conditions are satisfied. The most favorable condition is one in which the
plate is resonant at the frequency of its vibration and the electric circuit is
resonant at that of the generator, and at the difference between the generator
and plate frequencies, and is anti-resonant at their sum. Under these
conditions the generator voltage must exceed a threshold value determined
by the impedances and frequencies. _This threshold voltage increases as the
conditions become less favorable. Expressions are given for the values of
the oscillations as functions of the voltage when the threshold is exceeded.
When the sum frequency is absent, the energies dissipated at the plate and
difference frequencies are in the ratio of the two frequencies.

The oscillations described represent a special case of a class of similar
oscillations, all of which depend on the presence of a non-linear reactance.
Another special case is a molecular model capable of reproducing the main
features of the Raman effect.

INTRODUCTION

TYPE of free oscillation has been found to occur in non-linear

coupled systems, which differs from the ordinary type in that
the supporting energy is drawn from an alternating sustained source,
rather than from a constant source, as in the ordinary vacuum tube
oscillator. The particular example of such oscillations to be described
here occurs in an electric circuit containing a condenser, one plate of
which is elastically supported so as to constitute a mechanically
resonant system.

The possibility of such oscillations in a circuit of this kind was
discovered ! in the course of a theoretical study of the possible use of
a moving plate condenser as a modulator in a carrier system. Such
use was suggested by the fact that, in a condenser, the mechanical
force on the plate is proportional to the square of the charge. In
this study, it was assumed that a generator of alternating electromotive
force of a relatively high carrier frequency was connected with the
condenser terminals, and an alternating mechanical force of a relatively
low frequency (corresponding to a Fourier component of a speech
wave) was applied to the movable plate of the condenser. The plate
was not assumed to be resonant. The non-linear relations between

1 Hartley; Phys. Rev., Vol. 33, p. 289, February, 1929.
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charge and mechanical displacement then give rise to currents of the
combination, or sideband frequencies. Among the properties of the
system which were studied was the reaction of the plate on the me-
chanical “‘generator.” This was expressed as a mechanical impedance,
i.e., the complex ratio of the alternating force to the alternating
velocity.

The expression for this mechanical impedance was found to include
a negative resistance, which under certain conditions became equal to
the positive resistance representing the remainder of the system. It
was evident, therefore, that, under these conditions, oscillations of the
frequencies involved could persist in the absence of any external
driving force on the plate. The existence of such oscillations was first
verified experimentally by Mr. E. Peterson. This and a quantitative
experimental study of the phenomenon are described in an accom-
panying paper.? Oscillations of the same general type, associated
with iron core coils, had been predicted much earlier by the writer
and discovered independently by Mr. E. T. Burton.?

However, what happened once the threshold condition was passed,
was not apparent from this analysis. The answer to this question
was found by assuming the existence of the oscillations, computing
their values, and determining under what conditions the values are
real. Both methods will be employed in what follows.

REPRESENTATION OF THE SYSTEM

In the analysis it will be assumed that, except for the non-linearity
associated with the electromechanical coupling, the law of superposition
holds throughout. This means that all parts of the system other than
the coupling may be represented by linear impedances, of the form

Z =R+ 11X = Ze. (1)

“Linear,” as here used, means that the impedance is independent of
the magnitudes of the oscillations.

If then the plate has an alternating velocity of magnitude V,, and
phase 6,, we represent it by V,e". The resultant of all the linear
restoring forces may be represented by a force Z, V,eitenttm)  All of
the quantities involved will, in general, be functions of the frequency.
Similarly a current I will be accompanied by a counter electro-
motive force Z I .ei¢-t%) where Z, is the impedance of the connected
electric circuit in series with that of the condenser with its movable
plate at rest in the position of zero displacement.

