The Proportioning of Shielded Circuits for Minimum
High-Frequency Attenuation

By E. I. GREEN, F. A. LEIBE and H. E. CURTIS

For given conditions of design there exists an optimum proportion-
ing or configuration which makes the high-frequency attenuation of a
given type of individually shielded circuit a minimum. Determination is
made of such optimum proportioning for a wide variety of types of in-
dividually shielded circuits including several novel types designed to make
the high-frequency attenuation low in comparison with the cross-sectional
area occupied by the circuit, and the attenuation of different types is com-
pared. The following topics and specific circuit structures are considered:

Coaxiar Circuits—Basic Coaxial Circuit; Effect of Dielectric; Effect
of Frequency on Optimum Ratio; Thin Walls; Stranded Conductors;
Optimum Proportioning as a Function of Conductor Resistance.

BavLaNcED SHIELDED Circurts—Shielded Pair (Cylindrical Conductors
and Shield)—Condition for Minimum Attenuation, Condition for Maxi-
mum Characteristic Impedance, Effect of Dielectric, Effect of Frequency;
Pair in Space; Shielded Stranded Pair; Pair with Shield Return; Double
Coaxial Circuit; Shielded Pair (Round Conductors and Oval Shield);
Shielded Pair (Quasi-Elliptical Conductors); Shielded Quad.

INTRODUCTION

INCE the very beginning of mathematics, problems of maximizing
and minimizing have possessed a marked fascination. The Greeks
were successful in solving a few geometric problems of this character.
Later, algebra was found to be another method of attack. Finally,
the powerful methods of the calculus became available for the deter-
mination of maxima and minima in manifold variety. The reasons
for the continued interest in such problems are not hard to find. Itis
but natural to seek the ideal, and here, at least, is one phase of man-
kind's search for perfection in which a goodly measure of success may
be achieved. In addition, a knowledge of the optimum dimensioning
of things, or of the optimum relations between things, frequently holds
much practical significance.

It is mainly with problems of maxima and minima that this paper is
concerned. These problems have to do with transmission circuits
which are surrounded by individual shields. Recent literature ! 2 has
pointed out that circuits of this type have properties which render them
especially suitable for the transmission of broad bands of frequencies.
Such circuits are also finding application as ‘‘lead-ins”’ to connect radio
antennas with transmitting or receiving apparatus.®: ¢

1 For numbered references, see end of paper.
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It is well at this juncture to understand the function of shielding
in a high-frequency transmission circuit. Such shielding serves one or
both of these purposes: (a) keeping interference due to external sources
from entering the circuit, and (b) preventing the circuit from causing
interference in external circuits. The shielding may either supplement
or completely replace the use of electrical balance to reduce inter-
ference. The design of shield, that is, its construction, material,
thickness, etc., is determined by the degree of shielding required and by
considerations of mechanical performance and cost. The degree of
shielding needed depends in turn upon such factors as the type and
length of circuit, the nature and frequency of the signals to be trans-
mitted, and the magnitudes of external interference. These interesting
aspects of shield design, some of which have been dealt with else-
where,!: 2 5 will not be discussed here.,

Attention will rather be directed to an intriguing property of any
individually shielded circuit, namely, that, for given conditions of
design, there always exists an optimum proportioning or configuration
which makes the transmission efficiency of the circuit a maximum, or,
in other words, makes the attenuation a minimum. One such condi-
tion of design which may be imposed is that the cross-sectional area
enclosed within the shield is to be a constant. In what follows,
determination will be made of such optimum proportioning for a wide
variety of types of individually shielded circuits. Since the attenua-
tion is generally of outstanding importance in a high-frequency trans-
mission line, the results should be not only of theoretical interest but
also of practical value. Moreover, the different methods which are
used in solving these problems should find further application, both
in the many other known problems which must perforce be omitted
for lack of space, and in those problems which may be conceived in
the future.

The principal types of individually shielded circuits to be discussed
are:

(1) Coaxial or concentric circuits, in which an outer conductor, which
serves also as a shield, completely surrounds a centrally disposed
inner conductor,

(2) Shielded pairs, consisting of a pair of conductors which form the
transmission circuit, these being surrounded by an individual
conducting shield.

The coaxial circuit is unbalanced, and relies solely upon shielding for
protection against interference from or into its exterior. In contrast
to this is the balanced type of circuit, in which the go and return
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conductors are designed to be substantially alike and are located
substantially symmetrically with respect to earth and surrounding
conductors.

In the past, telephone transmission circuits have been largely of the
balanced type. It has been found possible to operate such balanced
circuits up to fairly high frequencies,® without incurring excessive
interference. However, as the frequency is raised it becomes increas-
ingly difficult to maintain a sufficiently high degree of balance, and
shielding may then be desirable. The shielding may eliminate balance
entirely, as in the coaxial circuit, or may be combined with balance in
what may be termed a shielded balanced circuit, of which the shielded
pair is an outstanding example.

For the simplest forms of circuits, the optimum relations may be
precisely derived with the aid of the propagation formulas. In more
difficult cases it is necessary to use approximate methods of one kind or
another. These methods, however, can generally be made to yield
sufficiently accurate results for practical purposes.

Coax1AL CIRCUITS

Coaxial circuits, which furnish the least difficult problems in opti-
mum proportioning, make a natural starting point for this subject.

Basic Coaxial Circuit

The first type of circuit to be considered is the basic circuit consisting
of two tubular conductors arranged coaxially, whose cross-section is
shown diagrammatically in Fig. 1.

Before trying to find out how to proportion such a circuit, it must be
noted that in the design of any shielded circuit there enter a number
of variables, including the overall size of the structure, the type and
thickness of shield, the type of conductor or conductors, the type of
insulation, and the frequencies to be transmitted. Some of these
factors exert an important influence on the optimum proportioning, so
that it is necessary, in order to arrive at a unique solution in a given
case, to keep certain factors fixed. Thereafter, however, the effect
produced upon the result by varying these factors may be examined.

First, therefore, let the following assumptions be made:

1. That the tubular conductors of Fig. 1 are composed of solid material.

2. That the dielectric is gaseous, with zero dielectric loss. This is a
condition which may be approached in practice.

3. That the inner diameter of the outer conductor is fixed. This is a
convenient assumption, having for its basis the fact that it is
ordinarily desirable, for economic or other reasons, to limit the
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size of the outer conductor, and the further fact that the thick-
ness of the outer conductor will ordinarily be determined by
mechanical considerations or by shielding requirements.

4. That the frequency is high enough to permit the use of certain
approximate formulas as noted below. Practically, this means
that at the frequency considered the currents are largely
crowded toward the inner surface of the outer conductor and
the outer surface of the inner conductor.

