An Extension of Operational Calculus
By JOHN R. CARSON

HE Heaviside operational calculus postulates at the outset that

the initial (boundary) conditions at reference time ¢{ = 0 are

those of equilibrium; that is to say, the system is at rest when suddenly

energized at time { = 0 by a "“unit" impressed force. By unit im-

pressed force is to be understood a force which is zero before, unity
after, time ¢ = 0.

In a paper published in Volume 7, 1929, of the Philosophical Maga-
zine, Van der Pol briefly indicated the appropriate procedure for ex-
tending the operational calculus to cover arbitrary initial conditions.
The present paper is an exposition of this generalization for a system
of a finite number of degrees of freedom, followed by an application to
the differential equations of the transmission line. While stated in
the language of electric circuit theory, it is to be understood that the
processes are generally applicable to a wide variety of problems.

We start with the canonical equations for a network of # degrees of
freedom

ouly + 22l + - + 5l = By 0

Sy +2p0dls 4+ - + 2000 = E,

d 1 )
Zip = L,-;:EZ'I"R;A- +rC;f dt ) (2)

Now multiply the equations (1) by e®¢ throughout and integrate
from O to infinity. Also let J, and F,, denote the Laplace transforms

of I, and E,; thus
In = f Ine Pt dt,
(1]

Fo =f Ene—?t dt.
0

Now let I,,° and Q" denote the initial values (at time ¢ = 0) of
I, and the charge Q,, in the mth mesh; also let us replace z; of (2) by

where

(3)

zik = pLix + Ry + 1/pCix. (4)
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We then have, replacing (1), the system of algebraic equations:

suJi +2Js + - Fa.dn = L + Gy, )

znljl+zn2-]2+ e +znnjn= Fn+Gn.
In these equations, G, Gy, - -, G, denote the following summations:

Gy = Luli® — Q\%Cup + Linds® — Q:°/Crop + -+
. + LlnInu - Qnﬂ/clnpv

The right hand sides of equations (5) are thus known in terms of the
impressed forces and the specified initial values of the currents and
charges. They can therefore be solved in the usual manner for
Jy +++y Ja. Thus

_h+ G
Zml

Fy 4 G,
Zm‘z

Fa+ Ga,
Zmn

T - + ot (7)

Having thus determined J,, -+ -, J, as functions of p, I}, -+ -, I,, are
determined as functions of time by the Laplace integral equation:

Ja(p) = fﬂ I.(t)e—7t dt, pr >, (8)

which completes the formal solution of the problem. Note that if
G, =Gy = --+ = G, = 0, the solution reduces to the usual form.

Equations (6) for Gy, + -+, G, may be written in a compact and
elegant form as follows: Let

T = 333 Lalil,,

U=35y C—1 0,0 ©)

T is then the kinetic or magnetic energy stored in the network and U
is the corresponding potential or electric energy. Then

T 1/0U
G’”=(m),-o‘§<m),=n,"1=l. 2,0, m (10)

The foregoing solution is compact, elegant and formally complete.
In practical applications to networks of many degrees of freedom it
may well present formidable difficulties in computation and interpre-
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tation. This, however, is merely answerable to the complexity of the
physical problem, and no simpler general solution can possibly exist.

The foregoing method when applied to the differential equations of
the transmission line, leads to the following differential equations

Il

d
(Lp + R)J = — 5@ + LI

(11)

(Co+G)® = — - T + CV.
Here J and @ are Laplace transforms of the current I and voltage V
and I9, V° are the initial values of I and V at reference time ¢ = 0.
J, ®, I, V° are functions of x but of course independent of £.

The formal solution of equations (11) is as follows: write

Lp + R = Z(p) = Z,
Cr+G=Y(p)=1Y, (12)
NZY = v, VZ|Y = K.
Also

L —S 2y = F(x) = F.

9
ox

<la

Then
J=er { A+ % f:dyF(y)eW }

“""{B+2—%f’dyﬁ*(y)e‘”}. (13)

_ K C.n

o= -l TV (14)

A and B are constants of integration determined by the relations
between J and ® at the physical terminals of the line.