? Hussey, L. W. and Wrathall, L. R.; ‘““Oscillations in an Electromechanical
System'' in this issue of the Bell Sys. Tech. Jour. -
3 Peterson, E.; Bell Laboratories Record, Feb., 1929, p. 231.
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To evaluate the non-linear forces, consider a parallel plate, air
condenser of area, 4, and normal separation, x,, one plate of which is
fixed and the other of which is free to move under the action of linear
restoring forces. Let the movable plate be displaced a distance, %, in
a direction to increase the separation, and let a charge, g, be put on
the plates. Then it can easily be shown that the static forces tending
to oppose the displacements are

e = —g + 2Kxq, (3

where S is the stiffness of the constraints on the plate; C is the capaci-
tance, in electrostatic units, when x is zero; and

2T
k=2 @)
is a quantity which will be referred to as the constant of non-linearity.

The first terms of (2) and (3) represent components of the forces
which were represented above by the mechanical and electrical
impedances respectively. Hence only the last terms need be used in
expressing the electromechanical coupling.

We shall assume that there is connected in series with the condenser
and its associated electric impedance, a generator of negligible internal
impedance, which provides an alternating electromotive force, e,, of
amplitude, E,, and frequency, w,, in radians per second. The phase of
this generator will arbitrarily be taken as zero.

For the first part of the analysis, we shall assume that there is an
alternating force, fa, exerted on the plate by a ‘' mechanical generator,”
which has an amplitude, F.,, frequency, w., and phase, ¢,. We shall
investigate the impedance offered to this force in the resulting condition
of forced oscillation. In the second part, the mechanical generator
will be omitted, and the free oscillations investigated. It is first
necessary, however, to determine what frequencies need be considered.

PossIBLE FREQUENCIES

With the system just described there will be developed oscillations,
the frequencies of which constitute an infinite series. It will therefore
be necessary to introduce limiting assumptions. First let us consider
what frequencies may be present in the system. In doing this it must
be recognized that the conventional use of complex quantities is not
justified when the system is non-linear. This difficulty is avoided
and the advantages of the complex exponential notation are retained
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if we use the complete exponential expressions for the trigometric
functions, since these are real.
Accordingly we shall call the electromotive force of the generator

e, = '%J [eivwat 4 e—iwat]. (5)

We shall assume that this is accompanied by an alternating current,

.ig —_ :2! I:ei(hlg“i’ea) + e_l-(wg!+9g)]' (6)
We shall call the force exerted by the mechanical generator

F . : -
fm . 7‘“[8!(”:"1'{'!#:") + e—l("-ﬂmH"lbm)]’ (

and the accompanying alternating velocity

U = %‘ [gitomtrtm) 4 g=ilwmttbm) 7], (8)

When the corresponding displacements, obtained by integration of (6)
and (8), are substituted in the last term of (3), the resulting electro-
motive force is found to consist of components of frequencies,

Wy = Wy + Win,y (9)

wg = Wy — W, (10)

which tend to set up currents at the frequencies of the sidebands.

If such currents flow and we substitute the charges associated with
them, together with that from (6), in the last term of (2), we find, in
the force on the plate, components of frequency wm, and a variety of
other frequencies including zero, i.e., a steady force. If these produce
displacements which are again substituted in (2), and the process is
continued, we arrive finally at the entire series of frequencies given by
Mw, = Nwm, where m and #» are integers.

We shall now introduce the limiting assumption that the plate is
resonant at or near w,, and not at any other frequency. The im-
pedance at that frequency will then be small and the response to the
driving force at that frequency relatively large. At the frequencies of
all the other components of the force the mechanical impedance will
be relatively very high; and we will not be making a violent assumption
if we say that it is so high that the velocities of response at all the
other frequencies are negligible. [There may be some response to the
steady force, consisting of a slight change in the position of equilibrium
about which the vibrations occur. This can be taken care of by
saying that the coefficients in (2) and (3), while constant for any
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particular condition of sustained oscillation, vary slightly with the
magnitude of the oscillations.] With this assumption the frequencies
of the components of the electromotive force reduce to w, & nwmn.