The problem is to discover the proportioning which will make the
high-frequency attenuation of the circuit a minimum under such
conditions. It is well known that the attenuation of a transmission

Fig. 1—Coaxial conductor circuit.

circuit at high frequencies may be represented by the following
approximate formula:®

@ = 1—2\/% + g\{%nepers per cm., (1)

where R, L, G and C designate, respectively, the linear resistance,
inductance, conductance and capacitance of the circuit. Except as
otherwise indicated, values in this and subsequent formulas are ex-
pressed in c.g.s. electromagnetic units.

When the dielectric loss is negligible, the second term of formula (1)
evidently disappears. :

Let a and b represent, respectively, the inner and outer radii of the
inner conductor, ¢ and d the inner and outer radii of the outer con-
ductor, f the frequency, \; and u;, respectively, the conductivity and
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permeability of the material of the inner conductor, and A and s the
corresponding values for the outer conductor. The ratio M/Ae will be
designated by #.

The high-frequency resistance of the inner conductor may then be
approximately expressed by the formula:5:7

P

1=\ abohms per cm. (2)

Similarly the high-frequency resistance of the outer conductor is

approximately:
Ry = 11 ’f—“z abohms per cm. (3)
c N M

The high-frequency inductance of the circuit is approximately 7
L =2 log,%abhenries per cm. (4)

The capacitance of the circuit is ®

c=—= cabfarads per cm., (5)
2 lOg,E

where ¢ is the dielectric constant of the dielectric material between
conductors, equal to 1/9 X 1072 for gaseous dielectric, corresponding
to unity in the practical system of units.

The high-frequency attenuation of the coaxial circuit with negligible
dielectric loss, obtained by combining the above formulas, is

a = i\j—?— ¢ 4+ n Ve nepers per cm. (6)
2¢ N\ b 4 .
2 log. 3

The value of permeability assumed in the above equation, and here-
after, is unity, but the methods may be used also for other values.

If the inner diameter of outer conductor be assumed fixed, this
expression may be minimized with respect to the ratio ¢/b, which is
the ratio of the radii (or diameters). For convenience this ratio may
be designated as p. It is found that the high-frequency attenuation is
a minimum when the value of p is that given by
p+ n

P (M

log. p =
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Figure 2 shows the values of the ratio p which satisfy this relation
plotted as a function of the conductivity ratio n.

It is noteworthy that the optimum ratio of radii or diameters is
independent of (@) the diameter and thickness of outer conductor, (b)
the inner diameter of the inner conductor, and (c) the frequency,
provided the frequency is high enough for the approximate formulas
to hold. It follows from (a) that, assuming a fixed thickness of outer
conductor, moderately small in comparison with its diameter, relation
(7) makes it possible to find the minimum size of outer conductor with
which a given value of high-frequency attenuation may be realized.
It follows from (b) that the inner conductor may be either hollow or
solid, provided that the approximate resistance formulas are valid.
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Fig. 2—Variation of optimum diameter ratio of coaxial circuit with conductivity
ratio.

A case of special interest arises when the two conductors have the
same conductivity, that is, when n equals unity. For this condition
the solution of (7) is *

¢
A practical example of the case of different conductivities is a coaxial
structure in which the inner conductor is of copper and the outer
conductor of lead. For a lead outer conductor containing about 1
per cent of antimony, the ratio of conductivities of inner and outer
* The existence of an optimum relation of this kind was first noted by C. S. Frank-

lin, who gave the value as 3.7. (See Reference 3.) Subsequently the precise value
was derived independently of Franklin. (See Reference 10.)
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conductors is approximately 13, and the optimum diameter ratio for
such a structure, as found from Fig. 2, is about 5.25.

The behavior of the attenuation in the vicinity of the optimum
diameter ratio is illustrated in Fig. 3, which shows attenuation plotted
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Fig. 3—Variation of optimum diameter ratio of coaxial circuit with conductivity ratio.

against diameter ratio for the case where n equals unity. It will be
seen that near the optimum the attenuation changes very slowly.
This is fortunate, since it means that unavoidable departures from the
optimum diameter ratio may be permitted without appreciable effect
on the attenuation. Other small departures from ideal design are also
allowable. Thus, for example, it has been assumed in deriving the
condition for minimum attenuation that the two conductors of the
circuit are perfectly coaxial or concentric. However, for moderately
small departures from perfect concentricity occasioned by practical
difficulties of construction, the conditions for minimum attenuation are
substantially the same as for a circuit with no eccentricity. The
situation is similar for other types of shielded circuits to be considered
later, in these cases also only a reasonably close approximation to the
ideal being necessary.
Effect of Dielectric

Suppose now that the capacitance and leakage conductance intro-
duced by the insulation are substantial.? First, it will be assumed that
the space between the two conductors is filled with a substantially
uniform non-gaseous dielectric material having a dielectric constant e
and a power factor p. Such would be the case, for example, if the
two coaxial conductors were separated by a continuous rubber insula-
tion. The leakage conductance of the circuit now becomes
_P9¢_ bmhos per cm., (9)
2 log, B

G = puC =

where, as usual, w equals 2xf.
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By substituting in formula (1), the high-frequency attenuation is
found to be

) -
a = %_\/{_Tf (p + Vn) Tlog. 7 -I-P—‘Ziénepers per cm. (10)

Since w, p, and e are not functions of the ratio ¢/b, the second term of
this expression is constant for purposes of differentiation with respect
to that ratio, and the condition for minimum attenuation is identical
with that previously found, as given in formula (7).

A high-frequency transmission property of smaller interest than the
attenuation is the characteristic impedance. This is given by the

familiar formula ¢
Zy = \/%abohms. (11)

For the coaxial circuit with dielectric constant e the high-frequency
characteristic impedance is

2 log. p
0 = —v'é abohms. (12)

There now comes the case where the space between the conductors
consists of a combination of gaseous and non-gaseous dielectrics.
Perhaps the simplest example occurs when the conductors are separated
by insulating discs or washers extending continuously between the
two conductors with flat sides perpendicular thereto. Such a con-
struction is illustrated in Fig. 4. Let the thickness of each insulating
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Fig. 4—Coaxial structure with disc insulation.

disc be designated w, the spacing between centers of adjacent discs, s,
the dielectric constant of the air dielectric, ¢, and that of the disc
material e.
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The capacitance of the coaxial circuit now becomes

(e — e)w

e+
5

¢= 2 log. p

abfarads per cm., (13)

while the leakage conductance is

G=Y. tua

s 72log. p abmhos per cm. (14)

On substituting these values in formula (1) the following expression
results:

_ 1 [fas + (e — ewp + Vn
2N\ s 2 log. p
+PWE2_T£ 1
2 43 V’Els + (Ez —_ el)'w

(23

nepers per cm. (15)

Once more the second term is independent of ¢ and &, and the con-
dition for minimum attenuation is, as before, that given by equation (7).
The high-frequency characteristic impedance in this case, however, is

2 log. p

#61 + (62 —5 El)w

The quantity in the denominator of the above expression is evidently
the weighted average dielectric constant of the insiilating medium.

In the case just considered, the gaseous and non-gaseous dielectrics
were separated from each other by planes perpendicular to the axis of
the conductors. Consequently, each line of dielectric flux passed
through only one kind of material. It can be shown that, as long as
this latter condition holds, the condition for minimum high-frequency
attenuation as given by equation (7) is valid, or, in other words, the
optimum diameter ratio is that shown in Fig. 2. Cases arise, however,
in which a line of dielectric flux, in going from one conductor to the
other, may pass through more than one kind of dielectric material.
It is extremely difficult to obtain a mathematical solution for the
diameter ratio which results in minimum attenuation for such cases,
since this involves a three-dimensional field problem. Consideration
of the problem, however, indicates that the optimum diameter ratio
will not differ appreciably from that given by Fig. 2, especially if the
dielectric is mostly gaseous, which, of course, is highly desirable.

Zy = abohms. (16)
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Effect of Frequency on Optimum Ratio

It has been seen that, at the higher frequencies where the approxi-
mate transmission formulas may be employed, the optimum diameter
ratio is substantially independent of frequency. In so far as the
practical application of individually shielded circuits is concerned, it is
in these higher frequencies that interest primarily centers. Even when
it is desired to transmit a wide band extending from high frequencies
down to comparatively low ones, it is advantageous to proportion the
circuit so as to minimize the attenuation at the highest transmitted
frequency, since the attenuation at all lower frequencies will be less than
the value thus obtained.

It may, however, be worth while to consider briefly the question
of optimum proportioning when low frequencies only are involved.
The appropriate transmission formulas to be used instead of the
approximate high-frequency expressions are known,® and the optimum
diameter ratio in any specific case may be derived from these. It will
be evident that, since skin effect is present to a lesser degree at the
low frequencies, the diameter and thickness of the outer conductor
and the thickness of the inner conductor will, as the frequency is
decreased, have an increasing influence on the optimum proportioning.

Without attempting to derive precise values for the different condi-
tions, it may be noted that the optimum diameter ratio for low fre-
quencies is invariably less than that for high frequencies, the high-
frequency value being approached asymptotically as a limit. The
reason for this will be readily apparent. Let the inner diameter and
thickness of the outer conductor be assumed fixed. At high frequencies
the resistance of the inner conductor varies inversely with the first
power of its diameter. At lower frequencies, however, this resistance
varies inversely with some power of the diameter greater than unity,
and finally, at zero frequency, assuming a solid wire, with the square
of the diameter. Hence it is, that, in varying the size of the inner
conductor in order to obtain a balance between the change of resistance
and change of capacity, it is advantageous to make the inner conductor
somewhat larger, or, in other words, to make the diameter ratio smaller,
at low frequencies than at high frequencies.

Thin Walls

What is the result if the walls of the two coaxial conductors are made
very thin? Under this condition the conductor resistance, and hence
the attenuation, will remain substantially constant over a wide range
of frequencies. This constancy is realized, however, at the expense of
an increase in the attenuation as compared with that for thicker
conductor walls.
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Using the notation of Fig. 1, the resistances of the inner and outer
conductors, both with conductivity A, at frequencies where the walls
are sufficiently thin to avoid skin effect, are

1

RREXGETD)

abohms per cm. (17)
1

m abohms per cm. (18)

Ru =

Let the inner conductor have a fixed thickness b — a, the outer

conductor a thickness d — ¢, and let the ratio (b — a)/(d — ¢) be
represented by ¢£. For small values of wall thickness

b* — a* = 2b(b — a) (19)

and

Q- = 2e(d — o) = 2c(i:—“). ' (20)

Substituting these relations and the values of L and C from (4) and
(5) in equation (1), it is found that the attenuation for the circuit with
thin walls is

* = drne (b —a)2log, p nepers per cm.

Differentiation shows that minimum attenuation in the case of thin
walls is obtained when

Pl (22)

log. p = P

The values of diameter ratio which satisfy this relation may be found
from the curve of Fig. 2, if the values of abscisse on that curve are
interpreted as values of £

If the conductor walls are thin, as above, and if in addition the
conductivities of the two conductors are not the same, that of the inner
conductor being n times that of the outer one, the condition for
minimum attenuation becomes

Ptm. (23)

log. p =

Figure 2 may be used to find the values of diameter ratio which satisfy
this relation also, the abscisse scale markings in this case being taken
as values of 7%
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Stranded Conductors

With conductors having solid walls, or composed of non-insulated
strips or filaments, the currents at high frequencies are largely crowded
toward the inner surface of the outer conductor and the outer surface
of the inner conductor, due to skin effect. Since the losses in the
conductors themselves ordinarily comprise the major portion of the
attenuation in a coaxial circuit, interest attaches to the possibility of
counteracting the increase in conductor resistance due to skin effect by
using a conductor composed of a number of individually insulated
strands so twisted or interwoven as to distribute the current more
nearly uniformly over the cross-section.!! Chief attention naturally
focuses upon the inner conductor, which is by far the greater contribu-
tor to the resistance, and this discussion will be largely limited to the
case where only the inner coaxial conductor is stranded.*

Types of stranded conductors suitable for use as the inner conductor
of a coaxial circuit include both those in which the conductor cross-
section is completely filled with insulated strands and those in which
the insulated strands form an annular cross-section, surrounding a
core of non-conducting or conducting material. Of various possible
methods of stranding, one simple and effective process is similar to that
used in the construction of rope. A few strands are twisted together to
form a group, several such groups are twisted into a larger group, and
so on until the desired conductor cross-section is obtained.

The high-frequency resistance of a stranded conductor may be
determined either by measurement or computation. For a completely
stranded inner conductor of any diameter, size, number of strands, and
thickness of insulation, the high-frequency resistance is given by S.
Butterworth * and in unpublished material by J. R. Carson. The
resistance values obtained in measurements of stranded conductors
approximate very closely the theoretical results.

In evaluating the results obtained with stranding, it is convenient to
compare the resistance of a stranded conductor with that of a non-
stranded conductor of the same overall size. For the case of a stranded
inner conductor, the ratio of the resistance of the stranded conductor
at any given frequency to the resistance at the same frequency of a
solid conductor having the same outer diameter and composed of the
same material used in the strands may be designated as m.