If the electric circuit is resonant at any of these frequencies, we
may as above neglect the currents at other frequencies. In the
absence of any resonance, if the constant of non-linearity, K, is
sufficiently small, the amplitudes will decrease so rapidly with in-
creasing # that we may neglect all for which # is greater than unity.
In the interests of simplicity we shall make all of these assumptions.
We have then in addition to 4, and V,, the currents,

I

i, = ?" [ei(mal+ﬁ,) + e—f.‘(m,Hﬂ,)]‘ (11)
; 1q i (wd t+0a) — i 4+
14=§[e*”" D) | gilad ,1]‘ (12)

ForCED OSCILLATIONS; IMPEDANCE SOLUTION

We wish to set up the equations of motion in terms of the applied
forces, the velocities and currents at the various frequencies, and the
properties of the system, as expressed in terms of its linear impedances
and the constant of non-linearity, K. For each frequency, we equate
whatever applied force there may be to the sum of the restoring forces
due to the system. These consist of a component given by the
product of the velocity or current by the impedance for the particular
frequency, and other terms due to the combination of pairs of the
other frequencies. To find these latter components, we integrate (6),
(8), (11) and (12) with respect to time, substitute the resulting dis-
placements in the last terms of (2) and (3), and select the components
of the four significant frequencies, for insertion in their appropriate
equations. Once these components are obtained, we may, since the
remainder of the system is linear, safely revert to the conventional
use of exponentials, so that the factor e’! may be divided out for each
equation. The final result is

KV.I, KVl

Z,eittrten) - = "M22 pilli—0n) — giltlntbs) = F (13)
Wy Wi g

Zop Vit pm) | 287 8 K11, gite—by) 070 Ki,1a et = F, givm  (14)
wWywg Wywd

Z 1 eitten — K1, Vm e lm pitirton) = (), (15)
Waoldm

Z I jeittatear | K1,V eilly—0u) = (), (16)

Wy,
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These equations are of the second degree and so are not so simple
of solution as are the linear equations of circuit theory which they
formally resemble. We note, however, that if, in the last three, we
assume [, and 6, to be constant, they become linear. We may
therefore solve them as linear equations, with this assumption, provided
we bear in mind that the resulting impedances will not be linear unless
the oscillations are so small that the second and third terms of (13)
can be neglected compared with the first.

Let us make this assumption and explore the properties of the
resulting linear system represented by (14), (15) and (16). If we
calculate V,ei» and take the ratio Fe'¥m/V,e'm this will be the
analog of the impedance of an analogous electric circuit as measured
in the mesh corresponding to vibration of the plate at frequency wm.
This ratio, which we shall call Z,’, may be thought of as the me-
chanical impedance of the plate when the circuit is activated by the
electrical generator. Following circuit theory, as applied to vacuum
tubes, let us call Z,,’ the active impedance of the plate, and Z, the
passive impedance. The value of the active impedance, when ex-
pressed in terms of resistances and reactances, is found to be

K? R, —iX,

0204 Z

Zy' = (Rn + iXn) +

K2 — Ry —iXa

w0, Zg

(17

We see that the active impedance differs from the passive impedance
by two terms, each of which represents the effect of the impedance
of the electric circuit at one of the side frequencies. The second term
of (17), which depends on the impedance at the sum frequency, is
identical in form with the impedance added to an electric circuit,* at
a frequency, w, by a transformer of mutual inductance, M, provided
that -

e = KL (18)

2 ’
Wy W s

the impedance of the secondary circuit is equal to Z,; and the re-
actances of the primary and secondary windings are included in X,
and X,, respectively. The third term which depends on the im-
pedance of the electric circuit at the difference frequency, is similar
except that the effective resistance is negative.