The values of the resistance ratio m which may be realized in practice
depend upon the frequency and the design of stranded conductor.
Some idea of these values for two specific conductors may be obtained

* ““Stranded " is used to mean ‘' composed of insulated strands.”
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from the curves of Fig. 5. It will be seen that there is ordinarily a
frequency at which the resistance ratio is a minimum. Above this
frequency the improvement due to stranding rapidly vanishes, the
performance thereafter being worse than that of the corresponding
non-stranded conductor. The minimum value of resistance ratio
attained in the range of some hundreds of kilocycles may be in the
order of 0.6, a very substantial improvement. In order to secure any
marked advantage in the frequency range above 700 or 800 kilocycles,
the number and fineness of the individual strands would be such as
practically to preclude their use.

Another result obtained with stranding is an increase in the internal
inductance of the conductors, which likewise serves to reduce the high-
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Fig. 5—Resistance ratios of stranded conductors.

frequency attenuation. For a round conductor which is completely
stranded, the internal inductance at all frequencies where the current
is uniformly distributed over the conductor cross-section approximates
.5 abhenry per centimeter, which is the internal inductance of a solid
round wire at zero frequency. In general, this value of internal
inductance will hold up to frequencies somewhat above that for which
the resistance ratio s is a minimum. The internal inductance of a
stranded conductor of annular cross-section, for all frequencies where
the current is uniformly distributed over the cross-section, is

=3 n 2at
T 2(hr —a?) (B —aP)

L; Elog,g abhenries per cm. (24)
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This is the same as the internal inductance at zero frequency of a solid
tube of the same dimensions.

Since either the inner or outer conductor of a coaxial circuit, or both,
may be stranded, and since, in addition, the dielectric loss may either
be negligible or may be appreciable, there are six different cases of
optimum proportioning which might be considered.’* Only one case,
however, that of a coaxial circuit with only the inner conductor
stranded and with negligible dielectric loss, will be taken up here.
The high-frequency attenuation of such a coaxial circuit is

_m [f( L An \/ ¢
®=7 r.(““ m) (4 Tog. p)* + 2L; log, p"ePer Per em- (25)

While the value of m varies with frequency and with the design of the
stranded conductor, this value is, for a particular frequency and a
particular design, definitely determinable. As has been noted, it is
generally desirable to proportion a transmission circuit so as to mini-
mize the attenuation at the highest frequency to be transmitted.
Furthermore, the value of m will not vary rapidly with changes in
conductor diameter provided the number of strands be changed as the
conductor size is varied. It therefore becomes possible to treat m as a
constant in deriving the relation for optimum proportioning.

Using p to designate ¢/b, the condition for minimum high-frequency
attenuation is found to be

2™ 5 log, p
Voo "7 4log, p + L

" 2log. p + L;°

(26)

n

Figure 6 shows graphs of equation (26) for two values of L;, namely,
L; = 0.5 abhenry per centimeter, which corresponds to the case where
the cross-section of the inner conductor is completely stranded, and
L; = 0. When the stranded inner conductor is of annular cross-
section the optimum value of the diameter ratio lies somewhere be-
tween the two curves shown. The useful range of m probably lies
between about 0.5 and unity and that of # between about 1 and 15.

As to the practical use of stranding, it is apparent from the resistance
ratio curves of Fig. 5 that in order to take advantage of stranding it
would be necessary to limit the transmission band to a maximum
frequency well below that possible with non-stranded conductors.
Further drawbacks to the use of stranded conductors are their greater
cost as compared with non-stranded ones, and greater mechanical

p+1
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difficulties in using them. For these reasons stranded conductors do
not seem likely to find early application in broad band transmission

circuits.
Optimum Proportioning as a Function of Conductor Resistance

The optimum diameter ratio of a coaxial circuit may also be ex-
pressed broadly as a function of the two conductor resistances. As-
sume a coaxial circuit in which the high-frequency resistance of the
inner conductor varies, at least over a limited range, inversely as its
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Fig. 6—Optimum diameter ratio of coaxial circuit with stranded inner conductor.

outer radius and that of the outer conductor as its inner radius, thus

A and R0=E-

E : (27), (28)

R;

These relations are approximately true for all the types of circuits
which have been discussed. Let

=R (29)
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If the internal inductance of the conductors is assumed to be zero,
which is the most usual case, the high-frequency attenuation of the
circuit may then be written

1

7o 5’ (30)

a=2%(p+r)

Upon minimizing with respect to ¢/b the condition for minimum high-
frequency attenuation is found to be

p+r
p

log. p = =1 +%- (31)

These relations have been found useful in certain instances.

BAvLANCED SHIELDED CIRCUITS

Though arrangements of three or more coaxial conductors are
possible,!* practical interest is almost wholly limited to coaxial circuits
employing but two conductors. With balanced shielded circuits,
however, the number of conductors, counting the shield as one, is
necessarily three and may be more. With a coaxial circuit, moreover,
the cylindrical shape is the natural and usual one for the conductors.
With balanced shielded circuits, on the other hand, there enter a
number of possibilities. Not only are cylindrical shapes of conductors
and shield to be considered, but a variety of other shapes as well.
More complex, therefore, than the foregoing problems in optimum
proportioning are those for balanced shielded circuits, now to be
discussed.

Shielded Pair—Cylindrical Conductors and Shield

The simplest form of balanced shielded circuit is a shielded pair
comprising two cylindrical conductors surrounded by a cylindrical
shield. Such a circuit is shown diagrammatically in cross-section in
Fig. 7. For the present, attention will be directed to the circuit
obtained when the two enclosed conductors are connected one as a
return for the other.

Condition for Minimum Attenuation 13

As before, it is desired to minimize the high-frequency attenuation.
Let it be assumed first, as in the coaxial circuit, that the area within
the shield is fixed, the conductors are of solid material and the dielectric
is gaseous. Let b represent the radius of each conductor in Fig. 7, ¢
the inner radius of the shield, & the distance from the center of either
conductor to the center of the shield, A\, the conductivity of each con-



264 BELL SYSTEM TECHNICAL JOURNAL

ductor, \; that of the shield, and n the ratio of A;/A2. Expressions for
the high-frequency attenuation of this circuit have been given in
unpublished formulas developed by S. A. Schelkunoff and by Mrs.
S.P.Mead. The approximate formula given below is due to the latter.

\ 2
o[ 1+ (1—4a2)]+4ﬁ°’”[1+°’“1$y]
a=
1—d? __1+4"2 — 442
loga[2V1+gﬂ:| 1604 (1 40)
%%nepers per cm., (32)

where ¢ = hfc and v = &/b.

Fig. 7—Shielded pair.

The values of the diameter ratio (p) and what may be termed the
spacing ratio (¢), which make this expression a minimum for different
values of the conductivity ratio n, can be determined in different ways.
One possible method is to find the values of & and b which satisfy the
equations da/dh = 0 and da/db = 0. The partial derivatives are,
however, very complicated. Accordingly a preferable alternative is to
substitute various pairs of values of p and ¢ in (32) and determine,
graphically or otherwise, the particular pair which makesita minimum.
In this way it is found that when the conductors and shield are of the
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same material, so that # equals unity, the optimum values are approxi-
mately

LYk

p =§= 54; o ="-=46. (33), (34)

The optimum diameter and spacing ratios for different values of the
conductivity ratio # are shown in Figs. 8 and 9. For copper conduc-
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tors and a lead shield, the values are approximately 6.9 and .36,
respectively.

As with the coaxial circuit, these optimum relations are independent
of the diameter and thickness of the shield. Hence they make it
possible to find the minimum size of shield necessary for a given value
of high-frequency attenuation. The optimum relations are also
independent of the frequency, provided the frequency is high enough
for the approximate formulas to hold. The inner conductors may be
either hollow or solid.

Condition for Maximum Characieristic Impedance

Occasionally it is of interest to know the condition that must be
satisfied to obtain maximum high-frequency characteristic impedance
for a solid pair with circular shield. At high frequencies the value of
1/YLC approaches a constant value equal to the velocity of light
divided by the square root of the ratio of the dielectric constant of the
circuit to that of air. Hence the condition for maximum characteristic
impedance is also, from equation (11), that for maximum inductance
and minimum capacitance.

Accordingly, the high-frequency characteristic impedance of the
shielded solid pair circuit is given by the formula:

4 -] 144 .,
Zy = \—E ( log. [2»' 62] 16 (1 — 4¢?) ) abohms. (35)
Let it be assumed first that the wires are very small compared with the
shield. Then equation (35) may be written

Zo=21og [a 1—"—"2] +-% log, 2 abohms (36)
\{; 1+ o _\’r; e ~«p .

For a given ratio of inner diameter of shield to outer diameter of
conductor, the second term of this expression is-constant. By mini-
mizing the first term with respect to o, it is found that, so long as the
ratio of inner diameter of shield to conductor diameter is large, maxi-
mum characteristic impedance is obtained when ¢ has a value of .486.

If the conductors are large compared with the shield, equation (36)
no longer holds. However, since the capacitance and high-frequency
characteristic impedance are inversely proportional to one another,
the position of the conductors with respect to the shield must be such as
to minimize the capacitance. Itis clear that as the conductor diameter
approaches the inner radius of the shield, o approaches 0.5 for minimum
capacitance. Hence, for any ratio of inner diameter of shield to
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diameter of conductor, the ratio of the interaxial separation of the
conductors to the inner diameter of the shield which gives maximum
characteristic impedance lies between the limits 0.486 and 0.500.
For practical purposes a value of about 0.49 may generally be used.

Effect of Dielectric

The effect of dielectric for a shielded pair is similar to that for a
coaxial circuit. When the insulation is so disposed between conduc-
tors and shield that a line of dielectric flux passes through only one
kind of dielectric material, the second term of the attenuation formula
is independent of the proportioning of conductors and shield, so that
the optimum proportions as given in Figs. 8 and 9 are unchanged.
These values will also serve for most practical cases where a line of
dielectric flux may pass through more than one kind of material.

Effect of Frequency

At frequencies where the approximate formulas no longer hold,
the conditions for minimum attenuation as given by Figs. 8 and 9
undergo some change, especially the former. As the frequency is
decreased the attenuation is minimized by increasing the size of con-
ductor for a given size of shield. In other words, the optimum
diameter ratio grows less. The optimum spacing ratio increases from
0.46 toward the value which gives minimum capacitance, i.e., ap-
proximately 0.49.

Pair in Space

It is interesting to digress for a moment to consider briefly the case
shown in Fig. 10 of a pair of round conductors in space. This may

@ ©

Fig. 10—Pair in space.

be regarded as a pair surrounded by a shield of infinite diameter. If
the conductors are of solid material, the attenuation of the circuit at
high frequencies is

P [fe

=2\ X cosh— v

nepers per cm., (37)
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where P is the proximity effect factor, given in a paper by J. R.
Carson.® At high frequencies this factor reduces to the asymptotic
value

P=— (38)

For a given high frequency and given wire separation, assuming the
dielectric constant and conductivity to be fixed, equation (37) becomes

2

\V»? — 1 cosh—1»’
where Kj is a constant.
For a given wire separation this expression is minimized when
y =T _ 907, (49)
b
For open-wire pairs, which may be considered as approaching pairs in
space, it is ordinarily cheaper to obtain any desired attenuation at a
given frequency by using a wide separation and relatively small
conductors rather than a narrow separation and conductors of such
size as to satisfly (40). This relation is of considerable utility, how-
ever, in that it is a reasonably close approximation to the optimum
for many kinds of shielded pairs. The corresponding ratio for the
shielded solid pair, as given by (33) and (34), is approximately 2.5.

Shielded Stranded Pair

The preceding discussion of shielded pairs has been limited to types
of enclosed conductors such that high-frequency currents are crowded
toward the conductor surfaces. There will now be found the optimum
proportioning when the enclosed conductors are stranded."”

The capacitance and inductance between two shielded stranded
wires when surrounded by a cylindrical shield are approximately

€
- 1 -4
4 Iogrlr2l’ﬁ—ojj|

1 — ¢ .
L = 4log, [ 2y I—W] + 2L; abhenries per cm., (42)

C=

abfarads per cm., (41)

where L; is the internal inductance of each conductor.
If it be assumed that the current distribution is uniform over the
cross-section of the enclosed conductors, the resistance of each is the
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same as if its return were coaxial. Hence the high-frequency resistance
of each conductor is
2m f

Ry ="

5 i, abohms per cm. (43)

The high-frequency resistance of the shield can be shown to be

_ 86k \/?
Ry — 7\ abohms per cm. (44)

The high-frequency attenuation of the shielded stranded pair, found
by substituting equations (41) to (44) in (1), is, with zero dielectric loss,

m f[p-{— 4vne? ]

2 m(l — o%)

\/[log. 2v1+02][4]og.2v1+ 4+ 2L;

The optimum proportions of the shielded stranded pair at high
frequencies depend, therefore, on the two quantities m/vn and L,
For any given shield radius ¢, the values of & and b which give minimum
attenuation may be found by setting

nepers per cm. (45)

da - da
'a—}; = 0; and E—b = 0. (46), (47)

By imposing the first condition it is found that

IM (c* — h1)? - M 2 log. M(4 log, M + 2L;) 1 (48)
ok 8ch(c'h?) 8 log. M + 2L; m + 4ch?
'\"ﬂ_b 64 — h4
Imposing the second condition we find that
_ nb : M 2 log. M(4 log, M + 2L, 1
m b =M Slog M+ 2L m L g @
Vb =

where M = 2»(1 — o?) /(1 + o2).
Upon equating the left hand members of (48) and (49), and sub-
stituting the values of the derivatives, the following expression results
2 4
) 8s*(1 4 o) _ (50)

m 4 —_ 0.2__0.4
ARSI )
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This expression is the locus of values of the ratio p which give
minimum attenuation for different assumed values of the ratio o.
The unique values of hfc = ¢ and c¢/b = p, which give minimum
attenuation for a given value of m/vYn and L;, may be obtained by
taking pairs of ¢ and p which satisfy equation (50), substituting them
in equation (45), and graphically determining the pair for which the
attenuation is a minimum.