It is this negative resistance which makes possible the type of free
oscillations here described. To interpret it, let us start with the small

1 Bugh. V.; “Operational Circuit Analysis,” John Wiley & Sons, Inc., 1929, p. 50,
Eq. (66).
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applied force, fa, acting on the plate, with the voltage of the electric
generator zero. The velocity of the plate vibration is then determined
by its passive impedance alone. Let us assume for the time being
that the impedance, Z,, of the electric circuit at the sum frequency is
infinite, so that its effect on the active impedance of the plate dis-
appears. Let us make ¢4 equal to ¢m, and gradually increase the
generator voltage. As I,? increases, the negative impedance increases,
the total impedance decreases and the velocity, V., increases. This
condition is analogous with the behavior of the input impedance of a
regeneratively connected amplifier when the plate current is progres-
sively increased from zero. At a threshold value of I, the net im-
pedance becomes zero and the velocity infinite. This means that a
finite velocity can exist for an infinitesimal driving force, that is, the
oscillations, once started, are self-sustaining, even in the absence of
any sustained driving force, f.., at the mechanical frequency.

If we make the electric impedance, Zg, at the difference frequency
infinite, all the resistances are positive; so sustained oscillations cannot
occur, in a dissipative system, in the absence of current at the difference
frequency. If both side frequencies are present, so that Z, and Z,
are both finite, sustained oscillations are still possible provided the
impedance at the sum frequency is not too small compared with that
at the difference frequency. The presence of current at the sum
frequency always increases the critical value of the current at the
generator frequency.

We may also compute the active impedance of the electric circuit at
the side frequencies, on the same assumption as to the constancy of
the current of generator frequency as was made in deriving (17).
To do this, we remove the mechanical generator, making the right
member of (14) zero, and insert low measuring voltages of frequencies
w, and wga in the right members of (15) and (16), in turn. In each
case we compute the ratio of this voltage to the accompanying current.
If we think of each frequency as being the analog of a mesh in an
electric circuit, we note that the mesh corresponding to the mechanical
frequency is coupled to both of the side frequencies; but the latter are
not directly coupled to each other. If the mutual impedances, which
depend on 7,, are small enough, we may, for a generator at the sum
frequency, neglect the third term of (14), which represents the effect
of the loosely coupled difference frequency mesh, compared with the
first. The active impedance at the sum frequency then becomes

KM Rn—iXm

W komw, A

(19)

Zs’ = (Rs + iXa) +
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If the third term of (14) is not neglected we must replace Z, in (19),
by the first and third terms of (17), that is, by the impedance of the
mechanical frequency mesh, as modified by its coupling with the
difference frequency mesh.
Similarly, when the measuring generator is of the difference fre-
quency, we get
Zid = (Rq + 1Xa) + LS - Rn — iXn

2 2
W wmw, L

, (20)

where Z,, is to be replaced by the first and second terms of (17), if
the second term of (14) is not neglected.

The active impedance at the difference frequency (20) contains a
negative resistance similar to that which appeared at the mechanical
frequency (17). In fact, if the passive impedance, Z,, at the sum
frequency is infinite, the expressions for the two active impedances
are symmetrical. The active impedance at the sum frequency contains
only positive resistances, except in so far as the resistance of the
mechanical mesh is made negative by its coupling with the difference
mesh. This serves to emphasize the fact that the presence of current
of the difference frequency is essential to the oscillations, while that of
current of the sum frequency tends to make their production more
difficult.

FREE OSCILLATIONS

In the above considerations it was assumed that the amplitudes at
all of the new frequencies were small compared with that at the genera-
tor frequency. While this assumption permits us to compute the
threshold conditions for the starting of free oscillations, it is violated as
soon as the oscillations become appreciable. In order to find out what
happens once the threshold is passed it is necessary to solve the second
degree equations (13) to (16) when F,, is made zero. The presentation
of this solution will be simplified by considering first the case where
the sum frequency is eliminated and then the effect of its presence on
the simpler solution.