Figures 11 and 12 show a graph, obtained in this way, of the optimum
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Fig. 11—Optimum diameter ratio of shielded stranded pair.
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Fig. 12—Optimum spacing ratio of shielded stranded pair.

proportions for a shielded stranded pair, plotted as a function of m/\n
for a value of L; equal to 0.5 abhenry per centimeter, which corre-
sponds to the case where each conductor is completely stranded.

Pair with Shield Return
The discussion of the shielded pair thus far has been concerned
solely with the circuit which employs one of the enclosed conductors
as a return for the other. A second circuit may be obtained by
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transmitting over the two enclosed conductors in parallel with the
shield as the return. This latter circuit alone is less efficient than a
coaxial circuit formed by replacing the two inner conductors with a
single one. If, however, the two circuits obtainable from the shielded
pair structure can both be employed without excessive mutual inter-
ference, there will be a considerable increase in the usefulness of the
system, measured in terms of the total frequency range that can be
transmitted without exceeding a given attenuation. It is therefore of
interest to determine the conditions making the total transmitted
frequency range for the two circuits a maximum.!®

The high-frequency attenuation of each circuit, assuming solid
conductors, can be written

a = KAf, (51)

where K is a constant, different for each circuit, which depends on the
size and material of the conductors, and the dielectric constant of the
insulation. Leakage is assumed negligibly small.

Using subscripts 1 and 2, respectively, to designate the circuit
comprising the two enclosed conductors one as a return for the other
and the circuit comprising the two wires in parallel with shield return,
it follows that '

2 2
fith=gstgs (52)
Letting A = ag/ey
1 2
f1+f2—al<K2+Ié) (53)

Equation (53) gives the sum of the frequency ranges that can be
transmitted in the above manner over any given shielded pair for any
given attenuation at the highest frequencies of the bands. To obtain
maximum total range, this equation must be maximized.

The attenuation of the circuit comprising one enclosed conductor
as a return for the other is given by equation (32), from which the
value of K; can be obtained immediately. An expression for K, has
been given in an unpublished formula due to Mrs. S. P. Mead. as
follows:

K”=1og,[f’(1—0“)]_111‘1/(“4,4( S e\ o9

20 1+ 42
in which
_ 8v%(1 + 40%)
U= o[ 1+ M (140 (7 7))
voafir et 3 (1 (SEE))]
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For a given inner radius of shield and given dielectric constant and
conductor material, the diameter and spacing ratios which make equa-
tion (53) a maximum can be obtained by the substitution method
previously described. When the conductors and shield are of the same
material and 4 = 1, computation shows that the total frequency range
is a maximum when the radius ratio p equals 5.9 and the spacing ratio
o equals 0.33. This value of 4 = 1 represents an important practical
case, since it will, as a rule, be desirable to employ the same repeater
points for each circuit and permit the same attenuations between
repeater points. It is also of interest, however, to determine the
effect of other values of 4.

When A is zero, the problem reduces to that of the simple shielded
pair, which has been shown previously to be minimized by the propor-
tions given in (33) and (34).

When A becomes large, or, in other words, when the phantom circuit
alone is used, 1/K;? must be maximized. It is obviously necessary
that the enclosed conductor be in contact and, accordingly, the spacing
ratio must be the reciprocal of the diameter ratio. For this condition
the following proportions result:

p = g -60; o= ’—z = 0.17. (55), (56)

The above proportions are optimum only when the enclosed con-
ductors and the shield are of the same conductivity. The relations
for the case of unequal conductivities may be derived in a similar
manner. For practical purposes the effect of dielectric loss on the
optimum proportions is negligible.

Double Coaxial Circuit

Another form of balanced and shielded transmission circuits may be
obtained by using two coaxial conductor units, the transmission path
consisting of the two inner coaxial conductors in series, with the outer
coaxial conductors serving only for shielding. Such a circuit is shown
diagrammatically in cross-section in Fig. 13. Usually the outer
conductors would be in practically continuous contact with each other.
A circuit of this type will handle a frequency band extending to lower
values than can be used with a single coaxial circuit, since it is balanced
and the two coaxial units can be transposed by twisting or by periodic
interchange of their positions. At high frequencies, where the shielding
of the outer conductor of the coaxial circuit becomes effective, the outer
conductors may be separated to any desired distance. It is essential,
however, that they be connected together at the ends of the circuit.
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In such a double coaxial circuit, used at high frequencies, equal and
opposite currents will flow on the inner and outer conductors of each
coaxial unit. The resistance and inductance of the balanced circuit
will, therefore, be twice, and the capacitance and leakance one-half,
the corresponding values for one coaxial unit. The attenuation of the
balanced circuit is equal to the attenuation of one coaxial unit and may
be expressed by the formulas previously given, where the various
symbols are understood to refer to one unit of the circuit. Accordingly
the optimum high-frequency proportions are the same as those pre-
viously derived for ordinary coaxial circuits of different types.!?

As the frequency is reduced, the optimum proportions become dif-
ferent from those for coaxial units, since the circuit inductance ap-

Fig. 13—Double coaxial circuit.

proximates more closely that for a simple pair of wires occupying the
positions of the inner conductors, while the capacitance remains equal
to one-half of that of one coaxial unit. As a result the optimum
diameter ratio is larger than at high frequencies.

Shielded Pair—Round Conductors and Oval Shield

The shield around a pair does not have to be cylindrical. Upon
consideration of a pair of round conductors with a cylindrical shield,
as shown in Fig. 7, it is evident that the shield approaches quite close
to the conductors at the sides, while it is well removed from them at
the top and bottom of the figure. This means that for a given area
enclosed by the shield the capacitance of the circuit is greater than
would be the case if the shield were kept at a more nearly uniform
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distance from the conductors. Consequently, for a given area cir-
cumscribed by the shield, a reduction of attenuation can be secured
by changing the shape of the shield.

The problem of determining the shape of shield which gives minimum
high-frequency attenuation presents extreme difficulty, and a rigorous
solution has not been obtained. However, it appears that a close
approach to the ideal shape can be obtained by a shield having the
cross-section shown in Fig. 14, which consists of two semi-circles
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Fig. 14—Oval shielded pair.

joined by straight lines, the inner conductors being placed at the
centers of the semi-circles. For convenience this shape of shield will
be termed “‘oval.”

The optimum proportioning 2 for a pair of conductors with such an
oval shield may be closely approximated by comparison with the
pair with circular shield and with the double coaxial circuit. In such
comparison the cross-sectional areas of the different circuits will be
assumed equal.

Consideration will first be given to the case where the enclosed
conductors in Fig. 14 are of solid material. The conductivity of the
conductors will be assumed the same as that of the shield, it being
apparent that the same methods may be employed in the case of dif-
ferent conductivities. In arriving at the spacing ratio of the conduc-
tors for minimum attenuation, the condition for minimum capacitance
will be used as a stepping stone. The spacing ratio of the conductors
in Fig. 14 may be represented by ho/(co + o). Comparison with
Fig. 7 shows that the corresponding ratio for that figure is k/c, which,



PROPORTIONING OF CIRCUITS FOR ATTENUATION 275

it has already been seen, should have a value of approximately .486
for minimum capacitance. It is evident that the value of the ratio
ho/(co + ho) for minimum capacitance in Fig. 14 should be very close
to .486, but in view of the concentricity of the conductors with the
semi-circular parts of the shield it should be slightly less than this
value. It has been found that to obtain minimum capacitance for
an oval shielded circuit the spacing ratio should be approximately

o .
m = 47, _ (57

It has been seen for Fig. 7 that to obtain minimum high frequency
attenuation the spacing ratio is shifted from the value of .486, which
gives minimum capacitance, to a value of about .46. For Fig. 14,
however, the current density in the shield is more uniform, so that the
proximity effect between conductors is less completely compensated
by the shield currents. Hence the spacing ratio for minimum high-
frequency attenuation for the oval shielded circuit should be approxi-
mately the same as that for minimum capacitance, as given in (57)
above.
~ There remains to be determined the second condition for minimum
high-frequency attenuation for an oval shielded circuit of given cross-
sectional area, namely, the optimum value of the diameter ratio ¢;/bo.
Comparison with Fig. 13 indicates that the optimum value of this
ratio should be fairly close to the optimum value of 3.6 for the coaxial
circuit. Comparison with Fig. 7, ¢, being equal to about .69¢ for equal
areas in the two cases, shows that the optimum value of the ratio
co/bo should be slightly greater than 3.6. For practical purposes the
optimum may be taken as

D+ 3. (58)
bo
With this ratio the size of the conductors with oval shield is, for the
same cross-sectional area, approximately the same as that of the
optimum size of conductors with circular shield.

The capacitance of the pair with oval shield is smaller than the
capacitance of the pair with circular shield, because the inner conduc-
tors of the former are more widely separated and are farther from the
shield. It is very slightly larger than the capacitance of the double
coaxial circuit.

The part of the resistance of the oval shielded circuit which is due
to the shield will be less than that for a circular shield because of the
more uniform current density in the shield. However, as has been
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noted, the proximity effect between conductors is less completely
neutralized by the shield currents than is the case for the circular
shield. It appears that these two effects may approximately balance
one another, and that the circuit resistance is approximately the same
for both oval and circular shielded circuits.

It is found that a circuit of approximately optimum proportions
comprising two solid round wires surrounded by an oval shield has
about 12 per cent lower attenuation than a circuit with circular shield
of equal cross-sectional area.

When the conductors enclosed within the oval shield are stranded
there is no increase of conductor resistance due to proximity effect.
On this account it is desirable to bring the conductors closer together
in order to reduce the shield loss and the optimum spacing ratio will
be less than for the case of solid conductors. With stranded conductors
the attenuation reduction as compared with the circular shield is
greater than in the case of solid wires; for example, if the resistance
ratio (m) is .7, the attenuation with oval shield will be about 25 per cent
less than that of the circular shield.

The circular form of shield is ordinarily the most convenient and
practical one. A disadvantage of an oval shield as compared thereto
is unequal stiffness or resistance to bending in different directions.

Shielded Pair—Quasi-Elliptical Conductors

It has been suggested at different times that the ordinary round form
of conductor, while well adapted for manufacturing purposes, may not
be the theoretically optimum shape for many types of high-frequency
transmission circuits. Speculations in this respect have differed
greatly, and a large variety of non-circular shapes of conductors have
been proposed, including flat strips, strips with concave or convex
faces opposite one another, angular forms, etc. However, except in
the case of the coaxial circuit, for which the circular form is clearly the
optimum, there has been, so far as the authors are aware, no exact
analytical determination of the optimum conductor shape for a given
type of circuit.

A complete treatment of possible problems of this kind would extend
to great length. It is worth while, however, to consider a single
problem, namely, that of determining what shape and spacing for a
pair of conductors with circular shield will result in minimum high-
frequency attenuation. This problem is of particular interest inas-
much as the circular shape is ordinarily the most convenient and practi-
cal one for a shield.

In attacking this problem the fundamental principles which deter-
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mine the high-frequency attenuation of a circuit comprising a pair of
conductors surrounded by a shield may be briefly examined. At high
frequencies, where the currents are crowded toward the surfaces of
the conductors, the attenuation is proportional to the product of the
resistance and capacitance of the circuit, both of which are functions
of the flux density in the dielectric.

With a circular shield, and round conductors, the flux density is far
from uniform around the surfaces of the conductors, being relatively
high at points nearest the shield and also at points nearest the shield's
center, and a minimum at points about half-way between. Accord-
ingly, it appears that the high-frequency resistance of the conductors
can be reduced by reshaping them so as to make the flux distribution
more uniform. This can be accomplished by squeezing the conductors
at regions of maximum flux density and bulging them at regions of
minimum flux density, thereby producing a conductor of approxi-
mately elliptical cross-section.

The flux distribution around the shield is also far from uniform, being
a maximum at points nearest the conductors and a minimum at points
90 degrees away. Making the enclosed conductors elliptical tends to
reduce this non-uniformity, thereby reducing the circuit resistance due
to loss in the shield.

This process of reshaping the conductors can not be carried very far,
however, because it soon increases the circuit capacitance more than
it decreases the resistance. It is difficult to treat this problem by
rigorous mathematics, but an analysis can be made which yields an
approximate solution.

For certain conductor shapes, the high-frequency attenuation of a
pair with circular shield may be determined by a method involving the
substitution of charged filaments for the conductors. Let any number
of positively and negatively charged filaments be included in the shield,
the net charge on the filaments being zero. The electrostatic potential
at any point of this system can readily be determined by known meth-
ods. Thus, for example, Fig. 15 shows the location of the equipo-
tential surfaces for the case of two oppositely charged filaments placed
within a circular shield, the distance from each filament to the center
of the shield being .46 times the shield radius.