The elimination of the sum frequency is accomplished by making Z,
infinite and I, zero. This makes the second terms of (13) and (14)
zero, and makes (15) indeterminate. We are left then with (13), (14),
asmodified, and (16). The equations for the mechanical and difference
frequencies are now symmetrical. In order to solve these equatidns
we express the exponentials in terms of sines and cosines and equate the
real and imaginary parts separately. In the equations derived from
(14) and (16) we transpose the second term in each equation to the right
member. For each pair we divide the equation containing sines by
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that containing cosines and obtain a relation between the angles in-
volved. We square each equation of a pair, and add them to obtain
a relation between the magnitudes of velocities and currents, the im-
pedances, and the frequencies. From these it follows that I, is a
constant. By means of these relations the equations derived from (13)
may be reduced to a form where the only variables are £, V, and 8,
and the constant, I, appears only as a divisor of E,. These equations
are then squared and added to give an equation which determines V.
The final solution takes the form

Om = Pa, (21)

I, = “’I—( [ZnwmZawa ], (22)

Vm = % [de,;Z,,wg ( — COS (‘Pm + QDG)
E, \? ) 2y e
i{(ZI ) —sm”(r,om-i-fpd)} )] , (23)
olg

_ ) med RS
I = [ ZMJ Vi (24)
Byzﬂam“i’aig, (25)
where
cos a = 2L in (o + 40), (26)
aq
and the sign in (25) is so chosen that
™ ™
—5 < 6, < 5 (27)
and
Bm+9d=a-|—1r:|:7—2r, (28)

where the same sign is to be taken for x/2 as in (25).

The nature of the variation represented by (23) is shown in Fig. 1,
which is taken from the accompanying experimental paper.? Here the
amplitude, Vn/wm, of the plate displacement is plotted against the
generator voltage, E,, for the case of exact resonance and for one
involving a slight departure from resonance.

Let us interpret these results physically. The phase angles in (21)
depend only on the physical constants of the system and the frequen-
cies of the oscillations. This equation, therefore, determines at what
frequencies oscillations may occur provided the other conditions are
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satisfied. Thus the ratio of reactance to resistance must be the same
for the plate at w, and for the electric circuit at wg. This condition is
satisfied if each is resonant at its particular frequency, but resonance is
not a necessary condition. All that is necessary is that there be a pair
of frequencies, whose sum is equal to that of the electric generator,
for which the impedances have the same phase angle. If there are an
electric and a mechanical resonance such that the sum of the resonant
frequencies is nearly equal to the generator frequency, and there is a
marked difference in the sharpness of the two resonances, then the
oscillations will fall closer to the sharper resonance. This is due to the
fact that the phase angle of the impedance changes more rapidly with
frequency in the neighborhood of a sharp resonance.

From (22) we see that the amplitude of the current at the generator
frequency depends only on this frequency, the constants of the system,
and’ the new frequencies. It is independent of the amplitude of the
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Fig., 1—Alternating displacement of plate as a function of generator voltage.

generator voltage, of the amplitudes of the new frequencies, and of the
impedance of the electric circuit at the generator frequency. This
equation, while it tells us what happens when the oscillations are
present, tells us nothing about the conditions for their existence.
These are to be found by noting under what conditions the expression
(23) for the amplitude at the new frequency, wn, is real. 'We have two
cases to consider which are determined by the sign of cos (¢, + ;).

Assume first that this is positive, as would be the case if the plate is
resonant at w, and there is any dissipation at w,, such as would be
caused by resistance in the electric circuit. The first term in (23) is
negative and V,, can be real only if the second term exceeds it in abso-
lute value. This condition reduces to

E, > Z,, = %&é’_ﬂ [ZnonZawd 2. (29)

This shows that there is a threshold value of the generator voltage,



434 BELL SVYSTEM TECHNICAL JOURNAL

above which the new oscillations are possible. (It is found to agree
with that obtained by the negative resistance method.) Moreover,
this value is that which is just necessary to maintain an electric cur-
rent, of the generator frequency, in the absence of the new frequencies,
with an amplitude equal to the constant amplitude that exists in the
presence of the new frequencies. For values of E, large compared with
the threshold value, the amplitudes of the new frequencies increase
nearly as the square root of the amplitude of the generator voltage.