In any such system, a conducting cylinder whose external surface
correspond$ to, and whose potential is equal to the potential of, a
particular equipotential surface may be substituted for the part of the
system contained within that surface without disturbing the flux
distribution external to it. Consequently, the capacitance of a
shielded circuit employing equal and oppositely charged conductors
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having the same shape as any two corresponding equipotential sur-
faces of the electrostatic system can be determined.

The flux density at any points on the conductors or on the shield is
proportional to the rate of change of the potential with respect to the
normal to the surface at that point. The high-frequency resistances
of the conductors and shield, respectively, are proportional to the

Fig. 15—Equipotential lines around shielded charged filaments.

integral of the square of the flux density around their periphery.
Thus the high-frequency resistance of the circuit may be determined,
and from this and the capacitance, the high-frequency attenuation.
This method makes it possible to determine and compare the high-
frequency attenuations of conductors having shapes corresponding to
the equipotential surfaces for various assumed arrangements and
numbers of charged filaments. If, however, the problem be that of
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determining the attenuation for a given shape of conductor, there may
be great difficulty in finding the arrangement and number of filaments
which will produce an equipotential surface to coincide with the given
shape.

By applying this method to a series of approximately elliptical
conductors previously shown to be of the shape that would be expected
to have lower attenuation than circular conductors, what is considered
a close approximation to the optimum shape of conductor for a pair
with circular shield has been arrived at. This is approximately an
ellipse whose major axis is about 5 per cent longer than its minor axis,
the latter being in line with the center of the shield. The high-
frequency attenuation of a circuit with circular shield and conductors
of this shape is approximately 2 per cent lower than that for the same
shield with round conductors. This reduction does not appear enough
to offset the practical difficulties involved with conductors of such
shape.

Shielded Quad

The number of conductors enclosed within a shield, instead of being
one, as in the coaxial, or two, as in the shielded pair, may be more.
By placing four conductors within a common shield, two separate
balanced-to-ground circuits may be obtained. If sufficiently good
balance can be obtained between these circuits, the total frequency
band which can be transmitted within a given cross-sectional area may
be increased. To obtain balance, the plane of the conductors of one
circuit needs to be at right angles to that of the other circuit and all
conductors should be equidistant from the axis of the shield. The
pairs may be twisted or spiralled about the axis of the shield.

An arrangement of this kind is shown in Fig. 16, where four round
conductors are placed within a circular shield to form a shielded quad,
or, as it is frequently described when the conductors are twisted, a
‘““shielded spiral four.” Diagonally opposite conductors are used as
the sides of a circuit.

Approximate formulas for the high-frequency attenuation of either
circuit of Fig. 16, when the enclosed conductors are solid, have been
derived in unpublished work of Mrs. S. P. Mead and S. A. Schelkunoff.
The optimum high-frequency proportioning of the system, assuming
the same conductivity for both enclosed conductors and assuming
gaseous dielectric, has been determined by Mrs. Mead. The results
are shown in Figs. 17 and 18, where the optimum diameter ratio and
spacing ratio are plotted as functions of the ratio of the conductivity
of the enclosed conductors to that of the shield. For the case of
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equal conductivities of conductors and shield the optimum values are

= 49 (59), (60)

o=

c
p—5—6.8, o=

These values may be compared with 5.4 and .46, respectively, for the
pair of round conductors with circular shield. The high-frequency
attenuation of each shielded quad circuit with optimum design is,

Fig. 16—Shielded quad.
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for the same diameter of shield, about 10 per cent higher than that of
a shielded pair for its optimum design.

CONCLUSION

There have been discussed a number of different types of individually
shielded circuits, both balanced and unbalanced, and the proportioning
of these circuits for minimum high-frequency attenuation has been
determined. The following table summarizes the optimum pro-
portions for the more important circuits treated above. The values
given are for the case where all the conductors are of the same material.

Diameter Spacing

Circuit Ratio (p) Ratio (o)
Simplecoaxial . ................ ... .., 3.59 -
Double coaxial .......... ... 3.59 —
Shielded pair, round conductors and circular shields... 5.4 0.46
Shielded pair, round conductors and oval shield. .. ... 3.7 0.47
Shielded quad. ......... .. ... ..., 6.8 0.49

Of the transmission characteristics of these circuits, a property of
particular interest is the attenuation, since, assuming adequate
shielding, it is this which determines either the required repeater
spacing for a given transmitted frequency band or the width of fre-
quency band obtainable with a given repeater spacing. For each type
of circuit considered there has been determined the ideal proportioning
whereby the high-frequency attenuation of the circuit may be mini-
mized. In addition a variety of methods for the solution of problems
in optimum proportioning have been outlined.

It is, of course, feasible by adjustment of size to obtain the same
high-frequency attenuation for all these different types of circuits.
However, the size of a structure is usually reflected in its cost. An
interesting picture can therefore be drawn by comparing the attenua-
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tions, at the same high frequency, of different types of circuits having
the same cross-sectional area and of the same material. For structures
with solid wall conductors and air insulation the comparison works
out as shown in the table below, the attenuation of the coaxial circuit
being used as a standard of reference.

C0aXial CIFCUIL + « v v e et et ot e ev s ea e e et e i iaaasassaeaannenns

Shielded pair, round conductors and circular shield.
Double coaxial CIFCUIt. . . .ttt r i e e e iaaae i iaana e

Shielded pair, round conductors and oval shield, approximately.. .. .. 1.3
Shielded pair, circular shield with quasi-elliptical conductors, ap-
ProXimately. ... ...oveor i 1.47

In each case the cross-sectional area is taken as that enclosed within
the shield. This neglects any differences in the thickness of shield
that may be required.

A specific comparison of considerable interest is that between an
unbalanced coaxial circuit and a shielded pair, the latter being taken
as representative of shielded balanced circuits. The table shows that,
for the same attenuation, the cross-sectional area included within the
shield is larger for the shielded pair than for the coaxial circuit. On
the other hand, the use of balance in addition to shielding is advan-
tageous in that it reduces the amount of shielding needed. The shielded
pair makes possible the utilization of the entire frequency range, if
desired, whereas with a coaxial circuit it is necessary to discard the lower
frequencies where it is uneconomical to provide adequate shielding.

A thorough-going comparison of the relative advantages and fields
of application of the various types of circuits which have been dis-
cussed would extend to great length. Clearly a large number of
factors enter into the choice of the configuration of shielded high-
frequency circuit to be used in any given instance. These factors
include the width of frequency band to be transmitted, the degree of
shielding required, the relative economy of manufacture of different
structures, etc. While a complete exposition of these factors has not
been attempted, the principles of optimum proportioning which have
been discussed should be helpful in selecting the best configuration to
meet given requirements, and the particular configuration chosen
should be made to conform reasonably closely to the optimum.
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