In the special case of resonance at both w, and w4, Z» and Z; tend
to be small and so from (24) the threshold voltage is correspondingly
small. This therefore is a particularly favorable condition for the
production of the oscillations.

The case where cos (¢m + ;) is negative occurs when all of the
three impedances are predominantly reactive, the reactances being all
of the same sign. The first term of (23) is then positive and V. will
be real if the second term is positive, as it will be if

Ea > Z,I‘,[sin (‘Pm + 590}‘- (30)

For this case, then, the threshold amplitude of the generator voltage
may be much less than that required to maintain the current at the
constant amplitude, I, in the absence of the new frequencies.

In the extreme case where there is no dissipation and the phase
angles of the impedances are all = /2, the threshold voltage reduces
to zero and so sustained oscillations are possible in the absence of any
generator. (23) and (24) then reduce to forms symmetrical with (22).
This means that for such a system the frequencies would be determined
by the constants of the system and the amount of energy present,
since this would limit the possible amplitudes.

There is some question as to the sign to be given to the inner radical
in (23). When cos (¢m + ¢,) is positive the plus sign must be used.
When it is negative the plus sign must be used if E, is greater than Z,1,.
If E, is between this and the threshold given by (30), either sign gives a
real value for the amplitude. When the sign is negative the amplitude
decreases with increasing voltage, which appears to be an unstable
condition.

Regarding the phases, the condition represented by (27) is imposed
because the energy flow must be from the generator to the circuit.
Only the sum of the phases of the new oscillations is determined.
Their individual values depend on the starting conditions, just as does
the phase of a pendulum clock.

One more result may be of interest. This is the relative rates at
which energy is dissipated at the two new frequencies. If P, and Py
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are the powers corresponding to the two frequencies we have

5{_ IdzdeOS ©d _ ﬂg
P,  ValZmCoS ¢m ©wm

(31)
Thus the rate of energy dissipation is in the ratio of the frequencies.

EFrecTt oF Sum FREQUENCY

The more general case where the sum frequency is also present calls
for the solution of (13) to (16) as they stand except for F,, being zero.
This may be done by substituting the values of I, and 8, from (15), and
those of I; and 6, from (16), in (13) and (14), and proceeding in a
manner similar to that used above. The results take the form

em =7, (32)

Zyw, SIN g + Zawa SIN @,
Zyw,s COS g — Zawg COS @,

where

tany = (33)

and the signs of sin v and cos v are determined by the numerator and
denominator of (33) respectively;

| ZmwnZawg 12
1, = 5| Zrenteen |7, (34)
where
Z Z

I;m = uiK" [Zdwfbeﬂw" ( — Ccos (5 + (p".)

[(f) - o] o0

where
Z Z.iwd 12
b= [1+( .M) +2(Zw,)cos(w_‘p’)] , (37)
and
_ Zyw, sin g + Zawg Sin @,
tan § = Zyws COS ¢q + Zawa COS @' (38)
[ Zwa 12,
L= | 72 " v (39)
I, = ggfd, (40)

0, =8+ o £+, (41)
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where
cos o' = Zj;‘,I" sin (8 + ¢,); . (42)
(]
9m+9d=a'+ni%+(a—w); (43)
B.—6m=a':l:12r+(6— o), (44)

where the sign of 7/2 is again to be chosen so as to satisfy (27).

Corresponding to (21) we have (32). If the mechanical motion
involves any dissipation, the mechanical resistance, Z, cos ¢,, must be
positive, and since Z,, is positive by definition, cos ¢,, must be positive.
This means that (32) can be satisfied only if the denominator of (33) is
positive. Hence oscillations can occur only if

Zdwd COS @4
Zyw;  COS @

(45)

This relation can hold when Z,; the impedance at the difference fre-
quency, is infinite, only if ¢, is &+ #/2, that is, if there is no dissipation
at the sum frequency.

To investigate the relative rates of dissipation at the sum and differ-
ence frequencies, we find the ratio of the powers P, and P, associated
with them.

P, Zaicos ¢s _ ws

P, Z,cos ¢a  wa (46)

Thus the ratio is always less than the ratio of the frequencies and ap-
proaches it only as the limiting condition for oscillations is approached.

A discussion of all possible values of impedance and phase angle at
the two side frequencies would be too involved to go into here. The
special case of resonance at both frequencies is, however, of some
interest since a given current is then accompanied by a maximum of
dissipation. It also provides that w, coincides with the mechanical
resonance, where Z, is much smaller than for nearby frequencies.
Since Z,, enters into the expression for the threshold force, this condi-
tion is particularly favorable for the occurrence of oscillations. When
we make g and ¢, zero we see from (45) that the impedances, now pure
resistances, must be such that

Z dWd
2wy

<1 (47)
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(35) now becomes

Zawa
a=1-— Zan (48)
From (34) it is evident that when Z, is finite the constant current of
the generator frequency, and so also the threshold voltage, are greater
than when it is infinite. Thus the presence of current of the sum fre-
quency makes the conditions for oscillation more exacting. As we
approach the limiting impedance ratio, where the powers approach
the ratio of their frequencies, the threshold voltage approaches infinity,
and the probability of oscillations approaches zero.
The relative powers at the difference frequency and at the mechan-
ical frequency are now given by

P wa
m w (1 _ Zdwd) ’
" 2wy

The presence of a finite impedance at the sum frequency increases this
ratio over that of the frequencies. For the limiting condition of oscilla-
tions it approaches infinity, the amplitude at the difference frequency
then becoming infinite and that at the mechanical frequency remaining
finite.

From these results it appears that proportionality between power
and frequency is a limiting case which occurs only under the conditions
which are most and least favorable for the existence of oscillations.
We should, therefore, expect to find it only under the favorable condi-

tions where the transformation of energy is from a higher to a pair of
lower frequencies.

=

(49)

ErrEct oF OTHER FREQUENCIES

In the interests of simplicity the above treatment was limited to the
case where all but four frequencies are suppressed by high impedances.
Such a limitation is not, however, essential to the production of
oscillations. In fact, as many as desired of the series mw, + #w, may
be produced by the proper choice of impedances and the use of high
enough voltages, provided, of course, the apparatus can withstand the
stresses involved. In general, the presence of certain frequencies will
be favorable to oscillations and that of others unfavorable.

SUMMARY

By way of summary, then, it is possible to maintain a movable con-
denser plate in sustained oscillation by applying to the condenser an
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alternating electromotive force of an unrelated higher frequency, pro-
vided that the impedances of the system at these two frequencies and
their various combinations satisfy certain relations, and the applied
electromotive force exceeds a threshold value. When the oscillations
are negligible at all frequencies except these two and their sum and
difference, the most favorable condition, lowest threshold voltage, oc-
curs when the plate vibrates at its resonant frequency, and the electric
circuit is resonant at the applied frequency and at the difference fre-
quency, and anti-resonant at the sum frequency. Once the oscillations
start, the current of the applied frequency remains constant with in-
creasing voltage. Under the most favorable conditions the rates of
energy dissipation at the plate and difference frequencies are in the ratio
of the frequencies.

QOTHER APPLICATIONS; RAMAN EFFECT

While in the case considered above the production of oscillations was
associated with a particular type of non-linearity, the application of the
principle is much more general. Here the non-linearity occurs in
what might be called a mutual stiffness, serving to couple two degrees
of freedom. It is not essential, however, that the non-linearity occur"
in a mutual impedance nor that the impedance be of the stiffness or
negative reactance type. So long as the connected system is such as
to provide the proper impedances, oscillations may occur in connection
with any non-linear reactance.

A non-linear reactance, as here used, may be defined as any energy-
storing element in which the coefficient of inertia is a function of the
velocity, or that of stiffness is a function of the displacement, or any
mechanical, electrical or electromechanical analog, of such an element.
For a non-linear inertia, as in an iron core inductance coil, however,
the power varies inversely as the frequency; instead of directly as for a
non-linear stiffness.

A special case, in which one of the new frequencies is an exact sub-
multiple of the driving frequency, has been studied by a number of
workers from Rayleigh  down to Pedersen.®

Another special case may be of some interest to physicists because it
provides a model of the Raman effect. The transition from the con-
denser to the molecular model will be made in two steps. For the
first suppose that instead of making the resonant mechanical member
one plate of a condenser, we attach the moving part to a point on its
support by an elastic string under tension, the direction of the string

5 Rayleigh; ‘*Theory of Sound,"” Sec. Ed., Vol. 1, p. 81.
6 Pedersen; Jr. Acous. Soc. Amer., Vol. VI, 4, p. 227, April, 1935.
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being parallel to the direction of vibration. Suppose now that at some
point along the string we apply an alternating mechanical force, acting
normal to the string, through the medium of a mechanical structure,
which as viewed from the string may be represented by a linear me-
chanical impedance. This structure prevents motion of its point of
attachment to the string, in the direction of the string.

If now we analyze the forces and motions into their components in
the direction, %, of the motion of the vibrating member and that, y, of
the applied force, we find that, to a first approximation, the relations
connecting them are identical with those used above for the condenser,
provided we identify the force and velocity of the vibration in the x
direction with those of the condenser plate and those of the point of
attachment of the string, in the y direction, with the electromotive
force and current in the electric circuit associated with the condenser.
Such a structure can therefore produce oscillations of the sort described,
provided the mechanical impedance of the driving structure has the
proper values at the sum and difference frequencies.

Suppose now we have a molecule which we assume to be rigid with
the exception of one atom, which is bound to it by a pair of electrons.
Let the attached atom correspond to the plate, the relatively heavy
molecule to the support and the electrons to the point of application
of the driving force. Let the forces of electrostatic attraction between
the electrons and the atom, and between the electrons and the center of
the molecule, correspond to those due to the tense strings. Let the
other static forces between the atom and the molecule correspond to
the stiffness of the plate. For small displacements these forces may
be assumed to vary linearly with distance, and so be capable of repre-
sentation by constant coefficients of stiffness which correspond to the
elasticities in the mechanical system. The applied external force is
that exerted on the electrons by that component of the incident light
which is normal to the line through the centers of the undisplaced
particles.. The mechanical impedance of the electrons for motion in
the direction of the applied force corresponds to that of the structure
through which the force is applied. This impedance includes the
effects of any elastic constraints the rest of the molecule may exert on
the electrons in this direction; of the electromagnetic mass of the elec-
trons, which may be affected by the reactions of neighboring molecules;
and of the dissipation of energy as radiation or by transfer to neighbor-
ing molecules.

Unlike other classical models of the Raman effect, this one provides
for the persistence of the difference line, and the disappearance of the
sum line, at low temperatures. It also provides that the intensity of
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the lines should depend on the probability that the force exerted by
the incident radiation on the electrons of a randomly chosen molecule
exceed a threshold value which is determined by the condition of its
neighbors. The apparent smallness of this probability would explain
the observed weakness of the Raman lines.

It would seem that this threshold, and the probability of its being
exceeded, might prove helpful in interpreting the energy threshold and
transition probability which are used in wave mechanics.
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